Environmental Impacts of Power Flow Control with Variable-Impedance FACTS

 B^{min}

 c^{FACTS}

Omid Mirzapour

Departemnt of Electrical and Computer Engineering

University of Utah

Salt Lake City, UT, USA

omid.mirzapour@utah.edu

Mostafa Sahraei-Ardakani

Departemnt of Electrical and Computer Engineering

University of Utah

Salt Lake City, UT, USA

mostafa.ardakani@utah.edu

equipped with FACTS

Minimum generation cost

FACTS device investment cost

Minimum susceptance for transmission line

Abstract—Growing environmental concerns as well as the decline in renewable energy project costs have led to drastic changes in the generation mix, and increasing penetration from renewable energy resources. However, the intermittency of renewable energy resources in contrast to legacy design of transmission system remains as one main obstacle against renewable energy integration. Several solutions, including energy storage, demand response and transmission system expansion have been proposed in response to this problem. Flexible ac transmission system (FACTS) devices are also shown as to offer a cost-effective solution for congestion problem in transmission system. This paper studies the environmental impacts of power flow control through FACTS devices as well as the economic benefits. Results show that implementing power flow control can effectively reduce dispatch cost and carbon emissions. However, the location of FACTS devices and renewable energy sites can critically affect carbon emission and renewable energy curtailment.

Index Terms—Carbon emission, flexible ac transmission systems (FACTS), power flow control, renewable energy, solar energy, stochastic optimization, wind energy.

NOMENCLATURE

Indices	
\boldsymbol{b}	Bus
g	Generator
k	Piece-wise linear cost function segment
l	Transmission line
r	Renewable energy resource
s	Scenario
t	Time
Parameters	
ν	Wind speed
$ u_{ci}$	Wind turbine cut-in wind speed
$ u_{co}$	Wind turbine cut-out wind speed
$ u_{rated}$	Wind turbine rated wind speed
π_{st}	Scenario probability at time t
B	Transmission line susceptance
B^{max}	Maximum susceptance for transmission line equipped with FACTS
This research w number 1756006.	vas funded by the National Science Foundation through grant

c_g^n	Minimum generation cost
c_g^{sd}	Generator shut-down cost
c_g^{su}	Generator start-up cost
c_g^{UE}	Energy deployment cost
c_h^{FACTS}	hourly investment cost of FACTS
c_r^{RC}	Renewable energy curtailment cost
c_{gk}^{seg}	Piece-wise linear generation cost
DT_g	Generator minimum down time
G	Total number of generators
I_O	PV array output current
I_{SC}	PV array short circuit current
K	Total number of segments in piece-wise linear cost function
L	Total number of transmission lines
P_{bt}^D	Real power demand at bus b
P^R_{rts}	Renewable energy generation
P^S	Solar power generation
P^W	Wind power generation
P_g^{max}	Generator upper generation limit
P_g^{min}	Generator lower generation limit
P_{rated}	Wind turbine rated power
PL^{max}	Transmission line thermal rating
R	Total number of renewable energy resources
RD_g	Generator per-minute ramp-down rate
RU_g	Generator per-minute ramp-up rate
S	Total number of scenarios
S_{base}	MVA base of the system
S_{FACTS}	FACTS device maximum compensation rating
T	Time horizon
UT_g	Generator minimum up time
V_{OC}	PV array open circuit voltage

0	te	
c	u	

NG_b	Set of generators located at bus b
NL_b^+	Set of transmission lines flowing into bus b
NL_B^-	Set of transmission lines flowing from bus b
NR_b	Set of renewable energy resources located at
	bus b

Variables

$ heta^R$	Voltage angle on receiving bus
$ heta^S$	Voltage angle on sending bus
F	Transmission line flow direction

 P_{gtk}^{seg} Real power generated in the kth segment of

generator

 P_{gts}^{rd} Real power ramp-down P_{gts}^{ru} Real power ramp-up

 P_{gt} Generator real power generation P_{rts}^{RC} renewable energy curtailment PL Real power flow through line u_{gt} Generator up/down status v_{gt} Generator start-up variable w_{gt} Generator shut-down variable x_l^f FACTS allocation variable

