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Is Clustering Advantageous in Statistical Ill-Posed
Linear Inverse Problems?

Rasika Rajapakshage and Marianna Pensky

Abstract—In many statistical linear inverse problems, one
needs to recover classes of similar objects from their noisy
images under an operator that does not have a bounded inverse.
Problems of this kind appear in many areas of application.
Routinely, in such problems clustering is carried out at a pre-
processing step and then the inverse problem is solved for each
of the cluster averages separately. As a result, the errors of the
procedures are usually examined for the estimation step only.
The objective of this paper is to examine, both theoretically
and via simulations, the effect of clustering on the accuracy
of the solutions of general ill-posed linear inverse problems.
In particular, we assume that one observes X,, = Af,, +
d€m, m = 1,---, M, where functions f,, can be grouped
into K classes and one needs to recover a vector function
f = (f1, -+, fm)T. We construct an estimator for f as a
solution of a penalized optimization problem which corresponds
to the clustering before estimation setting. We derive an oracle
inequality for its precision and confirm that the estimator is
minimax optimal or nearly minimax optimal up to a logarithmic
factor of the number of observations. One of the advantages
of our approach is that we do not assume that the number
of clusters is known in advance. Subsequently, we compare the
accuracy of the above procedure with the precision of estimation
without clustering, and clustering following the recovery of each
of the unknown functions separately. We conclude that clustering
at the pre-processing step is beneficial when the problem is
moderately ill-posed. It should be applied with extreme care when
the problem is severely ill-posed.

Index Terms—Ill-posed linear inverse problem, clustering,
oracle inequality, minimax convergence rates.

I. INTRODUCTION

N THIS paper, we consider a set of general ill-posed linear

inverse problems Af,, = ¢m, m = 1,--- M, where A
is a bounded linear operator that does not have a bounded
inverse and the right-hand sides ¢,, are measured with error.
In particular, we assume that some of the objects f;,, and hence
Gm, are very similar to each other, so that they can be averaged
and recovered together. As a result, one supposedly obtains
estimators of f; with smaller errors. The grouping is usually
unknown (as well as the number of groups) and is carried
out at a pre-processing step by applying one of the standard
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clustering techniques with the number of clusters determined
by trial and error. Subsequently, the objects in the same cluster
are averaged and the errors of those aggregated objects are
used as true errors in the analysis.

Problems of this kind appear in many areas of application
such as astronomy (blurred images), econometrics (instru-
mental variables), medical imaging (tomography, dynamic
contrast enhanced Computerized Tomography and Magnetic
Resonance Imaging), finance (model calibration of volatility)
and many others where similar objects are measured and can
be recovered together. Indeed, clustering has been applied for
decades to solve ill-posed inverse problems in pattern recogni-
tion [5], astronomy [22], astrophysics [14], pattern-based time
series segmentation [10], medical imaging [9], elastography
for computation of the unknown stiffness distribution [4] and
for detecting early warning signs on stock market bubbles [18],
to name a few. While in some other settings the main objec-
tive is finding group assignments, we are considering only
applications where clustering is used merely as a denoising
technique. In those applications, routinely, clustering is carried
out at the pre-processing step and then the inverse problems
are solved for each of the cluster averages separately. As a
result, the errors of the procedures are usually examined for the
estimation step only. The objective of this paper is to examine,
both theoretically and via simulations, the effect of clustering
on the accuracy of the solutions of general ill-posed linear
inverse problems.

There exists immense literature on the statistical inverse
problems (see, e.g., [1], [2], [6]-[8], [11], [20] and mono-
graphs [3], [13] and references therein, to name a few).
However, to the best of our knowledge, the question about
the effects of clustering in statistical inverse problems has
never been investigated. Recently, as a part of a more general
theory, the effect of clustering on the precision of recovery
in multiple regression problems has been studied in [17].
Klopp et al. [17] concluded that, even under uncertainty, clus-
tering improves the estimation accuracy. The goal of this paper
is to extend this study to the ill-posed linear inverse problems
setting.

In particular, we consider the following problem. Let A :
H1 — 'Ho be a known linear operator where H; and Ho
are Hilbert spaces with inner products (-, )7, and (-, )3,
respectively. The objective is to recover functions f,, € H;
from

Xm(z) =gm(x) +0em(ax), (1.1)
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where €,,(z) are the independent white noise processes and
the goal is to recover the vector function f = (f1, -, far)T.
Assume that observations are taken as functionals of X,,,: for
any 1) € Ho one observes

<X’maw> = <Afm71/)> + 5£m(u))v (1.2)

where § is noise level and &, (1)) are zero mean Gaussian
random variables with

E&m (¥1)&(v2)] = { (<)1’Z)1,1/12>H2a z ; 5

In what follows we consider the situation where, despite of
M being large, there are only K types of functions f,,(t). In
particular, we assume that there exists a collection of functions
hi(t),...,hi(t) such that f,,(t) = hi(t) for any m and some
k = z(m). In other words, one can define a clustering function
z=z(m),m=1,..., M, with valuesin {1, ..., K} such that
fm = h(m). We denote the clustering matrix corresponding to
the clustering function z(m) by Z. Note that Z € {0, 1}M*E
and Z,, = 1 if and only if 2(m) = k, so that matrix D? =
ZTZ is diagonal.

If the function z(m) were known, one could improve
precision of estimating f,, by averaging the signals within
clusters and construct the estimators iLk of the common cluster
means, thus reducing the noise levels, and subsequently set
fm = ﬁz(m). In reality, however, neither the true clustering
matrix Z,, nor the true number of classes K, are available,
so they also need to be estimated.

Note that the objective is accurate estimation of functions
fm>, m = 1,--- M, rather than recovery of the clustering
matrix Z. Moreover, although a true clustering matrix Z,
always exists (if all functions f,, are different, one can choose
K, = M and Z, = I,;), one is not interested in finding Z..
Indeed, one would rather incur a small bias resulting from
replacement of f,, by hy = f,, than obtain estimators with
high variances, that are common in inverse problems where
each function f,, is estimated separately. On the other hand,
using the clustering procedure leads to one more type of errors
that are due to erroneously pooling together estimators of
functions f,, that belong to different classes, i.e., the errors
due to mistakes in clustering.

The goal of this paper is the study of the theoretical
recovery limits for the unknown functions f,,, m =1,--- , M,
when one applies clustering, thus taking advantage of the fact
that some of the functions f,, are similar to each other, or
ignores this knowledge and proceeds with estimation without
clustering. In order to evaluate benefits of clustering, we for-
mulate estimation with clustering problem as an optimization
problem. One of the advantages of our approach is that
we do not assume that the number of clusters is known in
advance. Instead, we elicit the unknown number of clusters,
the clustering matrix and the estimators of the unknown
functions as a solution of a penalized optimization problem
where a penalty is placed on the unknown number of clusters.
For this reason, our analysis applies not only to an “ideal” (but
usually impractical) situation when the number of clusters is
known but to the realistic scenario when it is unknown.

(1.3)

7181

In this paper we analyze the situation where clustering is
done before estimation, at the pre-processing level, as it usu-
ally happens in many applications. The optimization problem
in the paper corresponds to this scenario (specifically, to the
K-means clustering setting), as well as our in-depth theoret-
ical study which evaluates the precision of estimators with
clustering and compares it to the estimation accuracy without
clustering. In order to further assess benefits of clustering,
we implement a numerical study and compare the estimators
where clustering was carried out at the pre-processing level
(“Clustering before”) to the estimators where clustering was
done post-estimation (“Clustering after”) and the estimators
without clustering (“No clustering”). We conclude that cluster-
ing at the pre-processing level improves estimation precision
when the inverse problem is moderately ill-posed but brings
no benefits (and can even increase estimation errors) if the
problem is severely ill-posed.

The rest of the paper is organized as follows. In Section II,
we introduce notations and assumptions and discuss optimiza-
tion problem that delivers the estimator. Section III deals with
quantification of estimation errors. In particular, Section III-A
provides the oracle expression for the risk of an estimator
obtained in Section II-D. Section III-B presents upper
bounds for the risk under the assumptions in Section II-C.
In order to ensure that the estimators in Section II-D are
asymptotically optimal, in Section III-C we derive minimax
lower bounds for the risk. Finally, Section III-D -carries
out theoretical comparison of estimation accuracy with and
without clustering in asymptotic setting. Section IV performs
a similar comparison via a simulation study for the case of
finite-valued parameters. Finally, Section V contains in-depth
discussion and recommendations about application of the
pre-clustering in the linear ill-posed problems. Section VI
contains proofs of all statements in the paper.

II. ASSUMPTIONS AND ESTIMATION
A. Notations

Below, we shall use the following notations. We denote
[m] = {1,---,m}. We denote vectors and matrices by bold
letters. For any vector a, we denote its [5-norm by ||al| and
the lp norm, the number of non zero elements, by |a||o.
For any matrix A, we denote its Frobenius norm by ||A| #,
the operator norm by ||A|,, and the span of the column
space of matrix A by Span(A). We denote the Hamming
distance between matrices A, and As, the number of nonzero
elements in A; — Ao, by ||[A1 — Asl| . We denote the (k x k)
identity matrix by I and drop subscript k& when there is no
uncertainty about the dimension. We denote the inner product
and the corresponding norm in a Hilbert space H by (-, )
and || - ||, respectively, and drop subscript H whenever there
is no ambiguity. For any set S, we denote cardinality of S by
|S]. We denote the set of all clustering matrices for grouping
M objects into K classes by M (M, K). We denote a,, < by,
if there exist ¢ < oo independent of n such that a,, < cb,
and a,, 2 b, if there exist ¢ > 0 independent of n such that
an cbp. Also, a, =< b, if simultaneously a, < b, and
an 2 by. Finally, we use C as a generic absolute constant

VIV
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independent of n, M and K, which can take different values
in different places.

