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In this paper, a multiscale and monolithic arbitrary Lagrangian–Eulerian finite element 
method (ALE-FEM) is developed for a multiscale hemodynamic fluid-structure interaction 
(FSI) problem involving an aortic aneurysm growth to quantitatively predict the long-
term aneurysm risk in the cardiovascular environment, where the blood fluid profile, 
the hyperelastic arterial wall, and the aneurysm pathophysiology are integrated into one 
hemodynamic FSI model, together with no-slip interface conditions between the blood 
fluid and the arterial wall. Additionally, two different time scales are involved: a fast 
time scale for the blood fluid-arterial wall interaction process in terms of seconds, and 
a slow time scale for the biological (abdominal aortic aneurysms (AAA) progression) 
process in terms of years. Two types of multiscale methods, the heterogeneous multiscale 
method (HMM) and the seamless multiscale method (SMM), are employed to tackle 
different time scales while the arbitrary Lagrangian–Eulerian (ALE) method is adopted to 
generate the moving blood fluid meshes that adapt to the deformation of the hyperelastic 
arterial wall all the time, based on which the variable time-stepping/mixed finite element 
method (FEM) is defined in the ALE frame to discretize the developed hemodynamic 
FSI model involving aneurysms. A two-dimensional schematic blood fluid-artery-aneurysm 
interaction example and a three-dimensional realistic cardiovascular FSI problem with an 
aortic aneurysm growth based upon the patients’ CT scan data are simulated to validate 
the accuracy and the efficiency of our developed HMM(SMM)/ALE-FEM, and a medically 
reasonable long-term prediction is obtained for the aneurysm growth as well.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Abdominal aortic aneurysms (AAA) affect more than 10 million people and become one of the leading causes of death 
in the US [1], also cause over 175,000 deaths worldwide [2]. In clinical practice, it is important not only to treat AAA 
itself but also to tailor treatment to each AAA patient’s disease-specific variation. This approach of treatment, known as 
personalized/precision medicine [3–5], is based on current understandings of the fundamental mechanisms underlying AAA 
and involves a combination of genomic, network-dynamic, and environmental factors. In order to study the multifactorial 
pathophysiology of AAA in the cardiovascular environment, proper integrative approaches have been introduced to capture 
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the interplay of its biological mechanisms and homeostatic networks. Computational modeling techniques, such as com-
putational fluid dynamics, and more sophisticatedly, fluid-structure interactions (FSI), is one such approach that has been 
successfully implemented in the study of cardiovascular diseases (CVDs) and has provided many insightful suggestions for 
clinical practices [6–21]. However, most extant modeling techniques in AAA research focus on the short-term effects of 
blood fluid acting on aneurysms, without considering AAA long-term progression. This lack is due not just to the fact that 
AAA progression is unclear in the long term, but also to the computational challenges arising from the multiscale and multi-
physics features of the blood fluid-artery interaction modeling that comprises AAA growth, where two different time scales 
are involved: a fast time scale for the blood fluid profile in terms of seconds, and a slow time scale for AAA growth in 
terms of years, in addition, the moving interface between the blood fluid and the artery is produced to account for the de-
formable arterial wall that interacts with the blood fluid impact all the time. Therefore, two long-standing, grand challenges 
are facing AAA mathematical modeling research communities: 1) modeling challenges of incorporating the pathophysiol-
ogy of AAA into mathematical models of such hemodynamic FSI problem, and 2) computational challenges of developing 
accurate, efficient, and robust numerical methods to simulate such a strongly nonlinear and multiscale FSI problem. The 
lack of solutions to these grand challenges limits capabilities of mathematical modeling and numerical simulations in AAA 
precision medicine, including the use of pathogenesis data such as genomics, transcriptomics, and imaging. Hence there 
is a critical need to develop an innovative, robust, and efficient mathematical/numerical modeling approach for capturing 
long-term AAA progression as well as personalizing treatment for AAA patients.

In this paper, we propose a comprehensive FSI model to describe the dynamic multiphysics system of incompressible 
blood fluid, the incompressible and hyperelastic arterial wall, and AAA pathophysiology, among which no-slip interactions 
occurring through the moving interface and different time scales are involved. In principle, to model the blood fluid, we 
consider the Navier–Stokes equations under the assumptions of incompressibility and Newtonian rheology, which is de-
fined in Eulerian description. The dynamic structure equation of the incompressible and hyperelastic arterial wall, which 
is conventionally described in Lagrangian description, can be generally defined by the constitutive relation of various hy-
perelastic materials, and, the blood fluid and the arterial wall exist in separate domains that are coupled along a shared 
moving interface and interact with each other. In addition, in such a set of governing equations of FSI problem, the time and 
space dependence of the primary unknowns and of the moving interfaces play a significant role in the dynamic interaction 
between the fluid and the structure, where we assume the no-slip interface conditions hold across the interface.

Regarding the numerical methodology to be studied in this paper, we develop multiscale and monolithic arbitrary 
Lagrangian–Eulerian (ALE) finite element methods (FEM) to tackle the proposed multiscale FSI model with AAA progression. 
In the first place, we prefer the monolithic approach [22], in view of its unconditional stability and the immunity of any 
systematic error in the implementation of interface conditions for any kind of FSI problem. Moreover, a high-performance 
preconditioning linear algebraic solver can also be developed and parallelized for the monolithic system without doing an 
alternating iteration by subdomains [23]. In contrast, the partitioned approach [24], which decouples the FSI system and 
iteratively solves the fluid and the structure equations via an iteration-by-subdomain approach, is conditionally stable and 
conditionally convergent under a particular range of the physical parameters of FSI model. For instance, if both fluid and 
structural densities are of the same order, then the so-called added-mass effect [25] will be specifically induced by the par-
titioned approach, resulting in an unstable and/or nonconvergent iteration. Unfortunately, the hemodynamic FSI problems 
are within the particular range of the added-mass effect, making the partitioned approach very difficult to converge. Hence, 
the monolithic approach is the primarily reliable method to be studied in this paper.

On the top of the monolithic approach, we adopt the ALE finite element method to discretize the presented FSI problem. 
As a type of body-fitted mesh method, ALE techniques [22,26–31] have become the most accurate and also the most popular 
approach for solving FSI problems and other general moving boundary/interface problems within the frame of mixed finite 
element approximation [32–38], where the mesh on the interface is accommodated to be shared by both the fluid and the 
structure, and thus to automatically satisfy the interface conditions across the interface. On the other hand, considering that 
the microscopic process of the presented hemodynamic FSI is in equilibrium with the unchanged local macroscopic process 
of AAA progression, we employ the heterogeneous multiscale method (HMM) [39] to handle the multiscale challenge by 
combining our fully discrete ALE-FEM with a specific variable time-stepping approach. In addition, another type of multiscale 
method, the seamless multiscale method (SMM) [40], is also studied and applied to the developed fully discrete ALE-FEM 
based on the fact that the FSI process can quickly relax to a (quasi) steady state on the microscopic time scale, in contrast 
to the much slower macroscopic time scale of the biological process. Thus in this paper, for the first time, we develop two 
types of multiscale, monolithic ALE finite element methods to simulate the proposed multiscale hemodynamic FSI model 
involving the aneurysm growth.

In addition, the hemodynamic FSI model to be proposed in this paper, which describes the incompressible arterial wall 
involving aneurysms as one kind of hyperelastic structure influenced by a biological process, can serve as a powerful tool 
to provide a basic description for the complex biological system presented in AAA, and, the developed numerical method-
ology can be applied to the clinical patients’ CT scan data to finally produce a long-term prediction of AAA growth, as 
shown in Section 5, where a series of numerical simulations in both 2D and 3D cases are carried out to validate the pre-
sented model and the developed numerical methods. Besides that, the rest structures of the paper are given below. We 
introduce mathematical models of the proposed hemodynamic FSI problem involving aneurysms in Section 2, then define 
its weak form in the ALE frame in Section 3, following the introduction of ALE mapping. Mixed finite element spaces and 
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the HMM(SMM)/ALE-FEM for the presented FSI problem are defined in Section 4, followed by numerical experiments in 
Section 5 and a conclusion in Section 6.

2. Model description

We consider the FSI problem between the arterial wall, which mainly consists of the smooth muscle cells (SMCs), and 
the blood fluid flow. The blood fluid pressure impacts on the inner surface of the arterial wall to make it deform, while 
a part of the arterial wall may dramatically change its shape to get the aneurysm formed, gradually, due to the loss of 
elasticity therein. More specifically, we use �t

f = � f (t) ⊂ Rd (d = 2, 3) and �s(t) ⊂ Rd to denote the current domain of 
the blood fluid and the arterial wall, respectively. Boundaries of these two domains are then denoted by � f (t) and �s(t), 
respectively. We also denote the interface between the blood fluid and the arterial wall by �t

I = �I (t) = � f (t) ∩ �s(t). Note 
that the SMCs grow inside the arterial wall so that �s(t) is also the domain holding the SMCs there. In order to distinguish 
domains, boundaries and physical variables/parameters in the reference (Lagrangian) description from those in the current 
(Eulerian) description, we introduce the notation “̂”, such as �̂ f = � f (0), �̂s = �s(0), �̂ f = � f (0), �̂s = �s(0) and �̂I =
�I (0). Corresponding to any point x̂ ∈ �̂ = �̂ f ∪ �̂s , the current position at time t is denoted by x(x̂, t) ∈ � = � f ∪ �s . 
Then, the structure displacement and velocity are defined in the reference domain, as: û(x̂, t) = x− x̂ and v̂(x̂, t) = ∂t û(x̂, t), 
respectively, where and in what follows we denote ∂φ

∂t by ∂tφ. Since the relation x(x̂, t) = x̂ + û(x̂, t), the velocity in the 
current domain with Eulerian coordinates is defined as: v(x(x̂, t), t) = ∂tx = ∂t û(x̂, t) = v̂(x̂, t). For the simplicity of notation, 
we use ∇ and ∇̂ to respectively denote ∇x and ∇x̂ , which are the gradients with respect to x and x̂, respectively.

2.1. Blood fluid motion

The blood fluid flow is described by the following incompressible Navier-Stokes equations in terms of the velocity v f

and the pressure p f :

ρ f (∂t v f + v f · ∇v f ) − ∇ · σ f = f f in �t
f × (0, T ], (1)

∇ · v f = 0 in �t
f × (0, T ], (2)

where ρ f is the density of the blood, f f is the body force, and σ f is the stress rate tensor defined as

σ f = −p f I + 2ν f ρ f D(v f ), (3)

here ν f denotes the kinematic viscosity in contrast to the dynamic viscosity μ f = ν f ρ f , and D(v f ) = 1
2 (∇v f + (∇v f )

T) is 
the strain rate tensor.

