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A B S T R A C T

Soil moisture and gross primary productivity (GPP) estimates from the Soil Moisture Active Passive (SMAP) and
solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) provide new
opportunities for understanding the relationship between soil moisture and terrestrial photosynthesis over large
regions. Here we explored the potential of the synergistic use of SMAP and OCO-2 based data for monitoring the
responses of ecosystem productivity to drought. We used complementary observational information on root-zone
soil moisture and GPP (9 km) from SMAP and fine-resolution SIF (0.05°; GOSIF) derived from OCO-2 SIF
soundings. We compared the spatial pattern and temporal evolution of anomalies of these variables over the
conterminous U.S. during the 2018 drought, and examined to what extent they could characterize the drought-
induced variations of flux tower GPP and crop yield data. Our results showed that SMAP GPP and GOSIF, both
freely available online, could well capture the spatial extent and dynamics of the impacts of drought indicated by
the U.S. Drought Monitor maps and the SMAP root-zone soil moisture deficit. Over the U.S. Southwest, monthly
anomalies of soil moisture showed significant positive correlations with those of SMAP GPP (R2 = 0.44,
p < 0.001) and GOSIF (R2 = 0.76, p < 0.001), demonstrating strong water availability constraints on plant
productivity across dryland ecosystems. We further found that SMAP GPP and GOSIF captured the impact of
drought on tower GPP and crop yield. Our results suggest that synergistic use of SMAP and OCO-2 data products
can reveal the drought evolution and its impact on ecosystem productivity and carbon uptake at multiple spatial
and temporal scales, and demonstrate the value of SMAP and OCO-2 for studying ecosystem function, carbon
cycling, and climate change.

1. Introduction

Drought is a recurring natural phenomenon with widespread in-
fluence on both managed and natural ecosystems across the globe.
Drought significantly affects terrestrial ecosystem productivity and
carbon dynamics (Ciais et al., 2005; Xiao et al., 2009), and is found to
be the major driver of declines in global net primary production (Chen
et al., 2013; Zhao and Running, 2010). Exploring the responses of
ecosystem productivity to drought can inform agricultural and forestry
management and improve our understanding of the global carbon

balance and carbon-climate feedbacks (Vicente-Serrano et al., 2013). In
2018, the U.S. Southwest experienced a severe and prolonged drought
(Williams et al., 2020). This severe drought affected the vast majority of
the region, including large parts of Colorado, New Mexico, Arizona,
Utah, and Oregon, and smaller parts of northern North Dakota, West
Texas, and southern California (NOAA National Centers for
Environmental Information, 2018). The drought persistently impacted
people, agriculture, and natural landscapes across the U.S. Southwest
(Lindsey, 2019). For example, it intensified wildfires in Colorado and
substantially reduced surface water supplies in New Mexico (NOAA
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National Centers for Environmental Information, 2018). However, it
remains unclear how this drought affected ecosystem productivity and
carbon uptake in the U.S. Southwest.

Optical-infrared remote sensing has traditionally been used to di-
agnose ecosystem responses to drought. For example, satellite-derived
vegetation indices, including the normalized difference vegetation
index (NDVI) (Rouse et al., 1974), enhanced vegetation index (EVI)
(Huete et al., 2002), and normalized difference water index (NDWI)
(Gao, 1996), are sensitive to water stress and have been commonly used
for drought assessments (e.g., Gu et al., 2007; Ma et al., 2016; Samanta
et al., 2010). These vegetation indices are used either as proxies for
vegetation productivity or as key inputs to light use efficiency (LUE),
data-driven, or diagnostic models (Xiao et al., 2019). The U.S. South-
west is water-limited (Biederman et al., 2017) and is dominated by
dryland ecosystems (e.g., grassland, shrubland, and savanna), where
traditional remote sensing techniques have been shown to have sig-
nificant limitations for monitoring productivity (Smith et al., 2019). For
example, the gross primary productivity (GPP) estimated from the
Moderate Resolution Imaging Spectroradiometer (MODIS) only cap-
tured ~30% of the interannual variability of flux tower-based GPP
across dryland sites across the region (Biederman et al., 2017). The
relatively weak performance of proxies or primary production models
based on remote sensing data in drylands could be attributed to weak
signals due to sparse vegetation, effects of soil background, lack of
sufficient data for model calibration, and inappropriate estimation of
water stress effects (e.g., Smith et al., 2019). Fortunately, solar-induced
chlorophyll fluorescence (SIF) measurements from new satellite plat-
forms and operational soil moisture and productivity (GPP) records
benefiting from low frequency (L-band) satellite microwave soil
moisture retrievals have recently become available. These new satellite
data streams can potentially provide new insights into vegetation
physiological function and improve our understanding of drought-in-
duced variations of productivity for a wide variety of ecosystem types
including dryland ecosystems.

Satellite measurements of SIF have advanced the global monitoring
of terrestrial photosynthesis in the past decade (Joiner et al., 2011;
Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013;
Frankenberg et al., 2014; Köhler et al., 2018; Li and Xiao, 2019a;
Mohammed et al., 2019; Ryu et al., 2019; Xiao et al., 2019). SIF is an
optical signal emitted from excited chlorophyll molecules after light
absorption (Baker, 2008). Diagnosing variations in SIF can reveal im-
portant information on plant biochemical and physiological status as
well as availability of absorbed photosynthetically active radiation
(APAR). Therefore, SIF has been found to be more sensitive to en-
vironment-induced photosynthetic variations compared to conven-
tional vegetation indices that measure canopy greenness and chlor-
ophyll abundance (Daumard et al., 2010; Li et al., 2018a; Yoshida et al.,
2015).