B. Reduction to the Matrix Model

Since observations are taken as linear functionals (1.2), the
problem can be reduced to the so-called sequence model. For
this purpose, the unknown functions are expanded over an
orthonormal basis ¢;, j = 1,2,---, of H; and the problem
reduces to the recovery of the unknown coefficients of those
functions. This is a common technique in the field of statistical
inverse problems (see, e.g., Cavalier et al. (2002), Cavalier and
Golubev (2006) and Knapik et al. (2011)). The orthonormal
basis is commonly taken to be the eigenbasis of the opera-
tor A. Since the eigenbasis is often unknown, in this paper,
we consider a wider variety of basis functions. Specifically, we
assume that operator A allows a wavelet-vaguelette decompo-
sition introduced by Donoho (1995). In particular, Donoho
(1995) assumed that there exists an orthonormal basis ¢;,
7 =1,2,--- of H; and nearly orthogonal sets of functions
vi,mj € Ha, j = 1,2,---, such that for some constants
v; > 0, and some absolute constants 0 < cy, Cy, ¢y, Cy) < 00
independent of 7, one has for any vector a:

A = vy, A%y =viley;

(N1 > Vi) 1o = L1(J1 = Jo); (2.1
cpllall® < (1Y a;u;)* < CFlall?,
j
crllall® < (1Y agn;l® < Crllall?, (2.2)
j

where A* : Hy — H; is the linear operator conjugate to A
and I(...) is the indicator function. The name was motivated
by the fact that conditions (2.1) and (2.2) hold for a variety of
linear operators such as convolution, numerical differentiation
or Radon transform when {¢;} is a wavelet basis (see also
Abramovich and Silverman (1998)). Obviously, assumptions
(2.1) and (2.2) are valid when {¢,} is the eigenbasis of the
operator A. Under conditions (2.1) and (2.2), any function f
can be recovered from its image A f using reproducing formula

F= vi(Af, ;)8 (2.3)
J

which is analogous to the reproducing formula for the eigen-
basis case.

We expand functions f,, € H; over the basis ¢;, j =
1,---, and denote the matrix of coefficients by G. Denote
(Afm, ;) = Qjm, so that, by (2.3), for j =1,2,--- , m =
1,---, M, one has

Gj,m = <fma ¢]> = Vj<fmv A*¢]>

=Vj <AfWL7¢]> =Vj Qj,m,-

Consider matrix of observations Y and matrix of errors E with

respective components Y, = (X, ¥;) and E; ,, = &, (¢5)

where &,,,(¢) is defined in (1.3). Let G, and Q. be the true

matrices of coefficients. Then, it follows from (1.1), (1.2) and

(2.4) that elements Y ,,, of column m of matrix Y obey the
sequence model for j =1,2,....m=1,--- , M,

Yjm=v; (Ga)jim + 6Ejm.

2.4)

(2.5)
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Here, E(E; ,,,) = 0 and, by (1.3),

Oa mi # ma
<1/)j1)wj2>7 mip = Mma

In order to make the model computationally convenient, we cut
the sequence model at some index n where n is large enough
to make the error, which is due to this reduction, negligibly
small. Then, j =1,...,n, and G, Q., Y and E are n x M
matrices, Also, it follows from (2.5) that

E(Ej17m1Ej27m2) = { (2.6)

YY =G, +0YE, Y =diag(r1, - ,Vn). 2.7

We shall discuss the choice of n later in Section II-C.
Denote the matrix with elements X; ; = (¢;, ;) by X and
observe that (2.6) implies that

E(EET) =M%, EETE)=nly. (2.8)

Hence, matrix E has the matrix-variate normal distribution
E ~ N(0,X ®1I,/). Observe that the first relation in formula
(2.2) implies that

12]|op < C. (2.9)

C. Assumptions

Recall that functions f,, belong to K different groups,
so that f,, = hp with k& = z(m) where z = z(m) is
a clustering function. Denote the matrix of coefficients of
functions hy, in the basis ¢; by ©, so that @;; = (h, ¢;),
j=1,---,nk=1,--- K.

It is well known that recovery of an unknown function
from noisy observations relies on the fact that it possesses
some minimal level of smoothness. This smoothness usually
manifests as gradual decline of coefficients of this function in
some basis, so the coefficients decrease as one uses more and
more complex basis functions. For this reason, we assume that
hy, belong to a ball: hy € S(r, A), k=1,..., K, where

S(riA)=h=> 0;¢;: Y _[0;]% < A%} . (2.10)
j =1

If ¢; is the Fourier basis, then (2.10) defines a well known
Sobolev ball. Formula (2.10) implies that

o0
10kl T <A k=1,... K. 2.11)
j=1

If » > 1/2, then one can set the cut-off value to n =~
52, Indeed, the error rate in the problem cannot be smaller
than a parametric rate of C'62 and (2.11) implies that the
approximation error with this value of n will not exceed

oo 00
Z |®j,k|2 < n72rz |®j,k|2j2r < A2n72r < A252
j=n+1 Jj=1

(2.12)

In addition, it is well known ( [23]) that, in the regression
setting, the observational version of the white noise model
(1.1) based on a sample of size n leads to § = o/+/n where
o is the standard deviation of the noise.
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Furthermore, since operator A does not have a bounded
inverse, the values of v; in (2.1) are growing with j. While
one can consider various scenarios, the standard assumption
is that v; grow monotonically with j (see, e.g., Alquier et al.
(2011)):

Ny57 exp (ajﬁ) < v < Ngj7 exp (ozj’a) (2.13)

for some absolute positive constants N;, Ny and nonnegative
v, a and 8 where § = 0 and v > 0 whenever a = 0. The
problem (1.1) is called moderately ill-posed if v = 0 and
severely ill-posed if a > 0.

D. Clustering and Estimation

In what follows, we denote the true quantities using the star
symbol, i.e., K, is the true number of clusters, Z, is the true
clustering matrix, G, Q. and ©®, are the true versions of
matrices G, Q and ©® and so on. As it was indicated before,

we choose n = [672], the largest integer that is no greater
than 62
If z : [M] — [K] is the clustering function and Z €

{0,1}M*K s a clustering matrix, then G;; = ©; ;) for
i=1,...,n,7 =1,..., M. Therefore, if the clustering matrix
Z were known, then one would repeat columns of matrix
® to obtain G and average columns of G to construct ©.
Specifically, G = ®Z” and ® = GZD 2, where matrix
D2 = Z"'Z is diagonal.

Denote by Ilz x and HJZ‘7 i the projection matrices on the
column space of matrix Z and on the orthogonal subspace,
respectively:

Oz =2Z(Z"2)'2", My =Ty -Tzk. (2.14)

Here, we use index K to indicate that not only the clustering
matrix Z but also the number of clusters K is unknown.
The projection matrix Ilz g is such, that for any matrix
G € R"*M| GIIz x replaces each column of G; of G by
its average over all columns in cluster z(j). Then, matrix G.
is such that G, = G.,Ilz, g, and, due to (2.7), if Z, were
known, it would seem to be reasonable to estimate G. by
YYIIz, x.. It is well known, however, that this estimator is
inadmissible and one needs to shrink or threshold elements
of matrix YYIIz g, to achieve an optimal bias-variance
balance ( [19], Section 11.2).

Observe that, since for the ill-posed inverse problems,
the values of v; are growing with j due to equation (2.13),
the elements G ; = ©; .(;) of matrix G are harder and harder
to recover as j is growing. On the other hand, condition (2.11)
means that coefficients © ;, decrease rapidly as j increases,
and hence, for large n, one does not need to keep all n
coefficients for an accurate estimation of functions h; (and
therefore f,,). On the contrary, this will yield an estimator
with a huge variance. For this reason, due to the fact that
conditions (2.11) apply to all k£ = 1,---, K simultaneously,
we need to choose a set J C {1,...,n} and set ®;; = 0 if
j & J. Then, one has G, ,, = 0if j € J° where the set J¢ is
complementary to .J. In order to express the latter in a matrix
form, we introduce matrix

W =diag(wi,...,w,) with w; =1(j € J), (2.15)
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and observe that, for any matrix G, condition (I, — W ;)G =
0 ensures that G, =0, j € J°.

Consider integer K € [M], set M(M, K) of clustering
matrices that cluster M nodes into K groups and set J C
{1,...,n}. Then, the objective is to find matrices G and Z €
M(M, K), a set J and an integer K:

(Z,G,J,K) € argmin {||G — YYTIz ||%
VA K

y Ty

HITYTIZ |13}
subject to (I, — W ;)G =0,

(2.16)

where H%,K is defined in (2.14). The second term in (2.16)
corresponds to the error of the K-means clustering of the
matrix Y'Y while the first term quantifies the difference
between the clustered version of data matrix YYIIz x and
the matrix G.

