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Is Clustering Advantageous in Statistical Ill-Posed

Linear Inverse Problems?
Rasika Rajapakshage and Marianna Pensky

Abstract— In many statistical linear inverse problems, one
needs to recover classes of similar objects from their noisy
images under an operator that does not have a bounded inverse.
Problems of this kind appear in many areas of application.
Routinely, in such problems clustering is carried out at a pre-
processing step and then the inverse problem is solved for each
of the cluster averages separately. As a result, the errors of the
procedures are usually examined for the estimation step only.
The objective of this paper is to examine, both theoretically
and via simulations, the effect of clustering on the accuracy
of the solutions of general ill-posed linear inverse problems.
In particular, we assume that one observes Xm = Afm +
δ�m , m = 1, · · · , M , where functions fm can be grouped
into K classes and one needs to recover a vector function
f = (f1, · · · , fM )T . We construct an estimator for f as a
solution of a penalized optimization problem which corresponds
to the clustering before estimation setting. We derive an oracle
inequality for its precision and confirm that the estimator is
minimax optimal or nearly minimax optimal up to a logarithmic
factor of the number of observations. One of the advantages
of our approach is that we do not assume that the number
of clusters is known in advance. Subsequently, we compare the
accuracy of the above procedure with the precision of estimation
without clustering, and clustering following the recovery of each

of the unknown functions separately. We conclude that clustering
at the pre-processing step is beneficial when the problem is
moderately ill-posed. It should be applied with extreme care when
the problem is severely ill-posed.

Index Terms— Ill-posed linear inverse problem, clustering,
oracle inequality, minimax convergence rates.

I. INTRODUCTION

I
N THIS paper, we consider a set of general ill-posed linear

inverse problems Afm = qm, m = 1, · · · , M , where A
is a bounded linear operator that does not have a bounded

inverse and the right-hand sides qm are measured with error.

In particular, we assume that some of the objects fm and hence

qm, are very similar to each other, so that they can be averaged

and recovered together. As a result, one supposedly obtains

estimators of fj with smaller errors. The grouping is usually

unknown (as well as the number of groups) and is carried

out at a pre-processing step by applying one of the standard
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clustering techniques with the number of clusters determined

by trial and error. Subsequently, the objects in the same cluster

are averaged and the errors of those aggregated objects are

used as true errors in the analysis.

Problems of this kind appear in many areas of application

such as astronomy (blurred images), econometrics (instru-

mental variables), medical imaging (tomography, dynamic

contrast enhanced Computerized Tomography and Magnetic

Resonance Imaging), finance (model calibration of volatility)

and many others where similar objects are measured and can

be recovered together. Indeed, clustering has been applied for

decades to solve ill-posed inverse problems in pattern recogni-

tion [5], astronomy [22], astrophysics [14], pattern-based time

series segmentation [10], medical imaging [9], elastography

for computation of the unknown stiffness distribution [4] and

for detecting early warning signs on stock market bubbles [18],

to name a few. While in some other settings the main objec-

tive is finding group assignments, we are considering only

applications where clustering is used merely as a denoising

technique. In those applications, routinely, clustering is carried

out at the pre-processing step and then the inverse problems

are solved for each of the cluster averages separately. As a

result, the errors of the procedures are usually examined for the

estimation step only. The objective of this paper is to examine,

both theoretically and via simulations, the effect of clustering

on the accuracy of the solutions of general ill-posed linear

inverse problems.

There exists immense literature on the statistical inverse

problems (see, e.g., [1], [2], [6]–[8], [11], [20] and mono-

graphs [3], [13] and references therein, to name a few).

However, to the best of our knowledge, the question about

the effects of clustering in statistical inverse problems has

never been investigated. Recently, as a part of a more general

theory, the effect of clustering on the precision of recovery

in multiple regression problems has been studied in [17].

Klopp et al. [17] concluded that, even under uncertainty, clus-

tering improves the estimation accuracy. The goal of this paper

is to extend this study to the ill-posed linear inverse problems

setting.

In particular, we consider the following problem. Let A :
H1 → H2 be a known linear operator where H1 and H2

are Hilbert spaces with inner products h·, ·iH1 and h·, ·iH2 ,

respectively. The objective is to recover functions fm ∈ H1

from

Xm(x) = qm(x) + δ �m(x), (1.1)

qm = Afm, m = 1, · · · , M,
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where �m(x) are the independent white noise processes and

the goal is to recover the vector function f = (f1, · · · , fM )T .

Assume that observations are taken as functionals of Xm: for

any ψ ∈ H2 one observes

hXm, ψi = hAfm, ψi + δ ξm(ψ), (1.2)

where δ is noise level and ξm(ψ) are zero mean Gaussian

random variables with

E[ξm(ψ1)ξl(ψ2)] =

�
hψ1, ψ2iH2 , m = l
0, m 6= l

(1.3)

In what follows we consider the situation where, despite of

M being large, there are only K types of functions fm(t). In

particular, we assume that there exists a collection of functions

h1(t), . . . , hK(t) such that fm(t) = hk(t) for any m and some

k = z(m). In other words, one can define a clustering function

z = z(m), m = 1, . . . , M , with values in {1, . . . , K} such that

fm = hz(m). We denote the clustering matrix corresponding to

the clustering function z(m) by Z. Note that Z ∈ {0, 1}M×K

and Zm,k = 1 if and only if z(m) = k, so that matrix D2 =
ZT Z is diagonal.

If the function z(m) were known, one could improve

precision of estimating fm by averaging the signals within

clusters and construct the estimators ĥk of the common cluster

means, thus reducing the noise levels, and subsequently set

f̂m = ĥz(m). In reality, however, neither the true clustering

matrix Z∗, nor the true number of classes K∗ are available,

so they also need to be estimated.

Note that the objective is accurate estimation of functions

fm, m = 1, · · · , M , rather than recovery of the clustering

matrix Z. Moreover, although a true clustering matrix Z∗

always exists (if all functions fm are different, one can choose

K∗ = M and Z∗ = IM ), one is not interested in finding Z∗.

Indeed, one would rather incur a small bias resulting from

replacement of fm by hk ≈ fm than obtain estimators with

high variances, that are common in inverse problems where

each function fm is estimated separately. On the other hand,

using the clustering procedure leads to one more type of errors

that are due to erroneously pooling together estimators of

functions fm that belong to different classes, i.e., the errors

due to mistakes in clustering.

The goal of this paper is the study of the theoretical

recovery limits for the unknown functions fm, m = 1, · · · , M ,

when one applies clustering, thus taking advantage of the fact

that some of the functions fm are similar to each other, or

ignores this knowledge and proceeds with estimation without

clustering. In order to evaluate benefits of clustering, we for-

mulate estimation with clustering problem as an optimization

problem. One of the advantages of our approach is that

we do not assume that the number of clusters is known in

advance. Instead, we elicit the unknown number of clusters,

the clustering matrix and the estimators of the unknown

functions as a solution of a penalized optimization problem

where a penalty is placed on the unknown number of clusters.

For this reason, our analysis applies not only to an “ideal” (but

usually impractical) situation when the number of clusters is

known but to the realistic scenario when it is unknown.

In this paper we analyze the situation where clustering is

done before estimation, at the pre-processing level, as it usu-

ally happens in many applications. The optimization problem

in the paper corresponds to this scenario (specifically, to the

K-means clustering setting), as well as our in-depth theoret-

ical study which evaluates the precision of estimators with

clustering and compares it to the estimation accuracy without

clustering. In order to further assess benefits of clustering,

we implement a numerical study and compare the estimators

where clustering was carried out at the pre-processing level

(“Clustering before”) to the estimators where clustering was

done post-estimation (“Clustering after”) and the estimators

without clustering (“No clustering”). We conclude that cluster-

ing at the pre-processing level improves estimation precision

when the inverse problem is moderately ill-posed but brings

no benefits (and can even increase estimation errors) if the

problem is severely ill-posed.

The rest of the paper is organized as follows. In Section II,

we introduce notations and assumptions and discuss optimiza-

tion problem that delivers the estimator. Section III deals with

quantification of estimation errors. In particular, Section III-A

provides the oracle expression for the risk of an estimator

obtained in Section II-D. Section III-B presents upper

bounds for the risk under the assumptions in Section II-C.

In order to ensure that the estimators in Section II-D are

asymptotically optimal, in Section III-C we derive minimax

lower bounds for the risk. Finally, Section III-D carries

out theoretical comparison of estimation accuracy with and

without clustering in asymptotic setting. Section IV performs

a similar comparison via a simulation study for the case of

finite-valued parameters. Finally, Section V contains in-depth

discussion and recommendations about application of the

pre-clustering in the linear ill-posed problems. Section VI

contains proofs of all statements in the paper.

II. ASSUMPTIONS AND ESTIMATION

A. Notations

Below, we shall use the following notations. We denote

[m] = {1, · · · , m}. We denote vectors and matrices by bold

letters. For any vector a, we denote its l2-norm by kak and

the l0 norm, the number of non zero elements, by kak0.

For any matrix A, we denote its Frobenius norm by kAkF ,

the operator norm by kAkop and the span of the column

space of matrix A by Span(A). We denote the Hamming

distance between matrices A1 and A2, the number of nonzero

elements in A1−A2, by kA1−A2kH . We denote the (k×k)
identity matrix by Ik and drop subscript k when there is no

uncertainty about the dimension. We denote the inner product

and the corresponding norm in a Hilbert space H by h·, ·iH
and k · kH, respectively, and drop subscript H whenever there

is no ambiguity. For any set S, we denote cardinality of S by

|S|. We denote the set of all clustering matrices for grouping

M objects into K classes by M(M, K). We denote an � bn

if there exist c < ∞ independent of n such that an ≤ cbn

and an � bn if there exist c > 0 independent of n such that

an ≥ cbn. Also, an � bn if simultaneously an � bn and

an � bn. Finally, we use C as a generic absolute constant
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independent of n, M and K , which can take different values

in different places.