SIF has been retrieved from several satellite instruments including
the Greenhouse gases Observing SATellite (GOSAT) (Joiner et al., 2011;
Frankenberg et al., 2011; Guanter et al., 2012), Global Ozone Mon-
itoring Experiment-2 (GOME-2) (Joiner et al., 2013) and the SCanning
Imaging Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY) (Joiner et al., 2016; Köhler et al., 2015). SIF from these
satellite missions has been effective in estimating ecosystem pro-
ductivity (Frankenberg et al., 2011; Guanter et al., 2012) and crop yield
(Guan et al., 2016; Somkuti et al., 2020). SIF also showed strong po-
tential for studying the effects of drought events (Li et al., 2018b;
Parazoo et al., 2015; Sun et al., 2015; Yoshida et al., 2015) and heat
waves (Song et al., 2018; Qiu et al., 2020) on ecosystems, although it
was reported to have a weak performance in tracking GPP under short-
term drought or heat waves when APAR showed little changes
(Wohlfahrt et al., 2018; Wieneke et al., 2018). However, these gridded
satellite SIF data have very coarse spatial resolutions (e.g., 0.5-2 de-
gree), and they lack fine spatial details and are unsuitable for many
applications (e.g., ecosystem-level studies). More recently, NASA

launched the Orbiting Carbon Observatory-2 (OCO-2) on July 2, 2014,
providing SIF retrievals with higher spatial resolution along orbits
(1.3 × 2.25 km2) and higher signal-to-noise ratio (Frankenberg et al.,
2014) than previous satellite SIF data (e.g., GOME-2, SCIAMACHY,
GOSAT). The footprint (i.e., size) of OCO-2 ground pixels is comparable
to that of a typical eddy covariance (EC) flux tower, which allows for
directly linking SIF with GPP from flux towers (henceforth “tower
GPP”) (Li et al., 2018a; Li et al., 2018c; Sun et al., 2017; Verma et al.,
2017; Wood et al., 2017; Smith et al., 2018). However, due to the sparse
sampling nature of OCO-2, regional to global scale studies rely on
coarse spatial (e.g., 1–2 degree) and temporal (e.g., monthly) compo-
siting of the fine-resolution OCO-2 soundings. To help resolve the
limitations imposed from the coarse resolution SIF observations, global,
fine-resolution and spatially continuous SIF datasets have been pro-
duced from OCO-2 SIF and other explanatory variables using machine
learning methods (Zhang et al., 2018a; Yu et al., 2019; Li and Xiao,
2019a). These long-term, higher-resolution SIF datasets can support a
broader range of applications (Li and Xiao, 2019b, 2020; Gang et al.,
2020; Li et al., 2020) and therefore have greater potential in ecology,
climate change, carbon cycle, remote sensing, and agriculture research.

Parallel to the advance of OCO-2 SIF, the SMAP mission launched in
January 2015 by NASA provides global operational soil moisture re-
trievals with 1–3 day fidelity, moderate (9–36 km) spatial resolution
and favorable accuracy (standard deviation of error less than 0.04 m3/
m3) (Chan et al., 2018; Reichle et al., 2019). A key science goal of the
SMAP mission is to improve capabilities for soil moisture and drought
monitoring and for better understanding terrestrial water, energy, and
carbon cycles. The SMAP L-band (1.41 GHz) microwave radiometer
enhances sensitivity to surface soil moisture relative to higher fre-
quency microwave sensors (Entekhabi et al., 2010). Recent findings
found that soil moisture retrieved from L-band was more accurate than
soil moisture retrievals from the Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSR-E), the Advanced
SCATterometer (ASCAT), and similar L-band soil moisture retrievals
from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Chen
et al., 2018; Kumar et al., 2018). Several studies also showed that the
SMAP soil moisture was effective in monitoring meteorological and
agricultural drought (Velpuri et al., 2016; Mishra et al., 2017;
Mladenova et al., 2019) and improving global simulations of GPP (He
et al., 2017) and evapotranspiration (Purdy et al., 2018). In addition to
the microwave brightness temperature and surface soil moisture re-
trievals, the SMAP mission also provides model enhanced (Level 4)
products including 3-hourly global estimates of root-zone (0–100 cm
depth) soil moisture (L4SM) (Reichle et al., 2017) and daily Carbon
(L4C) fluxes (GPP, ecosystem respiration, and net ecosystem exchange)
(Jones et al., 2017).

Together, the SMAP and OCO-2 products can potentially provide
new insight into ecosystem responses to drought through independent
productivity assessments that account for the effects of available en-
ergy, canopy structure, atmospheric moisture deficit, and soil moisture
related water supply controls on photosynthesis (Gonsamo et al., 2019).
Previous studies have examined the impacts of drought on ecosystem
productivity based on coarser-resolution satellite SIF (such as GOSAT
and GOME-2) over U.S. central (Sun et al., 2015; Wang et al., 2016) and
northern (He et al., 2019) Great Plains, Amazon (Li et al., 2018b; Zhang
et al., 2018b), and Russia (Yoshida et al., 2015). However, studies using
satellite SIF, especially those using finer-resolution SIF data, to examine
the ecosystem productivity responses to drought in drylands are lacking
(Qiu et al., 2020). In particular, it is unclear whether or to what extent
OCO-2 SIF (or finer-resolution gridded SIF products based on OCO-2)
and SMAP soil moisture and GPP products provide complementary in-
formation and are sensitive to drought in dryland ecosystems. Drought
analysis usually requires simultaneous quantification of seasonal and
interannual variations of vegetation and climate variables, and drought-
related departures from climatological normals established from multi-
year records. Heretofore, such applications have been constrained by
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the relatively short operational data records available from both SMAP
and OCO-2. To date, SMAP and OCO-2 have acquired approximately
five years of continuous overlapping global observations and finer-re-
solution SIF products based on OCO-2 data are also available recently,
providing new opportunities to apply these observations to examine the
impacts of drought on ecosystem productivity.

The objective of this study is to diagnose the responses of ecosystem
productivity to the 2018 drought in the U.S using complementary sa-
tellite data from SMAP and OCO-2. We used the root-zone soil moisture
from the SMAP L4SM product to characterize changes in plant-available
soil moisture during the drought, and combined GPP from the SMAP
L4C product (Jones et al., 2017) and the global, OCO-2 based SIF
product (GOSIF) (Li and Xiao, 2019a) to evaluate regional productivity
patterns and responses to drought and soil moisture variations. Sy-
nergistic use of these products in this study may provide enhanced
ecological information and finer spatial and temporal fidelity than the
previously used SMAP surface soil moisture observations and coarse-
resolution OCO-2 SIF (Gonsamo et al., 2019), better elucidating how
soil moisture and drought impact ecosystem productivity and carbon
uptake. To our knowledge, our study is the first effort to diagnose how
ecosystem productivity responded to the 2018 southwestern U.S.
drought using SMAP and OCO-2 products, and to demonstrate the po-
tential of these products for studies on ecosystem functioning, carbon
cycling, and climate change.