Since [|[YYTIz k||% + |[XYYIZ «||% = | XY is inde-
pendent of G and Z, the problem can be re-written in an
equivalent form as

(Z,G,J,K) € argmin {A(Z,G,J,K)} (2.17)
Z.G,J, K
subject to (I, — W ;)G = 0.
where
MZ,G,J,K) = |G|% - 2Tr(YTYGIIz k). (2.18)

Note though that optimization problem (2.17) has a trivial
solution: K = M, J=[n|], Z=1Iy and G =YY.

In order to avoid this, we put a penalty on the value of K
and the set J, and find Z, G, .J and K as a solution of the
following optimization problem:

(Z,G,J,K) € argmin {A(Z,G, J, K) + Pen(J, K)}
Z.G,J, K

subject to Z € M(M, K), (I, — W ;)G = 0, (2.19)

where A(Z, G, J, K) is defined in(2.18). Optimization proce-
dure (2.19) leads to group thresholding of the rows of matrix
YYIIz k due to the condition (I, — W ;)G = 0. Indeed,
if Z, J and K were known, then it follows from (2.16) that
G would be given by

G =W;YYII; ; (2.20)
and problem (2.19) can be presented as
(Z,J,K) € argmin {[|(I-W,)YYIIz|?
+H| YT s ||% + Pen(.], K)} 2.21)

subject to Z € M(M, K),J C [n], K € [M].

Note that the objective function in (2.21) is a sum of two
components: the first one is responsible for the best fitting of
the matrix YYIIz x when some of its rows are set to zero,
the second one corresponds to the error of the K -means clus-
tering of columns of matrix Y'Y, while the penalty prevents
over-fitting. The solution of the optimization problem relies on
the K -means algorithm that is NP-hard but, however, is known
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to provide very accurate results as long as initialization point
is not too far from the true solution.

In practice, we shall solve optimization problem (2.21)
separately for each K € [M] and then choose the value of
K that delivers the smallest value in (2.21). We estimate
the matrix of coefficients G by G defined in (2.20). After
coefficients G are obtained, we estimate f,,, m=1,..., M,
by

fm = ZGj,md)j; m = ]-a aM'
jeJ

The penalty in (2.19) and (2.21) should be chosen to
exceed the random errors level with high probability. If the
number of clusters K, the set J and the clustering matrix
Z were known, then the penalty would be of the order of
the variance term K ZVJQ However, since K, J and Z
are unknown, we neé(eljto account for the uncertainty in
estimation of those parameters by applying a union bound
and, hence, adding the terms that are proportional to the
log-cardinality of the sets of those parameters. Since one
has n choices for K, K possible clustering arrangements
and approximately exp {|J|In(ne/|J|)} sets J of cardinality
|J| for every |J| = 1,...,n, we need to add a term pro-
portional to (mEaJx VJQ) [MIn K + |J|In(ne/|J|) + In(Mn)].
Finally, we nejed to choose a constant 7 and add a term
proportional to max V? In(6~7) to ensure that the upper bound

(2.22)

holds with probability at least 1 —27. By carefully evaluating
the upper bounds for each of the components of the error,
we derive the penalty

Pen(J, K) = 20367 26K Z vy + 39(max V) {MnK
jeJ

+[J|In (ne/|J]) +1In (Mné~7)}] (2.23)
where n = [§72], Cy is defined in (2.9) and the choice of
7 ensures that the upper bound for the error will hold with
probability at least 1 — 267. Hence, in any real life setting,
the constant 7 should be such that this probability is large
enough.

Penalty (2.23) consists of four terms. The first term,
26 K> e, v? represents the error of estimating |.J| coeffi-
cients for each of the distinct functions hy, £ = 1,..., K.
The second and the third terms account for the difficulty of
clustering M functions into K classes and choosing a set
J C {1,...,n}. The last term is of the smaller asymptotic
order, it offsets the error of the choice of K and also ensures
that the oracle inequality holds with the probability at least
1 — 267. Observe that since the data is weighted by the
diagonal matrix Y in (2.7), the last three terms are weighted
by max;e s I/jz.

The penalty (2.23) corresponds to the general model selec-
tion that does not rely on assumptions (2.10) and (2.13).
If those conditions hold, the elements (G.);,» are decreasing
with j for every m, while the values of v; are increasing.
Therefore, one should choose a set J of the form J =
{1,..., L} for some L < n. Since the cardinality of the set of

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

possible L’s is just n, this would lead to replacement of the
term |J|In (ne/|J|) in the penalty by merely Inn leading to

L
Pen(L, K) = 2C36% [26K Y v7 + 3907 {MIn K
j=1

+1In (Mn 577)}} (2.24)

Remark 1 (Unknown Noise Level): The value of § in (2.23)
and (2.24) is usually unknown but can be easily obtained
from data. Indeed, one can apply a wavelet transform to the
original data matrix Y, and then recover ¢ as the median of
the absolute value of the wavelet coefficients at the highest
resolution level divided by 0.6745 (see, e.g., Mallat (2009),
Section 11.3). In fact, in our simulations, we treated § as an
unknown quantity and estimated it by this procedure.

Remark 2 (Different Smoothness for Different Clusters):
One can consider a more general case where functions from
different clusters have different smoothness levels. In this
case, each function hj has a corresponding set of nonzero
coefficients Jx, & = 1,..., K, which may be of the Lform

{1,...,Ly}. Consequently, the terms KZ v; and K Z vy

jed 7j=1
in the penalties (2.23) and (2.24) should be replaced by,
respectively,

K K Lg

2 2
Do v and Y v
k=1 jeJ k=1 j—1

Theoretical results for this case are a matter of a future
investigation.

III. ESTIMATION ERROR
A. The Oracle Inequality

The average error of estimating f,,, by fm, m=1,..., M,
is given by

M
R(EE) =M (I fon = fnll?, 3.1
m=1

where f and f are column vector with functional components
fm and fm, m =1,..., M, respectively. Due to the inequality
(2.12), the errors of approximation of functions f,, by the
n-term expansions over ¢;, j = 1,...,n, are much smaller
than the errors due to estimation or thresholding of the first n
coefficients of these expansions. Therefore, the main portion of
the error is due to M ~1||G — G.||%. The following statement
places an upper bound on |G — G.|%.

Theorem 1: Let (Z, é, J, K ) be a solution of optimization
problem (2.19) with the penalty Pen(J, K') given by expression
(2.23). Then, there exists a set Q = Q(7) with P(2) > 1—267
such that for every w € {2 one has

IG = G.|[F < Join, {3IW,G. Tz x — G.[|%
+4Pen(J, K)} (3.2)

Moreover, if assumptions (2.10) and (2.13) hold and
(Z,G, L, K) is a solution of optimization problem (2.19) with
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J = {1,...,L} and the penalty Pen(J, K) replaced with
Pen(L, K) defined in (2.24), then, for w € Q

- 2 - )
|G G*||F_ZIT1L{I}({3||WJG*HZ7K G.[IF

+4Pen(L, K)} (3.3)

Theorem 1 provides an oracle inequality for |G — G, %.
The first term in expression (3.2) is the bias term that quantifies
the error of approximation of matrix G, when its columns
are averaged over K clusters using matrix Z and one keeps
only terms with j € J in the approximations of each of the
K cluster means. This term is decreasing when K and |J|
are increasing. The second term, Pen(J, K), is the variance
term that represents the error of estimation for the particular
choices of Z, J and K. This term grows when K and |.J| are
increasing. The error is provided by the best possible bias-
variance balance in (3.2).

Since the right hand side in (3.2) is minimized over Z and
K, if some of the functions hy, k = 1---, K, are similar but
not exactly identical to each other, it may be advantageous
to place those functions in the same cluster, hence, reducing
the variance component of the error. Our methodology will
automatically take advantage of this opportunity. Note that the
error bounds in (3.2) are non-asymptotic and are valid for any
true matrix G, and any relationship between K, M and ¢.

While those results are very valuable, they do not allow to
quantify the effect of clustering on estimation errors when ¢
is small and M is large, so that 6 — 0, M — oo, and possibly
K — o0. In the next section we shall investigate this issue
under assumptions of Section II-C.

B. The Upper Bounds for the Estimation Error

In order to study particular scenarios, in what follows,
we assume that v; satisfies condition (2.13). Assume that
hy € S(r,A), £ = 1,...,K,, where S(r,.A) is defined
in (2.10). Denote by h the functional column vector with
components hg, k = 1,..., K,. Consider the maximum risk
of our estimator f over all hy € S(ryA), k=1,...,K,, and
all true clustering matrices Z. € M(M, K..)

R(f',S(r, A), M, K,) = max R(f, f') subject to (3.4)

f=7.h hyeSrA), k=1,... K., Z, € M(M, K,),

where S(r, A) is defined in (2.10) and M (M, K) is the set
of all clustering matrices that place M objects into K, classes.

In what follows, we assume that both n and M are growing
simultaneously, that is, In M = In(n). Note that this is a mild
condition since it is satisfied when M is growing at a rate of
any positive power of n or visa versa. Hence, due to n ~ 2,
we obtain

In(6™!) < Inn =< InM =< In(Mn). (3.5)

Observe that the first relation follows from the definition of n
while the third one is the direct consequence of the second.
Note also that the second assumption is both very mild and
very natural. Since In x grows very slowly with z, in practical
terms, it merely states that both M and 6! tend to infinity.
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The main consequence of the assumption (3.5) is that the
terms In(6~ 1), Inn and In M become interchangeable up to a
constant.

Then, application of the oracle inequality (3.2) with |J| = L
and K = K, provides the following upper bounds for the
error.