2.2. Hyperelastic structure motion of the arterial wall

Biological tissues are usually modeled as incompressible. In fact, they undergo very small volume changes under large 
hydrostatic pressure. Experiments show that during traction, the interstitial water (water is a large component of soft tis-
sues) is squeezed out by collagenous membranes, but then it is reabsorbed when the load is removed. So it stays local and is 
not removed. In addition, the water is not carrying any traction load, so it is not really part of the mechanical tissue volume. 
For these reasons, soft biological tissues can be modeled as incompressible. Therefore, the hypothesis of incompressible hy-
perelastic material is very important in applications [41]. In particular, the arterial wall can be classified mechanically as a 
solid-fluid mixture [42]: the solid part consists of elastin, collagen, and SMCs [43] while the stress-induced movement of 
the fluid in and out of the arterial wall can be neglected [42]. Hence, the arterial wall is considered as a homogenized solid, 
which is sufficiently accurate for most experimental and theoretical studies of the stress distribution in the arterial wall. Un-
der these conditions, arteries behave as incompressible solids at physiological loads [44,45]. In our hemodynamic FSI model, 
the arterial wall is modeled by a hyperelastic equation in terms of the displacement ûs . Specifically, it is incompressible, 
homogeneous, and isotropic with an energy density function W defined as [46–48]

W = β1(I B − 3) + β2(I B − 3)2,

where β1 and β2 denote the elastic parameters, I B = tr(B) is the first invariant of the left Cauchy-Green tensor B = F F T, 
and F = ∇x̂x = I + ∇x̂ûs denotes the deformation gradient tensor, J = det(F ). In order to satisfy the incompressibility 
condition, the constraint J = 1 with the Lagrangian multiplier p̂s , which can be identified as the hydrostatic pressure, is 
added to the energy density function [41, Eq. (5.85)], leading to

W̃ = W − p̂s( J − 1) = β1(I B − 3) + β2(I B − 3)2 − p̂s( J − 1).

Then the first Piola stress, P , is described as
3
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P = ∂W̃

∂ F
= −p̂s J F

−T + 2
∂W

∂ I B
F = −p̂s J F

−T + 2(β1 + 2β2(I B − 3))F , (4)

where we use the identity ∂ J
∂ F = J F−T [41, Eq. (5.87)]. The corresponding Cauchy stress tensor, σ̂ s , is thus defined as

σ̂ s = J−1P F T = −p̂s I + 2

J

∂W

∂ I B
B.

Finally, the incompressible hyperelastic structure equation of the arterial wall in Lagrangian description becomes

ρ̂s∂tt ûs − ∇̂ · P (ûs, p̂s) = f̂ s, in �̂s × (0, T ], (5)

J (ûs) = 1, in �̂s × (0, T ]. (6)

2.3. The biological equation of smooth muscle cells (SMCs)

In this paper, we consider a minimum biological effect that is involved in AAA growth, the smooth muscle cell (SMC) 
density only, in the biological sub-model. Since the SMC density is decreased dramatically in AAA progression [49], we 
define the equation of the SMC density, S , as follows [46]:

∂t S + ∇ · (v s S) − DS	S = −dS S, in �t
s × (0, T ], (7)

where DS denotes the constant diffusion coefficient to model the migration of SMCs in the aneurysm [50], v s is the velocity 
of the arterial wall defined as v s = ∂tus , dS is the death rate of SMCs that depends on other biological/chemical concentra-
tions. In this paper, we restrict the biological interaction effect to a minimum by simply assigning a constant value to dS in 
�t

s that comprises the aneurysm and its neighbor arterial wall, locally, in addition, we do not intend to develop a detailed 
and complicated biological interaction model but actually focus on the development of novel numerical methods for solving 
the presented multiscale FSI problem. Therefore, we just take (7) as a simplified model of the SMC density evolution that 
holds a slow time scale, together with the attendant FSI problem that holds a fast time scale, we build up our multiscale 
hemodynamic FSI model to be studied numerically in the rest of this paper.

Since the apoptosis of SMC is a well-known phenomenon in the pathophysiology of AAA that contributes to the loss of 
elasticity of the arterial wall [51,52], and, both elastic parameters β1 and β2 in (4) play a key role in the formation of the 
arterial wall’s elasticity property, we model β1 and β2 as a function of the SMC density, S [46]. Although many other cells 
may account for the elasticity of the arterial wall, such as elastin, extracellular matrix, fibroblast, etc. [53], considering that 
the reduction of these two elastic parameters directly results in the elasticity loss of the arterial wall which leads to the 
same effect of the apoptosis of SMC, we thus assume both β1 and β2 are proportional to S only, for the simplicity [46], that 
is

βi = βi,0
S

S0
, i = 1,2, (8)

where βi,0 are given elastic parameters, and S0 is the SMC density in health.
Considering that the structure equations of the arterial wall (4)-(6) are defined in Lagrangian description, we can also 

rewrite the SMCs equation (7) in Lagrangian description as follows

J∂t Ŝ + Ŝ∇̂ · ( J F−1 v̂ s) − DS ∇̂ · ( J F−1F−T∇̂ Ŝ) = −dS J Ŝ, in �̂s × (0, T ], (9)

where we apply the following identities [54]: ∇ S = F−T∇̂ Ŝ and ∇ · ψ = J−1∇̂ · ( J F−1ψ̂). Here v̂ s = ∂t ûs and J = det(I +
∇̂ ûs) through which and the relation (8), the SMCs equation (9) couples with the hyperelastic structure equation (5) and 
(6) in Lagrangian description.

Remark 2.1. We cannot eliminate the structural mass equation (6), namely J = 1, by directly substituting it into the struc-
tural momentum equation (5) because (5) alone cannot guarantee J = 1, (6) must be enforced as a constraint of (5) that is 
to be held concurrently through the Lagrange multiplier p̂s . On the other hand, (6) means to set up an extra equation with 
respect to ûs , that is, det(I +∇̂ ûs) = 1, which can only be true when ûs and the Lagrange multiplier p̂s satisfy both (5) and 
(6). Numerically, the discretization of J , Jh = det(I + ∇̂ ûs,h) cannot be guaranteed to equal 1 due to the naturally existing 
approximation error between 

(
ûs, p̂s

)
and 

(
ûs,h, p̂s,h

)
. Thus we keep J in the SMCs equation (9) as well, and Jh in its finite 

element discretization (26) as shown in Section 4.

2.4. Interface conditions

We impose the no-slip interface conditions for the presented hemodynamic FSI system, i.e., both velocity and normal 
stress are continuous across the interface of the blood fluid and the arterial wall, which can be defined in Eulerian descrip-
tion as follows
4
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v s = v f , on �t
I × [0, T ], (10)

σ sns + σ f n f = 0, on �t
I × [0, T ], (11)

where ns, n f are the outward normal vectors across the interface pointing to the blood fluid side and the arterial wall side, 
respectively, and ns = −n f .

Finally, the entire hemodynamic FSI model is defined by coupling the incompressible Navier-Stokes equations (1)-(3), 
the hyperelastic incompressible structure equations (4)-(6), and the biological SMCs equation (9) through the interface 
conditions (10), (11) and the relation (8), and, by combining with appropriately prescribed initial and boundary conditions 
of the primary unknowns, v f , ûs and Ŝ , such as⎧⎪⎨

⎪⎩
v f (x,0) = 0 in �t

f , ûs(x̂,0) = 0 and Ŝ(x̂,0) = Ŝ0 in �̂s,

v f = v f ,D on � f ,D , ûs = ûs,D and Ŝ = Ŝ D on �̂s,D ,

σ f n f = g f ,N on � f ,N , P sn̂s = ĝs,N and DS J F−1F−T∇̂ Ŝ · n̂s = ĝS,N on �̂s,N ,

(12)

where v f ,D , ûs,D and Ŝ D are Dirichlet boundary value functions on the Dirichlet boundary part � f ,D ⊂ �t
f \�t

I and �̂s,D ⊂
�̂s\�̂I , respectively, and, g f ,N , ĝs,N and ĝS,N are Neumann boundary value functions on the Neumann boundary part � f ,N =
�t

f \�t
I\� f ,D and �̂s,N = �̂s\�̂I\�̂s,D , respectively, if applicable.

One shall point out that two different time scales are involved in this FSI problem with the aneurysm growth: a fast 
time scale for the blood fluid-arterial wall interaction, i.e., for (1)-(6) in terms of seconds, while a slow time scale for AAA 
growth that is significantly related with the SMC density’s decay, i.e., for (9) in terms of years. In addition, the moving 
interface between the blood fluid and the arterial wall, �t

I , keeps moving with time in the same fast time scale to account 
for the deformable arterial wall that interacts with the blood fluid impact all the time.

3. The ALE weak form of FSI involving aneurysms

3.1. Arbitrary Lagrangian–Eulerian mapping

Since the blood fluid equations are defined in the Eulerian domain �t
f whereas the hyperelastic structure equations 

of the arterial wall are defined in the Lagrangian domain �̂s , the arbitrary Lagrangian–Eulerian (ALE) mapping is thus 
introduced to redescribe the fluid domain by adapting to the deformable boundary that is attached to the Lagrangian 
structure domain, simultaneously, preserving the fixed boundary that is attached to the Eulerian fluid domain. In principle, 
we define the ALE mapping of the blood fluid domain, A : �̂ f �→ �t

f , ∀t ∈ (0, T ] as follows: find xm ∈ �t
f such that

xm = A(x̂, t) = x̂+ Ext
(
ûs(x̂, t)|�̂I

)
, ∀x̂ ∈ �̂ f , (13)

where Ext(·) is an appropriate extension of the structure displacement on the interface �̂I . Clearly, the ALE mapping A is 
a type of time-dependent and bijective affine mapping, and, we always assume A ∈ W 2,∞(�̂ f )

d and A−1 ∈ W 1,∞(�t
f )

d

[32,55,56]. A classical choice of the extension Ext(·) is to consider a harmonic extension operator, i.e., let ûm(x̂, t) =
xm − x̂ = Ext(ûs(x̂, t)|�̂I

) that is treated as the displacement of the fluid mesh, satisfying the following Poisson equation⎧⎨
⎩

	ûm = 0 in �̂ f ,

ûm = 0 on �̂ f \ �̂I ,

ûm = ûs on �̂I .