2. Materials and methods

2.1. Data

We used maps from the U.S. Drought Monitor (USDM) to identify
the intensity and spatial extent of the drought in 2018. The USDM
drought index, produced weekly, is composited through expert synth-
esis of multiple existing drought metrics, including anomalies in rain-
fall, soil moisture, surface streamflow, crop conditions, and local impact
reports from more than 450 observers across the country (Svoboda
et al., 2002). The USDM aims to track the development and intensity of
drought and to represent different types of drought impacts (e.g., me-
teorological, agricultural, socio-economic) across the U.S. The USDM
maps have been widely used to benchmark various drought indices for
evaluating their spatial and temporal patterns (Velpuri et al., 2016).
The USDM has five categories of drought magnitude based on its his-
torical percentile, including abnormally dry (D0, percentile ≤30%),
moderate drought (D1, percentile ≤20%), severe drought (D2, per-
centile ≤10%), extreme drought (D3, percentile ≤5%), and excep-
tional drought (D4, percentile ≤2%). The 2% percentile of exceptional
drought indicates that this type of drought is expected to occur only
once or twice within 100 years. We used the shapefiles of the USDM
drought intensity data (available at http://droughtmonitor.unl.edu) to
characterize weekly drought conditions during the growing season in
2018. Drought mainly occurred in the U.S. Southwest, including Ar-
izona, New Mexico, Colorado, Nevada, Utah, Oklahoma, and Texas
(Fig. 1a-c), with the highest severity in the Four Corners region. We
calculated the percentage of the areas affected by drought in these
seven states (Fig. 1) and found that the 2018 drought began prior to
April, peaked in summer (weeks 30–33), and was alleviated in late
September and October (since week 38). For these states, more than
80% of the area (about 1,800,000 km2) was affected by the drought
(D0–D4) before the drought began to alleviate in late September (week
38), and more than 40% of the region (> 900,000 km2) had at least
severe drought (D2–D4) during weeks 13 to 36 (Fig. 1d).

We then used a variety of complementary observational datasets to
examine how the drought affected regional ecosystem productivity. The
datasets used included SMAP root-zone soil moisture, different satellite
proxies of productivity (SMAP GPP, OCO-2 SIF, and GOSIF), along with
vapor pressure deficit (VPD) and PAR from the Modern-Era
Retrospective analysis for Research and Applications (MERRA-2),

USDM maps, tower GPP from AmeriFlux Data, and county-level crop
yield data from the National Agricultural Statistics Service (NASS).
MODIS GPP (Zhao et al., 2005) and EVI (Huete et al., 2002) were also
used as supplementary proxies of ecosystem productivity to understand
the impact of the drought (See Methods in the Supplementary Mate-
rial). Detailed information on SMAP and OCO-2 data including data
period, spatial and temporal resolutions, and references is summarized
in Table 1. Our analysis focused on the vegetation growing season from
April to October over the period 2015–2018.

2.1.1. SMAP data
We used root-zone soil moisture from the SMAP L4SM product

(Reichle et al., 2018) and GPP from the SMAP L4C product (Kimball
et al., 2018) to examine drought-related impacts on ecosystem pro-
ductivity. The L4SM product is generated from NASA GMAO GEOS-5
Catchment Land Surface Model predictions (Ducharne et al., 2000;
Koster et al., 2000), adjusted using an ensemble Kalman filter assim-
ilation of SMAP brightness temperatures. The L4SM framework benefits
from spatial and temporal information in the SMAP observations and
the meteorological forcing observations (e.g., precipitation), which
constrains the land surface water and energy balance process descrip-
tions encoded in the Catchment model (Reichle et al., 2019). The L4SM
surface (0–5 cm) and root zone (0–100 cm) soil moisture estimates are
produced globally, with 3-hourly and 9-km resolutions, and were va-
lidated against in situ measurements (Reichle et al., 2017; Reichle et al.,
2019). We only used root-zone soil moisture in this study and herein-
after referred to the root-zone soil moisture simply as ‘soil moisture’.

The SMAP L4C product provides global daily operational estimates
of GPP and other terrestrial carbon fluxes (NEE and ecosystem re-
spiration) posted to the same 9-km global grid as the L4SM product. The
L4C framework uses a satellite-based LUE model to compute GPP. The
LUE term defines the daily rate of the conversion of APAR to vegetation
biomass (Monteith and Moss, 1977); the LUE rate is reduced from a
prescribed maximum under unfavorable environmental conditions in-
cluding excessive atmospheric VPD, low root zone soil moisture levels,
cold temperatures or frozen conditions (Kimball et al., 2008). The LUE
response characteristics are uniquely calibrated for up to eight global
Plant Functional Types (PFTs) using representative tower EC carbon
flux measurements from global FLUXNET sites (Jones et al., 2017).
Previous satellite-based ecosystem models characterize the moisture
constraints on ecosystem productivity using VPD as a measure of at-
mospheric moisture deficit (Running et al., 2004) or precipitation as a
soil moisture proxy (Potter et al., 1993). The L4C product determines
GPP using L4SM root-zone soil moisture as an additional biophysical
input, which along with VPD capture both atmospheric moisture de-
mand and soil water supply constraints to productivity. Other L4C in-
puts include daily incoming solar radiation, humidity and temperature
from the NASA GMAO GEOS-5 Forward Processing stream, MODIS land
cover and 8-day fPAR operational (C6) time series. The L4C processing
occurs at a 1-km resolution congruent with MODIS vegetation inputs,
while subsampling from coarser (≥9 km) daily soil moisture and me-
teorological inputs. The L4C outputs are then posted to a 9-km global
grid, including GPP spatial means for each 9-km grid cell and up to
eight PFT classes within each cell as derived from the 1-km processing.
The nested grid format facilitates both landscape level and coarser
global assessments. The SMAP L4C GPP record has favorable global
accuracy and performance against an array of observational bench-
marks, including independent tower carbon flux measurements and
satellite SIF retrievals (Jones et al., 2017; Liu et al., 2019; Madani et al.,
2017; Zhang et al., 2019).