I. INTRODUCTION

Global warming has reached alarming levels during recent decades threatening natural life on earth. Greenhouse gases (GHG) espescially carbon dioxide are known to be the main agent leading to global warming [1]. With this concern in mind, several countries have committed to decrease greenhouse generation levels by signing Paris accord [2]. Electricity Sector with 25% share of total carbon dioxide emission is one the primary areas of focus to reduce greenhouse gas generation [3]. In this respect electric utilities have started to replace their conventional fossil fuel plants with renewable energy resources such as wind and solar energy [4]. China, Brazil and the United states with installed capacity of 326 GW, 109 GW and 86 GW respectively, are the fastest growing countries in renewable energy expansion [5]. Despite all the benefits brought by renewable energy resources, they also have introduced new challenges to power grid, mainly due to the intermittent nature of these sources. Transmission system, originally designed to dispatch conventional electricity generated by fossil fuel plants cannot handle extra levels of uncertainty caused by renewable generation in the system. With increased levels of congestion balancing authorities have no choice but curtail renewable generation which, leading to significant economic loss. California Independent System Operator (CAISO) with installed renewable capacity of 7,200 MW as of 2013 and expected growth of 20,000 MW in renewable energy resources by 2020 has experienced large levels of curtailment due to congestion in transmission system. In order to decrease renewable energy curtailment, various approaches have been adopted by system operators. Transmission expansion is the most

obvious solution to increase the capability of transmission system to incorporate renewable energy resources. Electric Reliability Council of Texas (ERCOT) in 2013 carried out transmission expansion leading to curtailment reduction from 17% in 2009 to 1.6% in 2013. However transmission expansion requires high investment cost, which is discouraging and furthermore the installed capacity will not be fully utilized due to the intermittency of renewable generation. Mid-continent Independent System Operator (MISO) adopted Dispatchable Intermittent Resource (DIR) protocol to address the congestion in transmission network, which reduced wind curtailment from 3.7% in 2010 to 0.8% in 2012. PJM Interconnection which experienced 3M\$ lost opportunity cost as a result of renewable energy curtailment during September 2012, decided to modify its curtailment signaling process to increase the efficiency and minimize curtailment. In a similar approach CAISO changed the bidding policy to handle congestion and reduce curtailment [6].

Energy storage has been proposed as method to store renewable energy during peak renewable generation hours and shift it to lower generation hours instead of curtailing renewable generation. Various energy storage technologies including battery storage, pumped storage hydropower and compressed air storage have been introduced in literature to address the congestion problem. However, the high investment cost of energy storage is still a great drawback for this solution [7]–[9]. Demand response through exploitation of flexible loads is an alternative solution proposed in [10]. However this method is limited by availability of flexible loads.

Flexible ac transmission system (FACTS) devices have been widely studied to unlock full capabilities of transmission system [11]. FACTS devices can be used to control several parameters in transmission system including voltage phase and magnitude, shunt susceptance, and line impedance. the power flow in lines can be controlled with variable-impedance FACTS and flow can be re-routed from congested lines to less utilized lines with the main incentive of minimizing renewable energy curtailment. Variable-impedance FACTS includes several technologies including thyristor-controlled series compensators (TCSC) and Smart Wire Grid technology [12]. Variable impedance FACTS setting needs to be optimized alongside generation units commitment plan to achieve the highest capability of transmission system. [13] proposes a stochastic unit commitment model that co-optimizes FACTS impedance and thermal generation to minimize renewable energy curtailment. References [14], [15] investigate frameworks to include series FACTS devices and power flow control in electricity market as an ancillary service. The interdependence between power flow control through FACTS devices and transmission switching is explored in [16].

In many previous research, related to FACTS operation and planning, the impacts on emissions are overlooked. In systems with high share of fossil fuels such as coal and oil, minimizing cost, which is the objective of planning and operation models, does not necessarily translate to lower carbon emissions. Due to higher emission rates of cheap resources, such as coal, the

power flow control will set the FACTS impedance such that these units generate more power, resulting in higher levels of carbon emissions. This paper evaluates environmental impacts of power flow control including renewable energy curtailment and carbon emission through an stochastic co-optimization model for FACTS adjustment and unit commitment. Several factors impacting the power flow control including renewable penetration level, renewable site location and conventional generation mix are studied in this paper. In order to study the power flow control, the co-optimization model is implemented on a modified version of RTS-96 system with added congestion. Results show that although implementing power flow control can effectively reduce generation cost and renewable energy curtailment, in cases that FACTS devices are installed on lines close to cheap high-emission sources, they can increase carbon emissions to reduce generation cost. The rest of this paper is organized as follows. In section II the co-optimization model for power flow control is formulated. Section III introduces the test system followed by the simulation results. Finally, section IV concludes the paper.