B. Reduction to the Matrix Model

Since observations are taken as linear functionals (1.2), the

problem can be reduced to the so-called sequence model. For

this purpose, the unknown functions are expanded over an

orthonormal basis φj , j = 1, 2, · · · , of H1 and the problem

reduces to the recovery of the unknown coefficients of those

functions. This is a common technique in the field of statistical

inverse problems (see, e.g., Cavalier et al. (2002), Cavalier and

Golubev (2006) and Knapik et al. (2011)). The orthonormal

basis is commonly taken to be the eigenbasis of the opera-

tor A. Since the eigenbasis is often unknown, in this paper,

we consider a wider variety of basis functions. Specifically, we

assume that operator A allows a wavelet-vaguelette decompo-

sition introduced by Donoho (1995). In particular, Donoho

(1995) assumed that there exists an orthonormal basis φj ,

j = 1, 2, · · · , of H1 and nearly orthogonal sets of functions

ψj , ηj ∈ H2, j = 1, 2, · · · , such that for some constants

νj > 0, and some absolute constants 0 < cψ, Cψ, cη, Cη < ∞
independent of j, one has for any vector a:

Aφj = ν−1
j ηj , A∗ψj = ν−1

j φj ;

hηj1 , ψj2iH2 = I(j1 = j2); (2.1)

c2
ψkak2 ≤ k

X

j

ajψjk2 ≤ C2
ψkak2,

c2
ηkak2 ≤ k

X

j

ajηjk2 ≤ C2
ηkak2, (2.2)

where A∗ : H2 → H1 is the linear operator conjugate to A
and I(. . .) is the indicator function. The name was motivated

by the fact that conditions (2.1) and (2.2) hold for a variety of

linear operators such as convolution, numerical differentiation

or Radon transform when {φj} is a wavelet basis (see also

Abramovich and Silverman (1998)). Obviously, assumptions

(2.1) and (2.2) are valid when {φj} is the eigenbasis of the

operator A. Under conditions (2.1) and (2.2), any function f
can be recovered from its image Af using reproducing formula

f =
X

j

νj hAf, ψjiφj (2.3)

which is analogous to the reproducing formula for the eigen-

basis case.

We expand functions fm ∈ H1 over the basis φj , j =
1, · · · , and denote the matrix of coefficients by G. Denote

hAfm, ψji = Qj,m, so that, by (2.3), for j = 1, 2, · · · , m =
1, · · · , M , one has

Gj,m = hfm, φji = νjhfm, A∗ψji
= νj hAfm, ψji = νj Qj,m. (2.4)

Consider matrix of observations Y and matrix of errors E with

respective components Yj,m = hXm, ψji and Ej,m = ξm(ψj)
where ξm(ψ) is defined in (1.3). Let G∗ and Q∗ be the true

matrices of coefficients. Then, it follows from (1.1), (1.2) and

(2.4) that elements Yj,m of column m of matrix Y obey the

sequence model for j = 1, 2, . . . , m = 1, · · · , M,

Yj,m = ν−1
j (G∗)j,m + δEj,m. (2.5)

Here, E(Ej,m) = 0 and, by (1.3),

E(Ej1,m1Ej2,m2) =

�
0, m1 6= m2

hψj1 , ψj2i, m1 = m2
(2.6)

In order to make the model computationally convenient, we cut

the sequence model at some index n where n is large enough

to make the error, which is due to this reduction, negligibly

small. Then, j = 1, . . . , n, and G∗, Q∗, Y and E are n×M
matrices, Also, it follows from (2.5) that

ΥY = G∗ + δΥE, Υ = diag(ν1, · · · , νn). (2.7)

We shall discuss the choice of n later in Section II-C.

Denote the matrix with elements Σi,j = hψi, ψji by Σ and

observe that (2.6) implies that

E[(EET )] = M Σ, E(ET E) = n IM . (2.8)

Hence, matrix E has the matrix-variate normal distribution

E ∼ N(0,Σ⊗ IM ). Observe that the first relation in formula

(2.2) implies that

kΣkop ≤ C2
ψ . (2.9)

C. Assumptions

Recall that functions fm belong to K different groups,

so that fm = hk with k = z(m) where z = z(m) is

a clustering function. Denote the matrix of coefficients of

functions hk in the basis φj by Θ, so that Θj,k = hhk, φji,
j = 1, · · · , n, k = 1, · · · , K .

It is well known that recovery of an unknown function

from noisy observations relies on the fact that it possesses

some minimal level of smoothness. This smoothness usually

manifests as gradual decline of coefficients of this function in

some basis, so the coefficients decrease as one uses more and

more complex basis functions. For this reason, we assume that

hk belong to a ball: hk ∈ S(r,A), k = 1, . . . , K , where

S(r,A) =




h =
X

j

θjφj :

∞X

j=1

|θj |2j2r ≤ A2




 . (2.10)

If φj is the Fourier basis, then (2.10) defines a well known

Sobolev ball. Formula (2.10) implies that

∞X

j=1

|Θj,k|2j2 r ≤ A2, k = 1, . . . , K. (2.11)

If r ≥ 1/2, then one can set the cut-off value to n ≈
δ−2. Indeed, the error rate in the problem cannot be smaller

than a parametric rate of Cδ2 and (2.11) implies that the

approximation error with this value of n will not exceed

∞X

j=n+1

|Θj,k|2 ≤ n−2r
∞X

j=1

|Θj,k|2j2r ≤ A2n−2r ≤ A2δ2

(2.12)

In addition, it is well known ( [23]) that, in the regression

setting, the observational version of the white noise model

(1.1) based on a sample of size n leads to δ = σ/
√

n where

σ is the standard deviation of the noise.
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Furthermore, since operator A does not have a bounded

inverse, the values of νj in (2.1) are growing with j. While

one can consider various scenarios, the standard assumption

is that νj grow monotonically with j (see, e.g., Alquier et al.

(2011)):

ℵ1j
γ exp

(
αjβ

)
≤ |νj | ≤ ℵ2j

γ exp
(
αjβ

)
(2.13)

for some absolute positive constants ℵ1, ℵ2 and nonnegative

γ, α and β where β = 0 and γ > 0 whenever α = 0. The

problem (1.1) is called moderately ill-posed if α = 0 and

severely ill-posed if α > 0.

D. Clustering and Estimation

In what follows, we denote the true quantities using the star

symbol, i.e., K∗ is the true number of clusters, Z∗ is the true

clustering matrix, G∗, Q∗ and Θ∗ are the true versions of

matrices G, Q and Θ and so on. As it was indicated before,

we choose n = [δ−2], the largest integer that is no greater

than δ−2.

If z : [M ] → [K] is the clustering function and Z ∈
{0, 1}M×K is a clustering matrix, then Gi,j = Θi,z(j) for

i = 1, . . . , n, j = 1, . . . , M . Therefore, if the clustering matrix

Z were known, then one would repeat columns of matrix

Θ to obtain G and average columns of G to construct Θ.

Specifically, G = ΘZT and Θ = GZD−2, where matrix

D2 = ZT Z is diagonal.

Denote by ΠZ,K and Π⊥
Z,K the projection matrices on the

column space of matrix Z and on the orthogonal subspace,

respectively:

ΠZ,K = Z(ZT Z)−1ZT , Π⊥
Z,K = IM − ΠZ,K . (2.14)

Here, we use index K to indicate that not only the clustering

matrix Z but also the number of clusters K is unknown.

The projection matrix ΠZ,K is such, that for any matrix

G ∈ R
n×M , GΠZ,K replaces each column of Gj of G by

its average over all columns in cluster z(j). Then, matrix G∗

is such that G∗ = G∗ΠZ∗,K∗
and, due to (2.7), if Z∗ were

known, it would seem to be reasonable to estimate G∗ by

ΥYΠZ∗,K∗
. It is well known, however, that this estimator is

inadmissible and one needs to shrink or threshold elements

of matrix ΥYΠZ∗,K∗
to achieve an optimal bias-variance

balance ( [19], Section 11.2).

Observe that, since for the ill-posed inverse problems,

the values of νj are growing with j due to equation (2.13),

the elements Gj,i = Θj,z(i) of matrix G are harder and harder

to recover as j is growing. On the other hand, condition (2.11)

means that coefficients Θj,k decrease rapidly as j increases,

and hence, for large n, one does not need to keep all n
coefficients for an accurate estimation of functions hk (and

therefore fm). On the contrary, this will yield an estimator

with a huge variance. For this reason, due to the fact that

conditions (2.11) apply to all k = 1, · · · , K simultaneously,

we need to choose a set J ⊆ {1, . . . , n} and set Θjk = 0 if

j 6∈ J . Then, one has Gj,m = 0 if j ∈ Jc where the set Jc is

complementary to J . In order to express the latter in a matrix

form, we introduce matrix

WJ = diag(w1, . . . ,wn) with wj = I(j ∈ J), (2.15)

and observe that, for any matrix G, condition (In−WJ)G =
0 ensures that Gj,m = 0, j ∈ Jc.

Consider integer K ∈ [M ], set M(M, K) of clustering

matrices that cluster M nodes into K groups and set J ⊆
{1, . . . , n}. Then, the objective is to find matrices G and Z ∈
M(M, K), a set J and an integer K:

(Ẑ, bG, Ĵ , K̂) ∈ argmin
Z,G,J,K



kG − ΥYΠZ,Kk2

F

+kΥYΠ⊥
Z,Kk2

F

o
(2.16)

subject to (In − WJ)G = 0,

where Π⊥
Z,K is defined in (2.14). The second term in (2.16)

corresponds to the error of the K-means clustering of the

matrix ΥY while the first term quantifies the difference

between the clustered version of data matrix ΥYΠZ,K and

the matrix G.

Since kΥYΠZ,Kk2
F + kΥYΠ⊥

Z,Kk2
F = kΥYk2

F is inde-

pendent of G and Z, the problem can be re-written in an

equivalent form as

(Ẑ, bG, Ĵ , K̂) ∈ argmin
Z,G,J,K

{Λ(Z,G, J, K)} (2.17)

subject to (In − WJ )G = 0.

where

Λ(Z,G, J, K) = kGk2
F − 2Tr(YT ΥGΠZ,K). (2.18)

Note though that optimization problem (2.17) has a trivial

solution: K = M , J = [n], Z = IM and G = ΥY.