2.1.2. OCO-2 data
OCO-2 SIF can depict vegetation photosynthetic activity, while

spatially continuous, gridded OCO-2 SIF data can be directly generated
from discrete SIF soundings based on coarse spatial and temporal re-
solutions only. Here, we mainly used the fine-resolution GOSIF product
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to examine variations in ecosystem productivity. The GOSIF record was
produced from the original OCO-2 SIF retrievals using a data-driven (or
machine-learning) based model that includes other finer-scale inputs as
model predictors, including MODIS EVI and other environmental in-
formation that may regulate photosynthesis and fluorescence, including
PAR, air temperature, and VPD from MERRA-2 (Li and Xiao, 2019a).
The resulting GOSIF record has enhanced spatial and temporal resolu-
tion (0.05° and 8-day) and an extended length of record (2000-present)
compared with coarse-resolution gridded SIF data directly aggregated
from the original OCO-2 SIF retrievals (Li and Xiao, 2019a). The spatial
patterns and seasonal cycles of GOSIF were consistent with those of
coarse SIF data that were directly aggregated from OCO-2 SIF sound-
ings, and were highly correlated with independent GPP data for 91
tower sites (Li and Xiao, 2019a). A detailed description of the GOSIF
data (production, verification and application) can be found in Li and
Xiao (2019a). The GOSIF data product is available at http://data.
globalecology.unh.edu/.

2.1.3. Climate, flux tower, and crop yield data
We used monthly PAR and VPD obtained from the MERRA-2

(Gelaro et al., 2017), a NASA atmospheric reanalysis of the satellite era
using the Goddard Earth Observing System Model, Version 5 (GEOS-5)
with its Atmospheric Data Assimilation System (ADAS). Downwelling

PAR was derived as the sum of the diffuse PAR and direct PAR. VPD was
calculated from the surface temperature and specific humidity.

We explored whether SMAP GPP and GOSIF could capture drought-
induced variations in productivity represented by EC flux tower GPP
data and reported crop yield. We selected four flux sites (Fig. 1a) which
all experienced the drought and had data available up to 2018, in-
cluding Valles Caldera Mixed Conifer (US-Vcm, New Mexico) (Litvak,
2016a), Walnut Gulch Kendall Grasslands (US-Wkg, Arizona) (Scott
et al., 2010; Scott, 2016a), Willard Juniper Savannah (US-Wjs, New
Mexico) (Anderson-Teixeira et al., 2011; Litvak, 2016b) and Walnut
Gulch Lucky Hills Shrub (US-Whs, Arizona) (Scott et al., 2006; Scott,
2016b). US-Vcm, a subalpine conifer site, experienced a very hot, stand-
replacing burn in late May 2013, and is currently dominated by el-
derberry and aspen seedlings (1–2 m in height). The tower flux and
meteorological data for these sites were obtained from the AmeriFlux
tower network. The gap filling of EC data and partitioning of the NEE
into GPP and ecosystem respiration were performed by the ReddyProc
software (Wutzler et al., 2018).

We obtained county-level crop yield data for the seven southwestern
U.S. states affected by the 2018 drought from the U.S. Department of
Agriculture's (USDA) NASS. The reported end-of-season yields of the
dominant crops (i.e., corn, soybean, winter wheat, sorghum and cotton)
in each county from 2015 to 2018 were obtained from the NASS Quick

Fig. 1. Drought conditions over the Conterminous
United States (CONUS) revealed by USDM. (a-c)
Drought evolution in April, July, and October 2018;
(d) The percentage of areas affected by drought
(distinguished by different drought intensity) in
seven states located in the U.S. Southwest, including
Arizona, New Mexico, Colorado, Nevada, Utah,
Oklahoma, and Texas, for each week from April to
October during the growing season in 2018. Green
triangles in (a) denote four eddy covariance (EC) flux
tower sites used in this study. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
SMAP and OCO-2 data products used in this study.

Variables Datasets Data period Spatial resolution Temporal resolution References

Root-zone soil moisture SMAP L4SM 2015.4–2018 9 km 3-hourly (Reichle et al., 2019)
GPP SMAP L4C 2015.4–2018 9 km① daily (Jones et al., 2017)
SIF OCO-2 2014.9–2018 1.3 × 2.25 km2; ~1.5° ② ~Monthly③ (Frankenberg et al., 2014)
SIF④ GOSIF 2000–2018 0.05° 8-day (Li and Xiao, 2019a)

① SMAP L4C outputs are gridded at 9-km resolution but retain sub-grid GPP means derived from finer (1-km) scale model operational processing for up to 8 plant
functional type (PFT) classes within each grid cell . The 1-km processing is informed by MODIS fPAR and PFT inputs to the L4C model. This allows for more spatially
matched and PFT consistent comparisons between L4C and tower GPP.
②,③ The ground-pixel size of OCO-2 SIF is 1.3 × 2.25 km2. The coarse-resolution (such as 1.5° and monthly) OCO-2 SIF was directly aggregated from discrete OCO-2
SIF soundings, and the spatial and temporal resolutions depend on the tolerable spatial and temporal gaps and the number of soundings used.
④ The global, OCO-2 based SIF product (GOSIF) is a global, 0.05-degree SIF product derived from OCO-2 SIF soundings, MODIS EVI, and MERRA-2 reanalysis
meteorological data using a data-driven (or machine learning) approach.
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Stats database (http://quickstats.nass.usda.gov). The NASS crop yield
data provide a benchmark for evaluating the potential of SMAP GPP
and GOSIF in monitoring the changes of crop production under water
stress.

2.2. Analysis

We first compared seasonal (8-day) variations of MERRA-2 VPD,
SMAP soil moisture, SMAP GPP, and GOSIF in the seven southwestern
states severely affected by the 2018 drought (Fig. 1) over the growing
season from 2015 to 2018. We also calculated the growing-season
averages of these variables, and examined whether the ecosystem
productivity in the 2018 drought significantly decreased using the one-
way Analysis of Variance (ANOVA) method.

We then calculated the growing-season (April to October) averaged
standardized anomalies of these variables during the 2018 drought year
relative to their multiyear averages (2015–2018) to characterize the
overall spatial effects of drought. For each variable, the standardized
anomalies of each grid cell were calculated by subtracting the multiyear
average from the value of the drought year, and then divided by the
standard deviation of the variable over the four years. The anomalies
based on this relatively short time period were consistent with those
based on a longer time period from 2000 to 2018 (Figs. S1–2). Since SIF
contains integrated information from vegetation structure (fPAR), ra-
diation availability (PAR), and vegetation physiological states in re-
sponse to altered environmental conditions (SIFyield) (Sun et al., 2015),
decomposing SIF into APAR and SIFyield (SIF = APAR × SIFyield) can
help clarify their individual contributions to the observed productivity
anomalies during the drought. We also calculated growing-season
averaged anomalies of APAR and SIFyield to evaluate their relative
contributions to the SIF anomalies. APAR was calculated by the product
of fPAR (MCD15A2H) and PAR.