Theorem 2: Let assumption (3.5) hold and v;, j =
1,---,n, satisfy condition (2.13) with r > 1/2. Let
(Z,G,L,K) be a solution of optimization problem (2.19)
with the penalty given by expression (2.23). Then, with
probability at least 1 — 267, one has

R(£,S(r, A), M, K.) < C R(M, K..5),
where the constant C' depends on «, 3,~,r, 7 and A only and
R(M, K., 8) = (62 mK,)™"% + (62 M~'K,) 77 |
(3.6)
if a =03=0, and

1 % M -5
wonks = o (mng)] (o)

if a>0,8>0.

The expressions in (3.6) and (3.7) are well defined if
K, > 2. 1If K. = 1, then In K, = 0 and the first terms in
(3.6) and (3.7) are just equal to zero.

C. The Minimax Lower Bounds for the Risk

In order to show that the estimator developed in this paper is
asymptotically near-optimal, below we derive minimax lower
bounds for the risk over all by € S(r, A), k=1,..., K,, and
all clustering matrices Z. € M(M, K.). For this purpose,
we define the minimax risk as

Runin(S(r, A), M, K..) = min R(f, S(r, A), M, K.) (3.8)
f
where f is any estimator of f on the basis of matrix of
observations Y.

Theorem 3: Letv;, j =1,--- , satisfy condition (2.13) and
r > 1/2. Then, with probability at least 0.1, one has

P800, )M, ) 2 CRoa (M Kod) 39
where the constant C' depends on «, 3,~,r and A only and
Bunin (M, K., 0) = (3.10)
max{(52 1nK*)2'ri7r2'y (2 M K*)zﬁzﬁ} 7

if a =0=0, and

Rmin(M;K*;é): (311)
1 % M\ F
war i ()] o ()] )
if a>0,8>0.

Observe that expressions for the upper and the lower bounds
of the risk (3.6) and (3.10) in the case of « = 3 = 0, and
(3.7) and (3.11) in the case of o > 0,3 > 0 are identical,
S0 our estimators are asymptotically optimal.
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TABLE I

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND ‘NO CLUSTERING” SCENARIOS AVERAGED
OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.3)
WITH THE g1 (z) KERNEL IN (4.2) AND THE SAME SET OF NONZERO COEFFICIENTS FOR ALL FUNCTIONS

A=T
Clustering Before Clustering After No Clustering
Error | Miss-rate Error [ Miss-rate
SNR =3 0.0365(0.0262) 0.0090 0.0554(0.0083) 0.0068 0.0556(0.0001)
SNR =5 0.0270(0.0015) 0.0000 0.0419(0.0095) 0.0070 0.0423(0.0001)
SNR=T 0.0250(0.0084) 0.0031 0.0405(0.0000) 0.0000 0.0414(0.0000)
A=5
SNR =3 0.0377(0.0038) 0.0000 0.0549(0.0059) 0.0033 0.0567(0.0002)
SNR =75 0.0317(0.0016) 0.0000 0.0542(0.0000) 0.0000 0.0551(0.0000)
SNR=T7 0.0269(0.0014) 0.0000 0.0406(0.0000) 0.0000 0.0421(0.0001)
A=3
SNR =3 0.0498(0.0398) 0.0106 0.0810(0.0217) 0.0133 0.0788(0.000T)
SNR =5 0.0409(0.0237) 0.0036 0.0543(0.0000) 0.0000 0.0565(0.0002)
SNR=T 0.0350(0.0241) 0.0026 0.0542(0.0000) 0.0000 0.0554(0.0001)

D. The Advantage of Clustering

Theorems 2 and 3 allow to answer the question whether
clustering in linear ill-posed inverse problems improves the
estimation accuracy as M — oo and § — 0. Indeed, solving
problem (1.1) for each m = 1,--- , M separately is equivalent
to choosing K = M = 1 in the penalty. In this case, one
obtains the following corollary.

Corollary 1: If each of the inverse problems is solved
separately, where the penalty is of the form (2.23) with K =
M =1and J = {1,---, L}, then, with probability at least
1— 267, the average estimation error R(J) defined in (3.1) is
bounded by

wﬂﬁ%ﬁ’

R(S = 2r
O{ oo,

If » > 1/2 and assumption (3.5) holds, then for § — 0, M —
00, one has

if a=p8=0,
if > 0,8>0.

(3.12)

1 ifa>0,6>0,
M*fmf#ﬂ, ifa=p=0K,=1
(%)%+ sETEIET In(K,)
ifa=0p=0K,>2.
(3.13)

R(M,K,,8) _
O

Therefore, when § — 0, M — oo, clustering is asymptotically
advantageous if o = 5 = 0.

IV. SIMULATIONS

In order to study finite sample properties of the proposed
estimation procedure, we carried out a numerical study. In
particular, we considered a periodic convolution equation ¢ =
Ah = h % g with a kernel g that transforms into a product in
the Fourier domain

(jj:gjhjv ijl/hjv jzlv"'anv (41)
whe~re, for any function ¢, we denote its j-th Fourier coefficient
by t;. The periodic Fourier basis serves as the eigenbasis for
this operator.

Fig. 1. True functions (red) and their estimators: “Clustering before”
(blue), “Clustering after” (green) and “No clustering” (black). Results for
the functions in (4.3) and the kernel g; in (4.2) with A = 3 and SNR = 3.
Top row: h1 (left), ho (right). Bottom row: ha (left), ha (right).

We carried out simulations with the periodized versions of
the following two kernels

91(z) = 0.5 exp(=Alal), g2(x) = exp(—Aa?/2)

where g1 (z) corresponds to the case of « = 3 = 0,7 = 2
while go(x) corresponds to o x 1/, 5 = 2 in (2.13). Hence,
the problem is moderately ill-posed with g; and severely ill-
posed with go. In addition, recovery of the solution becomes
easier as \ grows.

Although we carried out simulations for a much wider sets
of parameters, here we report the results for two series of
simulations with n = 256, M = 60 and K = 4. In the first
batch, we considered a set of smooth spatially homogeneous
test functions

Iy (x) = sin(4rx), la(x) = sin(dn(x — 1/16)),
Is(z) = (x—0.5)°, lu(z) = (z—0.5)",

4.2)

(4.3)

coefficients of which follow the assumption (2.11). For this
set, we used Fourier basis ¢;, j = 1,--- ,n, that diagonalizes
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TABLE II

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND “NO CLUSTERING” SCENARIOS AVERAGED
OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.3)
WITH THE g2(2z) KERNEL IN (4.2) AND THE SAME SET OF NONZERO COEFFICIENTS FOR ALL FUNCTIONS

A=15
Clustering Before Clustering After No Clustering
Error Miss-rate Error Miss-rate
SNR=5 0.1568(0.0684) 0.0623 0.1258(0.0175) 0.0071 0.1252(0.0002)
SNR=T7 0.1516(0.0640) 0.0521 0.1252(0.0063) 0.0180 0.1245(0.0001)
SNR =10 0.1307(0.0342) 0.0128 0.1237(0.0000) 0.0000 0.1241(0.0000)
A=12
SNR=5 0.2336(0.0770) 0.1601 0.1609(0.0173) 0.0398 0.1659(0.0034)
SNR=T7 0.2186(0.0759) 0.1303 0.1602(0.0080) 0.0413 0.1620(0.0025)
SNR =10 0.1938(0.0660) 0.0758 0.1583(0.0058) 0.0211 0.1592(0.0017)
A=10
SNR=5 0.5419(0.0707) 0.2513 0.7933(0.1005) 0.2796 0.7448(0.0000)
SNR=T7 0.5196(0.0128) 0.2331 0.7678(0.0733) 0.2693 0.7448(0.0000)
SNR =10 0.5078(0.0212) 0.1715 0.4853(0.0084) 0.0430 0.4849(0.0037)

300

Fig. 2. True functions (red) and their estimators: “Clustering before”
(blue), “Clustering after” (green) and “No clustering” (black). Results for
the functions in (4.4) and the kernel g; in (4.2) with A = 3 and SNR = 3.
Top row: h1 (left), ho (right). Bottom row: ha (left), ha (right).

the problem. Moreover, since the functions are spatially
homogeneous, they can be well estimated when the same
set J of nonzero coefficients is used for all four functions.
In the second round, we expanded our study to the set of
spatially inhomogeneous functions

L(z) =1p(x), la(z) =lw(z),
I3(x) =lp(x), lu(z) = |z —0.5]

(4.4)

where lp(z), lw(x) and lp(x) are the blip, wave and
parabolas introduced by Donoho and Johnstone [12]. In this
case, Fourier basis does not allow accurate estimation, hence,
we used the Daubechies 8 wavelet basis as ¢;, j =1,--- ,n,
for which conditions (2.1) and (2.2) hold with v; given in
(4.1) (see, e.g., [1]). Although the second example does not
follow our assumptions, it shows that our conclusions are true
even in the situation when those assumptions are violated. In
particular, we used a different set of nonzero coefficients Jj
forlx, k =1,...,4, for the functions in (4.4). We sampled the
test functions on the equispaced grid on the interval [0, 1] and

scaled them to have norms \/n, obtaining hy = cgl, where
ek = /n/|llkll, k = 1,...,4. Note that, while the functions
in Set 1 (4.3) are simpler and easier to recover, they are less
distinct and harder to cluster since [; is similar to /5 and [3 is
similar to l4. On the other hand, while it is easier to distinguish
between images of functions in Set 2 (4.4), they are more
difficult to estimate. For each of the test functions hy, k =

1,---, K, we evaluated u;, = (Ah), and sampled those func-
tions on the grid of n equispaced points j/n, j =1,--- ,n, on
the interval [0, 1], obtaining vectors hy, and u;, k=1, -+, K.