In order to avoid this, we put a penalty on the value of K
and the set J , and find Z,G, J and K as a solution of the

following optimization problem:

(Ẑ, bG, Ĵ , K̂) ∈ argmin
Z,G,J,K

{Λ(Z,G, J, K) + Pen(J, K)}

subject to Z ∈ M(M, K), (In − WJ)G = 0, (2.19)

where Λ(Z,G, J, K) is defined in(2.18). Optimization proce-

dure (2.19) leads to group thresholding of the rows of matrix

ΥYΠZ,K due to the condition (In − WJ)G = 0. Indeed,

if Ẑ, Ĵ and K̂ were known, then it follows from (2.16) that
bG would be given by

bG = WĴΥYΠ
Ẑ,K̂ (2.20)

and problem (2.19) can be presented as

(Ẑ, Ĵ , K̂) ∈ argmin
Z,J,K



k(I − WJ)ΥYΠZ,Kk2

F

+kΥYΠ⊥
Z,Kk2

F + Pen(J, K)
o

(2.21)

subject to Z ∈ M(M, K), J ⊆ [n], K ∈ [M ].

Note that the objective function in (2.21) is a sum of two

components: the first one is responsible for the best fitting of

the matrix ΥYΠZ,K when some of its rows are set to zero,

the second one corresponds to the error of the K-means clus-

tering of columns of matrix ΥY, while the penalty prevents

over-fitting. The solution of the optimization problem relies on

the K-means algorithm that is NP-hard but, however, is known
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to provide very accurate results as long as initialization point

is not too far from the true solution.

In practice, we shall solve optimization problem (2.21)

separately for each K ∈ [M ] and then choose the value of

K that delivers the smallest value in (2.21). We estimate

the matrix of coefficients G by bG defined in (2.20). After

coefficients bG are obtained, we estimate fm, m = 1, . . . , M ,

by

f̂m =
X

j∈J

bGj,mφj , m = 1, · · · , M. (2.22)

The penalty in (2.19) and (2.21) should be chosen to

exceed the random errors level with high probability. If the

number of clusters K , the set J and the clustering matrix

Z were known, then the penalty would be of the order of

the variance term K
X

j∈J

ν2
j . However, since K , J and Z

are unknown, we need to account for the uncertainty in

estimation of those parameters by applying a union bound

and, hence, adding the terms that are proportional to the

log-cardinality of the sets of those parameters. Since one

has n choices for K , KM possible clustering arrangements

and approximately exp {|J | ln(ne/|J |)} sets J of cardinality

|J | for every |J | = 1, . . . , n, we need to add a term pro-

portional to (max
j∈J

ν2
j ) [M lnK + |J | ln(ne/|J |) + ln(Mn)] .

Finally, we need to choose a constant τ and add a term

proportional to max
j∈J

ν2
j ln(δ−τ ) to ensure that the upper bound

holds with probability at least 1−2δτ . By carefully evaluating

the upper bounds for each of the components of the error,

we derive the penalty

Pen(J, K) = 2C2
ψδ2



26K
X

j∈J

ν2
j + 39(max

j∈J
ν2

j ) {M lnK

+|J | ln (ne/|J |) + ln
(
Mn δ−τ

)��
(2.23)

where n = [δ−2], Cψ is defined in (2.9) and the choice of

τ ensures that the upper bound for the error will hold with

probability at least 1 − 2δτ . Hence, in any real life setting,

the constant τ should be such that this probability is large

enough.

Penalty (2.23) consists of four terms. The first term,

26 K
P

j∈J ν2
j represents the error of estimating |J | coeffi-

cients for each of the distinct functions hk, k = 1, . . . , K .

The second and the third terms account for the difficulty of

clustering M functions into K classes and choosing a set

J ⊂ {1, . . . , n}. The last term is of the smaller asymptotic

order, it offsets the error of the choice of K and also ensures

that the oracle inequality holds with the probability at least

1 − 2δτ . Observe that since the data is weighted by the

diagonal matrix Υ in (2.7), the last three terms are weighted

by maxj∈J ν2
j .

The penalty (2.23) corresponds to the general model selec-

tion that does not rely on assumptions (2.10) and (2.13).

If those conditions hold, the elements (G∗)j,m are decreasing

with j for every m, while the values of νj are increasing.

Therefore, one should choose a set J of the form J =
{1, . . . , L} for some L ≤ n. Since the cardinality of the set of

possible L’s is just n, this would lead to replacement of the

term |J | ln (ne/|J |) in the penalty by merely lnn leading to

Pen(L, K) = 2C2
ψδ2



26K

LX

j=1

ν2
j + 39ν2

L {M lnK

+ ln
(
Mn δ−τ

)��
(2.24)

Remark 1 (Unknown Noise Level): The value of δ in (2.23)

and (2.24) is usually unknown but can be easily obtained

from data. Indeed, one can apply a wavelet transform to the

original data matrix Y, and then recover δ as the median of

the absolute value of the wavelet coefficients at the highest

resolution level divided by 0.6745 (see, e.g., Mallat (2009),

Section 11.3). In fact, in our simulations, we treated δ as an

unknown quantity and estimated it by this procedure.

Remark 2 (Different Smoothness for Different Clusters):

One can consider a more general case where functions from

different clusters have different smoothness levels. In this

case, each function hk has a corresponding set of nonzero

coefficients Jk, k = 1, . . . , K , which may be of the form

{1, . . . , Lk}. Consequently, the terms K
X

j∈J

ν2
j and K

LX

j=1

ν2
j

in the penalties (2.23) and (2.24) should be replaced by,

respectively,

KX

k=1

X

j∈Jk

ν2
j and

KX

k=1

LkX

j=1

ν2
j .

Theoretical results for this case are a matter of a future

investigation.

III. ESTIMATION ERROR

A. The Oracle Inequality

The average error of estimating fm by f̂m, m = 1, . . . , M,
is given by

R(f , f̂) = M−1
MX

m=1

kf̂m − fmk2, (3.1)

where f and f̂ are column vector with functional components

fm and f̂m, m = 1, . . . , M, respectively. Due to the inequality

(2.12), the errors of approximation of functions fm by the

n-term expansions over φj , j = 1, . . . , n, are much smaller

than the errors due to estimation or thresholding of the first n
coefficients of these expansions. Therefore, the main portion of

the error is due to M−1k bG−G∗k2
F . The following statement

places an upper bound on k bG− G∗k2
F .

Theorem 1: Let (Ẑ, bG, Ĵ , K̂) be a solution of optimization

problem (2.19) with the penalty Pen(J, K) given by expression

(2.23). Then, there exists a set Ω = Ω(τ) with P(Ω) ≥ 1−2δτ

such that for every ω ∈ Ω one has

k bG− G∗k2
F ≤ min

Z,J,K



3 kWJG∗ΠZ,K − G∗k2

F

+4 Pen(J, K)} (3.2)

Moreover, if assumptions (2.10) and (2.13) hold and

(Ẑ, bG, L̂, K̂) is a solution of optimization problem (2.19) with
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J = {1, . . . , L} and the penalty Pen(J, K) replaced with

Pen(L, K) defined in (2.24), then, for ω ∈ Ω

k bG− G∗k2
F ≤ min

Z,L,K



3 kWJG∗ΠZ,K − G∗k2

F

+4 Pen(L, K)
�

(3.3)

Theorem 1 provides an oracle inequality for k bG − G∗k2
F .

The first term in expression (3.2) is the bias term that quantifies

the error of approximation of matrix G∗ when its columns

are averaged over K clusters using matrix Z and one keeps

only terms with j ∈ J in the approximations of each of the

K cluster means. This term is decreasing when K and |J |
are increasing. The second term, Pen(J, K), is the variance

term that represents the error of estimation for the particular

choices of Z, J and K . This term grows when K and |J | are

increasing. The error is provided by the best possible bias-

variance balance in (3.2).

Since the right hand side in (3.2) is minimized over Z and

K , if some of the functions hk, k = 1 · · · , K , are similar but

not exactly identical to each other, it may be advantageous

to place those functions in the same cluster, hence, reducing

the variance component of the error. Our methodology will

automatically take advantage of this opportunity. Note that the

error bounds in (3.2) are non-asymptotic and are valid for any

true matrix G∗ and any relationship between K , M and δ.

While those results are very valuable, they do not allow to

quantify the effect of clustering on estimation errors when δ
is small and M is large, so that δ → 0, M → ∞, and possibly

K → ∞. In the next section we shall investigate this issue

under assumptions of Section II-C.

B. The Upper Bounds for the Estimation Error

In order to study particular scenarios, in what follows,

we assume that νj satisfies condition (2.13). Assume that

hk ∈ S(r,A), k = 1, . . . , K∗, where S(r,A) is defined

in (2.10). Denote by h the functional column vector with

components hk, k = 1, . . . , K∗. Consider the maximum risk

of our estimator f̂ over all hk ∈ S(r,A), k = 1, . . . , K∗, and

all true clustering matrices Z∗ ∈ M(M, K∗)

R(f̂ ,S(r,A), M, K∗) = max
f ,Z∗

R(f , f̂) subject to (3.4)

f = Z∗ h, hk ∈ S(r,A), k = 1, . . . , K∗, Z∗ ∈ M(M, K∗),

where S(r,A) is defined in (2.10) and M(M, K∗) is the set

of all clustering matrices that place M objects into K∗ classes.

In what follows, we assume that both n and M are growing

simultaneously, that is, lnM � ln(n). Note that this is a mild

condition since it is satisfied when M is growing at a rate of

any positive power of n or visa versa. Hence, due to n ≈ δ−2,

we obtain

ln(δ−1) � lnn � lnM � ln(Mn). (3.5)

Observe that the first relation follows from the definition of n
while the third one is the direct consequence of the second.

Note also that the second assumption is both very mild and

very natural. Since lnx grows very slowly with x, in practical

terms, it merely states that both M and δ−1 tend to infinity.

The main consequence of the assumption (3.5) is that the

terms ln(δ−1), lnn and lnM become interchangeable up to a

constant.

Then, application of the oracle inequality (3.2) with |J | = L
and K = K∗ provides the following upper bounds for the

error.

Theorem 2: Let assumption (3.5) hold and νj , j =
1, · · · , n, satisfy condition (2.13) with r ≥ 1/2. Let

(Ẑ, bG, L̂, K̂) be a solution of optimization problem (2.19)

with the penalty given by expression (2.23). Then, with

probability at least 1 − 2δτ , one has

R(f̂ ,S(r,A), M, K∗) ≤ C R(M, K∗, δ),

where the constant C depends on α, β, γ, r, τ and A only and

R(M, K∗, δ) =
(
δ2 lnK∗

) 2r
2r+2γ +

(
δ2 M−1K∗

) 2r
2r+2γ+1 ,

(3.6)

if α = β = 0, and

R(M, K∗, δ) =

�
ln

�
1

δ2 lnK∗

��− 2r
β

+

�
ln

�
M

δ2K∗

��− 2r
β

,

(3.7)

if α > 0, β > 0.