We also calculated the monthly standardized anomalies of SMAP
GPP, OCO-2 SIF (i.e., the 1.5-degree and monthly SIF data), and GOSIF
to examine whether these variables tracked the evolution of the soil
moisture deficit in time and space. The USDM maps for May, July, and

September 2018 were used as a reference for evaluating drought-re-
lated anomalies in the satellite metrics across the U.S. The USDM map
for the middle week of each month (i.e., 15–21 May, 17–23 July, and
18–24 September) was used. The anomalies of APAR and SIFyield were
also calculated. To understand to what extent soil moisture controlled
the variations of ecosystem productivity in the U.S. Southwest, we
calculated the monthly anomalies of both pixel-level and regionally-
averaged (i.e., seven drought-affected states defined in Fig. 1) SMAP
soil moisture, SMAP GPP, GOSIF, SIFyield and APAR during the growing
season from 2015 to 2018. We then correlated the resulting soil
moisture anomalies with those of SMAP GPP, GOSIF, SIFyield, and
APAR. Alternative ecosystem productivity metrics from the MODIS GPP
and EVI were also used for comparison. To conduct the correlations on
a per-pixel basis, all the variables were resampled to 9 km × 9 km.

We examined the 8-day variations of SMAP soil moisture, VPD,
tower GPP, SMAP GPP, and GOSIF in the 2018 drought year relative to
their multiyear averages, and assessed whether SMAP GPP and GOSIF
could characterize the drought-induced reduction of tower GPP. For
each of the three datasets (SMAP, GOSIF, and VPD), we extracted the
time series for the grid cell in which each site was located. The L4C
product includes both spatially-aggregated mean GPP for each 9-km
grid cell and sub-grid GPP mean for each PFT within the cell. We ex-
tracted both L4C GPP estimates for each site, and only used the PFT-
specific GPP matching the dominant vegetation type at each tower site
for the drought analysis (Fig. S3).

Finally, we investigated whether the impact of the severe drought
on the end-of-season crop yield across the southwestern states could
also be captured by the SMAP GPP and GOSIF. We summed the total
NASS reported crop yield of all dominant crops in each county, and
normalized the yield into the standardized anomalies for each county
for each year. The standardized anomalies of crop yield were then
correlated with those of growing-season averages of SMAP GPP and
GOSIF in each county. For SMAP GPP and GOSIF, only the cropland
grid cells identified by the 0.05° MODIS land cover map - MCD12C1
were used to calculate the county-level averages. Any county with
missing data for the dominant crops or with fewer than ten crop grid

Fig. 2. Seasonal variations (8-day) of growing season (a) SMAP root-zone soil moisture, (b) VPD, (c) SMAP GPP, and (d) GOSIF from 2015 to 2018 for the seven states
in the U.S. Southwest (including Arizona, New Mexico, Colorado, Nevada, Utah, Oklahoma, and Texas) affected by the 2018 drought. The red, heavy curve indicates
the 2018 drought year. Bars in each sub-figure shows growing-season averaged soil moisture, VPD, GPP, and SIF. * in (c) indicates that GPP in 2018 was significantly
lower than that in 2015–2017 (p < 0.05); while ** in (d) indicates that SIF in 2018 was significantly lower than that in 2015–2017 (p < 0.01). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cells was excluded. A total of 57 counties mainly located in Texas,
Oklahoma, and Colorado were used in this study. MODIS EVI was also
included in the analyses for comparison purposes.

3. Results

3.1. Monitoring the impacts of the 2018 drought on ecosystem productivity
with SMAP and OCO-2 data products

Over the seven drought-affected states in the U.S. Southwest
(Fig. 1), soil moisture exhibited its lowest values and VPD had its
highest values in 2018 (Fig. 2a, b). In response to this drought, eco-
system productivity significantly decreased over the U.S. Southwest.
Specifically, SMAP GPP (ANOVA: p < 0.05) and GOSIF (ANOVA:
p < 0.01) consistently showed their lowest values in 2018. From April
to August, SMAP GPP and GOSIF tracked the soil moisture variations
among years, while all of these variables showed decreasing trends
from 2015 to 2018 (2015 > 2016 > 2017 > 2018). GOSIF had high
consistency to other two productivity measures (Fig. S4) (GOSIF ~
SMAP GPP: R2 = 0.88, p < 0.001; GOSIF ~ OCO-2 SIF: R2 = 0.90,
p < 0.001).

The 2018 growing season exhibited large anomalies in soil
moisture, VPD, GPP, and GOSIF (Fig. 3). Large parts of the U.S.
Southwest experienced severe drought (with 86.8% of the grid cells
having negative anomalies in soil moisture and 87.9% of the grid cells
having positive anomalies in VPD; Fig. 3a, b), resulting in suppressed
ecosystem productivity (with 95.5% and 89% of the grid cells having
negative anomalies in SMAP GPP and GOSIF, respectively; Fig. 3c, d).
For this region dominated by arid and semi-arid ecosystems, the spatial
patterns of productivity anomalies agreed well with anomalies in soil
and atmospheric moisture conditions.

Widespread decreases across the U.S. Southwest were found for
both APAR and SIFyield (Fig. 4), suggesting that negative SIF anomalies
were driven by simultaneous decreases in APAR and SIFyield. Across the
U.S., the SIFyield anomalies were more consistent with the anomalous
moisture conditions (Fig. 3a, b) than were the SIF or GPP anomalies in
terms of spatial patterns (Fig. 3c, d).

The monthly anomalies of SMAP soil moisture, SMAP GPP, GOSIF,
and corresponding USDM maps in May, July, and September 2018 are
shown in Fig. 5. We found that SMAP soil moisture well captured the
drought evolution and spatial spread as indicated by the USDM maps
(first and second columns in Fig. 5). The drought had the most wide-
spread impact in May, with negative soil moisture anomalies encom-
passing ~96.9% of the entire seven southwestern states. SMAP GPP and
GOSIF showed large decreases in Arizona, New Mexico, and western
Texas (Fig. 5). As the core drought area spread northwestward, negative
anomalies of two productivity proxies were observed in Nevada, Utah,
and Colorado in the following months, while the drought in Texas and
New Mexico was alleviated by favorable moisture conditions (Fig. 5).
GOSIF anomalies showed similar spatial and temporal patterns with the
coarser-resolution OCO-2 SIF anomalies, but the latter was noisier (Fig.
S5).