Furthermore, we generated a clustering function z : M — K
that places M objects into K classes, M/K into each class
at random. We obtained the true matrices F, Q € R"*M with
the columns h,,) and u.(,), m = 1,---, M, respectively.
Finally, we generated data X by adding independent Gaussian
noise with the standard deviation o to every element in Q. We
found o by fixing the Signal-to-Noise Ratio (SNR) and choos-
ing o = std(F)/SN R, where std(F) is the standard deviation
of the matrix F reshaped as a vector. In what follows, we con-
sidered several noise scenarios: SNR = 3, 5 and 7 for ¢g; and
SNR =5, 7, and 10 for go. In our study we treat /' as known
and compare the estimators where clustering was carried out
at pre-processing level (“Clustering before”) to the estimators
where clustering was done post-estimation (“Clustering after”)
and estimators without clustering (“No clustering”).

For the “Clustering before” setting, we applied clustering
directly to the elements of matrix Y. As it follows from
equation (2.21), the matrix Z € M (M, K) which minimizes
the objective function is a solution of the K-means clustering
problem. Subsequently, we found matrix IT; . and, following
equation (2.20), estimated G, by G= WjTYHZK. For the
set of functions (4.3), the set .J was obtained by applying hard
thresholding to the rows of the matrix YYIL, ., while for
the set of functions (4.4), we applied hard hard thresholding
to each of the elements of the matrix YYII, ,.. Finally,

the estimator F of the matrix F, is obtained by applying the
inverse Fourier transform (in the case of the functions in (4.3))
or the inverse wavelet transform (in the case of the functions in
(4.4)) to the columns of matrix G. For the “Clustering after”
setting, we first constructed the “No clustering” estimator G
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TABLE III

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND “NO CLUSTERING” SCENARIOS AVERAGED
OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.4)
WITH THE g1 (z) KERNEL IN (4.2) AND UNIQUE SET OF NONZERO COEFFICIENTS FOR EACH OF THE FUNCTIONS

A=T
Clustering Before Clustering After No Clustering
Error Miss-rate Error Miss-rate
SNR=3 0.1364(0.0055) 0.0000 0.2650(0.0609) 0.0250 0.2810(0.0056)
SNR=5 0.1190(0.0039) 0.0000 0.2187(0.0661) 0.0180 0.2470(0.0030)
SNR=T7 0.1033(0.0058) 0.0000 0.1700(0.0599) 0.0205 0.2004(0.0039)
A=5
SNR=3 0.1480(0.0077) 0.0000 0.2845(0.1095) 0.0731 0.3569(0.0091)
SNR=5 0.1186(0.0053) 0.0000 0.2322(0.1117) 0.0610 0.2719(0.0040)
SNR=7 0.1026(0.0045) 0.0000 0.1632(0.0656) 0.0221 0.2169(0.0042)
A=3
SNR=3 0.1806(0.0110) 0.0000 0.2932(0.1309) 0.1010 0.4831(0.0092)
SNR=5 0.1442(0.0061) 0.0000 0.2326(0.1199) 0.0690 0.3250(0.0053)
SNR=T7 0.1310(0.0047) 0.0000 0.2149(0.1207) 0.0718 0.2542(0.0042)
TABLE IV

ESTIMATION AND CLUSTERING ERRORS FOR THE “CLUSTERING BEFORE”, “CLUSTERING AFTER” AND “NO CLUSTERING” SCENARIOS AVERAGED
OVER 100 SIMULATION RUNS (THE STANDARD DEVIATIONS OF THE MEANS ARE IN PARENTHESES). RESULTS FOR THE SET OF FUNCTIONS (4.4)
WITH THE g2 (z) KERNEL IN (4.2) AND UNIQUE SET OF NONZERO COEFFICIENTS FOR EACH OF THE FUNCTIONS

A=15
Clustering Before Clustering After No Clustering
Error Miss-rate Error Miss-rate
SNR =5 0.3709(0.0000) 0.0000 0.3709(0.0000) 0.0000 0.3714(0.0001)
SNR=T7 0.3708(0.0000) 0.0000 0.3708(0.0000) 0.0000 0.3711(0.0000)
SNR =10 0.3708(0.0000) 0.0000 0.3708(0.0000) 0.0000 0.3710(0.0000)
A=12
SNR=5 0.3768(0.0009) 0.0000 0.3768(0.0009) 0.0000 0.3810(0.0011)
SNR=T7 0.3766(0.0006) 0.0000 0.3780(0.0137) 0.0036 0.3787(0.0006)
SNR =10 0.3765(0.0004) 0.0000 0.3785(0.0202) 0.0035 0.3776(0.0004)
A=10
SNR=5 0.4876(0.0049) 0.0000 0.4933(0.0294) 0.0141 0.4940(0.0050)
SNR=T7 0.4869(0.0035) 0.0000 0.4869(0.0035) 0.0000 0.4903(0.0035)
SNR =10 0.4872(0.0027) 0.0000 0.4872(0.0027) 0.0000 0.4888(0.0027)

of matrix G, by thresholding elements of the columns of the
matrix Y'Y in equation (2.7), and then obtained the estimator
F of matrix F, by applying the inverse Fourier or wavelet
transform to the columns of matrix G. Finally, the “Clustering
after” estimator of F. is obtained by applying the K -means
clustering procedure to the columns of matrix F.

Tables I-IV report simulations results for the three cluster-
ing scenarios above (“Clustering before”, “Clustering after”
and “No clustering”), for each of the sets of test functions in
(4.3) and (4.4) and for each of the two kernels in (4.2) with
various values of A. In the Tables, we display the accuracies
of the three estimators where the precision of an estimator F
is measured by the Frobenius norms of its error

A =A(F) = |F —F|p/VMn. (4.5)

In addition, we report the proportion of erroneously clustered
nodes (“Miss-rate”) for the “Clustering before”and the “Clus-
tering after” estimators.

We ought to point out that the “Clustering before” esti-
mation procedure is much more computationally efficient
since it does not require to recover M unknown functions
separately which is necessary for the “Clustering after” and
“No clustering” procedures.

V. CONCLUSION

In this paper, we investigate theoretically and via a limited
simulation study, the effect of clustering on the accuracy of
recovery in ill-posed linear inverse problems. As we have
stated earlier, in many applications leading to such problems,
clustering is carried out at a pre-processing step and later is
totally forgotten when it comes to error evaluation. Our main
objective has been to evaluate what effect clustering at the pre-
processing step has on the precision of the resulting estimators.

It appears that benefits of pre-clustering depend significantly
on the nature of the inverse problem at hand. If the problem
is moderately ill-posed (kernel g; in (4.2), « = [ = 0),
then, as Corollary 1 shows, the “Clustering Before” estimator
has asymptotically smaller errors than the “No Clustering”
estimator when the number of functions and the sample size
grow. Tables I and II, corresponding to this case, confirm that,
for the finite number of functions and moderate sample size,
the “Clustering before” procedure delivers better precision
than the “Clustering after” and “No clustering” techniques.
Furthermore, the “Clustering before” estimation has profound
computational benefits since one needs to recover & unknown
functions instead of M. Moreover, the advantages of clustering
at pre-processing step become more prominent when the
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problem is less ill-posed (larger \). Indeed, in the case when
the problem is not ill-posed (o« = 8 = v = 0 in (2.13)), as
findings of Klopp et al. [17] show, clustering always improves
estimation precision.

The situation changes drastically if the inverse problem
is severely ill-posed (kernel g in (4.2), « > 0,6 > 0).
Our theoretical results indicate that clustering, in this case,
does not improve the estimation precision as the number
of functions and the sample size grow. These findings are
consistent with the simulation study. In the case of functions
in (4.4), Table IV implies that the precisions of all three
methodology are approximately the same, and the estimation
errors are high even when clustering errors are small or zero.
This is due to the fact that the reduction in the noise level due
to clustering is not sufficient to counteract the ill-posedness
of the problem and, thus, it does not lead to a meaningful
improvement in estimation accuracy. Table III, that reports
on the simulations with functions in (4.3), presents an even
more grim picture. Since functions in the set (4.3) resemble
each other to start with and convolutions with the kernel g
make them to appear even more similar, “Clustering before”
procedure leads to relatively high clustering errors that, in turn,
produce higher estimation errors than the “Clustering after”
and “No clustering” techniques.

In conclusion, clustering at the pre-processing step is ben-
eficial when the problem is moderately ill-posed. It should
be applied with extreme care when the problem is severely
ill-posed.

VI. PROOFS
A. Proof of the Oracle Inequality

Proof of Theorem 1: The proof of the inequality (3.2)
is based on the standard techniques for proofs of oracle
inequalities. We use optimization problem (2.19) to present
the left-hand side as a sum of the error of any estimator plus
the random error term followed by the difference between the
penalty terms. Later on, we upper-bound the random error term
for any number of classes K, any clustering matrix Z and any
set J. After that, we take a union bound over all possible K,
Z and J to obtain an upper bound for the probability that
the error exceeds certain threshold. The novelty of the proof
lies in the fact that we are using a vectorization of the model
which allows us to attain the upper bounds.