The expressions in (3.6) and (3.7) are well defined if

K∗ ≥ 2. If K∗ = 1, then lnK∗ = 0 and the first terms in

(3.6) and (3.7) are just equal to zero.

C. The Minimax Lower Bounds for the Risk

In order to show that the estimator developed in this paper is

asymptotically near-optimal, below we derive minimax lower

bounds for the risk over all hk ∈ S(r,A), k = 1, . . . , K∗, and

all clustering matrices Z∗ ∈ M(M, K∗). For this purpose,

we define the minimax risk as

Rmin(S(r,A), M, K∗) = min
f̃

R(f̃ ,S(r,A), M, K∗) (3.8)

where f̃ is any estimator of f on the basis of matrix of

observations Y.

Theorem 3: Let νj , j = 1, · · · , satisfy condition (2.13) and

r ≥ 1/2. Then, with probability at least 0.1, one has

Rmin(S(r,A), M, K∗) ≥ CRmin(M, K∗, δ) (3.9)

where the constant C depends on α, β, γ, r and A only and

Rmin(M, K∗, δ) = (3.10)

max
n(

δ2 lnK∗

) 2r
2r+2γ ,

(
δ2 M−1 K∗

) 2r
2r+2γ+1

o
,

if α = β = 0, and

Rmin(M, K∗, δ) = (3.11)

max

��
ln

�
1

δ2 lnK∗

��− 2r
β

,

�
ln

�
M

δ2K∗

��− 2r
β

�
,

if α > 0, β > 0.

Observe that expressions for the upper and the lower bounds

of the risk (3.6) and (3.10) in the case of α = β = 0, and

(3.7) and (3.11) in the case of α > 0, β > 0 are identical,

so our estimators are asymptotically optimal.
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TABLE I

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND ‘NO CLUSTERING” SCENARIOS AVERAGED

OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.3)
WITH THE g1(x) KERNEL IN (4.2) AND THE SAME SET OF NONZERO COEFFICIENTS FOR ALL FUNCTIONS

D. The Advantage of Clustering

Theorems 2 and 3 allow to answer the question whether

clustering in linear ill-posed inverse problems improves the

estimation accuracy as M → ∞ and δ → 0. Indeed, solving

problem (1.1) for each m = 1, · · · , M separately is equivalent

to choosing K = M = 1 in the penalty. In this case, one

obtains the following corollary.

Corollary 1: If each of the inverse problems is solved

separately, where the penalty is of the form (2.23) with K =
M = 1 and J = {1, · · · , L}, then, with probability at least

1− 2 δτ , the average estimation error R̃(δ) defined in (3.1) is

bounded by

R̃(δ) �
� �

δ2
� 2r

2γ+2r+1 , if α = β = 0,
�
ln(δ−1)

�− 2r
β , if α > 0, β > 0.

(3.12)

If r ≥ 1/2 and assumption (3.5) holds, then for δ → 0, M →
∞, one has

R(M, K∗, δ)

R̃(δ)
�






1 if α > 0, β > 0,

M− 2r
2γ+2r+1 , if α = β = 0, K∗ = 1

(
K∗

M

) 2r
2γ+2r+1 + δ

4r
(2γ+2r+1)(2r+2γ) ln(K∗)

if α = β = 0, K∗ ≥ 2.

(3.13)

Therefore, when δ → 0, M → ∞, clustering is asymptotically

advantageous if α = β = 0.

IV. SIMULATIONS

In order to study finite sample properties of the proposed

estimation procedure, we carried out a numerical study. In

particular, we considered a periodic convolution equation q =
Ah = h ∗ g with a kernel g that transforms into a product in

the Fourier domain

q̃j = g̃jh̃j , νj = 1/h̃j, j = 1, · · · , n, (4.1)

where, for any function t, we denote its j-th Fourier coefficient

by t̃j . The periodic Fourier basis serves as the eigenbasis for

this operator.

Fig. 1. True functions (red) and their estimators: “Clustering before”
(blue), “Clustering after” (green) and “No clustering” (black). Results for
the functions in (4.3) and the kernel g1 in (4.2) with λ = 3 and SNR = 3.
Top row: h1 (left), h2 (right). Bottom row: h3 (left), h4 (right).

We carried out simulations with the periodized versions of

the following two kernels

g1(x) = 0.5 exp(−λ|x|), g2(x) = exp(−λx2/2) (4.2)

where g1(x) corresponds to the case of α = β = 0, γ = 2
while g2(x) corresponds to α ∝ 1/λ, β = 2 in (2.13). Hence,

the problem is moderately ill-posed with g1 and severely ill-

posed with g2. In addition, recovery of the solution becomes

easier as λ grows.

Although we carried out simulations for a much wider sets

of parameters, here we report the results for two series of

simulations with n = 256, M = 60 and K = 4. In the first

batch, we considered a set of smooth spatially homogeneous

test functions

l1(x) = sin(4πx), l2(x) = sin(4π(x − 1/16)), (4.3)

l3(x) = (x − 0.5)
2
, l4(x) = (x − 0.5)

4
,

coefficients of which follow the assumption (2.11). For this

set, we used Fourier basis φj , j = 1, · · · , n, that diagonalizes

Authorized licensed use limited to: University of Central Florida. Downloaded on October 23,2020 at 13:55:15 UTC from IEEE Xplore.  Restrictions apply. 



RAJAPAKSHAGE AND PENSKY: IS CLUSTERING ADVANTAGEOUS IN STATISTICAL ILL-POSED LINEAR INVERSE PROBLEMS? 7187

TABLE II

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND “NO CLUSTERING” SCENARIOS AVERAGED

OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.3)
WITH THE g2(x) KERNEL IN (4.2) AND THE SAME SET OF NONZERO COEFFICIENTS FOR ALL FUNCTIONS

Fig. 2. True functions (red) and their estimators: “Clustering before”
(blue), “Clustering after” (green) and “No clustering” (black). Results for
the functions in (4.4) and the kernel g1 in (4.2) with λ = 3 and SNR = 3.
Top row: h1 (left), h2 (right). Bottom row: h3 (left), h4 (right).

the problem. Moreover, since the functions are spatially

homogeneous, they can be well estimated when the same

set J of nonzero coefficients is used for all four functions.

In the second round, we expanded our study to the set of

spatially inhomogeneous functions

l1(x) = lB(x), l2(x) = lW (x), (4.4)

l3(x) = lP (x), l4(x) = |x − 0.5|
where lB(x), lW (x) and lP (x) are the blip, wave and

parabolas introduced by Donoho and Johnstone [12]. In this

case, Fourier basis does not allow accurate estimation, hence,

we used the Daubechies 8 wavelet basis as φj , j = 1, · · · , n,

for which conditions (2.1) and (2.2) hold with νj given in

(4.1) (see, e.g., [1]). Although the second example does not

follow our assumptions, it shows that our conclusions are true

even in the situation when those assumptions are violated. In

particular, we used a different set of nonzero coefficients Jk

for lk, k = 1, . . . , 4, for the functions in (4.4). We sampled the

test functions on the equispaced grid on the interval [0, 1] and

scaled them to have norms
√

n, obtaining hk = cklk where

ck =
√

n/klkk, k = 1, . . . , 4. Note that, while the functions

in Set 1 (4.3) are simpler and easier to recover, they are less

distinct and harder to cluster since l1 is similar to l2 and l3 is

similar to l4. On the other hand, while it is easier to distinguish

between images of functions in Set 2 (4.4), they are more

difficult to estimate. For each of the test functions hk, k =
1, · · · , K , we evaluated uk = (Ah)k , and sampled those func-

tions on the grid of n equispaced points j/n, j = 1, · · · , n, on

the interval [0, 1], obtaining vectors hk and uk, k = 1, · · · , K .

Furthermore, we generated a clustering function z : M → K
that places M objects into K classes, M/K into each class

at random. We obtained the true matrices F,Q ∈ R
n×M with

the columns hz(m) and uz(m), m = 1, · · · , M , respectively.

Finally, we generated data X by adding independent Gaussian

noise with the standard deviation σ to every element in Q. We

found σ by fixing the Signal-to-Noise Ratio (SNR) and choos-

ing σ = std(F)/SNR, where std(F) is the standard deviation

of the matrix F reshaped as a vector. In what follows, we con-

sidered several noise scenarios: SNR = 3, 5 and 7 for g1 and

SNR = 5, 7, and 10 for g2. In our study we treat K as known

and compare the estimators where clustering was carried out

at pre-processing level (“Clustering before”) to the estimators

where clustering was done post-estimation (“Clustering after”)

and estimators without clustering (“No clustering”).

For the “Clustering before” setting, we applied clustering

directly to the elements of matrix Y. As it follows from

equation (2.21), the matrix Ẑ ∈ M(M, K) which minimizes

the objective function is a solution of the K-means clustering

problem. Subsequently, we found matrix Π
Ẑ,K and, following

equation (2.20), estimated G∗ by bG = WĴΥYΠ
Ẑ,K . For the

set of functions (4.3), the set Ĵ was obtained by applying hard

thresholding to the rows of the matrix ΥYΠ
Ẑ,K , while for

the set of functions (4.4), we applied hard hard thresholding

to each of the elements of the matrix ΥYΠ
Ẑ,K . Finally,

the estimator bF of the matrix F∗ is obtained by applying the

inverse Fourier transform (in the case of the functions in (4.3))

or the inverse wavelet transform (in the case of the functions in

(4.4)) to the columns of matrix bG. For the “Clustering after”

setting, we first constructed the “No clustering” estimator Ǧ
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TABLE III

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND “NO CLUSTERING” SCENARIOS AVERAGED

OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.4)
WITH THE g1(x) KERNEL IN (4.2) AND UNIQUE SET OF NONZERO COEFFICIENTS FOR EACH OF THE FUNCTIONS

TABLE IV

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND “NO CLUSTERING” SCENARIOS AVERAGED

OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.4)
WITH THE g2(x) KERNEL IN (4.2) AND UNIQUE SET OF NONZERO COEFFICIENTS FOR EACH OF THE FUNCTIONS

of matrix G∗ by thresholding elements of the columns of the

matrix ΥY in equation (2.7), and then obtained the estimator

F̌ of matrix F∗ by applying the inverse Fourier or wavelet

transform to the columns of matrix Ǧ. Finally, the “Clustering

after” estimator of F∗ is obtained by applying the K-means

clustering procedure to the columns of matrix F̌.