(14)

Thus the moving fluid mesh is obtained by xm = x̂ + ûm , ∀x̂ ∈ �̂ f . Let vm denote the velocity of the moving fluid mesh, 
defined as

vm(xm, t) = ∂t A ◦ A−1(xm) = ∂t(x̂ + ûm) = ∂t ûm(x̂, t). (15)

Then we have the material derivative defined on the moving fluid mesh as follows

Dt v f = ∂ A
t v f + (v f − vm) · ∇v f , (16)

where the ALE time derivative ∂ A
t v f = ∂t v f + vm ·∇v f . Hence, the momentum equation of the fluid (1) can be reformulated 

as

ρ f (∂
A
t v f + (v f − vm) · ∇v f ) − ∇ · σ f = f f in �t

f × (0, T ]. (17)

The key reason why the ALE mapping approach works well for FSI problems is because the following Lemma 3.1 holds 
the so-called H1-invariance all the time for any v f = v f (x(x̂, t), t) and its ALE time derivative ∂ A

t v f , which is the foundation 
for analyzing the stability and convergence properties of ALE-FEM.
5
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Lemma 3.1. [55,56] For any t ∈ (0, T ], v f (x, t) ∈ H1(�t
f )

d and ∂ A
t v f (x, t) ∈ H1(�t

f )
d if and only if v̂(x̂, t) = v(x, t) ◦ A(x̂, t) ∈

H1(�̂ f )
d.

Lemma 3.1 provides a sufficient and necessary condition for the introduction of the following functional spaces that are 
adopted for defining the ALE weak form of the presented FSI problem:

V f := {ψ f ∈ H1(�t
f )

d : ψ f = ψ̂ f ◦ A−1, ψ̂ f ∈ H1(�̂ f )
d},

V f
0 := {ψ f ∈ V f : ψ f = 0 on � f ,D},

V f
D := {ψ f ∈ V f : ψ f = v f ,D on � f ,D},

V̂
s := {ψ̂ s ∈ H1(�̂s)

d : ∂tψ̂ s = ψ f ◦ A on �̂I ,ψ f ∈ V f ∩ L2(�I )},
V̂

s
0 := {ψ̂ s ∈ V̂

s : ψ̂ s = 0 on �̂s,D},
V̂

s
D := {ψ̂ s ∈ V̂

s : ψ̂ s = ûs,D on �̂s,D},
Q f := {q f ∈ L2(�t

f ) : q f = q̂ f ◦ A−1, q̂ f ∈ L2(�̂ f )},
Q̂ s := L2(�̂s),

V̂
m := H1(�̂ f )

d,

V̂
m
0 := {ξ̂ ∈ V̂

m : ξ̂ = 0 on �̂ f },
V̂

m
D := {ξ̂ ∈ V̂

m : ξ̂ = 0 on �̂ f \�̂I ; ξ̂ = ψ̂ s on �̂I , ψ̂ s ∈ V̂
s ∩ L2(�̂I )},

Ŵ S := H1(�̂s),

Ŵ S
0 := {ŵ ∈ Ŵ S : ŵ = 0 on �̂s,D},

Ŵ S
D := {ŵ ∈ Ŵ S : ŵ = Ŝ D on �̂s,D},

(18)

where the interface condition (10) is applied to the definition of the space V̂
s
. Thus, the primary unknowns of our FSI 

model (1)-(3), (4)-(6), (9) and the harmonic ALE mapping equation (14), (v f , p f , ûs, p̂s, ̂S, ûm), belong to V f
D × Q f × V̂

s
D ×

Q̂ s × Ŵ S
D × V̂

m
D .

3.2. The weak form in the ALE frame

Apply the Piola transformation of surface integrals [54], yields∫
�t
I

σ snsdx =
∫
�̂I

J σ̂ s F
−Tn̂sdx̂ =

∫
�̂I

Pn̂sdx̂,

further utilize the interface condition (11), reads∫
�t
I

σ f n f dx+
∫
�̂I

Pn̂sdx̂ = 0. (19)

Thus in view of (17), we can define the ALE weak form of the presented FSI model (1)-(3), (4)-(6), (9) and (14) as follows: 
find (v f , p f , ûs, p̂s, ̂S, ûm) ∈ V f

D × Q f × V̂
s
D × Q̂ s × Ŵ S

D × V̂
m
D such that

(ρ̂s∂tt ûs, ψ̂ s)�̂s
+ (P (ûs, p̂s),∇ψ̂ s)�̂s

+ ( J (ûs) − 1, q̂s)�̂s
+ (ρ f ∂

A
t v f ,ψ f )�t

f

+ ((v f − ∂t ûm ◦ A−1) · ∇v f ,ψ f )�t
f
+ (σ f (v f , p f ),∇ψ f )�t

f
+ (∇ · v f ,q f )�t

f
= ( f̂ s, ψ̂ s)�̂s

+ ( f f ,ψ f )�t
f
,

(20)

( J∂t Ŝ, ŵ)
�̂s

+ (∇̂ · ( J F−1 v̂ s) Ŝ, ŵ)
�̂s

+ (DS J F−1F−T∇̂ Ŝ, ∇̂ ŵ)
�̂s

= −(dS J Ŝ, ŵ)
�̂s

, (21)

(∇ ûm,∇ ξ̂ ) ˆ = 0, (22)

� f

6
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∀
(
ψ f ,q f , ψ̂ s, q̂s, ŵ, ξ̂

)
∈ V f

0 × Q f × V̂
s
0 × Q̂ s × Ŵ S

0 × V̂
m
0 .

4. The finite element approximation in the ALE frame

4.1. The discrete ALE mapping and mixed finite element spaces

To define finite element approximations to (20)-(22), we first triangulate initial domains �̂ f and �̂s with the mesh size 
0 < h < 1, and obtain two quasi-uniform triangulations: T̂ f ,h in �̂ f and T̂s,h in �̂s , which are conforming through the 
initial interface �̂I . Then, for any t ∈ (0, T ], we numerically solve the ALE mapping (14) by means of the piecewise-linear 
Lagrangian finite element in the finite element space, V̂

m
h := {

ξ̂ ∈ V̂
m : ξ̂ ∣∣

K ∈ P1(K )d, ∀K ∈ T̂ f ,h
}
where Pk denotes the k-th 

degree piecewise polynomial space, to attain the discrete ALE mapping, Ah , which represents the moving fluid mesh, that 
is, for any x̂ ∈ �̂ f , there exists xm ∈ �t

f such that

xm = Ah(x̂, t) = x̂+ ûm,h, (23)

where ûm,h ∈ V̂
m
D,h := {

ξ̂ ∈ V̂
m
h : ξ̂ = 0 on �̂ f \�̂I ; ̂ξ = ψ̂ s on �̂I , ψ̂ s ∈ V̂

s
h ∩ L2(�̂I )

}
, and V̂

s
h := {

ψ̂ s ∈ V̂
s : ψ̂ s

∣∣
K ∈

P1(K )d, ∀K ∈ T̂s,h
}
. Thus, Ah is smooth and invertible, and, the discrete ALE time derivative is accordingly defined as: 

∂
Ah
t ψ f = ∂tψ f + vm,h · ∇ψ f = ∂tψ f +

(
∂t ûm,h ◦ A−1

h

)
· ∇ψ f .

Let T t
f ,h be the image of T̂ f ,h under the discrete ALE mapping Ah , then T t

f ,h = Ah

(
T̂ f ,h

)
= T̂ f ,h + ûm,h , based on 

which we are able to introduce finite element spaces for fluid variables, as: V f
h := {

ψ f ∈ V f : ψ f

∣∣
K ∈ P1(K )d, ∀K ∈ T t

f ,h

}
, 

Q f
h := {

q f ∈ Q f : q f
∣∣
K ∈ P1(K ), ∀K ∈ T t

f ,h

}
. We further introduce the following finite element spaces that are associated 

with other functional spaces defined in (18):

V f
0,h := {ψ f ∈ V f

h : ψ f = 0 on � f ,D}, V f
D,h := {ψ f ∈ V f

h : ψ f = v f ,D on � f ,D},

V̂
s
0,D := {ψ̂ s ∈ V̂

s
h : ψ̂ s = 0 on �̂s,D}, V̂

s
D,h := {ψ̂ s ∈ V̂

s
h : ψ̂ s = ûs,D on �̂s,D},

Q̂ s
h := {q̂s ∈ Q̂ s : q̂s

∣∣
K ∈ P1(K ),∀K ∈ T̂s,h}, V̂

m
0,h := {ξ̂ ∈ V̂

m
h : ξ̂ = 0 on �̂ f },

Ŵ S
h := {ŵ ∈ Ŵ S : ŵ∣∣

K ∈ P1(K ),∀K ∈ T̂s,h}, Ŵ S
0,h := {ŵ ∈ Ŵ S

h : ŵ = 0 on �̂s,D},
Ŵ S

D,h := {ŵ ∈ Ŵ S
h : ŵ = Ŝ D on �̂s,D}.

(24)

Here, we employ the equal-order mixed finite element, P1/P1 element, with the pressure stabilization scheme [57–60]
to approximate the saddle-point problem arising from the FSI equation (20) in the finite element spaces 

(
V f

h × V̂
s
h

)
×(

Q f
h × Q̂ s

h

)
⊂

(
V f × V̂

s
)

×
(
Q f × Q̂ s

)
, as shown below in (25).

4.2. Multiscale and monolithic ALE mixed finite element schemes

In this section, we first introduce the semi-discrete mixed finite element approximation to (20)-(22) in the ALE frame, 
based on which we are then able to define the fully discrete ALE-mixed finite element scheme that can be implemented in 
numerical algorithms developed in Section 4.3.

Based on the ALE weak form (20)-(22), the semi-discrete ALE-mixed finite element scheme of the presented FSI problem 
can be defined as follows: find 

(
v f ,h, p f ,h, ûs,h, p̂s,h, Ŝh, ûm,h

)
∈ V f

D,h × Q f
h × V̂

s
D,h × Q̂ s

h × Ŵ S
D,h × V̂

m
D,h such that

(ρ̂s∂tt ûs,h, ψ̂ s)�̂s
+ (P (ûs,h, p̂s,h),∇ψ̂ s)�̂s

+ ( Jh(ûs,h) − 1, q̂s)�̂s

+(ρ f ∂
Ah
t v f ,h,ψ f )�t

f
+ (

(v f ,h − vm,h) · ∇v f ,h,ψ f

)
�t

f
+ (σ f (v f ,h, p f ,h),∇ψ f )�t

f

+(∇ · v f ,h,q f )�t
f
+ α1

h2

μ f
(∇p f ,h,∇q f )�t

f
+ α2h

2(∇ p̂s,h,∇q̂s)�̂s

+
∑

K∈T t

δSU PG(h)

‖v f ,h − vm,h‖0,K
(
R(v f ,h, vm,h), (v f ,h − vm,h) · ∇ψ f

)
K

= ( f̂ s, ψ̂ s)�̂s
+ ( f f ,ψ f )�t

f
, (25)
f ,h

7
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( Jh(ûs,h)∂t Ŝh, ŵ)
�̂s

+
(
∇ ·

(
( Jh F

−1
h )(ûs,h)∂t ûs,h

)
Ŝh, ŵ

)
�̂s

+
(
DS( Jh F

−1
h F−T

h )(ûs,h)∇ Ŝh,∇ ŵ
)

�̂s

= −(dS Jh(ûs,h) Ŝh, ŵ)
�̂s

, (26)

(∇ ûm,h,∇ ξ̂ )
�̂ f

= 0, ∀
(
ψ f ,q f , ψ̂ s, q̂s, ŵ, ξ̂

)
∈ V f

0,h × Q f × V̂
s
0,h × Q̂ s × Ŵ S

0,h × V̂
m
0,h, (27)

where two pressure stabilization terms, α1
h2

μ f
(∇p f ,h, ∇q f )� f and α2h2(∇ p̂s,h, ∇q̂s)�̂s

are added to (25) to stabilize the 

equal-order mixed P1/P1 element in 
(
V f

h × V̂
s
h

)
×

(
Q f

h × Q̂ s
h

)
[57,60], here α1 and α2 are two parameters to be tuned in 

practice. Furthermore, another stabilization term arising from the streamline–upwind/Petrov–Galerkin (SUPG) scheme [61]
is introduced to the last term on the left hand side of (25) in order to avoid any numerical instability that might be induced 
by the dominant convection effect due to a possibly large Reynolds number from the fluid part, where R(v f ,h, vm,h) =
ρ f ∂

Ah
t v f ,h + (v f ,h − vm,h) · ∇v f ,h , vm,h = ∂t ûm,h ◦ A−1

h , and, δSU PG(h) is an appropriately chosen local parameter depending 
on the mesh size h, the Reynolds number and the velocity v f ,h in each fluid mesh cell K .