Note that it follows from the optimization problem (2.19)
that for any fixed G,Z,J and K one has

IG[% — 2T (Y'Y GII, 1) + Pen(J, K)

<||G||% - 2Tx(Y ' YGIIz k) + Pen(J, K).
Then, adding and subtracting G, we obtain

|G — G.||Z + [|G.|% +2Tr((G — G.)TG.)

—2Tr(Y"YGII, z) + Pen(J, K) <

IG = G.[|F + |G+ |7 + 2Tr((G - G.)"G.)

—2Tr(YT'YGIIz k) + Pen(J, K).

Combine the trace product terms and recall that, due to
equation (2.5), Y = T_lG* + 6E. Hence, the last inequality
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yields

IG = G.||% < |G — G| 3 + 28 THE"Y(G — G)] (6.1)
+ Pen(J, K) — Pen(J, K)

We choose G = W ;G.,IIz ik and, in order to analyze the
cross term Tr[E7Y (G — G)], we use vectorization of the
model. For this purpose, we choose S such that 3 = SS”
and denote

O, 5= M @W;), Mz iy = (Hzx @ W) (62)
g = Vec(CA}), g =vec(G), €= vec(E),

Ir=>1y®Y), n=>OyoS e (6.3)

By definition of the matrix-variate normal distribution (The-
orem 2.3.1 of Gupta and Nagar (2000)) and (2.8), we derive
that

e~N(0,S®1Iy) (6.4)

Then, E(nn?) = L, so that, n ~ N(0,I,,/), where € is
defined in (6.3) and ||S||,, < Cy. Then, equation (2.7) can be
re-written as

Ty=g.+0T (I ®S)n. (6.5)

Observe that by Theorem 1.2.22 of Gupta and Nagar (2000),
one has

g=vec(W;YYII, ) =10, ¢ ;Ty, g=MHzx. g

and TTETY(G — G)] = 0" (Iy @ STY)(I, . ;Ty —
Ilz x.78+). Now (6.1) can be rewritten in a vector form as

I& — 1% < g — g«|I* + A+ Pen(J, K) — Pen(J, K) (6.6)

where
A=2n"1Iy @ STT)(HZRJFY — Iz k8.) (6.7)
=A1+As
with
Ay =26n"(Iy @ STY)(Iy 4 ;(Ty — g.)),
Ay =26n" Iy ® ST‘I‘)(HZ’K‘; — Iz k,7)g«. (6.8)

Derivation of upper bounds for A; and A, is based on the
following lemma.

Lemma 1: Let K,.J be fixed, J be an arbitrary random
subset of {1,...,n} and K be a random integer between
land M. Let Z € M(M,K) and Z € M(M,K) be a
fixed and a random clustering matrix, respectively. Denote the
projection matrices on the column spaces of matrices Z and
Z by, respectively, Ilz - and 1'[27 - Let S be a matrix with
[ISllop < Cy and m ~ N(0,L,as). Then, for any 7 > 0,
there exist sets €1, and s, with P(1,) > 1 — 7 and
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P(Q3,) > 1 — 67 such that

[Tz, @ (W, YS))n||* < 2KC5(>v)) (6.9)
jeJ
2 2 —1 )
+ 3Cw(1}16a}( vi)TIn(67"), Vw € Qs
(Tl x © (W;YS)m||* < 2KCH(Y " vi)
jeJ
+3C2 (maxv? ){Man+|J|ln(ne/|J|) (6.10)
jed
+In(Mn)+7In(6 ")} Vw € Q.
Moreover, if J = {1,..., L} is fixed and J= {1, : ,ﬁ} for
some random integer L > 1, then
L
[Tz, @ (W, YS))n||* <2KC} Y v} (6.11)
j=1
+ SC'i rIn(6 N vi, VYwe Qg
L
(T ® (W;TS))n||*> <2KCF > v? (6.12)
j=1

+3C5 v {Man+1n(Mn)—|—Tln((5 )} Yw € Qar.

In what follows, we carry out only the proof of the upper
bound (3.2) that takes place for a generic set J. The proof of
the upper bound (3.3) can be obtained from the proof below
with minimal modifications.

Note that A; can be re-written as A; = 25207 (Iy ®
STT)(HZ’K ®@ W;)(Iyy ® YS)n. Due to T'y — g, = 6 T'e
and (6.3), we obtain Ay = 26%[|(I; z ® (W;TS))n>.
Therefore, by (6.10), we obtain that for w € Qo,

A <26°CF [2K ) 07 (6.13)
jed
+3(max1?) {Man+|J| In(ne/|J|) + In(Mné~ )}}
jed

In order to construct an upper bound for Ao, consider the
following sets

J=JulJ, J1=JnJ,
Jo=J°NnJ, Jy=J°nJ.

(6.14)

The sets Ji, Jo and Js are non-overlapping and J = J1 U
Jo U J3. Furthermore, consider matrix 7 that includes all
linearly independent columns in matrices Zx and Z 2+ S0 that
Span{Z} = Span{Zg, ZK} Let K be the number of columns
of matrix Z. Then, one has

Uy (1 g =g g1l g =1y &,
WJ:WJ1+WJ3, Wj:W]1+WJ2,
Wj:WJ1+WJ2+WJ3.
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In order to obtain an upper bound for A, defined in (6.8),
note that using notations above, we can rewrite Ay as

Ay =26m" (I @ STY)[(TT 2K @ Wy,)+ (HZ,R @ W)
—(Mz,xk @W,) — (Iz,x @ W, )|g«
=26n" Iy @ STY)[(TL, 4 ® W) +
+ (Mz,x @ W)J[(ITy z @ W, )

+ Mz @Wy,) — (zxk @Wy,) —
=26n"(Iny @ STY)[(T, z ® Wy,)
+ (g g @ Wy, )+ Iz, x @ Wp,)][(T15 Tz k,7)l8+

Using Cauchy inequality and 2ab < 4 a? + b?/4, we obtain

(HZ,R ® WJI)

Iz, x @ W y,)]g«

|Az| < [Ag1|+ Azl (6.15)
|Ag2| = 0.25 |(TL, ¢ &« — Hz,x,8:)|,
|Ag 1| =46%||[(TTy 4z @ Wy,) + (T z @ Wy,

+ (Mz,x @ Wy,)](Iy ® YS)n|°.

Applying Cauchy inequality to the term Ay and using that
Jo C J and J3 C J we rewrite

[A2a] 128 [||(TLy 4 © (W, XS))m|?
Tz, & © (W5, XS)n]? + |(Tzx @ (W, XS))]|?]

The upper bounds for the first and the third term in the
inequality above can be obtained directly from Lemma 1. For
the second term, note that since K < K+ K and Ji1 € J and
Ji C J for any w € Q1 N Qg one has

(Mg 5 © (W, XS)n|* < C5 |2K > w2
jed
+2K Y02 + 3 (max v ){Man (6.16)
EJ
JEJ

+|J] In <|j|> +In(Mn) +71In(6~ )}]

f{ZungZuerKny

jEI Jjed jeJ

due to

Combining (6.16) with equations (6.9) and (6.10), we obtain
for any w € Q1, N Qo

[Ag| <1262C3 [4K Y w2 +4K > 02

jeJ JjeJ
+ 3(maxv; A(rlnn) +6 (maxz/ ) {Man (6.17)
JjeJ jed

+|J]1In <|J|> +In(Mn) + 7In(6~ )}]

Now consider |A | defined in (6.15). Rewrite |As| as
[Ags| = 0.25(Ty 4 jg« — 8+) — (zk,s8« — 84)[|% s0
that

[Az2| < 05[|(I1 ¢ ;8-

—g)l” +0.5](Tz k. s g — 8.) 1.
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Since g = HZ K jI‘y and

(T 4 Ty — gl = (T & (g« +T€) — )|
= [|(T—TIy 4 j)g.l* + 0% T, 4 ; Tel?,
we derive
g — g.l” > 1Ty, 4 58 — gl (6.18)

Taking into account that g = Ilz  sg., so that ||g — g.|* =

|z k. g« — g, we obtain
[A22] < 0.5]|& — g.l|” +0.5]lg — &> (6.19)

By combining upper bounds of A, Ay and Ag o, we derive
from (6.13) and (6.17)— (6.19) that for any w € Q- N Qo
an upper bound for A can be written as

A <0.5]|g — g.|* +0.5g — g-|?

+20°CH Q26K Y w2+ 24K Y 07
JedJ

(6.20)
jed

—|—39(max1/) MK + |J|In ne
jed |J|

+In(Mn) +7In(67")] + 18(1Jn€a}(1/ YrIn(6~ 1)}

Since it follows from (6.3) that |G — G.||% = ||& — g.
we obtain from (6.6) that for any G = Ilz i ;G on the set

Q1 N Qo one has

I

IG = G.|l} < 3]G - G. |} +282C}

18K Y vy

jeJ
1
+ 36(%&}1/ )rIng~t 452K Y w7 (6.21)
JEJ
+ 78(maxy ) |MIn K +|J]In
JjeJ |J|
+1In(Mn) +7In6"]} + 2[Pen(J, K) — Pen(J, K)]

Choose Pen(J, K) in the form (2.23) and note that all terms
containing J and K in (6.21) cancel. Finally we obtained for
any G = W ;G,Ilz i that with probability at least 1 — 267

IG - G.[|F < 3G — G.[|7+

26°CJ < 48K Zl/ +36(meax1/ )7Inn » + 2Pen(J, K)
j€J

which yields (3.2).