Tables I–IV report simulations results for the three cluster-

ing scenarios above (“Clustering before”, “Clustering after”

and “No clustering”), for each of the sets of test functions in

(4.3) and (4.4) and for each of the two kernels in (4.2) with

various values of λ. In the Tables, we display the accuracies

of the three estimators where the precision of an estimator bF
is measured by the Frobenius norms of its error

∆ = ∆(bF) = kbF− FkF /
√

Mn. (4.5)

In addition, we report the proportion of erroneously clustered

nodes (“Miss-rate”) for the “Clustering before”and the “Clus-

tering after” estimators.

We ought to point out that the “Clustering before” esti-

mation procedure is much more computationally efficient

since it does not require to recover M unknown functions

separately which is necessary for the “Clustering after” and

“No clustering” procedures.

V. CONCLUSION

In this paper, we investigate theoretically and via a limited

simulation study, the effect of clustering on the accuracy of

recovery in ill-posed linear inverse problems. As we have

stated earlier, in many applications leading to such problems,

clustering is carried out at a pre-processing step and later is

totally forgotten when it comes to error evaluation. Our main

objective has been to evaluate what effect clustering at the pre-

processing step has on the precision of the resulting estimators.

It appears that benefits of pre-clustering depend significantly

on the nature of the inverse problem at hand. If the problem

is moderately ill-posed (kernel g1 in (4.2), α = β = 0),

then, as Corollary 1 shows, the “Clustering Before” estimator

has asymptotically smaller errors than the “No Clustering”

estimator when the number of functions and the sample size

grow. Tables I and II, corresponding to this case, confirm that,

for the finite number of functions and moderate sample size,

the “Clustering before” procedure delivers better precision

than the “Clustering after” and “No clustering” techniques.

Furthermore, the “Clustering before” estimation has profound

computational benefits since one needs to recover K unknown

functions instead of M . Moreover, the advantages of clustering

at pre-processing step become more prominent when the
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problem is less ill-posed (larger λ). Indeed, in the case when

the problem is not ill-posed (α = β = γ = 0 in (2.13)), as

findings of Klopp et al. [17] show, clustering always improves

estimation precision.

The situation changes drastically if the inverse problem

is severely ill-posed (kernel g2 in (4.2), α > 0, β > 0).

Our theoretical results indicate that clustering, in this case,

does not improve the estimation precision as the number

of functions and the sample size grow. These findings are

consistent with the simulation study. In the case of functions

in (4.4), Table IV implies that the precisions of all three

methodology are approximately the same, and the estimation

errors are high even when clustering errors are small or zero.

This is due to the fact that the reduction in the noise level due

to clustering is not sufficient to counteract the ill-posedness

of the problem and, thus, it does not lead to a meaningful

improvement in estimation accuracy. Table III, that reports

on the simulations with functions in (4.3), presents an even

more grim picture. Since functions in the set (4.3) resemble

each other to start with and convolutions with the kernel g2

make them to appear even more similar, “Clustering before”

procedure leads to relatively high clustering errors that, in turn,

produce higher estimation errors than the “Clustering after”

and “No clustering” techniques.

In conclusion, clustering at the pre-processing step is ben-

eficial when the problem is moderately ill-posed. It should

be applied with extreme care when the problem is severely

ill-posed.

VI. PROOFS

A. Proof of the Oracle Inequality

Proof of Theorem 1: The proof of the inequality (3.2)

is based on the standard techniques for proofs of oracle

inequalities. We use optimization problem (2.19) to present

the left-hand side as a sum of the error of any estimator plus

the random error term followed by the difference between the

penalty terms. Later on, we upper-bound the random error term

for any number of classes K , any clustering matrix Z and any

set J . After that, we take a union bound over all possible K ,

Z and J to obtain an upper bound for the probability that

the error exceeds certain threshold. The novelty of the proof

lies in the fact that we are using a vectorization of the model

which allows us to attain the upper bounds.

Note that it follows from the optimization problem (2.19)

that for any fixed G,Z, J and K one has

k bGk2
F − 2Tr(YT Υ bGΠ

Ẑ,K̂) + Pen(Ĵ , K̂)

≤ kGk2
F − 2Tr(YT ΥGΠZ,K) + Pen(J, K).

Then, adding and subtracting G∗, we obtain

k bG− G∗k2
F + kG∗k2

F + 2Tr(( bG − G∗)
T G∗)

− 2Tr(YT Υ bGΠ
Ẑ,K̂) + Pen(Ĵ , K̂) ≤

kG− G∗k2
F + kG∗k2

F + 2Tr((G − G∗)
T G∗)

− 2Tr(YT ΥGΠZ,K) + Pen(J, K).

Combine the trace product terms and recall that, due to

equation (2.5), Y = Υ−1G∗ + δE. Hence, the last inequality

yields

k bG− G∗k2
F ≤ kG− G∗k2

F + 2 δ Tr[ET Υ( bG − G)] (6.1)

+ Pen(J, K) − Pen(Ĵ , K̂)

We choose G = WJG∗ΠZ,K and, in order to analyze the

cross term Tr[ET Υ(bG − G)], we use vectorization of the

model. For this purpose, we choose S such that Σ = SST

and denote

Π
Ẑ,K̂,Ĵ = (Π

Ẑ,K̂ ⊗ WĴ),ΠZ,K,J = (ΠZ,K ⊗ WJ) (6.2)

ĝ = vec(bG), g = vec(G), � = vec(E),

Γ = (IM ⊗ Υ), η = (IM ⊗ S−1)�. (6.3)

By definition of the matrix-variate normal distribution (The-

orem 2.3.1 of Gupta and Nagar (2000)) and (2.8), we derive

that

� ∼ N(0,Σ⊗ IM ) (6.4)

Then, E(ηηT ) = InM , so that, η ∼ N(0, InM ), where � is

defined in (6.3) and kSkop ≤ Cψ . Then, equation (2.7) can be

re-written as

Γy = g∗ + δ Γ (IM ⊗ S)η. (6.5)

Observe that by Theorem 1.2.22 of Gupta and Nagar (2000),

one has

ĝ = vec(WĴΥYΠ
Ẑ,K̂) = Π

Ẑ,K̂,ĴΓy, g = ΠZ,K,Jg∗

and Tr[ET Υ( bG − G)] = ηT (IM ⊗ ST Υ)(Π
Ẑ,K̂,ĴΓy −

ΠZ,K,Jg∗). Now (6.1) can be rewritten in a vector form as

kĝ−g∗k2 ≤ kg−g∗k2 +∆+ Pen(J, K)−Pen(Ĵ , K̂) (6.6)

where

∆ = 2 δηT (IM ⊗ ST Υ)(Π
Ẑ,K̂,ĴΓy − ΠZ,K,Jg∗) (6.7)

= ∆1 + ∆2

with

∆1 = 2 δηT (IM ⊗ ST Υ)(Π
Ẑ,K̂,Ĵ (Γy − g∗)),

∆2 = 2 δηT (IM ⊗ ST Υ)(Π
Ẑ,K̂,Ĵ − ΠZ,K,J)g∗. (6.8)

Derivation of upper bounds for ∆1 and ∆2 is based on the

following lemma.

Lemma 1: Let K, J be fixed, Ĵ be an arbitrary random

subset of {1, . . . , n} and K̂ be a random integer between

1 and M . Let Z ∈ M(M, K) and bZ ∈ M(M, K̂) be a

fixed and a random clustering matrix, respectively. Denote the

projection matrices on the column spaces of matrices Z and
bZ by, respectively, ΠZ,K and Π

�Z,K̂ . Let S be a matrix with

kSkop ≤ Cψ and η ∼ N(0, InM ). Then, for any τ > 0,

there exist sets Ω1τ and Ω2τ with P(Ω1τ ) ≥ 1 − δτ and
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P(Ω2τ ) ≥ 1 − δτ such that

k(ΠZ,K ⊗ (WJΥS))ηk2 ≤ 2KC2
ψ(
X

j∈J

ν2
j ) (6.9)

+ 3C2
ψ(max

j∈J
ν2

j )τ ln(δ−1), ∀ω ∈ Ω1τ ;

k(Π
�Z,K̂ ⊗ (WĴΥS))ηk2 ≤ 2K̂C2

ψ(
X

j∈Ĵ

ν2
j )

+ 3C2
ψ(max

j∈Ĵ
ν2

j )
n
M ln K̂ + |Ĵ | ln(ne/|Ĵ |) (6.10)

+ ln(Mn) + τ ln(δ−1)
�

∀ω ∈ Ω2τ .

Moreover, if J = {1, . . . , L} is fixed and Ĵ =
n

1, . . . , L̂
o

for

some random integer L̂ ≥ 1, then

k(ΠZ,K ⊗ (WJΥS))ηk2 ≤ 2KC2
ψ

LX

j=1

ν2
j (6.11)

+ 3C2
ψ τ ln(δ−1) ν2

L, ∀ω ∈ Ω1τ ;

k(Π
�Z,K̂ ⊗ (WĴΥS))ηk2 ≤ 2K̂C2

ψ

LX

j=1

ν2
j (6.12)

+ 3C2
ψ ν2

L

n
M ln K̂ + ln(Mn) + τ ln(δ−1)

o
∀ω ∈ Ω2τ .

In what follows, we carry out only the proof of the upper

bound (3.2) that takes place for a generic set J . The proof of

the upper bound (3.3) can be obtained from the proof below

with minimal modifications.

Note that ∆1 can be re-written as ∆1 = 2 δ2 ηT (IM ⊗
ST Υ)(Π

Ẑ,K̂ ⊗ WĴ)(IM ⊗ ΥS)η. Due to Γy − g∗ = δ Γ�

and (6.3), we obtain ∆1 = 2 δ2 k(Π
Ẑ,K̂ ⊗ (WĴΥS))ηk2.