Remark 4.1. Note that in (25) we add the pressure stabilization term, α2h2(∇ p̂s,h, ∇q̂s)�̂s
, to the structural mass equation, 

i.e., the incompressibility constraint of the structure, J = 1, in its finite element discretization form. In fact, if differentiating 
both sides of J = 1 with respect to time, we can obtain ∇ · v s = 0 by using the identity d J

dt = J∇ · v s , and vice versa 
[56]. We know ∇ · v s = 0 is the incompressibility constraint of the structure in Eulerian description, or, in nearly Lagrangian 
description as well under the infinitesimal strain assumption in which x ≈ x̂, �t

s ≈ �̂s, ∇x ≈ ∇x̂ . Thus, two incompressibility 
constraints, J = 1 and ∇ · v s = 0, are equivalent under the infinitesimal strain assumption, and due to that, ∇ · v s = 0 can 
also be adopted as the mass equation of the incompressible hyperelastic structure in nearly Lagrangian description. As a 
consequence, the above pressure stabilization term can be naturally added when the equal-order mixed FEM is applied to 
discretize both the momentum and the mass equations involving the divergence-free form of structural velocity, and, such 
a stabilization scheme based upon ∇ · v s = 0 is validated stable, robust, and accurate in numerical tests as demonstrated in 
[62]. Similarly, our stabilized mixed FEM for the incompressible structure shown in (25) with the incompressibility constraint 
J = 1 in purely Lagrangian description (without any assumption) also elucidates an equally good numerical performance (as 
shown in Section 5). Though, both approaches given in [62] and the above ALE-FEM (25) have no theoretical proofs to 
support yet, which will deserve an in-depth analysis in the future.

To define the fully discrete ALE mixed finite element approximation to (20)-(22), we first introduce a uniform partition 
0 = t0 < t1 < · · · < tM = T with the time-step size 	t = T /M , set tn = n	t , ϕn = ϕ(xn, tn), and Am,n = An

h ◦ (Am
h )−1 for 

m, n = 1, · · · , M and m �= n. Then, we choose the second order backward differentiation formula (BDF2) to approximate 
temporal derivatives ∂t Ŝh in (26) and ∂t ûm,h in (25) as follows

(
∂t Ŝh

)n ≈ d	
t Ŝnh = 3 Ŝnh − 4 Ŝn−1

h + Ŝn−2
h

2	t
,

(
∂t ûm,h

) j ≈ dδ
t û

j
m,h = 3û j

m,h − 4û j−1
m,h + û j−2

m,h

2δt
, (28)

where the variable time step size δt � 	t . In fact, since the blood fluid-arterial wall interaction process bears a fast time 
scale in contrast to the slow time scale that the biological process of SMCs density decay endures, we thus assign a macro 
time step size, 	t , to the temporal difference scheme of the SMCs equation, and a micro time step size, δt , to the temporal 
difference scheme of fluid, structure and ALE mapping equations, as shown in (28), (29) and (30).

Further, the BDF2 in the ALE frame can be defined below to approximate the discrete ALE time derivative ∂ Ah
t v f ,h in 

(25) with the micro time step size δt:

(
∂
Ah
t v f ,h

) j ≈ dAh
t v j

f ,h = 3v j
f ,h(x) − 4v j−1

f ,h ◦ A j, j−1 + v j−2
f ,h ◦ A j, j−2

2δt
. (29)

In addition, we apply the Newmark scheme to the temporal discretization of the hyperelastic structure equation which 
presents the temporal feature of a wave equation, that is, we employ

dN
tt û

j
s,h =

2
(
dN
t û j

s,h − dN
t û j−1

s,h

)
δt

− dN
tt û

j−1
s,h ,

dN
t û j

s,h = 2(û j
s − û j−1

s )

δt
− dN

t û j−1
s,h ,

(30)

to approximate ∂tt ûs,h and ∂t ûs,h , respectively, in (25). Such defined Newmark scheme (30) is unconditionally stable and 
owns the second order accuracy with respect to the time step size [63].

Hence, we define the following fully discrete multiscale ALE mixed finite element approximation to (20)-(22): find 
(vn , pn , ûn

s,h, p̂n , ̂Sn, ûn
m,h) ∈ V f ,n × Q f ,n × V̂

s
D,h × Q̂ s × Ŵ S × V̂

m
D,h such that for n = 1, 2, · · · , M
f ,h f ,h s,h h D,h h h D,h

8
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(ρ̂sd
N
tt û

n
s,h, ψ̂ s)�̂s

+ (P (ûn
s,h, p̂s,h),∇ψ̂ s)�̂s

+ ( Jnh(û
n
s,h) − 1, q̂s)�̂s

+(ρ f d
Ah
t vnf ,h,ψ f )�n

f
+

(
(vnf ,h − vnm,h) · ∇vnf ,h,ψ f

)
�n

f

+ (σ f (v
n
f ,h, p

n
f ,h),∇ψ f )�n

f

+(∇ · vnf ,h,q f )�n
f
+ α1

h2

μ f
(∇pnf ,h,∇q f )�n

f
+ α2h

2(∇ p̂ns,h,∇q̂s)�̂s

+
∑

K∈T n
f ,h

δSU PG(h)

‖vnf ,h − vnm,h‖0,K
(
R(vnf ,h, v

n
m,h), (v

n
f ,h − vnm,h) · ∇ψ f

)
K

= ( f̂
n
s , ψ̂ s)�̂s

+ ( f nf ,ψ f )�n
f
, (31)

( Jnh(û
n
s,h)d

	
t Ŝnh, ŵ)

�̂s
+

(
∇ ·

(
( Jnh(F

n
h)

−1)(ûn
s,h)d

N
t ûn

s,h

)
Ŝnh, ŵ

)
�̂s

+
(
DS

(
Jnh(F

n
h)

−1(Fn
h)

−T
)

(ûn
s,h)∇ Ŝnh,∇ ŵ

)
�̂s

= −(dS Jnh(û
n
s,h) Ŝ

n
h, ŵ)

�̂s
, (32)

(∇ ûn
m,h,∇ ξ̂ )

�̂ f
= 0, ∀

(
ψ f ,q f , ψ̂ s, q̂s, ŵ, ξ̂

)
∈ V f ,n

0,h × Q f ,n × V̂
s
0,h × Q̂ s × Ŵ S

0,h × V̂
m
0,h, (33)

where vnm,h = dδ
t û

n
m,h ◦ (An

h)
−1.

According to an analogous mixed finite element analysis of the ALE-FEM for the standard FSI problem that comprises 
a saddle-point system to account for the pair of fluid/structure velocities and the fluid pressure [64], and in light of the 
pressure-stabilized scheme with P1/P1 mixed element, one shall have a stable and convergent mixed finite element ap-
proximation (25) in 

(
V f

h × V̂
s
h

)
×

(
Q f

h × Q̂ s
h

)
[57,59,60]. As for two varied time step sizes, i.e., the macro one 	t and the 

micro one δt , we will describe how to choose them and how to carry out two different (macro and micro) time marching 
processes for (31)-(33) by means of some specific multiscale methods illustrated in Section 4.3.

4.3. Multiscale methods and algorithm descriptions

In the presented FSI problem with AAA progression, the blood fluid-hyperelastic arterial wall interaction process and 
the biological process have different time scales, that is, the dynamics of FSI changes in the unit of second while the 
SMCs apoptosis evolves in the unit of day or year, largely comprising a multiscale problem in time. In order to handle 
such a multiscale challenge in a more efficient as well as a relatively accurate fashion, we need to adopt some temporal 
multiscale methods to determine variable time steps for the full discretization (31)-(33). Two types of multiscale methods, 
the heterogeneous multiscale method (HMM) [39] and the seamless multiscale method (SMM) [40], are chosen to cooperate 
with the developed fully discrete mixed ALE-FEM (31)-(33), then to tackle the presented multiscale FSI problem with AAA 
growth by a variable time-stepping finite element approximation in the ALE frame. Both HMM’s and SMM’s characteristics 
and implementation algorithms are described and discussed below.

4.3.1. The heterogeneous multiscale method (HMM)
We employ the HMM by using the same clock for both the FSI process and the biological process under a basic assump-

tion for the HMM, that is, the microscopic process, i.e., the blood fluid-arterial wall interaction process, is in equilibrium 
with the unchanged local macroscopic state of the system, i.e., the biological process. Based on the fact that each cardiac 
cycle takes about 0.8 s, we assume the FSI simulation of each cardiac cycle has the same results if the elasticity of arterial 
wall and the incoming blood fluid velocity are unchanged, which means FSI solutions in different cardiac cycles present the 
same profile. Thus, we implement the HMM in the following way that is also illustrated in Fig. 1:

1. Solve the biological SMCs sub-model by using the macro time step size 	t;
2. Solve the FSI model by using the micro time step size δt in one cardiac cycle 0.8 s for up to 0.8/δt steps of the micro 

time march;
3. Take an average of solutions over the micro time marching steps of 0.8/δt obtained in Step 2, then propagate to the 

next macro time step.

For example, we take 	t = 1 day for the biological process, and δt = 0.01 s for the FSI process. With 0.8 s as one cardiac 
cycle time period, we assume the simulation of each cardiac cycle delivers the same results if the elasticity of the arterial 
wall and the incoming blood fluid are unchanged. Thus, given the hyperelastic coefficients (β1, β2) computed by the density 
of SMCs at the previous macro time step, we can simulate the FSI model within the time period 0.8 s using δt = 0.01 s for 
80 time steps, then take an average of 80 solutions, with which we solve the biological SMCs equation using 	t = 1 day. 
Here, we first run “80 micro time steps” for the FSI model and then run only “1 macro time step” for the biological SMCs 
9
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Fig. 1. Illustrations of the HMM vs the SMM.

equation, these two processes are repeated sequentially till the terminal time T is reached. We describe the implementation 
algorithm of the HMM in Algorithm 1 below.