II. MODEL FORMULATION

Thyristor-controlled FACTS can be effectively used to control line impedance and reduce loss in transmission network. TCSC can operate in both inductive and capacitive modes, with the inductive mode being more common. References [17], [18] have proposed linear models for FACTS devices that can be integrated into optimization model. The DC power flow model for a line is formulated as follows with PL as the real power flow through the line and B as the susceptance of the line changing within the desired range with FACTS installed where θ^S and θ^R indicate the sending and receiving bus voltage angles respectively.

$$PL = B(\theta^S - \theta^R) \tag{1}$$

However, this constraint is non-linear as B is a variable that can be controlled through FACTS setting. Therefore this constraint can be rewritten by two conditional constraints as follows:

if
$$\theta^S - \theta^R > 0$$
:

$$B^{min}(\theta^S - \theta^R) < PL < B^{max}(\theta^S - \theta^R) \tag{2}$$

if $\theta^S - \theta^R < 0$:

$$B^{max}(\theta^S - \theta^R) \le PL \le B^{min}(\theta^S - \theta^R) \tag{3}$$

By adding a binary variable F the two constraints can be written into a single constraint. The value for F can be obtained from presolving the deterministic model. If the line flow is in the same direction as the imaginary flow from sending bus to the receiving bus F takes the value '1'; otherwise, it will be '0'. Therefore, the power flow constraints in the lines eqipped with FACTS can be formulated as follows:

$$B^{min}F(\theta^S - \theta^R) + B^{max}(1 - F)(\theta^S - \theta^R) \le PL \quad (4)$$

$$B^{max}F(\theta^S - \theta^R) + B^{min}(1 - F)(\theta^S - \theta^R) \ge PL \quad (5)$$

In order to evaluate the economic viability of FACTS devices the investment cost should be included in the model. Therefore, the thyristor-controlled FACTS investment cost is modeled and transformed to hourly figure as follows [19]:

$$c^{FACTS} = 0.0015S_{FACTS}^2 - 0.713S_{FACTS} + 153.75$$
 (6)

The investment cost can be converted to hourly figure using the discount rate and the lifespan of the device as follows:

$$c_h^{FACTS} = \frac{r(1+r)^n}{(1+r)^n - 1} * \frac{c^{FACTS}}{8760}$$
 (7)

Renewable generation changes within continuous ranges which requires stochastic optimization models to include the uncertainty. Using continuous probability distribution is impractical for large-scale optimization models. Therefore, a few representative scenarios are considered for stochastic optimization. The stochastic co-optimization model with these scenarios can be formulated as follows:

$$\min \sum_{g=1}^{G} \sum_{t=1}^{T} c_{g}^{nl} u_{gt} + c_{g}^{su} v_{gt} + c_{g}^{sd} w_{gt} + \sum_{g=1}^{G} \sum_{t=1}^{T} \sum_{k=1}^{K} c_{gk}^{seg} P_{gtk}^{seg}$$

$$+ \sum_{g=1}^{G} \sum_{t=1}^{T} \sum_{s=1}^{S} \pi_{st} c_{g}^{UE} (P_{gts}^{ru} + P_{gts}^{rd})$$

$$+ \sum_{r=1}^{R} \sum_{t=1}^{T} \sum_{s=1}^{S} \pi_{st} c_{r}^{RC} P_{rts}^{RC} + T \sum_{l=1}^{L} x_{l}^{f} c_{h}^{FACTS}$$

$$(8)$$

subject to:

$$P_{gt} = \sum_{k=1}^{K} P_{gtk}^{seg} \qquad \forall g, t \tag{9}$$

$$P_{gt} + P_{qts}^{ru} - P_{qts}^{rd} \le P_q^{max} u_{gt} \qquad \forall g, t, s$$
 (10)