Therefore, by (6.10), we obtain that for ω ∈ Ω2τ

|∆1| ≤ 2 δ2 C2
ψ



2K̂
X

j∈Ĵ

ν2
j (6.13)

+3(max
j∈Ĵ

ν2
j )
n
M ln K̂+|Ĵ | ln(ne/|Ĵ |) + ln(Mnδ−τ )

o�

In order to construct an upper bound for ∆2, consider the

following sets

J̃ = J ∪ Ĵ , J1 = J ∩ Ĵ , (6.14)

J2 = Jc ∩ Ĵ , J3 = Ĵc ∩ J.

The sets J1, J2 and J3 are non-overlapping and J̃ = J1 ∪
J2 ∪ J3. Furthermore, consider matrix Z̃ that includes all

linearly independent columns in matrices ZK and ẐK̂ , so that

Span{Z̃} = Span{ZK , ẐK̂}. Let K̃ be the number of columns

of matrix Z̃. Then, one has

Π
Ẑ,K̂Π

Z̃,K̃ = Π
Z̃,K̃Π

Ẑ,K̂ = Π
Ẑ,K̂ ,

WJ = WJ1 + WJ3 , WĴ = WJ1 + WJ2 ,

WJ̃ = WJ1 + WJ2 + WJ3 .

In order to obtain an upper bound for ∆2 defined in (6.8),

note that using notations above, we can rewrite ∆2 as

∆2 = 2 δηT (IM ⊗ ST Υ)[(Π
Ẑ,K̂ ⊗ WJ2) + (Π

Ẑ,K̂ ⊗ WJ1)

− (ΠZ,K ⊗ WJ1) − (ΠZ,K ⊗ WJ3)]g∗

= 2 δηT (IM ⊗ ST Υ)[(Π
Ẑ,K̂ ⊗ WJ2) + (Π

Z̃,K̃ ⊗ WJ1)

+ (ΠZ,K ⊗ WJ3)][(ΠẐ,K̂ ⊗ WJ2)

+ (Π
Ẑ,K̂ ⊗ WJ1) − (ΠZ,K ⊗ WJ1) − (ΠZ,K ⊗ WJ3)]g∗

= 2 δηT (IM ⊗ ST Υ)[(Π
Ẑ,K̂ ⊗ WJ2)

+ (Π
Z̃,K̃ ⊗ WJ1)+(ΠZ,K ⊗ WJ3)][(ΠẐ,K̂,Ĵ−ΠZ,K,J)]g∗

Using Cauchy inequality and 2ab ≤ 4 a2 + b2/4, we obtain

|∆2| ≤ |∆2,1| + |∆2,2|, (6.15)

|∆2,2| = 0.25 k(Π
Ẑ,K̂,Ĵg∗ − ΠZ,K,Jg∗)k2,

|∆2,1| = 4 δ2 k[(Π
Ẑ,K̂ ⊗ WJ2) + (Π

Z̃,K̃ ⊗ WJ1)

+ (ΠZ,K ⊗ WJ3)](IM ⊗ ΥS)ηk2.

Applying Cauchy inequality to the term ∆2,1 and using that

J2 ⊆ Ĵ and J3 ⊆ J we rewrite

|∆2,1| ≤ 12δ2
h
k(Π

Ẑ,K̂ ⊗ (WĴΥS))ηk2

+k(Π
Z̃,K̃ ⊗ (WJ1ΥS))ηk2 + k(ΠZ,K ⊗ (WJΥS))η]k2

i

The upper bounds for the first and the third term in the

inequality above can be obtained directly from Lemma 1. For

the second term, note that since K̃ ≤ K + K̂ and J1 ⊆ J and

J1 ⊆ Ĵ for any ω ∈ Ω1τ ∩ Ω2τ one has

k(Π
Z̃,K̃ ⊗ (WJ1ΥS))ηk2 ≤ C2

ψ



2K
X

j∈J

ν2
j

+ 2K̂
X

j∈Ĵ

ν2
j + 3 (max

j∈Ĵ
ν2

j )
n
M ln K̂ (6.16)

+|Ĵ | ln
�

ne

|Ĵ |

 
+ ln(Mn) + τ ln(δ−1)

�!

due to

K̃
X

j∈J1

ν2
j ≤ K

X

j∈J

ν2
j + K̂

X

j∈Ĵ

ν2
j .

Combining (6.16) with equations (6.9) and (6.10), we obtain

for any ω ∈ Ω1τ ∩ Ω2τ

|∆2,1| ≤ 12δ2 C2
ψ



4K̂
X

j∈Ĵ

ν2
j + 4K

X

j∈J

ν2
j

+ 3(max
j∈J

ν2
j )(τ lnn) + 6 (max

j∈Ĵ
ν2

j )
n

M ln K̂ (6.17)

+|Ĵ | ln
�

ne

|Ĵ |

 
+ ln(Mn) + τ ln(δ−1)

�!

Now consider |∆2,2| defined in (6.15). Rewrite |∆2,2| as

|∆2,2| = 0.25k(Π
Ẑ,K̂,Ĵg∗ − g∗) − (ΠZ,K,Jg∗ − g∗)k2, so

that

|∆2,2| ≤ 0.5 k(Π
Ẑ,K̂,Ĵg∗ − g∗)k2 + 0.5k(ΠZ,K,Jg∗ − g∗)k2.
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Since ĝ = Π
Ẑ,K̂,ĴΓy and

k(Π
Ẑ,K̂,ĴΓy − g∗)k2 = k(Π

Ẑ,K̂,Ĵ(g∗ + δ Γ�) − g∗)k2

= k(I− Π
Ẑ,K̂,Ĵ)g∗k2 + δ2 kΠ

Ẑ,K̂,Ĵ Γ�k2,

we derive

kĝ − g∗k2 ≥ kΠ
Ẑ,K̂,Ĵg∗ − g∗k2 (6.18)

Taking into account that g = ΠZ,K,Jg∗, so that kg− g∗k2 =
kΠZ,K,Jg∗ − g∗k2, we obtain

|∆2,2| ≤ 0.5kĝ− g∗k2 + 0.5kg− g∗k2. (6.19)

By combining upper bounds of ∆1, ∆2,1 and ∆2,2, we derive

from (6.13) and (6.17)– (6.19) that for any ω ∈ Ω1τ ∩ Ω2τ ,

an upper bound for ∆ can be written as

|∆| ≤ 0.5kĝ− g∗k2 + 0.5kg− g∗k2

+ 2 δ2 C2
ψ




26K̂
X

j∈Ĵ

ν2
j + 24K

X

j∈J

ν2
j (6.20)

+ 39 (max
j∈Ĵ

ν2
j )

"
M ln K̂ + |Ĵ | ln

�
ne

|Ĵ |

 

+ ln(Mn) + τ ln(δ−1)
�
+ 18(max

j∈J
ν2

j )τ ln(δ−1)

#

Since it follows from (6.3) that k bG − G∗k2
F = kĝ − g∗k2,

we obtain from (6.6) that for any G = ΠZ,K,JG∗ on the set

Ω1τ ∩ Ω2τ one has

k bG− G∗k2
F ≤ 3kG− G∗k2

F + 2 δ2 C2
ψ




48K
X

j∈J

ν2
j

+ 36(max
j∈J

ν2
j )τ ln δ−1 + 52K̂

X

j∈Ĵ

ν2
j (6.21)

+ 78(max
j∈Ĵ

ν2
j )

"
M ln K̂ + |Ĵ | ln

�
ne

|Ĵ |

 

+ ln(Mn) + τ ln δ−1
��

+ 2[Pen(J, K) − Pen(Ĵ , K̂)]

Choose Pen(J, K) in the form (2.23) and note that all terms

containing Ĵ and K̂ in (6.21) cancel. Finally we obtained for

any G = WJG∗ΠZ,K that with probability at least 1 − 2δτ

k bG− G∗k2
F ≤ 3kG− G∗k2

F +

2 δ2 C2
ψ




48K
X

j∈J

ν2
j + 36(max

j∈J
ν2

j )τ lnn




+ 2 Pen(J, K)

which yields (3.2).

B. Proof of the Upper Bounds for the Error

Proof of Theorem 2: Since, when j is growing, coefficients

Θjk are decreasing while the values of νj are increasing

according to (2.13), the optimal set J is of the form J =
{1, · · · , L}, so that |J | = L. Then, we find (Ẑ, bG, L̂, K̂) as a

solution of optimization problem (2.19) with the penalty given

by expression (2.24).

Note that for the true number of classes K∗ with Nk, k =
1, . . . , K∗ elements in each class, G are coefficients of each

fm and Θ is the clustered version of those coefficients.

It follows from (2.4) that

R(f̂ ,S(r,A), M, K∗) ≤ M−1k bG− G∗k2
F (6.22)

+ M−1
K∗X

k=1

Nk

∞X

j=n+1

Θ2
jk.

Therefore, application of the upper bound (3.3) with a generic

L, Z = Z∗, K = K∗, where Z∗ and K∗ are respectively the

true clustering matrix and the true number of classes, yields

M−1 k bG− G∗k2
F ≤ 3 M−1 kWJG∗ΠZ∗,K∗

− G∗k2
F

+ 4 M−1 Pen(L, K∗) (6.23)

where Pen(L, K) is defined in (2.24). Observe that

kWJG∗ΠZ∗,K∗
− G∗k2

F = k(WJ − In)G∗k2
F (6.24)

=

K∗X

k=1

Nk

nX

j=L+1

Θ2
jk

where Nk is the number of functions fm = hk in the cluster

k, k = 1, · · · , K∗, and Θjk are the true coefficients of those

functions. Hence, it follows from (2.11) that

nX

j=L+1

Θ2
jk ≤ A2 L−2r. (6.25)

Since

K∗X

k=1

Nk = M , (6.24) and (6.25) yield

kWJG∗ΠZ∗,K∗
− G∗k2

F ≤ A2 ML−2r (6.26)

Moreover, it follows from (2.12) that

M−1
K∗X

k=1

Nk

∞X

j=n+1

Θ2
jk ≤ A2n−2r � δ2,

so that the last term in (6.22) is smaller than C R(M, K∗, δ).
Now, consider the second term in (6.23). Due to the

condition (2.13), one obtains

ν2
L ≤ ℵ2

2 L2γ exp
(
2αLβ

)
,

LX

j=1

ν2
j ≤ ℵ2

2 L2γ+1 exp
(
2αLβ

)
.

Denote

R1 ≡ R1(K∗, δ) � K∗, (6.27)

R2 ≡ R2(M, K∗, δ) � M lnK∗ + ln(δ−1).