Algorithm 1: The HMM/ALE-FEM for the presented FSI and SMCs models.

Sequentially do the following two steps A1 and B1 on the macro time marching for m = 1, 2, 3, · · · , M = [ T
	t ] with the macro time step 	t .

A1. The FSI step
Use the solution of the SMCs equation at the (m − 1)-th macro time step, Ŝm−1, to calculate the elastic parameter β1, β2. Then do the following 
micro time marching for n = 1, 2, ..., N = [ 0.8

δt ] with the micro time step δt by conducting the following two-level nonlinear iterations:
• The outer fixed-point iteration with the inner Newton’s iteration (with the initial guess v̂∗

s,h = v̂n−1
s,h ):

1. Update the fluid mesh: Given ûn−1
s,h and v̂∗

s,h , predict the displacement of the interface by û∗
s,h = ûn−1

s,h + 	t · v̂∗
s,h . Then find ûn

m,h ∈ V̂
m
D,h with 

ûn
m,h |�̂I

= û∗
s,h |�̂I

such that

(∇ ûn
m,h,∇ ξ̂m,h)�̂ f ,h

= 0, ∀ξ̂m,h ∈ V̂
m
0,h .

Next, update the fluid mesh by letting T n
f ,h := {xm ∈Rd : xm = x̂+ ûn

m,h, ∀x̂ ∈ T̂ f ,h} and calculate the velocity of the fluid mesh by 
vnm,h = dδ

t û
n
m,h ◦ (An

h)
−1.

2. Given vn−1
f ,h , vn−2

f ,h , v̂n−1
s,h , ûn−1

s,h , vnm,h and the updated mesh T n
f ,h ∪ T̂s,h , solve the following FSI system for 

(vnf ,h, pnf ,h, ̂u
n
s,h, ̂pns,h) ∈ V f ,n

D,h × Q f ,n
h × V̂

s
D,h × Q̂ s

h such that

(ρ̂sd
N
tt û

n
s,h, ψ̂ s)�̂s

+ (P (ûn
s,h, p̂s,h),∇ψ̂ s)�̂s

+ ( Jnh(û
n
s,h) − 1, q̂s)�̂s

+(ρ f d
Ah
t vnf ,h,ψ f )�n

f
+

(
(vnf ,h − vnm,h) · ∇vnf ,h,ψ f

)
�n

f

+ (σ f (v
n
f ,h, p

n
f ,h),∇ψ f )�n

f

+(∇ · vnf ,h,q f )�n
f
+ α1

h2

μ f
(∇pnf ,h,∇q f )�n

f
+ α2h

2(∇ p̂ns,h,∇q̂s)�̂s

+
∑

K∈T n
f ,h

δSU PG (h)

‖vnf ,h − vnm,h‖0,K
(
R(vnf ,h, v

n
m,h), (v

n
f ,h − vnm,h) · ∇ψ f

)
K

= ( f̂
n
s , ψ̂ s)�̂s

+ ( f nf ,ψ f )�n
f
,

∀
(
ψ f ,q f , ψ̂ s, q̂s

)
∈ V f ,n

0,h × Q f ,n × V̂
s
0,h × Q̂ s,

by means of the Newton’s nonlinear iteration until the convergence. Then compute v̂ns,h = dN
t ûn

s,h .

• Check the stopping criterion: ‖v̂∗
s,h − v̂ns,h‖0,�̂s

≤ tolerance. If true, then check n + 1 > N: if yes, then move to the macro time step shown in 
B1: The SMCs step; if not, then move to the next micro time step n + 1. Otherwise, let v̂∗

s,h = (v̂n−1
s,h + v̂ns,h)/2 and go back to repeat the above 

nonlinear iteration steps 1 and 2.
B1. The SMCs step
Let ûm

s,h = 1
N

N∑
n=1

ûn
s,h and v̂ms,h = 1

N

N∑
n=1

v̂ns,h . Given Ŝm−1
h and Ŝm−2

h , find Ŝmh ∈ Ŵ S
D,h such that

⎧⎨
⎩

( Jmh (ûm
s,h)d

	
t Ŝmh , ŵ)

�̂s
+

(
∇ · (( Jmh (Fm

h )−1)(ûm
s,h)v̂

m
s,h

)
Ŝmh , ŵ

)
�̂s

+
(
DS

(
Jmh (Fm

h )−1(Fm
h )−T

)
(ûm

s,h)∇ Ŝmh ,∇ ŵ
)

�̂s

= −(dS Jmh (ûm
s,h) Ŝ

m
h , ŵ)

�̂s
, ∀ŵ ∈ Ŵ S

0,h,

where Fm
h = I + ∇̂ ûm

s,h and Jmh = det(Fm
h ).
10
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Note that in the SMCs step of Algorithm 1, we take an average of the velocity and the displacement of the arterial wall 
over N micro time marching steps. This is just one choice, another choice is that ûm

s,h and v̂m
s,h are randomly chosen from 

the Gaussian distributions computed based on N sample points {ûn
s,h}1≤n≤N and {v̂n

s,h}1≤n≤N , respectively, which is called 
the HMM with random variables.

4.3.2. The Seamless multiscale method (SMM)
The SMM uses different clocks for both the FSI process and the biological process under an assumption that the mi-

croscopic process can quickly reach its (quasi) “steady-state” status, i.e., a stable and identical solution profile, within each 
cardiac cycle in contrast to the much slower macroscopic process. Precisely, for our presented FSI model involving the 
aneurysm growth, the FSI process in which the hyperelastic structure equation is constrained by the SMCs density at every 
macro time step with the macro time step size 	t , can be relaxed to a (quasi) steady-state in a microscopic time scale 
with the micro time step size δt , say, after k micro time steps, where kδt � 	t and involves multiple cardiac cycles, exactly. 
Then, we assign 	τ = 	t/k as the new macro time step size. With this new and smaller macro time step size 	τ and 
the original micro time step size δt , we only need to conduct one step micro time marching within one step macro time 
marching. The basic procedure of the SMM is given below that is also illustrated in Fig. 1:

1. Solve the biological SMCs sub-model with the new macro time step size 	τ for one step, simultaneously, solve the FSI 
model with the micro time step size δt for one step.

2. Exchange data between the micro and the macro process after each macro and micro time step.

For example, given the hyperelastic coefficients computed by the density of SMCs at the previous macro time step, we 
can simulate the FSI model with δt = 0.01 s. Then by using the obtained numerical solutions of the FSI model, we solve 
the biological SMCs equation with 	τ = 0.0125 day. When the FSI model is simulated for 80 steps in one cardiac period 

Algorithm 2: The SMM/ALE-FEM of the presented FSI and SMCs models.

Sequentially do the following two steps A2 and B2 on the macro time marching for m = 1, 2, 3, · · · , [ T
	τ ] with the macro time step 	τ .

A2. The FSI step
Use the solution of SMCs equation at the (m − 1)-th macro time step, Ŝm−1, to calculate the elastic parameter β1, β2. Then conduct the following 
two-level nonlinear iterations with the micro time step δt:
• The outer fixed-point iteration with the inner Newton’s iteration (with the initial guess v̂∗

s,h = v̂m−1
s,h ):

1. Update the fluid mesh: Given ûm−1
s,h and v̂∗

s,h , predict the displacement of the interface by û∗
s,h = ûm−1

s,h + δt · v̂∗
s,h . Then find ûm

m,h ∈ V̂
m
D,h with 

ûm
m,h |�̂I

= û∗
s,h |�̂I

such that

(∇ ûm
m,h,∇ ξ̂m,h)�̂ f ,h

= 0, ∀ξ̂m,h ∈ V̂
m
0,h .

Next, update the fluid mesh by T m
f ,h := {xm ∈Rd : xm = x̂+ ûm

m,h, ∀x̂ ∈ T̂ f ,h} and calculate the velocity of the fluid mesh 
by vm

m,h = dδ
t û

m
m,h ◦ (Am

h )−1.

2. Given vm−1
f ,h , vm−2

f ,h , v̂m−1
s,h , ûm−1

s,h , vmm,h and the updated mesh T m
f ,h ∪ T̂s,h , solve the following FSI system for 

(vmf ,h, pmf ,h, ̂u
m
s,h, ̂pms,h) ∈ V f ,m

D,h × Q f ,m
h × V̂

s
D,h × Q̂ s

h such that

(ρ̂sd
N
tt û

m
s,h, ψ̂ s)�̂s

+ (P (ûm
s,h, p̂s,h),∇ψ̂ s)�̂s

+ ( Jmh (ûm
s,h) − 1, q̂s)�̂s

+(ρ f d
Ah
t vmf ,h,ψ f )�m

f
+

(
(vmf ,h − vmm,h) · ∇vmf ,h,ψ f

)
�m

f

+ (σ f (v
m
f ,h, p

m
f ,h),∇ψ f )�m

f

+(∇ · vmf ,h,q f )�m
f

+ α1
h2

μ f
(∇pmf ,h,∇q f )�m

f
+ α2h

2(∇ p̂ms,h,∇q̂s)�̂s

+
∑

K∈T m
f ,h

δSU PG (h)

‖vmf ,h − vmm,h‖0,K
(
R(vmf ,h, v

m
m,h), (v

m
f ,h − vmm,h) · ∇ψ f

)
K

= ( f̂
m
s , ψ̂ s)�̂s

+ ( f mf ,ψ f )�m
f
,

∀
(
ψ f ,q f , ψ̂ s, q̂s

)
∈ V f ,m

0,h × Q f ,m × V̂
s
0,h × Q̂ s,

by means of the Newton’s nonlinear iteration until the convergence. Then compute v̂ms,h = dN
t ûm

s,h .

• Check the stopping criterion: ‖v̂∗
s,h − v̂ms,h‖0,�̂s

≤ tolerance. If true, then move to the macro time step shown in B2: The SMCs step. Otherwise, let 
v̂∗
s,h = (v̂m−1

s,h + v̂ms,h)/2 and go back to repeat the above nonlinear iteration steps 1 and 2.
B2. The SMCs step
Given ûm

s,h and v̂ms,h from the m-th FSI step, Ŝm−1
h and Ŝm−2

h , find Ŝmh ∈ Ŵ S
D,h such that

⎧⎨
⎩

( Jmh (ûm
s,h)d

	
τ Ŝmh , ŵ)

�̂s
+

(
∇ · (( Jmh (Fm

h )−1)(ûm
s,h)v̂

m
s,h

)
Ŝmh , ŵ

)
�̂s

+
(
DS

(
Jmh (Fm

h )−1(Fm
h )−T

)
(ûm

s,h)∇ Ŝmh ,∇ ŵ
)

�̂s

= −(dS Jm(ûm
s,h) Ŝ

m
h , ŵ)

�̂s
, ∀ŵ ∈ Ŵ S

0,h,

where Fm
h = I + ∇̂ ûm

s,h and Jmh = det(Fm
h ).
11
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0.8 s, the biological SMCs equation is also solved for 80 times, i.e., 80 × 0.0125 = 1 day. Thus, within one day we sim-
ulate 80 steps for both the FSI model and the biological SMCs equation. Here, we sequentially run “1 micro time step” 
for the FSI model and then run “1 macro time step” for the biological SMCs equation, these two processes are repeated 
sequentially till the terminal time T is reached. We describe the implementation algorithm of the SMM in Algorithm 2 as 
follows.