$$P_{gt} + P_{gts}^{ru} - P_{gts}^{rd} \geq P_g^{min} u_{gt} \hspace{1cm} \forall g,t,s \hspace{1cm} (11)$$

$$v_{gt} - w_{gt} = u_{gt} - u_{gt-1} \qquad \forall g, t \tag{12}$$

$$v_{gt} + w_{gt} \le 1 \qquad \forall g, t \tag{13}$$

$$\sum_{\tau=t-UT_g-1}^t v_{g\tau} \le u_{gt} \qquad \forall g, t$$
 (14)

$$\sum_{\tau=t-DT_g-1}^t w_{g\tau} \le 1 - u_{gt} \qquad \forall g, t$$
 (15)

$$P_{gt} - P_{gt-1} \le 60RU_g u_{gt-1} + 10RU v_{gt} \ \forall g, t \ge 2$$
 (16)

$$P_{gt-1} - P_{gt} \leq 60RD_gu_{gt} + 10RD_gw_{gt} \ \forall g,t \geq 2 \eqno(17)$$

$$0 \le P_{ats}^{ru} \le 10RU_g \qquad \qquad \forall g, t, s \tag{18}$$

$$0 \le P_{gts}^{rd} \le 10RD_g \qquad \qquad \forall g, t, s \tag{19}$$

$$-PL^{max} \le PL_{lts} \le PL^{max} \qquad \forall l, t, s \qquad (20)$$

$$\sum_{l=1}^{L} x_l^f \le N_{FACTS} \tag{21}$$

$$x_{l}^{f}(F_{l}B_{l}^{min} + (1 - F_{l})B_{l}^{max})(\theta_{lts}^{S} - \theta_{lts}^{R}) + ((1 - x_{l}^{f})B_{l}(\theta_{lts}^{S} - \theta_{lts}^{R}) \leq PL_{lts} \ \forall l, t, s$$
(22)

$$x_{l}^{f}(F_{l}B_{l}^{max} + (1 - F_{l})B_{l}^{min})(\theta_{lts}^{S} - \theta_{lts}^{R}) + ((1 - x_{l}^{f})B_{l}(\theta_{lts}^{S} - \theta_{lts}^{R}) \ge PL_{lts} \ \forall l, t, s$$
 (23)

$$\sum_{g \in NG_{b}} (P_{gt} + P_{gts}^{ru} - P_{gts}^{rd}) + \sum_{r \in NR_{b}} (P_{rts}^{R} - P_{rts}^{RC}) + \sum_{l \in NL_{b}^{+}} PL_{lts} - \sum_{l \in NL_{b}^{-}} PL_{lts} = P_{bt}^{D} \quad \forall b, t, s$$
(24)

The model above seeks to minimize dispatchable generation cost and renewable curtailment opportunity cost (8) with respect to generator constraints including minimum and maximum generation (10)-(11), generator minimimum up and down time (14)-(15) and ramping constraints (16)-(19) as well as line dc power flow and maximum capacity constrains (20)-(23). In this model, if x_l^f is introduced as a variable for optimal FACTS allocation the problem would be a mixed-integer nonlinear programming (MINLP), which needs to be linearized for large-scale networks. In this study since FACTS are already installed in one of candidate line for evaluation, x_l^f is simply treated as a parameter and the model is mixed-integer linear programming.

III. SIMULATION STUDIES

The simulations are carried out on modified single-area RTS-96 with 24 buses [20]. In order to create congestion in transmission system, capacity of lines A21-1 and A25-2 is reduced to 175 MW and ratings of A21 and A22 reduced to 220 MW. Furthermore, 480 MW of load is shifted from buses 14, 15, 19 and 20 to bus 13; then, load on each bus is increased by 5%. Three pairs of candidate buses are considered as prospective sites for renewable energy resources. Buses 4,5 represent renewable sites close to demand, buses 17,18 indicate sites close to low-cost generation units and finally buses 3,24 are typical buses in transmission system. Three candidate lines are considered for FACTS installation. Lines A21 and A25-1 are taken as highly utilized lines and A26 as large capacity line that can be used as an alternate route for power flow. For renewable energy integration, two 400 MW wind units and two 175 MW solar units are considered with scenarios based on historical data from National Renewable Energy Laboratory (NREL) [21] [22]. The maximum adjustment range of -80% to 40% is considered for thyristorcontrolled FACTS in this study. RTS-96 generation mix is shown in figure 1. Coal-fueled units comprise the largest share