B. Proof of the Upper Bounds for the Error

Proof of Theorem 2: Since, when j is growing, coefficients
©®;; are decreasing while the values of v; are increasing
accordlng to (2.13), the optimal set J is of the form J =
{1,-- = L. Then, we find (Z G L K) as a
solution of optimization problem (2.19) with the penalty given
by expression (2.24).

Note that for the true number of classes K, with Ni, k =
1,..., K, elements in each class, G are coefficients of each
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fm and © is the clustered version of those coefficients.
It follows from (2.4) that

R(£,S(r, A), M, K.) < M—lllé -G}

+M12Nkz e

j=n+1

(6.22)

Therefore, application of the upper bound (3.3) with a generic
L,Z=727, K=K,, where Z, and K, are respectively the
true clustering matrix and the true number of classes, yields
MG = Gu|[7 <3M 7 |W,G.TIg, k.
+4 M~ ' Pen(L, K..)

- G.l%
(6.23)

where Pen(L, K) is defined in (2.24). Observe that
-G = II(WJ ~L)G.l%

SIS o

j=L+1

IW,G. Iz, k. (6.24)

where Ny, is the number of functions f,, = hy in the cluster
k,k=1,---, K", and ©,; are the true coefficients of those
functions. Hence, it follows from (2.11) that

Yo e <AL

(6.25)
j=L+1
.
Since Y~ Ny = M, (6.24) and (6.25) yield
k=1
|W,G. Iz, k. — G|} < A> ML™* (6.26)

Moreover, it follows from (2.12) that

M~ Z Ni Z 03, < APn 7 < 87,
j=n+1
so that the last term in (6.22) is smaller than C' R(M, K., J).

Now, consider the second term in (6.23). Due to the
condition (2.13), one obtains

vi < N2LY exp 2aL5 N2 L2 exp (204[16) .

HMh

Denote

Ry = R(K.,0) = K
RQ = RQ(M,K*,(S) =

(6.27)
MInK, +In(671).

Therefore, it follows from (2.23) and (3.2) that, under condi-
tion (3.5),

IG-Gul} _ A . (roa

T S C len {L T+

52 L? exp(2aL?)
M

where R (K, 0) and Ro(M, K., ) are defined in (6.27) and
C depends only on g, A, No, C?p and is independent of M,
L, 6 and K,.

(6.28)

[LRl(K*,é) + RQ(M7 K*vé)]}
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In order to find the minimum of the right hand side of
(6.28), denote

R(L,M,K,,8) = 6> M " exp (2aL?) [L* 'Ry  (6.29)
+L2’YR2} 4 L—Q'r‘
and observe that
M7'G-G,|%2<C min R(L, M, K.,6)  (6.30)

where L, is the value of L minimizing the right hand side
of (6.28). Denote

Liopt = argmin[L 2" + 62 M~ exp (2aL?) LRy,
L

6.31)
La,opt = argmin[L™" + 6> M~ exp (2aL”) L*'Ry].
L

(6.32)

It is easy to see that since the first terms in expressions (6.31)
and (6.32) are decreasing in L while the second terms are
increasing, the values Li ,p; and Lg .y are such that those
terms are equal to each other up to a multiplicative constant.
Then, R(Lopt, M, K., J) = max {L72T Liigt}, and, due to

1,opt>
max(a,b) < a + b for positive a and b, we obtain

R(Lopt, M, K., 0) < Ly 2, + Ly2r,.

(6.33)

Consider two cases.
Case 1: « = § = 0. Direct calculations yield

S o
Ly opt x(M—l(;QRl) TR L2’Oth(M—152 Rz) L
so that, due to (6.27),

Liopt = (M1 62K*)*2w+7§r+1,
Loopt = [2(In K, + M~ 'Iné 1) ==
Then, by (6.33),
R(Lopt, M, K,,8) < (M™' §° K, ) 75577
+[82(In K, + M~ In 1) =5

(6.34)

Now, in order to obtain the expression (3.6), note that if K, >
2, then In K, dominates M~ 'Ind~1. If K, = 1, then (6.34)
can be re-written as

52 2’y+227:r'+1
R(Lopt, M, K,,0) < (—) [14+

M
27
§2\ @& FDE+Y)
M

2r
(52}(* ) Sy f2r+1
X )

(1115_1)23:%]

M
which yields (3.6).

Case 2: a > 0,3 > 0. Minimizing expressions in (6.31) and
(6.32), we obtain

M B
s = { (57|}

i=1,2,
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If K. > 2, then Ry > R;. Taking into account that, under
assumption (3.5), for large M and small §, In (Mé~2In M) =
In (M6~2) and In(Mn) =< In M, we obtain

e )] )

MONTE
- {111(_52 K)} |
Similarly,

. 1 M 5

taan = min [ (o )| o (o )
(=t i
(o)

which, together with (6.30) and (6.33), yield the expression
(3.7). One can easily check that the case of K, = 1 leads to
the same results.

C. Proofs of the Minimax Lower Bounds for the Error

Proof of Theorem 3: Since the estimation error is com-
prised of the error due to non-parametric estimation and to
clustering, we consider two cases here.

Lower bound for the error due to clustering.

Let K > 2 be the fixed number of classes. Consider a subset
Z(M,K) C M(M,K) of the set of all clustering matrices
which contains all matrices that cluster % vectors into each
class. By Lemma 5 in Pensky (2019) with v = 1, obtain that
the cardinality of the set Z(M, K) is

|Z(M, K)| = M! / [(M/EK)]E > exp (MInK/4) (6.35)

Let set J be of the form J = {Lq,..., Lo} where 1 < L1 <
Ly < n and n = [6~2]. Choose ©;; = 0 if j ¢ J. In what
follows, we use the Packing Lemma (Lemma 4 of Pensky
(2019)):

Lemma 2 (The Packing Lemma): Let  Z(M, K) -
M(M,K) be a collection of clustering matrices and
q be a positive constant. Then, there exists a subset
Sm.x(q) C Z(M,K) such that for Z1,Zy € Sm,k(q)
one has ||Z; — Zollg = ||Z1 — Z2]|% > ¢ and
I |Sur ()] > In | Z(M, K)| — gIn(MKe/q)

Apply this lemma with ¢ = dM, 0 < d < 1/4. Then,
by (6.35), derive

In|Syrx (AM) ]| > M [InK — 4 dln(Ke/d)] /4.

Use the following statement:

Lemma 3: If K > 2 and d is such that
d—dlnd < (In2)/9, d<1/9, (6.36)

then In K — 4dIn(Ke/d) > (In K)/9.
It is easy to calculate that, e.g., d = 0.0147 satisfies the
condition (6.36). Then, for d obeying (6.36), one has

M
1D|SA17K(CZM)| Z %th, (637)
HZ1 - ZQHH > dM for any Z,,7Z- € 8}\47K(dM), VAR
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Consider a collection of binary vectors w € {0,1}”l. By
Varshamov-Gilbert bound lemma, there exists a subset VV of
those vectors such that, for any w,w’ € W such that w # w’
one has |[w—w'||g > |J|/8 and In |W| > |J|In(2)/8. Choose
a subset Wg of W such that Wg| = K. This is possible
if K < 2l/I/% which is equivalent to |J| > 8 InK/In2.
Consider a set of vectors w € {0, 1}" obtained by packing w
with zeros for components not in J. Then

Wi ={wi,...,wg € {0,1}": [[willo < |J], (6.38)
[wi —wjllo > |JI/8, i # 3}
Define matrix W with columns wg, & = 1,..., K. Finally,

form the set Gyr x of matrices G of the form
Gux ={GeRVM .G =0WZ"Z € Sy x(dM)}

where d satisfies (6.36) and # > 0 depends on M,0 and K.
Note that, due to (6.37), one has

In|Gri| > (MInK)/36 (6.39)

Let Z1,Zy € Sy, be two clustering matrices. Set G; =
OWZT Gy = OWZTL, so that G, Gy € G, k- Since for
any ¢,7 one has ||w; — wi/||0 = ||w; — wy||?, derive that

2
0w 2, 22)" [}~ 3 30 | (Weam) ;= (Weaom)
m=1 j=1
M
=02 Wy (m) — Waa(m lI? (6.40)
m=1

> #{m: 21 (m) # 2o (m)} 6%]J|/8.
On the other hand, observe that for Z;,Z, € Sy, x one has
#{m :z1 (m) # 22 (m)} =0.5||Zy — Zz||g > dM/2.