Remark 4.2. The SMM exchanges data at every micro time step so that the elasticity of arterial wall changes at every micro 
time step. Thus it is necessary to make sure the macro time step size 	τ is relatively small, because a big 	τ will induce a 
large change of the elasticity of arterial wall, which might make the microscopic FSI process unstable, to a large extent. On 
the contrary, the HMM is more stable since the arterial wall only changes its elasticity property at every macro step, and 
the HMM restarts the FSI process once the change happens.

4.4. Computations of the arterial wall thickness and the aneurysm radius

Considering that the entire arterial wall is incompressible and thus its volume is unchanged, we just need to check the 
thickness change of the arterial wall in order to investigate the status of AAA growth. In fact, if the thickness of the arterial 
wall decreases with time, then the surface area of the arterial wall shall simultaneously increase for preserving the volume 
of the arterial wall. Because a growing AAA keeps expanding the blood vessel lumen and thus increasing the surface area of 
the arterial wall with the near-end and the far-end of the arterial wall fixed, we are then able to validate the desired status 
of AAA growth by checking the thickness decrease of the arterial wall. However, it is challenging to accurately compute the 
thickness of the arterial wall that bears a curved and irregular surface, which is even more difficult in the three-dimensional 
case.

In the following, we propose an efficient algorithm to compute the thickness of the arterial wall in any shape and any 
dimension by solving the so-called Eikonal equation [65,66] that is defined in the entire domain � = �t

f ∪ �t
s as follows

|∇d(x)| = 1

f (x)
, x ∈ �,

d(x) =0, x ∈ ∂�.

(34)

The solution d(x) is the shortest time needed to travel from the boundary ∂� to x with the speed f (x). If we take f (x) = 1, 
then the solution d(x) is the distance of the point x to the boundary ∂�. Thus, for any point x on the interface �t

I , d(x)
represents the thickness of the arterial wall at the point x. In addition, the maximum value of such defined d(x) over the 
entire � can also deliver the outer radius of the aneurysm since it represents the largest distance from the central point of 
the aneurysm cavity to the boundary ∂�.

In order to employ the finite element method to solve (34) in a numerically stable fashion, we add a smoothing term to 
(34) with f = 1, and obtain the associated “viscous” Eikonal equation given by

|∇d| =1+ αd	d, x ∈ �,

d(x) =0, x ∈ ∂�,
(35)

where αd is a fine tuned parameter. It can be shown that the artificial viscous term αd	d acts to smooth out sharp corners 
in the solution and guarantees that the solution stays smooth in the entire domain � [67,65]. As αd goes to zero, the 
solution of (35) converges to the solution of (34). Therefore, we can define the finite element approximation to (35) instead, 
in the finite element space Dh := {dh ∈ H1(�) : dh

∣∣
K ∈ P1(K ), ∀K ∈ T t

f ,h ∪ T t
s,h, dh = 0 on ∂�}, as follows: find dh ∈ Dh such 

that

(|∇dh|, vh)� + αd(∇dh,∇vh)� = (1, vh)�, ∀vh ∈ Dh, (36)

where we take αd = h/25 in our computation in Section 5, here h is the mesh size. And again, we employ the Newton’s 
linearization scheme to iteratively solve the nonlinear equation (36), for which we propose a good initial guess, d∗

h , by 
solving the following elliptic equation: find d∗

h ∈ Dh such that

(∇d∗
h,∇vh)� = (1, vh)�, ∀vh ∈ Dh. (37)

Such a choice of the initial guess can make the Newton’s iteration process for solving (36) stable, robust and accurate, which 
is confirmed feasible and efficient in our numerical simulations shown in Section 5.

Remark 4.3. Although that one of the purposes of introducing the Eikonal equation (34) is to find out the exact thickness 
of the arterial wall at each location of the interface �t

I (the inner surface of the arterial wall), we define (34) in the entire 
domain � = �t ∪ �t

s instead of in the arterial wall, �t
s , only. That is because the boundary condition of (34) can be easily 
f
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Table 1
Physical coefficients and computational parameters for Cases 3D (2D).
Parameter Description Value in 3D (2D)

ρs Structure density 1.15× 103 kg/m3

ρ f Fluid density 1.060× 103 kg/m3

μ f Fluid dynamic viscosity 3.7× 10−3 Pa×s
DS Diffusion coefficient of SMCs 8.64× 10−11 m2/day [68,69]
dS Death rate of SMC 0.00258/day [68,70,69] (0.0086/day)
S0 SMCs density at health 6× 103 g/m3 [69]
β10, β20 Elasticity constant of healthy arterial walls β10 = 17.3× 104, β20 = 188.1× 104 (N/m2)
# cells Number of mesh elements 15938 (1926)
# DOFs Number of degree of freedoms 19626 (5420)
δt FSI (micro) time step size 0.01 s
tend The cardiac cycle time 0.8 s
	t Biological (macro) time step size 1 day (HMM)
	τ Biological (macro) time step size 0.0125 day (SMM)
Tend Total simulation time 1825 days (365 days).

Fig. 2. The computational domain of the 2D numerical example.

imposed as a homogeneous Dirichlet boundary condition, d(x) = 0, on the outer boundary ∂� only. Otherwise, if �t
s is 

taken as the domain of (34) instead, then we have to define its boundary condition not only on the outer boundary ∂� but 
also on the inner boundary of the arterial wall, �t

I . However, we do not know what the boundary value of d(x) is on �t
I

since it is exactly the thickness of the arterial wall that we solve the Eikonal equation for. Therefore, the Eikonal equation 
(34) or (35) is defined in the entire domain �.

5. Numerical simulations

In this section, we apply the developed two types of multiscale ALE finite element methods to solve the proposed 
multiscale hemodynamic FSI problem involving the aneurysm progression. More specifically, we first test two multiscale 
ALE-FEMs in the two-dimensional case to illustrate some basic ideas about the multiscale FSI simulation with the aneurysm 
growth. Then, we particularly apply the heterogeneous multiscale ALE-FEM to a three-dimensional example based on a 
patient CT scan data, and finally compute the thickness of the arterial wall to validate AAA progression. All parameters used 
in the following numerical simulations are listed in Table 1, where for the parameter that owns different values in cases of 
2D and 3D, we show its value in 2D within the parentheses “( )”.

5.1. The test of 2D case

We introduce a two-dimensional unsymmetrical domain as showed in Fig. 2. The Dirichlet-type incoming blood flow 
condition on the inlet � f ,in for the velocity is prescribed as: v f |� = (vin, 0)T , where vin is defined by the following 
f ,in

13
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Fig. 3. Profile of the coefficient, ṽ in(t), of the horizontal component of the inflow velocity.

function to mimic the incoming blood fluid velocity profile within one cardiac cycle (0.8 s):

vin(x, t) = ṽ in(t)(r
2 − ‖x− x0‖2)/r2, where ṽ in(t) =

⎧⎪⎪⎨
⎪⎪⎩
0.5

(
sin

(
2π

0.4
t − π

2

)
+ 1

)
, t ∈ [0,0.4],

0.01

(
sin

(
2π

0.4
(t − 0.4) − π

2

)
+ 1

)
, t ∈ [0.4,0.8],

where x0 is the center of the inlet boundary and r is the inlet radius. The profile of ṽ in(t) is shown in Fig. 3. Thus, we 
define a parabolic inflow on the inlet with a fixed coefficient ṽ in at each time point t , whose parabolic shape behaves along 
with the cardiac cycle. Thus the boundary conditions are describes as{

v f = v f |� f ,in on � f ,in, ûs = 0 on �̂s,in ∪ �̂s,out,

σ f n f = 0 on � f ,out, P sns = 0 on �̂s,N .
(38)

For the implementation of the HMM/ALE-FEM, we adopt the same time step size δt = 0.01 s for the FSI simulation 
and 	t = 1 day for solving the biological SMCs model, then simulate for 1 year (365 days) so that 365 cardiac cycles are 
simulated. As for the SMM/ALE-FEM, its time marching process comprises both the FSI and the biological SMCs simulations 
which run simultaneously, i.e., we run one step of the FSI simulation with δt = 0.01 s while we run one step of the biological 
SMCs simulation with 	τ = 0.0125 day, i.e., we simulate one cardiac cycle (0.8 s) in 1 day (= 0.0125 × 80). However, in 
order to compare the SMM/ALE-FEM with the HMM/ALE-FEM, we can also simulate the entire system by the SMM/ALE-FEM 
in 1 year as well which includes 365 cardiac cycles.

For the sake of tracking the growth of AAA as time marches and comparing results from two different multiscale ALE-
FEMs, numerical results of the displacement obtained from both the HMM/ALE-FEM and the SMM/ALE-FEM are shown in 
Figs. 4 and 5, respectively, where the displacement magnitudes are selected when the maximal inflow velocity occurs at 
t = 0.2 s among one cardiac cycle in one day.

For both methods, FSI model is solved in the time interval [0, 0.8] on each day, and as examples, we show the re-
sults at t = 0.2 on the 1st, 50th, 100th, 150th, 200th, 250th, 300th, 350th day, respectively, noting that in these figures 
the displacement field of the structure part shows the movement of the arterial wall while the displacement of the fluid 
part is numerically obtained by un

f ,h = un−1
f ,h + δt · vnf ,h with the zero initial displacement. In addition, to show the evolu-

tion of the FSI process in one cardiac cycle, we illustrate the magnitude of velocity fields within 0.8 s on the 365th day 
obtained from the HMM/ALE-FEM in Fig. 6 and from the SMM/ALE-FEM in Fig. 7, as another comparison, where we can 
see that the arterial wall thus the blood vessel lumen expands during the period of systole (0.1 s - 0.4 s) and contracts 
during the period of diastole (0.4 s - 0.8 s), corresponding to the prescribed inflow on the inlet behaving as one cardiac 
cycle.