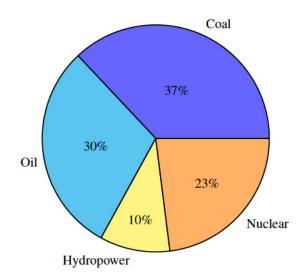


Fig. 1. RTS-96 Generation Mix

TABLE I Average Carbon Emission and Generation Cost for Plant Types

	Emission Rate (lb/MWh)	Generation Cost (\$/MWh)
Coal-fired	2027.09	21.52
Oil-fired	1670.99	120.86
Gas-fired	1168.86	14.45
Nuclear	0	2.27
Hydropower	0	0

of generation mix for RTS-96. Coal can be in several forms with different carbon emission level and energy density. lignite is the most abundant form of coal with lowest level of stored energy. Subbituminous and bituminous also known as soft coal have higher stored energy compared to lignite. Finally anthracite, the most infrequent type of coal has highest level of stored energy. Heavy oil is the second type of energy source in RTS-96 generation mix and has similar levels of greenhouse gas emission to coal-fired generators [23]. Nuclear energy resources do not produce any carbon emission; however, the nuclear waste produced by these generation units is may be an environmental concern too. Finally, hydropower units can be regarded as dispatchable renewable units with zero carbon emission and generation cost. The emission rate and generation cost for each plant type is shown in Table I.

In the first section of simulation studies the impact of power flow control implementation on total dispatch cost and carbon emissions is studied. In this respect, different number of lines in modified RTS-96 system are equipped with FACTS devices in each simulation and the results are indicated in table II. As the results show, installing FACTS devices would reduce generation cost by providing the flexibility in transmission system to use the capacity of cheaper energy resources. However, installing FACTS on line 21 increases the carbon emission although it improves dispatch cost. This

TABLE II
SIMULATION RESULTS FOR RTS-96 WITHOUT RENEWABLE ENERGY
RESOURCES

Number FACTS	of	FACTS Location (Line)	Total Generation Cost(M\$)	Carbon Emission (Mlb)
0		N/A	1.981	66.291
1		21	1.712	67.221
2		25,26	1.885	63.643
3		21,25,26	1.645	64.420

is mainly due to the fact that line 21 is in the proximity of coal-fired units which are characterized by higher emission rates and lower generation cost. Therefore, the optimization model increases the coal units generation which consequently results in higher emission.

In the next section of studies, the impact of power flow control on renewable energy resources is studied. 24 simulations are carried out, placing solar and wind units on different candidate buses and FACTS devices on candidate lines and the results include generation cost, renewable energy curtailment and carbon emissions are indicated in Tables III,IV. Results show that installing renewable energy resources can effectively reduce generation cost and carbon emission by replacing costly and polluting fossil-fueled units. Cost savings and emission reductions are more significant for wind integration case, since wind is less intermittent compared to solar energy, which is unavailable for almost half of the day. Installing FACTS would decrease generation cost and emission except for the case that FACTS are installed close to cheap high emission units. Renewable energy curtailment is increased in some cases, mainly because configuring the transmission system to use other low-cost energy sources would bring more cost saving. The location of renewable energy resources is a determining factor in this regard. Renewable energy curtailment is highest when renewable energy sites are located at buses 17 and 18 mainly due the fact that these buses are close to other low-cost units which bring higher levels of congestion in the neighboring area and results in more renewable energy curtailment. Note that we do not include the investment cost for renewable generation in our analysis. We assume that renewable plants are already planned for compare the operation cost only. The FACTS investment cost is converted to an hourly figure and included in the analysis to reveal the benefits of installing FACTS, if any.