Over the U.S. Southwest, the monthly anomalies of GOSIF in large
areas had strong correlations with those of soil moisture (Fig. 6a)
during the growing season from 2015 to 2018. SMAP GPP showed
weaker and slightly stronger sensitivity to soil moisture than did GOSIF
and MODIS GPP, respectively (Fig. 6b, c). The high sensitivity of GOSIF
to soil moisture variations was mainly contributed by SIFyield and sec-
ondly by APAR (Figs. 6d, e and 7a, d, e). Like GOSIF, EVI was also
strongly correlated with soil moisture (Fig. 6f). The correlations be-
tween regionally-averaged soil moisture and these six variables were
generally consistent with those derived at the grid-cell scale (Fig. 7).
GOSIF was more sensitive to the soil moisture variations than other five
variables (R2 = 0.76, p < 0.001), but its sensitivity was enhanced
compared to that at the grid-cell scale. Similarly, MODIS GPP showed
stronger response to the soil moisture variations than did SMAP GPP
possibly because of the spatial integration.

3.2. SMAP and GOSIF captured the impacts of drought on flux tower GPP
and crop yield

For all four tower sites (US-Vcm, US-Wkg, US-Whs, and US-Wjs), the
2018 drought started prior to the growing season with lower-than-
normal soil moisture and higher VPD (Fig. 8), and the tower GPP

Fig. 3. The spatial patterns of growing-season averaged standardized anomalies for (a) SMAP soil moisture, (b) VPD, (c) SMAP GPP, and (d) GOSIF in 2018 over the
CONUS. The boundary of the seven states in the southwestern US affected by the 2018 drought is highlighted.
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generally decreased during the drought period. Tower GPP (and other
proxies) returned to near-normal conditions around August for the US-
Vcm and US-Wjs sites, and September for the US-Wkg and US-Whs sites,
which corresponded to an increase in soil moisture. SMAP GPP and
GOSIF generally captured the seasonal variability and drought-related
impacts on tower GPP at the four sites. For US-Wjs, the recovery of
tower GPP with drought relief was stronger than that was detected from
SMAP GPP and GOSIF. Nevertheless, the magnitude of GPP decrease
during the drought varied across sites and productivity proxies. For
example, the US-Vcm experienced the largest decrease of soil moisture
(~10.4%) among the four sites, leading to ~36% decrease of tower GPP
compared to the average of 2015–2017, while the decrease of SMAP
GPP and GOSIF was 2.1% and 9.6%, respectively. The decrease of
productivity for other three sites was generally larger, with 18.5–24.4%
decrease in tower GPP, 13.8–19.8% in SMAP GPP, and 21.0–34.2% in
GOSIF, respectively.

Both GOSIF (R2 = 0.46, p < 0.0001) and SMAP GPP (R2 = 0.49,
p < 0.0001) captured the impact of the 2018 drought on county-level
crop yield (Fig. 9). The counties that were significantly affected by the

drought (dark red circles on the lower left corner of Fig. 9a, b) had
negative anomalies of crop yield and corresponding negative anomalies
of GPP and SIF, while favorable soil moisture condition generally led to
positive anomalies of yield and productivity. EVI also captured the
variations of crop yield fairly well, and its performance was slightly
lower than that of GOSIF and SMAP GPP (Fig. 9c).

4. Discussion

Our study showed that the soil moisture and GPP products derived
from SMAP and the GOSIF product derived from OCO-2 could be ef-
fectively combined to monitor the 2018 southwestern U.S. drought and
to assess its impacts on ecosystem productivity. We found that both
SMAP GPP and GOSIF captured the changes in ecosystem productivity
in response to the spatial spread and temporal evolution of the negative
anomalies in soil moisture to a large extent. The consistency between
these products has important implications. First, SIF and photosynthesis
are mechanistically linked (Baker, 2008), whereby SIF contains addi-
tional environmental information that extends beyond conventional

Fig. 4. The spatial patterns of the standardized anomalies for the growing-season averaged (a) APAR and (b) SIFyield in 2018 over the CONUS. The boundary of the
seven states in the U.S. Southwest affected by the 2018 drought is highlighted.

Fig. 5. The spatial patterns and temporal evolution of drought based on the USDM maps and monthly anomalies for SMAP soil moisture, SMAP GPP, and GOSIF in
May, July, and September 2018 over the CONUS. The boundary of the seven states in the U.S. Southwest affected by the 2018 drought is highlighted.
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Fig. 6. Correlation coefficients (r) between monthly anomalies of SMAP soil moisture and anomalies of (a) GOSIF, (b) SMAP GPP, (c) MODIS GPP, (d) APAR, (e)
SIFyield (e), and (f) EVI for the seven drought-affected states from April to October over the period 2015–2018. The bars in each inset show the probability density of r,
and the vertical lines indicate the median r.

Fig. 7. Relationships between monthly anomalies of SMAP soil moisture and anomalies of (a) GOSIF, (b) SMAP GPP, (c) MODIS GPP, (d) APAR, (e) SIFyield, and (f)
EVI. Each circle represents the anomaly of the regional average of variables within the seven drought-affected states from April to October over 2015–2018 with filled
red circles denoting the 2018 drought year. Solid and dashed lines denote the regression and 1:1 lines, respectively. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

X. Li, et al. Remote Sensing of Environment 251 (2020) 112062

8



vegetation indices (Li et al., 2018a; Li et al., 2018c). Previous studies
have reported that SIF had a stronger relationship with GPP compared
with vegetation indices including NDVI, EVI, and NIRv (Li et al., 2018c;
Smith et al., 2018; Yang et al., 2015). Other studies also reported an
enhanced ability of SIF in monitoring the responses of ecosystem pro-
ductivity to drought and heat waves (Yoshida et al., 2015; Wang et al.,
2016; Song et al., 2018; Qiu et al., 2020). We found that GOSIF and
OCO-2 SIF were able to track the spatio-temporal variations of SMAP
GPP, again confirming the strong relationship between SIF and photo-
synthesis. SMAP data alone can be applied to diagnose the drought
impact on ecosystem productivity with soil moisture characterizing
drought and GPP measuring productivity variations. However, these
two products are not independent since the L4C GPP is derived using
SMAP root zone soil moisture as a model input. Therefore, combining

GOSIF (or OCO-2 SIF) and SMAP GPP as independent measures of
productivity can provide more robust insight into the impact of drought
on ecosystem productivity. Second, GOSIF showed similar spatio-tem-
poral variations with the coarse-resolution SIF directly aggregated from
OCO-2 soundings during the drought. The GOSIF record has much finer
spatial and temporal resolutions than the coarse-resolution gridded SIF
that were directly aggregated from OCO-2 SIF soundings. The higher
temporal resolution (e.g., 8-day) observations provided by the SMAP
and GOSIF data also enabled more consistent comparisons with the
USDM maps, which can better depict the drought evolution and asso-
ciated ecosystem impacts for more timely drought risk and mitigation
assessments.