All corresponding figures of results respectively obtained from the HMM/ALE-FEM and the SMM/ALE-FEM show a quite 
analogous evolution process in terms of both the displacement and the velocity. Further, to make a quantitative compar-
ison between these two different multiscale ALE-FEMs, we plot and compare the maximum diameter of the aneurysm 
obtained from the HMM/ALE-FEM with/without random variables and the SMM/ALE-FEM when time marches, as illus-
trated in Fig. 8, where we see that the variation trend of the maximum diameter along with time presents a slow 
growth during the first 250 days or so, then starts to grow fast after a transition period of around Day 250 to Day 
300, and, such a transition phenomenon is independent of the developed numerical methods. In fact, Fig. 8 indicates that 
14
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Fig. 4. Displacement snapshots for every 50 days by the HMM/ALE-FEM with 	t = 1 day and δt = 0.01 s. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

the results from three approaches highly agree with each other in terms of the maximum diameter of the aneurysm. 
Such coincidence can be explained that the change of elastic parameters in one day is very small in the SMM/ALE-FEM 
while they keep unchanged in the HMM/ALE-FEM, resulting in a quite similar FSI simulation process for both meth-
ods.

Therefore, we only apply the HMM/ALE-FEM to the next 3D example in Section 5.3 for the following reasons:

• It is more reasonable to assume that the elastic parameters are unchanged in one cardiac cycle (0.8 s);
• Two methods generate quite similar results;
• The HMM/ALE-FEM spends less computational cost, relatively.

5.2. Convergence test of the HMM/ALE-FEM

To quantitatively validate numerical results of the developed multiscale and monolithic ALE-FEMs, we investigate the 
convergence property of the HMM/ALE-FEM described in Algorithm 1 as an example. To that end, we conduct the following 
convergence test for the HMM/ALE-FEM in the 2D case shown in Section 5.1 with the grid doubling. As a whole, we denote 
the solution of the presented FSI problem as (w, p f ) =

(
(v f , ∂t ûs), p f

)
, where w = (v f , ∂t ûs) is the velocity variable 

of FSI, and its numerical solutions of the HMM/ALE-FEM as (wH , p f ,H ), (wH/2, p f ,H/2), (wH/4, p f ,H/4), (wH/8, p f ,H/8), 
(wH/16, p f ,H/16) on five adjacent mesh levels with the maximum mesh sizes H , H2 , 

H
4 , 

H
8 , 

H
16 , respectively, from the coarsest 

level to the finest level, as shown in Table 2 where the concrete value of each mesh size and number of degree of freedoms 
(DOFs) of the velocity and the pressure over each mesh level are also displayed. Additionally, we choose a time step size 
that is much smaller than the smallest mesh size H

16 , e.g., δt = 0.00001, to carry out numerical computations on all mesh 
levels with the least influence from the time step size over the total approximation accuracy.

Obviously, we do not know the real solution of the presented FSI problem, (wreal, p f ,real), for this 2D example. In order 
to show a comparable convergence rate of numerical solutions of the HMM/ALE-FEM for both the velocity and the pressure 
in their energy norms, i.e., the velocity’s approximation error in H1 norm and the pressure’s approximation error in L2
norm, we take numerical solutions of both the velocity and the pressure on the finest mesh level, wH/16 and p f ,H/16, as 
their “real” solutions, numerically, i.e., (wreal, p f ,real) ≈ (wH/16, p f ,H/16).
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Fig. 5. Displacement snapshots for every 50 days by the SMM/ALE-FEM with 	t = 0.0125 day and δt = 0.01 s.

Table 2
Mesh sizes and # of DOFs of velocity (wh ) and pressure (p f ,h ) over five 
mesh levels.
Mesh size # of DOFs of wh # of DOFs of p f ,h

H = 8.2122 576 196
H
2 = 4.1086 2168 688
H
4 = 2.0543 8266 2557

H
8 = 1.0271 32258 9841
H
16 = 0.5135 127426 38593

Table 3
Convergence results of the HMM/ALE-FEM for the 2D example.

h H H
2

H
4

H
8

‖wreal − wh‖1 1.9565 1.0114 0.4876 0.23
Order 0.9520 1.0525 1.0842
‖p f ,real − p f ,h‖0 0.4884 0.2496 0.0882 0.0399
Order 0.9686 1.4999 1.1440

After carrying out the HMM/ALE-FEM and P1/P1 element with the pressure stabilization through Algorithm 1 over the 
grid doubling for the 2D example, we obtain the convergence results shown in Table 3 and Fig. 9 for both the velocity 
and the pressure in their energy norms on four coarse mesh levels at t = 0.1. These numerical results clearly illustrate 
that the first order convergence rate is obtained for approximation errors of both the velocity and the pressure in their 
energy norms, i.e., ‖wreal − wh‖1 = O (h) and ‖p f ,real − p f ,h‖0 = O (h). They further validate the existing theoretical re-
sults while the lowest equal-order P1/P1 element with the pressure stabilization technique is utilized to discretize the 
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Fig. 6. Velocity snapshots in one cardiac cycle for every 0.1 s on the 365th day by the HMM/ALE-FEM.

derived saddle-point system in (31)-(33), that is, considering the regularity properties of both the velocity and the pres-
sure in the presented FSI model, i.e., w ∈ H2(�t

f ) × H2(�̂s) and p f ∈ H1(�t
f ) as a smooth interface �t

i ∈ C2 [71,55,32], 
we shall expect the first order optimal convergence rate for both the velocity in H1 norm and the pressure in L2 norm 
[57,59,60]. Therefore, as shown in Table 3 and Fig. 9, the obtained optimal convergence rate for both the velocity and the 
pressure in their energy norms ensure that our developed HMM/ALE-FEM is accurate and reliable for the presented FSI 
model.

5.3. The 3D validation on a patient CT scan data

In this section, we further validate our developed multiscale and monolithic ALE-FEM methods in the 3D case, where 
the computational domain, shown in Fig. 11, takes the local aneurysm part from a reconstruction of the full-body CT scan 
data of a patient, as illustrated in Fig. 10. In order to validate the developed numerical methods on the 3D CT scan data, 
we compare our numerical results with the clinical patient data on AAA growth reported in [72]. All boundary and initial 
conditions are the same with the 2D case studied in Section 5.1 except for the initial condition of the SMCs equation. Note 
that the density of SMCs is correlated to the elasticity of the arterial wall, more specifically, a low density of SMCs yields 
a large deformation while a high density of SMCs remains the shape of the arterial wall. Therefore, to initially form an 
aneurysm on the arterial wall with which we can start our 3D multiscale FSI simulation instantly, we artificially define the 
following initial condition for (9) through the following likelihood of “Gaussian distribution” function, with little information 
about the location where the maximum diameter of the aneurysm actually occurs during its growth,

S = S0

(
1− ω

γ
√
2π

e
− 1

2

(
z−μ
γ

)2
)

. (39)

This function depends on the z variable along the normal direction of the outlet surface, as shown in Fig. 12, and, μ is 
the mean of the distribution at which the initial value of the density of SMCs, S , reaches its minimum. As a consequence, 
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Fig. 7. Velocity snapshots in one cardiac cycle for every 0.1 s on the 365th day by the SMM/ALE-FEM.

Fig. 8. The growth status of the maximum diameter of AAA over 365 days obtained by HMM/ALE-FEM, HMM/ALE-FEM with random variables and SMM/ALE-
FEM.

the largest deformation of the arterial wall and thus the maximum diameter of the aneurysm may occur at the same place 
where z = μ. Therefore, (39) actually describes an inverse version of the normal Gaussian distribution function for the 
initial value of S , with γ as the standard deviation. In addition, ω is a fine-tuned parameter in (39) that controls the drop 
trend of the initial value of S near the aneurysm. For example, in our 3D numerical experiment below, we take μ = −0.64, 
γ = 0.008 and thus ω = 0.01 to assume that the density of SMCs, S , is initially close to S0 at the mean of the distribution, 
2
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Fig. 9. Convergence trend of the HMM/ALE-FEM for the 2D example.

Fig. 10. Different angle of views of a patient’s CT scan data.

where the aneurysm likely owns its initial maximum diameter obtained from the reconstruction of a patient’s 3D CT scan 
data, and, will be able to capture its largest size around the same place during AAA growth.

We implement the developed HMM/ALE-FEM for the proposed multiscale FSI model, and simulate the growth of the 
aneurysm in 5 years and compute 365 heartbeat cycles in each year. Since the maximum velocity of the blood fluid achieves 
at t = 0.2 s in each cardiac cycle, we take numerical results obtained at t = 0.2 s of the 365th cardiac cycle (on the 365th 
day) in each year to demonstrate the performance of our FSI simulation in 3D case, such as the displacement results of the 
arterial wall in each year. Then we simulate our developed model for this patient to predict the growth of AAA in five years, 
the displacement fields of the arterial wall along the time are shown in Fig. 13. The diameter of the aneurysm grows from 
34 mm to 42.5 mm over five years, which clearly shows that the deformation of the aneurysm tends to be larger and larger 
each year so that it is more significant than other parts of the arterial wall. In other words, the rupture risk has a much 
higher possibility to occur at the aneurysm that bears the largest deformation, as shown by our numerical results which 
coincides with the reality.

Moreover, we also compare the prediction of AAA growth (in terms of the maximum diameter of the aneurysm) with 
the historical data of AAA patients available in [72], as compared in Fig. 14. The historical data of AAA growth are collected 
W. Hao, P. Sun, J. Xu et al. Journal of Computational Physics 433 (2021) 110181
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Fig. 11. A portion of the 3D numerical example’s computational domain.

Fig. 12. The initial density of SMCs based on an inverse Gaussian distribution.

Fig. 13. Displacement snapshots in each year over five years.
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Fig. 14. Comparisons between our numerical results and the experimental data.

among 352 patients followed by a mean of 55.2 ± 37.4 months [72]. The mean growth rate varied from 2.07 ± 3.23 to 
4.72 ± 5.93 mm/year for five years. Our predicted result (2 mm/year) lies in the 95% confidence interval of the clinical data 
reported in [72] and thus is validated by the available clinical data, as illustrated in Fig. 14. In addition, we can also see 
that a transition phenomenon exists in Fig. 14 between Year 3 and Year 4, which occurs after a slow AAA growth period 
prior to Year 3, and before a fast AAA growth period starting at Year 4. A similar transition phenomenon of AAA growth 
status is also observed in the 2D case shown in Fig. 8, which may explain that such a transition phenomenon existing 
in AAA growth process is independent of the dimension as well, besides that it is independent of numerical methods as 
shown in Section 5.1. We believe that such a transition process of AAA growth, which gradually transits from a slow growth 
period to a fast growth period, is essentially determined by the hyperelastic property of the structure model adopted in 
our study, and, the nonlinear stress-strain relationship owned by the hyperelasticity model (e.g., see [41, Figure 5.3]) shall 
play a key role behind this since it governs the deformation of the arterial wall as well as the aneurysm growth all the 
time.