Finally, the impact of variable-impedance FACTS is evaluated for different levels of renewable energy resources. 24 simulations are carried out for penetration levels from 0% to 65% and the cost savings, emission reduction and renewable energy curtailment for each case is indicated in Figs. 2, 3 and 4 respectively. Renewable energy integration can bring about cost saving up to 34%, which can be further increased to 46% by implementing power flow control. It should be noticed that installing FACTS on line 21 saves more cost although

TABLE III
SIMULATION RESULTS FOR RTS-96 WITH WIND INTEGRATION

Wind Farm Location (Bus)	Number of FACTS	FACTS Location (Line)	Total Gen- eration Cost(M\$)	Carbon Emission (Mlb)	Wind Curtail- ment (MWh)
	0	N/A	1.604	54.831	1458.83
3,24	1	21	1.388	55.822	1559.59
3,24	2	25,26	1.526	52.213	1515.28
	3	21,25,26	1.332	53.180	1664.19
4,5	0	N/A	1.522	54.448	454.63
	1	21	1.318	55.038	363.65
	2	25,26	1.440	51.649	452.53
	3	21,25,26	1.255	52.382	399.89
17,18	0	N/A	1.879	63.263	600.49
	1	21	1.629	64.248	619.67
	2	25,26	1.791	60.505	452.96
	3	21,25,26	1.556	61.193	452.96

TABLE IV Simulation Results for RTS-96 With Solar Integration

Wind Farm Location (Bus)	Number of FACTS	FACTS Location (Line)	Total Gen- eration Cost(M\$)	Carbon Emission (Mlb)	Wind Curtail- ment (MWh)
	0	N/A	1.783	62.307	0
3,24	1	21	1.534	63.075	35.62
3,24	2	25,26	1.695	59.438	0.85
	3	21,25,26	1.471	60.346	62.23
4,5	0	N/A	1.744	63.214	0
	1	21	1.502	63.702	0
	2	25,26	1.653	60.322	0
	3	21,25,26	1.431	61.162	0
17,18	0	N/A	1.933	65.245	0
	1	21	1.675	66.044	0
	2	25,26	1.840	62.303	0
	3	21,25,26	1.600	63.165	0

it increases emission due to proximity to cheap coal-fired units. Emission is reduced up to 32% at the highest renewable penetration level with FACTS devices providing extra flexibility in transmission system. However, FACTS devices do not necessarily reduce renewable energy curtailment owing to the fact that spillage is highly affected by renewable site location.

IV. CONCLUSIONS

This paper investigated the environmental impacts of power flow control as well as economic benefits of flexibility in transmission system through implementing FACTS co-optimization model on RTS-96 system. FACTS devices can effectively reduce generation cost by unlocking transmission system capability to utilize low-cost generating units. However carbon emissions increase when FACTS devices are installed close to high-emission generation such as coal-fired units. Renewable energy integration is facilitated by implementing power flow control. However, the renewable energy spillage is highly dependent upon renewable site location and proximity of

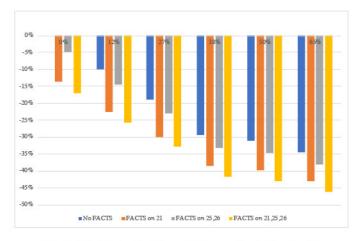


Fig. 2. Cost Saving for Renewable Energy Penetration Levels

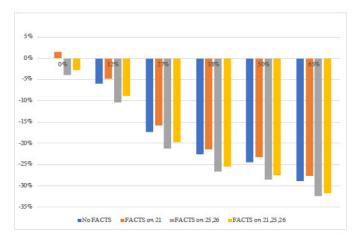


Fig. 3. Emission Reduction for Renewable Energy Penetration Levels

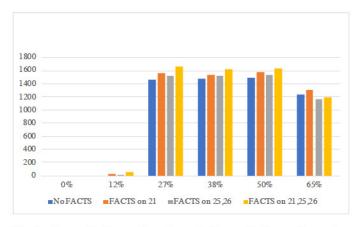


Fig. 4. Renewable Energy Curtailment for Renewable Energy Penetration Levels

FACTS. The generation mix and other types of fossil fuel share in real-life cases is another significant factor in FACTS effectiveness in carbon emission reduction, which will be addressed in our future work.