We found that GOSIF was more sensitive to soil moisture variations
compared to SMAP GPP and MODIS GPP (Figs. 6-7). This higher

Fig. 8. The seasonal cycles of SMAP soil moisture (m3/m3), VPD (hPa), tower GPP (g C m−2 d−1), SMAP GPP (g C m−2 d−1) and GOSIF (W m−2 μm−1 sr−1) at four
EC flux sites. The red lines stand for the 8-day variations in the growing season during the 2018 drought year, while the black lines denote the averages of the normal
years. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Relationships of anomalies in crop yield with anomalies in (a) GOSIF, (b) SMAP GPP, and (c) EVI. Hollow circles represent the anomalies in county-level end
of season crop yield against anomalies in county-averaged GOSIF, GPP, and EVI (only for cropland areas) in normal years (2015–2017), while solid circles denote the
2018 drought year.
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sensitivity was mainly contributed by the SIFyield, which was effective in
capturing the drought conditions. Our results are consistent with the
findings of several previous studies (Yoshida et al., 2015; Sun et al.,
2015; Li et al., 2018b). For example, Li et al., 2018b found that SIFyield
largely responded to precipitation and VPD anomalies, and the corre-
lation decreased as the region became wetter. Wang et al. (2020)
showed that the spatial pattern of SIFyield during the growing season
could be largely explained by the spatial variability of precipitation.
The U.S. Southwest is dominated by arid and semi-arid ecosystems, and
therefore the SIFyield was expected to be largely affected by the lower
soil moisture. SIFyield was jointly determined by fluorescence yield (ΦF)
and escape ratio (fesc, the fraction of SIF photons escaping from canopy)
(Zeng et al., 2019). More recent studies further found that the fesc was
strongly correlated with LUE (Dechant et al., 2020) and may be the
major driver of the observed variability in SIFyield (Wang et al., 2020).
Compared to SIFyield, APAR had lower sensitivity to the soil moisture
variations in this region.

The site-level analyses further confirmed the stronger relationships
between GOSIF (SIFyield) and tower GPP. APAR overall showed slightly
lower correlation with tower GPP than EVI alone (Table S1), indicating
that PAR was not the dominant driver in controlling the productivity
for these dryland ecosystems (Nemani et al., 2003). For the US-Whs and
US-Wjs sites, in particular, the weaker relationship found between the
SMAP/MODIS GPP and tower GPP was generally accompanied by a
weaker relationship between APAR and tower GPP (Table S1). Al-
though GOSIF (or SIF in general) shared the same APAR term as SMAP/
MODIS GPP, SIFyield had stronger relationship with tower GPP (or tower
LUE) compared to SMAP/MODIS LUE, and thereby GOSIF had better
agreement with tower GPP than did SMAP/MODIS GPP (Table S1). This
indicates that the representation of the LUE term for both GPP products
can be further improved for dryland ecosystems.

Our study provides insight into the relative regulation of APAR and
SIFyield on the variations of ecosystem productivity during drought.
Several studies found a strong relationship between APAR and SIF (or
GPP) (Sun et al., 2015; Li et al., 2018b; Yang et al., 2018). Over the U.S.
Southwest dominated by dryland ecosystems, the decrease of SIF during
the 2018 drought was mainly driven by SIFyield and secondly by APAR.
For some other regions such as the Corn Belts and Northeast U.S., soil
moisture was higher in 2018 while SMAP GPP and GOSIF decreased
(Fig. 3). This inconsistency was mainly driven by lower APAR (Fig. 4a).
APAR instead of soil moisture conditions or SIFyield dominated the
variations of ecosystem productivity in parts of the Corn Belt (e.g.,
Iowa, Minnesota, Wisconsin) and the Appalachian Mountains. We
found that these regions experienced widespread decrease of APAR in
2018, resulting from much reduced PAR. Solar radiation is a primary
climate driver controlling plant growth (Nemani et al., 2003), and
therefore the APAR decrease resulted in lower productivity in these
regions. This was consistent with previous findings that highlighted the
effects of solar radiation on plant photosynthesis (Myneni et al., 2007;
Nemani et al., 2003). SMAP GPP showed more substantial reduction
than GOSIF in these regions, coinciding with the observed negative
APAR anomalies; while GOSIF neutralized these negative anomalies by
including information from SIFyield. Previous studies reported either
stronger GPP-SIF relationships over GPP-APAR (or SIF-APAR) re-
lationships (Zhang et al., 2016; Li et al., 2018a) or stronger SIF-APAR
relationships over SIF-GPP (or APAR-GPP) relationships (Yang et al.,
2018), which depended on the relationship between LUE and SIFyield
(strong or weak). The stronger spatial consistency between SMAP GPP
and APAR than that between GOSIF and APAR was also found at the
monthly scale (Fig. S5), indicating that LUE from SMAP provided less
information on the drought-induced variations of productivity than the
SIFyield. This difference may be closely related to the different methods
for SMAP GPP (a LUE model) and GOSIF (a data-driven approach), and
the potential uncertainty associated with input data or modeling/data-
driven approach (Jones et al., 2017; Li and Xiao, 2019a).