Therefore, it follows from (2.23) and (3.2) that, under condi-

tion (3.5),

k bG− G∗k2
F

M
≤ C̃ min

L



L−2r+ (6.28)

δ2 L2γ exp(2αLβ)

M
[LR1(K∗, δ) + R2(M, K∗, δ)]

#

where R1(K∗, δ) and R2(M, K∗, δ) are defined in (6.27) and

C̃ depends only on µ, A, ℵ2, C2
ψ and is independent of M ,

L, δ and K∗.
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In order to find the minimum of the right hand side of

(6.28), denote

R(L, M, K∗, δ) = δ2 M−1 exp
(
2αLβ

) �
L2γ+1R1 (6.29)

+L2γR2

�
+ L−2r

and observe that

M−1 k bG− G∗k2
F ≤ C̃ min

L
R(L, M, K∗, δ) (6.30)

where Lopt is the value of L minimizing the right hand side

of (6.28). Denote

L1,opt = argmin
L

[L−2r + δ2M−1 exp
(
2αLβ

)
L2γ+1R1],

(6.31)

L2,opt = argmin
L

[L−2r + δ2 M−1 exp
(
2αLβ

)
L2γR2].

(6.32)

It is easy to see that since the first terms in expressions (6.31)

and (6.32) are decreasing in L while the second terms are

increasing, the values L1,opt and L2,opt are such that those

terms are equal to each other up to a multiplicative constant.

Then, R(Lopt, M, K∗, δ) = max


L−2r

1,opt, L
−2r
2,opt

�
, and, due to

max(a, b) � a + b for positive a and b, we obtain

R(Lopt, M, K∗, δ) � L−2r
1,opt + L−2r

2,opt. (6.33)

Consider two cases.

Case 1: α = β = 0. Direct calculations yield

L1,opt�
(
M−1δ2R1

)− 1
2γ+2r+1 , L2,opt�

(
M−1δ2 R2

)− 1
2γ+2r ,

so that, due to (6.27),

L1,opt = (M−1 δ2K∗)
− 1

2γ+2r+1 ,

L2,opt = [δ2(ln K∗ + M−1 ln δ−1)]−
1

2γ+2r

Then, by (6.33),

R(Lopt, M, K∗, δ) � (M−1 δ2K∗)
2r

2γ+2r+1 (6.34)

+ [δ2(ln K∗ + M−1 ln δ−1)]
2r

2γ+2r .

Now, in order to obtain the expression (3.6), note that if K∗ ≥
2, then lnK∗ dominates M−1 ln δ−1. If K∗ = 1, then (6.34)

can be re-written as

R(Lopt, M, K∗, δ) �
�

δ2

M

� 2r
2γ+2r+1

[1+

�
δ2

M

� 2r
(2γ+2r+1)(2r+2γ)

(ln δ−1)
2r

2γ+2r

!

�
�

δ2K∗

M

� 2r
2γ+2r+1

,

which yields (3.6).

Case 2: α > 0, β > 0. Minimizing expressions in (6.31) and

(6.32), we obtain

Li,opt �
��

ln

�
M

δ2 Ri

��# 1
β

, i = 1, 2,

If K∗ ≥ 2, then R2 ≥ R1. Taking into account that, under

assumption (3.5), for large M and small δ, ln
(
Mδ−2 lnM

)
�

ln
(
Mδ−2

)
and ln(Mn) � lnM , we obtain

L1,opt = min

��
ln

�
M

δ2 K∗

��
;

�
ln

�
M

δ2 lnM

��# 1
β

�
�
ln

�
M

δ2 K∗

�� 1
β

.

Similarly,

L2,opt = min

��
ln

�
1

δ2 lnK∗

��
;

�
ln

�
M

δ2 lnM

��# 1
β

�
�
ln

�
1

δ2 lnK∗

�� 1
β

,

which, together with (6.30) and (6.33), yield the expression

(3.7). One can easily check that the case of K∗ = 1 leads to

the same results.

C. Proofs of the Minimax Lower Bounds for the Error

Proof of Theorem 3: Since the estimation error is com-

prised of the error due to non-parametric estimation and to

clustering, we consider two cases here.

Lower bound for the error due to clustering.

Let K ≥ 2 be the fixed number of classes. Consider a subset

Z(M, K) ⊂ M(M, K) of the set of all clustering matrices

which contains all matrices that cluster M
K vectors into each

class. By Lemma 5 in Pensky (2019) with γ = 1, obtain that

the cardinality of the set Z(M, K) is

|Z(M, K)| = M !
.

[(M/K)!]K ≥ exp (M lnK/4) (6.35)

Let set J be of the form J = {L1, . . . , L2} where 1 ≤ L1 <
L2 ≤ n and n = [δ−2]. Choose Θjk = 0 if j /∈ J . In what

follows, we use the Packing Lemma (Lemma 4 of Pensky

(2019)):

Lemma 2 (The Packing Lemma): Let Z(M, K) ⊆
M(M, K) be a collection of clustering matrices and

q be a positive constant. Then, there exists a subset

SM,K(q) ⊂ Z(M, K) such that for Z1,Z2 ∈ SM,K(q)
one has kZ1 − Z2kH = kZ1 − Z2k2

F ≥ q and

ln |SM,K(q)| ≥ ln |Z(M, K)| − q ln(MKe/q).
Apply this lemma with q = dM , 0 < d < 1/4. Then,

by (6.35), derive

ln |SM,K (dM) | ≥ M [lnK − 4 d ln(Ke/d)]
%
4.

Use the following statement:

Lemma 3: If K ≥ 2 and d is such that

d − d ln d ≤ (ln 2)/9, d ≤ 1/9, (6.36)

then lnK − 4d ln(Ke/d) ≥ (lnK)/9.

It is easy to calculate that, e.g., d = 0.0147 satisfies the

condition (6.36). Then, for d obeying (6.36), one has

ln |SM,K(dM)| ≥ M

36
ln K, (6.37)

kZ1 − Z2kH ≥ dM for any Z1,Z2 ∈ SM,K(dM), Z1 6= Z2
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Consider a collection of binary vectors ω ∈ {0, 1}|J|. By

Varshamov-Gilbert bound lemma, there exists a subset W of

those vectors such that, for any ω, ω0 ∈ W such that ω 6= ω0

one has kω−ω0kH ≥ |J |/8 and ln |W| ≥ |J | ln(2)/8. Choose

a subset WK of W such that |WK | = K . This is possible

if K ≤ 2|J|/8 which is equivalent to |J | ≥ 8 lnK/ ln 2.

Consider a set of vectors w ∈ {0, 1}n obtained by packing ω

with zeros for components not in J . Then

WK = {w1, . . . ,wK ∈ {0, 1}n : kwik0 ≤ |J |, (6.38)

kwi − wjk0 ≥ |J |/8, i 6= j}
Define matrix W with columns wk, k = 1, . . . , K . Finally,

form the set GM,K of matrices G of the form

GM,K =


G ∈ Rn×M : G = θWZT ,Z ∈ SM,K(dM)

�

where d satisfies (6.36) and θ > 0 depends on M ,δ and K .

Note that, due to (6.37), one has

ln |GM,K | ≥ (M lnK)/36 (6.39)

Let Z1,Z2 ∈ SM,K be two clustering matrices. Set G1 =
θWZT

1 G2 = θWZT
2 , so that G1,G2 ∈ GM,K . Since for

any i, i0 one has kwi − wi0k0 = kwi − wi0k2, derive that

kθW (Z1 −Z2)
T k2

F =

MX

m=1

nX

j=1

θ2
h(

wz1(m)

)
j
−
(
wz2(m)

)
j

i2

= θ2
MX

m=1

kwz1(m) − wz2(m)k2 (6.40)

≥ #{m : z1 (m) 6= z2 (m)} θ2|J |/8.

On the other hand, observe that for Z1,Z2 ∈ SM,K one has

#{m : z1 (m) 6= z2 (m)} = 0.5 kZ1 − Z2kH ≥ dM/2.

Therefore, the last two inequalities yield for any G1,G2 ∈
GM,K

kG1 − G2k2
F ≥ d θ2|J |M/16. (6.41)

Now, it is easy to calculate that for any G1,G2 ∈ GM,K

and the corresponding probability measures PG1 and PG2

associated with Y = Υ−1Gi + δE, i = 1, 2, in (2.5), one has

the following inequality for the Kullback-Leibler divergence

between PG1 and PG2 :

K (PG1 , PG2) ≤
1

2δ2 C2
ψ

kΥ−1 (G2 − G1) k2
F (6.42)

Since G1 = θWZ1, G2 = θWZ2, we obtain

kΥ−1 (G2 − G1) k2
F ≤ θ2 kZ2 − Z1k2

op kΥ−1Wk2
F (6.43)

Note that SM,K(dM) ⊂ Z(M, K), so that for any Z ∈
SM,K(dM) one has ZT Z = (M/K) IK , hence kZkop =p

M/K. Then, kZ1 − Z2k2
op ≤ 4M/K . Also, due to J =

{L1, . . . , L2} and condition (2.13), one has
X

j∈J

ν−2
j ≤ ℵ−2

1 |J |L−2γ
1 exp

'
−2αLβ

1

(
. (6.44)

Since kΥ−1Wk2
F ≤PK

k=1

P
j∈J ν−2

j , obtain

K (PG1 , PG2) ≤
2 θ2|J |M
δ2ℵ2

1C
2
ψ

L−2γ
1 exp

'
−2αLβ

1

(
. (6.45)

Finally, due to condition (2.11), one needs θ2
P

j∈J (j+1)2r ≤
A2, so that we can choose

θ2 = A2|J |−1L−2r
2 . (6.46)

In order to apply Theorem 2.5 of Tsybakov (2009) with α =
1/9, we need K (PG1 , PG2) ≤ ln |GM,K |/9 which, due to

(6.37), is guaranteed by

θ2|J |
δ2ℵ2

1C
2
ψ

L−2γ
1 exp

'
−2αLβ

1

(
≤ lnK

648
. (6.47)

If inequality (6.47) holds, then application of Theorem 2.5 of

Tsybakov (2009) yields that, with probability at least 0.1, one

has (3.9) where, due to (3.1) and (6.41),

Rmin(M, K∗, δ) = θ2|J |. (6.48)

Consider L1 = L/2 + 1 and L2 = L, so that

θ2 � L−(2r+1), Rmin(M, K∗, δ) � L−2r. (6.49)

If α = 0, β = 0, then, by (6.49), inequality (6.47) holds if

L �
(
δ2 lnK

)− 1
2r+2γ . Hence,

Rmin(M, K∗, δ) �
(
δ2 lnK∗

) 2r
2r+2γ . (6.50)

If α > 0, β > 0, then inequality (6.47) holds

if L−(2γ+2r) exp
(
−2αLβ

)
� δ2 lnK , so that L �

�
ln
(

1
δ2 ln K

)� 1
β . Therefore,

Rmin(M, K∗, n) �

�
ln

�
1

δ2 lnK∗

��− 2r
β

. (6.51)

Lower bound for the error due to estimation.