REFERENCES

- (2017) Climate change indicators: Greenhouse gases. [Online].
 Available: https://www.epa.gov/climate-indicators/greenhouse-gases
- [2] P. Agreement, "Paris agreement," in Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived December, vol. 4, 2015, p. 2017.
- [3] (2018) Greenhouse gas (ghg) emissions. [Online]. Available: https://www.epa.gov/ghgemissions
- [4] (2018) Renewable and alternative fuels. [Online]. Available: https://www.eia.gov/renewable/
- [5] (2019) Renewables 2019. [Online]. Available: https://www.iea.org/reports/renewables-2019
- [6] J. C. Lori Bird and X. Wang. (2014) Wind and solar energy curtailment: Experience and practices in the united states. [Online]. Available: https://www.nrel.gov/docs/fy14osti/60983.pdf
- [7] J. P. Barton and D. G. Infield, "Energy storage and its use with intermittent renewable energy," *IEEE transactions on energy conversion*, vol. 19, no. 2, pp. 441–448, 2004.
- [8] N.-K. C. Nair and N. Garimella, "Battery energy storage systems: Assessment for small-scale renewable energy integration," *Energy and Buildings*, vol. 42, no. 11, pp. 2124–2130, 2010.
- [9] M. A. Hozouri, A. Abbaspour, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "On the use of pumped storage for wind energy maximization in transmission-constrained power systems," *IEEE Transactions on Power Systems*, vol. 30, no. 2, pp. 1017–1025, 2014.
- [10] H. Wu, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, "Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources," *IEEE Transactions on Power Systems*, vol. 30, no. 6, pp. 2955–2964, 2014.
- [11] M. Sahraei-Ardakani and K. W. Hedman, "Day-ahead corrective adjustment of facts reactance: A linear programming approach," *IEEE Transactions on Power Systems*, vol. 31, no. 4, pp. 2867–2875, 2015.
- [12] C. Fuerte-Esquivel, E. Acha, and H. Ambriz-Perez, "A thyristor controlled series compensator model for the power flow solution of practical power networks," *IEEE transactions on power systems*, vol. 15, no. 1, pp. 58–64, 2000.
- [13] Y. Sang, M. Sahraei-Ardakani, and M. Parvania, "Stochastic transmission impedance control for enhanced wind energy integration," *IEEE Transactions on Sustainable Energy*, vol. 9, no. 3, pp. 1108–1117, 2017.
- [14] M. Sahraei-Ardakani, "Merchant power flow controllers," Energy Economics, vol. 74, pp. 878–885, 2018.
- [15] M. Sahraei-Ardakani and S. A. Blumsack, "Transfer capability improvement through market-based operation of series facts devices," *IEEE Transactions on Power Systems*, vol. 31, no. 5, pp. 3702–3714, 2015.
- [16] Y. Sang and M. Sahraei-Ardakani, "The interdependence between transmission switching and variable-impedance series facts devices," *IEEE Transactions on Power Systems*, vol. 33, no. 3, pp. 2792–2803, 2017.
- [17] M. Sahraei-Ardakani and K. W. Hedman, "Computationally efficient adjustment of facts set points in dc optimal power flow with shift factor structure," *IEEE Transactions on Power Systems*, vol. 32, no. 3, pp. 1733–1740, 2016.
- [18] —, "A fast lp approach for enhanced utilization of variable impedance based facts devices," *IEEE Transactions on Power Systems*, vol. 31, no. 3, pp. 2204–2213, 2015.
- [19] F. B. Alhasawi and J. V. Milanovic, "Techno-economic contribution of facts devices to the operation of power systems with high level of wind power integration," *IEEE Transactions on Power Systems*, vol. 27, no. 3, pp. 1414–1421, 2012.
- [20] (2007) Power systems test case archive. [Online]. Available: https://labs.ece.uw.edu/pstca/rts/pg-tcarts.htm
- [21] (2019) Wind data and tools. [Online]. Available: https://www.nrel.gov/wind/data-tools.html
- [22] (2019) Solar integration national dataset toolkit. [Online]. Available: https://www.nrel.gov/grid/sind-toolkit.html
- [23] (2020) Coal current issues trends. [Online]. Available: https://www.eia.gov/coal