Several studies have indicated that the satellite-derived SIF based on

GOSAT, GOME-2 (Guanter et al., 2014; Guan et al., 2016; Zhang et al.,
2018; Somkuti et al., 2020) or more recently the TROPOspheric Mon-
itoring Instrument (TROPOMI) (He et al., 2020) had potential to di-
agnose drought impacts on crop yield or improve the estimation of crop
yield. In our study, SMAP GPP and GOSIF were able to characterize
variations in county-level crop yield for the southwestern U.S., and had
potential to capture drought-induced crop yield loss. Nevertheless, they
still poorly captured the reported year-to-year variations of crop yield
in a few counties, which may be due to one or more factors, including
the short period of data used, the limitation in current spatial resolution
of the data, uncertainty from estimated SIF or GPP, and biases of the
county-level crop yield (Sadras et al., 2014). It should be noted that our
analysis only covered four years, thus limiting the sampling of inter-
annual variability in the present study. Inclusion of more data (longer
records or additional regions) that encompass a greater variety of
anomalously dry and wet conditions would likely improve the re-
lationships. In addition, for three counties, we found that both crop
yield and SMAP GPP declined in the 2018 drought, while GOSIF slightly
increased (Fig. 9). The negative anomalies of SMAP GPP were mainly
contributed by largely reduced soil moisture, while SIFyield did not well
capture the drought condition. This suggested that although SIFyield
showed an overall strong response to the soil moisture condition, in-
tegrating SMAP soil moisture into the prediction of GOSIF in the near
future may further improve the ability of GOSIF for monitoring
drought.

We also found that the variations of yield for irrigated crops were
weakly related to SMAP GPP and GOSIF, while the yield of rainfed
crops had much higher sensitivity to the variations of soil moisture, and
thus strongly correlated with SMAP GPP and GOSIF (Fig. S10). This
confirmed the findings of previous studies that rainfed crops are more
vulnerable to climate change or drought than irrigated crops (Li et al.,
2015; Ozelkan et al., 2016). Although GOSIF (or SMAP GPP) has finer
spatial resolution than previous coarse-resolution SIF records, it is still
inadequate for delineating finer field scale crop types and management
practices (e.g., irrigation), considering that the U.S. Southwest has more
mixed and smaller crop patches compared with the Corn Belt in Mid-
western U.S. Higher resolution SIF available in the near future, such as
the FLuorescence EXplorer (FLEX, 300 m) (Drusch et al., 2016), will
likely help eliminate this gap. Future work may also examine how
SMAP GPP (associated with soil moisture scalar) and GOSIF (associated
with uncertainty in three climatic variables) over- or under-estimate the
impact of drought on crop yield for a variety of crop types over different
agricultural regions.

Our results not only highlight the consistency between SMAP GPP
and GOSIF (or OCO-2 SIF) in monitoring the responses of ecosystem
productivity to drought but also clearly reveal their individual ad-
vantages and disadvantages among the three products or beyond (such
as MODIS EVI or GPP). Among these products, GOSIF performed the
best in capturing the changes in ecosystem productivity in response to
the variations of soil moisture during the drought. The finer-resolution
(0.05°) GOSIF (Li and Xiao, 2019a) derived from discrete OCO-2 SIF
soundings enables enhanced delineation of drought or heat waves re-
lated impacts on regional ecosystems more commensurate with the
scale of in situ tower EC observations compared with coarse-resolution
GOSAT and GOME-2 SIF (Yoshida et al., 2015; Sun et al., 2015; Li et al.,
2018b; Qiu et al., 2020). The additional environmental information
such as VPD, air temperature (or land surface temperature), and PAR
included in producing GOSIF may help improve the sensitivity of SIF to
GPP. The uncertainty associated with these input data, however, can
also lead to biases in the resulting gridded SIF products. For dryland
ecosystems, previous studies reported a much stronger ability of SIF in
capturing the interannual variation of tower GPP (Smith et al., 2018;
Zuromski et al., 2018) or water and heat stresses (Qiu et al., 2020) over
EVI. Our findings showed that the EVI was also able to capture the
drought condition and its impact on tower GPP and crop yield (Table S1
and Fig. 9 and Fig. S6), although with slightly lower performance than
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GOSIF. The highest temporal resolution of SMAP data (up to 3-hourly
for soil moisture and daily for GPP and NEE) among all other data
examined, enables sub-daily or daily analysis, which can better detect
dynamic weather impacts to ecosystems including transient wetting and
drying events represented in the tower EC record. Compared with
MODIS GPP, SMAP GPP may have improved the GPP estimation to a
certain extent by including soil moisture information to the LUE model
(Table S1). Incorporating SIF (SIFyield) as a novel proxy of LUE may
further improve SMAP or other satellite GPP products.

5. Conclusions

This study explored the potential of SMAP and OCO-2 based data in
monitoring the responses of ecosystem productivity to the 2018
drought in the U.S. Southwest. We assessed the consistency of the
spatial extent and temporal evolution between SMAP root-zone soil
moisture estimates and two ecosystem productivity proxies, SMAP GPP
and OCO-2 based finer-resolution SIF (GOSIF), and also examined
whether SMAP GPP and GOSIF could capture the impact of drought on
flux tower GPP and NASS reported crop yield. Our results showed that
over the drought-affected states in the U.S. Southwest, SMAP GPP and
GOSIF responded strongly to anomalies in VPD and soil moisture. These
proxies also well captured the drought dynamics indicated by the
USDM drought maps. The drought-related decrease in SIF resulted from
decreases in both APAR and SIFyield. The regionally-averaged soil
moisture showed significant positive correlations with SMAP GPP
(R2 = 0.44, p < 0.001) and GOSIF (R2 = 0.76, p < 0.001), de-
monstrating that soil water availability had a strong control on eco-
system productivity in dryland ecosystems. We also found that SMAP
GPP and GOSIF were able to characterize the variations of flux tower
GPP for different ecosystems, and largely captured the anomalous crop
yield reductions during the drought. The synergistic use of these data
revealed the responses of ecosystem productivity to the changes in
APAR and soil moisture during the 2018 drought across the U.S., and
also provided better clarification of drought impacts on ecosystems at
various spatial and temporal resolutions than the use of any single data
source. Our study provides a regional application demonstration of
these newer satellite data for assessing the impacts of drought on eco-
system productivity and carbon uptake, while the widespread applica-
tion and validation of these data in other parts of the world for diag-
nosing other drought events require further exploration. Finer-
resolution SIF observations from next generation satellite sensors are
expected to offer enhanced capabilities for more accurately monitoring
ecosystem productivity and drought impacts, particularly in hetero-
geneous regions.
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