Let, as before, n = [δ−2] and J = {L1, . . . , L2} where 1 ≤
L1 < L2 ≤ n. Consider a set of binary vectors ω ∈ {0, 1}|J|K

and set N = |J |K . Complete vectors ω with zeros to obtain

vectors w ∈ {0, 1}nK. By Varshamov-Gilbert lemma, there

exists a subset B of those vectors such that for any w,w0 ∈ B
such that w 6= w0 one has kw − w0kH ≥ N/8 and ln |B| ≥
N ln(2)/8. Pack vectors w into matrices W ∈ {0, 1}n×K.

Denote the set of those matrices by W and observe that

kW1 − W2k2
F ≥ N/8, ∀W1,W2 ∈ W, W1 6= W2;

ln |W| ≥ (N ln 2)/8. (6.52)

Let Z be the clustering matrix that corresponds to uniform

sequential clustering, M/K vectors per class. Finally, form

the set GM,K of matrices G of the form

GM,K =


G ∈ RM×K : G = θWZT , W ∈ W

�

where θ > 0 depends on M ,δ and K . Then, for any G1,G2 ∈
GM,K , G1 6= G2, due to ZT Z = (M/K) IK and (6.52),

obtain

k(G1 − G2)k2
F = θ2k(W1 − W2)Z

T k2
F = (6.53)

θ2M

K
kW1 − W2k2

F ≥ θ2MN

8K

Now, since G1 = θW1Z and G2 = θW2Z, using formula

(6.42), derive that

K (PG1 , PG2) ≤
θ2

2δ2 C2
ψ

kΥ−1 (W2 − W1) k2
F kZk2

op
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Recalling that kZk2
op = M/K and kΥ−1 (W2 − W1) k2

F ≤PK
k=1

P
j∈J ν−2

j , and using (6.44), arrive at

K (PG1 , PG2) ≤
Mθ2

2δ2 ℵ2
1 C2

ψ

|J |L−2γ
1 exp

'
−2αLβ

1

(
.

In order to apply Theorem 2.5 of Tsybakov (2009)with α =
1/9, we need K (PG1 , PG2) ≤ (1/9) ln |GM,K | which, due to

(6.52), is guaranteed by

θ2M

δ2ℵ2
1C

2
ψ

L−2γ
1 exp

'
−2αLβ

1

(
≤ K

36
. (6.54)

If inequality (6.54) holds, then application of Theorem 2.5 of

Tsybakov (2009) yields that, with probability at least 0.1, one

has (3.9), where, due to (3.1) and (6.53),

Rmin(M, K∗, δ) � θ2|J | (6.55)

Now, as before, we consider two choices of L1 and L2: L1 =
L2 = L and L1 = L/2+1, L2 = L leading to the values of θ2

given by (6.49). Again, we consider the cases of α = β = 0
and α > 0, β > 0 separately.

Case 1: α = 0, β = 0, L1 = L/2 + 1, L2 = L, |J | = L/2.

Since L1 � L2 � |J | � L, inequality (6.54) holds if L �(
δ2M−1 K

)− 1
2r+2γ+1 and

Rmin(M, K∗, δ) �
(
δ2 M−1 K

) 2r
2r+2γ+1 . (6.56)

Case 2: α > 0, β > 0, L1 = L2 = L, |J | = 1.

Plugging the first expression from (6.49) into (6.54), derive

that L−(2γ+2r) exp
(
−2αLβ

)
� δ2M−1K , so that L �

�
ln
(

M
δ2K

)� 1
β . Therefore,

Rmin(M, K∗, δ) �

�
ln

�
M

δ2K

��− 2r
β

(6.57)

Now, in order to obtain the expressions for the lower bounds,

we find the maximum of (6.50) and (6.56) if α = 0, β = 0,

and of (6.51) and (6.57) if α > 0, β > 0.

D. Proofs of the Comparison of the Risks With

and Without Clustering

Proof of Corollary 1: First observe that expressions (3.12)

are obtained directly from (3.6) and (3.7) by setting M =
K∗ = 1 since all functions belong to the same Sobolev ball

(2.10). In order to compare the upper bounds (3.6) and (3.7)

obtained with clustering with the upper bound (3.12) derived

without clustering, we consider several cases.

Case 1 α = 0, β = 0.

Expressions in (3.13) are obtain by direct evaluation. Note that

the second expression in the case of K∗ ≥ 2 tends to zero as

M → ∞ since, due to (3.5), lnK∗ ≤ lnM � ln δ−1.

Case 2 α > 0, β > 0.

Note that, due to the condition (3.5),

ln(δ−2) ≤ ln(Mδ−2K−1
∗ ) ≤ lnM + ln(δ−2) � ln(δ−2),

Also, for K∗ ≥ 2 and δ−2 ≥ e, due to lnx ≤ x/2 for x ≥ 1,

obtain

ln
(
δ−2 ln(K−1

∗ )
)

= ln(δ−2) − ln lnK∗ ≥
ln(δ−2) − 0.5 ln(δ−2) � ln(δ−2),

which completes the proof.

E. Proofs of Supplementary Statements

Proof of Lemma 1: Proof of Lemma 1 is based on the

following statement provided in Gendre(2014)

Lemma 4 (Gendre (2014)): Let A ∈ Rp×p be a fixed

matrix and � ∼ N(0, Ip). Then, for any x > 0 one has

P

n
kA�k2 ≥ Tr(AT A) + 2

q
kAk2

opTr(AT A)x (6.58)

+2kAk2
opx
�
≤ e−x

Note that, due to 2ab ≤ a2 + b2, probability (6.58) can be

re-written as

P(kA�k2 ≥ 2kAk2
F + 3kAk2

op x) ≤ e−x (6.59)

Consider k[ΠZ,K ⊗ (WJΥS)] ηk2 with Z, J, K fixed. Note

that, due to kΠZ,Kk2
op = 1, kSk2

op ≤ C2
ψ, kWJΥk2

op =
maxj∈J ν2

j and kWJΥk2
F =

P
j∈J ν2

j , one has

k(ΠZ,K ⊗ (WJΥS))k2
op ≤ (6.60)

kΠZ,Kk2
opkWJΥk2

opkSk2
op ≤ C2

ψ max
j∈J

ν2
j

k(ΠZ,K ⊗ (WJΥS))ηk2
F ≤ (6.61)

kΠZ,Kk2
F kWJΥk2

F kSk2
op ≤ KC2

ψ

X

j∈J

ν2
j

Now applying inequality (6.59) to k[ΠZ,K ⊗ (WJΥS)] ηk2

where η ∼ N(0, InM ), we obtain for any x > 0

P


k(ΠZ,K ⊗ (WJΥS))ηk2 ≥

2k(ΠZ,K ⊗ (WJΥS))k2
F +

3k(ΠZ,K ⊗ (WJΥS))k2
op x
�
≤ (6.62)

P


k(ΠZ,K ⊗ (WJΥS))ηk2−

C2
ψ



2 K
X

j∈J

ν2
j + 3x max

j∈J
ν2

j



 ≥ 0




 ≤ e−x.

Setting x = τ ln(δ−1) yields (6.9). Inequality (6.11) follows

from (6.9) since νj are growing with j and J = {1, . . . , L}.

In order to prove inequality (6.10), note that for

x(M, K, |J |, s) = M lnK + |J | ln(ne/|J |) + ln(Mn) + s,

due to ln
(
n
j

)
≤ j ln(ne

j ), one has

X

Z,K,J

e−x(M,K,|J|,s) ≡

MX

K=1

nX

j=1

X

|J|=j

X

Z∈M(M,K)

e−x(M,K,j,s) = (6.63)

MX

K=1

nX

j=1

�
n

j

�
KMe−x(M,K,j,s) ≤

MX

K=1

nX

j=1

�
ne

j

�j

KMe−x(M,K,j,s) ≤ e−s

Authorized licensed use limited to: University of Central Florida. Downloaded on October 23,2020 at 13:55:15 UTC from IEEE Xplore.  Restrictions apply. 



RAJAPAKSHAGE AND PENSKY: IS CLUSTERING ADVANTAGEOUS IN STATISTICAL ILL-POSED LINEAR INVERSE PROBLEMS? 7195

Therefore, by (6.62) and (6.63), we obtain

P

'
k(Π

Ẑ,K̂ ⊗ (WĴΥS))ηk2−
2k(Π

Ẑ,K̂ ⊗ (WĴΥS))k2
F−

3k(Π
Ẑ,K̂ ⊗ (WĴΥS))k2

op x(M, K̂, |Ĵ |, s) ≥ 0
(
≤

X

Z,K,J

P
(
k(ΠZ,K ⊗ (WJΥS))ηk2−

C2
ψ



2K
X

j∈J

ν2
j + 3 x(M, K, |J |, s)

�
max
j∈J

ν2
j

�

 ≥ 0



 ≤

X

Z,K,J

e−x(M,K,|J|,s) ≤ e−s.

Setting s = τ ln(δ−1) yields (6.10).

Similarly, in order to prove (6.12), choose J = {1, . . . , L},

x(M, K, |J |, s) = M lnK + ln(Mn) + s, and replace (6.63)

by

X

Z,K,J

e−x(M,K,|J|,s) ≡
MX

K=1

nX

L=1

X

Z∈M(M,K)

e−x(M,K,L,s)

≤
MX

K=1

n KMe−x(M,K,L,s) ≤ e−s

Proof of Lemma 3: By using (6.36), K ≥ 2 and 0 < d ≤
1/9

lnK − 4d ln(Ke/d) = lnK − 4[d ln(K) + d − d ln d]

≥ lnK − 4d lnK − 4

9
ln 2 ≥ 5

9
lnK − 4

9
lnK ≥ lnK

9
.
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