Therefore, the last two inequalities yield for any G, Gs €
Oum, i
[G1 —

Gol|% > d6?|J|M/16. (6.41)

Now, it is easy to calculate that for any G, G2 € G i
and the corresponding probability measures Pg, and Pg,
associated with Y = T_lGi +JE, i = 1,2, in (2.5), one has
the following inequality for the Kullback-Leibler divergence
between Pg, and Pg,:

K (PGUPGz) (G2 - Gl) ||% (6.42)

262 02 I
Since G; = OWZ1, Go = OWZ5, we obtain
T (Ge = G) | < 62122 — Za [, X' W7 (6.43)

Note that Sy x(dM) C Z(M,K), so that for any Z €
Sy (dM) one has ZTZ = (M/K)Ig, hence ||Z,, =
VM/K. Then, |Z, — Z,|2, < 4M/K. Also, due to .J =

{L1,...,L2} and condition (2.13), one has
> vt NI L exp (<20 (6.44)
jeJ
Since H 1WHF < Zk 1 Z]GJ j obtaln
20%|J|M
K (PG1 3 PGz) >~ W Ll el exp (—20[Lf) . (645)
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Finally, due to condition (2.11), one needs 2 ZjeJ(j+1)2’“ <
A2, so that we can choose

0% = A%|J| 7ty (6.46)

In order to apply Theorem 2.5 of Tsybakov (2009) with o =
1/9, we need K (Pg,, Pg,) < In|Ga k|/9 which, due to
(6.37), is guaranteed by

6217

— 2a LY
52N;C2 eXp( « )

6.47
<% 48 (6.47)
If inequality (6.47) holds, then application of Theorem 2.5 of
Tsybakov (2009) yields that, with probability at least 0.1, one
has (3.9) where, due to (3.1) and (6.41),

Ruin(M, K., 6) = 6%|J]. (6.48)
Consider Ly = L/2+ 1 and Ly = L, so that
0 < L) R (M, K,,8) = L™, (6.49)

Ifa=00=0, 1then, by (6.49), inequality (6.47) holds if
= (62 InK) %7 . Hence,

27
Ruin(M, K., 0) 2 (6% In K,) 7+ (6.50)

If « > 0, 8 > 0, then inequality (6.47) holds
if L=+ exp(—2aL?) < 6*InK, so that L x

1
[ (e ) |7
_2r
g
Ruyin(M, Ky,n) 2 {ln ((52 1nK*>} .
Lower bound for the error due to estimation.
Let, as before, n = [672] and J = {L1,..., Lo} where 1 <
Ly < Ly < n. Consider a set of binary vectors w € {0, 1}/1€
and set N = |J| K. Complete vectors w with zeros to obtain
vectors w € {0,1}"%. By Varshamov-Gilbert lemma, there
exists a subset B of those vectors such that for any w, w’ € B
such that w # w’ one has ||w — w'||g > N/8 and In |B| >
N 1n(2)/8. Pack vectors w into matrices W € {0,1}"*%,
Denote the set of those matrices by ¥V and observe that

[W1 — Wy||Z > N/8, YW, Wy € W, W; # Wy
In|W| > (N In2)/8. (6.52)

. Therefore,

6.51)

Let Z be the clustering matrix that corresponds to uniform
sequential clustering, M /K vectors per class. Finally, form
the set Gyr,x of matrices G of the form

Guk ={GeR™¥" .G=0WZ", WeWw}

where 6 > 0 depends on M ,§ and K. Then, for any G1, G2 €
Guics Gi # Go, due to ZTZ = (M/K)Ix and (6.52),
obtain

1(G1 = Go)||2 = 0%|(W, —W)ZT |2 = (6.53)
92 5 _ 0?’MN
>
||W1 WQHF_ K

Now, since G; = 0W1Z and Gy = W, Z, using formula
(6.42), derive that
2

0
K(PGlﬂPG2) — 252 CQ H

L (Wa - W) 121122,
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Recalling that HZH = M/K and |[X™" (W2 — W) |%

IN

Zk 1 Z]GJ g and using (6.44), arrive at
M6?
K (Pg,,Pa,) < 557 N2 C2 |J| Ly 2 exp (—ZQLf) )

In order to apply Theorem 2.5 of Tsybakov (2009)with a =
1/9, we need K (Pg,, Pa,) < (1/9)1In|Gn k| which, due to
(6.52), is guaranteed by
*M o, 3 K
ml/l exp (-20&[/1) S %
If inequality (6.54) holds, then application of Theorem 2.5 of
Tsybakov (2009) yields that, with probability at least 0.1, one
has (3.9), where, due to (3.1) and (6.53),

Rmin(M7 K*7 5) Z 92|J|

(6.54)

(6.55)

Now, as before, we consider two choices of L and Lo: L1 =
Ly =Land Ly = L/2+1, Ly = L leading to the values of 2
given by (6.49). Again, we consider the cases of a = 3 =0
and o > 0, # > 0 separately.

Case 1: «=0,6=0,L1=L/2+41,Lo=1L,|J|=L/2.
Since Ly =< Lo = |J| =< L, inequality (6.54) holds if L =
(M~ K) "7 and

2r
Ruin(M, K, 0) 2 (62 M1 K)Z#77+T (6.56)

Case2: a>0,0>0,L1=L,=1L,|J|=1.

Plugging the first expression from (6.49) into (6.54), derive
that L—(27v+2r) exp (—204[/3) < MK, so that [ =

[In (54)]7

. Therefore,

M\ F
Rmin(M; K*,(S) z |:1Il <62—K>:|

Now, in order to obtain the expressions for the lower bounds,
we find the maximum of (6.50) and (6.56) if « = 0, 5 = 0,
and of (6.51) and (6.57) if « > 0, 5 > 0.

(6.57)

D. Proofs of the Comparison of the Risks With
and Without Clustering

Proof of Corollary 1: First observe that expressions (3.12)
are obtained directly from (3.6) and (3.7) by setting M =
K, = 1 since all functions belong to the same Sobolev ball
(2.10). In order to compare the upper bounds (3.6) and (3.7)
obtained with clustering with the upper bound (3.12) derived
without clustering, we consider several cases.

Casel a=0,3=0.

Expressions in (3.13) are obtain by direct evaluation. Note that
the second expression in the case of K, > 2 tends to zero as
M — oo since, due to (3.5), In K, <InM =<1Inds~*'.
Case2 a>0,3>0.

Note that, due to the condition (3.5),

In(62) <In(Mé 2K, ') <InM +1n(62) < In(672),

Also, for K, >2and 6=2 > ¢, due to Inz < /2 for z > 1,
obtain

In (672 In(K; ")) =In
In(62) — 0.5 In(6~2)

which completes the proof.

(673 —Inln K, >
=In(67?),
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E. Proofs of Supplementary Statements

Proof of Lemma 1: Proof of Lemma 1 is based on the
following statement provided in Gendre(2014)
Lemma 4 (Gendre (2014)): Let A € RP*P be a fixed
matrix and € ~ N(0,I,). Then, for any « > 0 one has

]P’{HAGHQ > Tr(ATA) +2,/||A|2,Tr(ATA) 2
+2[| A5z} <e?

(6.58)

Note that, due to 2ab < a2 + b2, probability (6.58) can be
re-written as
P(|Ael® > 2|A|I% + 3[|A[2, z) <e® (6.59)
Consider ||[IIz x ® (W;YS)]n||? with Z, J, K fixed. Note
that, due to HHZJ{HEp = 1, |\S||(2,p < C?, HW]THEP =

manEJ I/jz and HWJT”% = ZjeJ 1/]2, one has
[(Oz,x @ (W;TS))2, < (6.60)
Tz || pHWJT” p”SH <Ci I?ea}(l/?
(M7, ® (W;TS))n|% < (6.61)

Tz |2 W3 S12, < KCE Y07
jedJ

Now applying inequality (6.59) to ||[IIz x ® (W, YS)]n|?
where 17 ~ N(0,I,57), we obtain for any x > 0

P {||(Mz,x @ (W,TS))n|? >
2|(Mz x @ (W,TS))|F +
3|(Mz x ® (W;YS))|? x} <
P {||(Tlz,x ® (W,TS))n[*~

(6.62)

Cw QKZI/ +3xma3<1/j2 >0, <e "

=
Setting = 71In(571) yields (6.9). Inequality (6.11) follows

from (6.9) since v; are growing with j and J = {1,...,L}.
In order to prove inequality (6.10), note that for
(M, K,|J],s) = MInK + |J|In(ne/|J|) + In(Mn) + s

due to 1n( ) <i In(%¢), one has

D e

Z.K,J

—x(M,K,|J|,s) —

n

D >«

1j=1 |J|=j ZEM(M,K)
n

M
>
M
Z Z n) KM o—a(M.K j.s) <
M

£
-

5(M,K,j,s) _ (6.63)

1y
ne J :
Z Z _) KMe—x(J\I,K,],s) < e~%
K=1j=1

J
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Therefore, by (6.62) and (6.63), we obtain
P (1|(Ty, 4 @ (W ;7S)n|*~
2||(IL, z ® (W;T8S)) |5~
3[(My 4 ® (W;YS))[13, 2(M, K, | J|,s) >

> P(||(Tzx @ (W, TS))n|*—
Z.K,J

0) <

C2 2K Y v} +3a(M, K, |J],s) (1}1621}(1/]2) >0 <
jeJ

Z efz(M,K,\J\,s) < e 5.

Z.K,J
Setting s = 7In(6~ 1) yields (6.10).

Similarly, in order to prove (6.12), choose J = {1,..., L},
x(M,K,|J|,s) = MIn K + In(Mn) + s, and replace (6.63)
by

Z e~ t(MK |J|,s) — Z Z Z o—o(MK,L,s)

Z.K,J =1 L=1 ZEM(M,K)

< Z KMefx(M,K,L,s) < e~%
K=1
Proof of Lemma 3: By using (6.36), K > 2and 0 < d <
1/9

In K —4dIn(Ke/d)

= 7

= an—4[dln(K)+d—dlnd]

an——l K>1n—K

4
>InK —4dln K — —1n2 > —
9 9
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