To further evaluate the reliability and feasibility of the developed multiscale ALE-FEM, by means of the presented Eikonal 
equation (34), we compute and predict the thickness of the arterial wall that is highly related to AAA rupture risk. Our 
numerical prediction of the arterial wall’s thickness shall endure a long-term simulation, say, after eight years, we obtain 
the numerical result shown in Fig. 15, where the thickness at the aneurysm is decreased by 35% from 1.15 mm to 0.75 
mm and has a much higher rupture risk than other parts of the arterial wall. Moreover, numerical results suggest that the 
decreasing rate of the arterial wall’s thickness is more related to AAA rupture risk rather than the absolute thickness itself. 
For instance, the arterial wall at Point B is thinner than that at Point C, but the deformation at Point B is much less than 
that at Point C, therefore the rupture risk at Point C is higher, as illustrated in Fig. 15.

6. Conclusion

In this numerical study, we develop two types of multiscale and monolithic ALE-finite element methods (ALE-FEM) for 
the hemodynamic FSI problem that involves the aneurysm progression, and, the designed ALE-finite element approximation 
algorithms of both heterogeneous multiscale method (HMM) and seamless multiscale method (SMM) can predict the long-
term growth of abdominal aortic aneurysms (AAA) very well. In addition to providing all technical aspects of two distinct 
and efficient numerical approaches, we apply both the HMM/ALE-FEM and the SMM/ALE-FEM to a schematic 2D example 
with the aneurysm growth, and obtain coincident results. Numerical validation in terms of a convergence test is also pro-
vided for the developed HMM/ALE-FEM to illustrate that both velocity and pressure’s approximation errors hold optimal 
convergence properties in L2 and H1 norms. Further, we apply the HMM/ALE-FEM to a three-dimensional AAA patient’s CT 
scan imaging data. Our numerical results demonstrate that the prediction lies in a reasonable range based on AAA patients’ 
historical data. Additionally, this numerical approach also provides an estimation of arterial wall thickness which contributes 
to AAA rupture risk as well.
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Fig. 15. Dynamics of the arterial wall thickness at five picked position points over 8 years.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

W. Hao was supported in part by AHA grant 17SDG33660722. P. Sun was supported by a grant from The Simons Foun-
dation (MPS-706640, PS). J. Xu was supported in part by Verne M. Willaman Professor Chair Fund. L. Zhang was supported 
by the Center for Computational Mathematics and Applications (CCMA), Penn State University.

References

[1] S. Aggarwal, A. Qamar, V. Sharma, A. Sharma, Abdominal aortic aneurysm: a comprehensive review, Exp. Clin. Cardiol. 16 (2011) 11–15.
[2] D.P. Howard, A. Banerjee, J.F. Fairhead, A. Handa, L.E. Silver, P.M. Rothwell, Population-based study of incidence of acute abdominal aortic aneurysms 

with projected impact of screening strategy, J. Am. Heart Assoc. 4 (2015) e001926.
[3] F. Collins, H. Varmus, A new initiative on precision medicine, N. Engl. J. Med. 372 (2015) 793–795.
[4] P. Heidenreich, J. Trogdon, O. Khavjou, J. Butler, K. Dracup, M. Ezekowitz, E. Finkelstein, Y. Hong, C. Johnston, A. Khera, Forecasting the future of 

cardiovascular disease in the United States: a policy statement from the American Heart Association, Circulation 123 (2011) 933–944.
[5] G. Kolata, Genetic heart disease risk eased by healthy habits, study finds, https://www.nytimes .com /2016 /11 /14 /health /genetic -heart -disease -risk-

eased -by-healthy-habits -study-finds .html, 2016.
[6] S. Canic, Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties, Comput. Vis. 

Sci. 4 (2002) 147–155.
[7] S. Canic, D. Mirkovic, A hyperbolic system of conservation laws in modeling endovascular treatment of abdominal aortic aneurysm, in: Hyperbolic 

Problems: Theory, Numerics, Applications, Springer, 2001, pp. 227–236.
22

http://refhub.elsevier.com/S0021-9991(21)00076-0/bib1824B0780303A80C77A60A7296063844s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib340C78FEF77E49BF3115EB089BD45B1Fs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib340C78FEF77E49BF3115EB089BD45B1Fs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib16B445E908D7EBDF7DA69BA0FC190D14s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibE28B4E5D29A2F63C8143FC3B48AB66DBs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibE28B4E5D29A2F63C8143FC3B48AB66DBs1
https://www.nytimes.com/2016/11/14/health/genetic-heart-disease-risk-eased-by-healthy-habits-study-finds.html
https://www.nytimes.com/2016/11/14/health/genetic-heart-disease-risk-eased-by-healthy-habits-study-finds.html
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib60D2AC3702E2A0A460DEFB6082AE21B7s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib60D2AC3702E2A0A460DEFB6082AE21B7s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib8302471F954D4A6DDC7E066B39711464s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib8302471F954D4A6DDC7E066B39711464s1


W. Hao, P. Sun, J. Xu et al. Journal of Computational Physics 433 (2021) 110181
[8] S. Canic, K. Ravi-Chandar, Z. Krajcer, D. Mirkovic, S. Lapin, Mathematical model analysis of wallstent and aneurx: dynamic responses of bare-metal 
endoprosthesis compared with those of stent-graft, Texas Heart Inst. J. 32 (2005) 502.

[9] P. Erhart, A. Hyhlik-Durr, P. Geisbusch, D. Kotelis, M. Muller-Eschner, T.C. Gasser, H. von Tengg-Kobligk, D. Bockler, Finite element analysis in asymp-
tomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors, Eur. J. Vasc. Endovasc. Surg. 49 (2015) 
239–245.

[10] P. Fok, Growth of necrotic cores in atherosclerotic plaque, Math. Med. Biol. 29 (2011) 301–327.
[11] C. Poelma, P.N. Watton, Y. Ventikos, Transitional flow in aneurysms and the computation of haemodynamic parameters, J. R. Soc. Interface 12 (2015).
[12] D. Roy, S. Lerouge, K. Inaekyan, C. Kauffmann, R. Mongrain, G. Soulez, Experimental validation of more realistic computer models for stent-graft repair 

of abdominal aortic aneurysms, including pre-load assessment, Int. J. Numer. Methods Biomed. Eng. 32 (2016).
[13] E. Soudah, E.Y. Ng, T.H. Loong, M. Bordone, U. Pua, S. Narayanan, CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic 

geometry with CT, Comput. Math. Methods Med. 2013 (2013) 472564.
[14] J. Tambaa, M. Kosor, S. Canic, Mathematical modeling of vascular stents, SIAM J. Appl. Math. 70 (2010) 1922–1952.
[15] F. Tian, L. Zhu, P. Fok, X. Lu, Simulation of a pulsatile non-Newtonian flow past a stenosed 2d artery with atherosclerosis, Comput. Biol. Med. 43 (2013) 

1098–1113.
[16] Q. Wang, A hydrodynamic theory for solutions of nonhomogeneous nematic liquid crystalline polymers of different configurations, J. Chem. Phys. 116 

(2002) 9120–9136.
[17] J. Wu, S.C. Shadden, Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry, Ann. Biomed. Eng. 43 

(2015) 1543–1554.
[18] X. Yang, G. Forest, W. Mullins, Q. Wang, Dynamic defect morphology and hydrodynamics of sheared nematic polymers in two space dimensions, J. 

Rheol. 53 (2009) 589–615.
[19] Y. Yu, Fluid-structure interaction modeling in 3D cerebral arteries and aneurysms, in: Biomedical Technology, Springer, 2018, pp. 123–146.
[20] Y. Yu, P. Perdikaris, G. Karniadakis, Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms, J. Comput. Phys. 323 (2016) 219–242.
[21] J. Zhao, X. Yang, J. Shen, Q. Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and 

viscous fluids, J. Comput. Phys. 305 (2016) 539–556.
[22] K. Yang, P. Sun, L. Wang, J. Xu, L. Zhang, Modeling and simulation for fluid-rotating structure interaction, Comput. Methods Appl. Mech. Eng. 311 (2016) 

788–814.
[23] A. Barker, X. Cai, Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling, J. Comput. 

Phys. 229 (2010) 642–659.
[24] P. Causin, J. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid–structure problems, Comput. Methods Appl. Mech. 

Eng. 194 (2005) 4506–4527.
[25] S. Idelsohn, P. Del, R. Rossi, E.O. nate, Fluid-structure interaction problems with strong added-mass effect, Int. J. Numer. Methods Eng. 80 (2009) 

1261–1294.
[26] C. Taylor, T. Hughes, C. Zarins, Finite element modeling of blood flow in arteries, Comput. Methods Appl. Mech. Eng. 158 (1998) 155–196.
[27] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, Numerical simulation system for blood flow in the cerebral artery using CT imaging data, JSME Int. J. Ser. 

C 44 (2001) 982–989.
[28] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T. Tezduyar, Influence of wall elasticity in patient-specific hemodynamics simulations, Comput. Fluids 36 

(2007) 160–168.
[29] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T. Tezduyar, Fluid-structure interaction modeling of a patientspecific cerebral aneurysm: influence of 

structural modeling, Comput. Mech. 43 (2008) 151–159.
[30] H. Watanabe, S. Sugiura, H. Kafuku, T. Hisada, Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element 

method, Biophys. J. 87 (2004) 2074–2085.
[31] Q. Zhang, T. Hisada, Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ale finite element method, 

Comput. Methods Appl. Mech. Eng. 190 (2001) 6341–6357.
[32] J.S. Martín, L. Smaranda, T. Takahashi, Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, J. Comput. 

Appl. Math. 230 (2009) 521–545.
[33] R. Lan, P. Sun, M. Mu, Mixed finite element analysis for an elliptic/mixed-elliptic coupling interface problem with jump coefficients, Proc. Comput. Sci. 

108 (2017) 1913–1922.
[34] R. Lan, M. Ramirez, P. Sun, Finite element analysis of an arbitrary Lagrangian-Eulerian method for Stokes/parabolic moving interface problem with 

jump coefficients, Results Appl. Math. 8 (2020) 100091.
[35] R. Lan, P. Sun, A novel arbitrary Lagrangian-Eulerian finite element method for a parabolic/mixed parabolic moving interface problem, J. Comput. Appl. 

Math. 383 (2021) 113125.
[36] R. Lan, P. Sun, A novel arbitrary Lagrangian-Eulerian finite element method for a mixed parabolic problem on a moving domain, J. Sci. Comput. 85 

(2020) 9.
[37] I. Kesler, R. Lan, P. Sun, The arbitrary Lagrangian-Eulerian finite element method for a transient Stokes/parabolic interface problem, Int. J. Numer. Anal. 

Model. (2021), in press.
[38] R. Lan, P. Sun, A monolithic arbitrary Lagrangian-Eulerian finite element analysis for a Stokes/parabolic moving interface problem, J. Sci. Comput. 82 

(2020) 59.
[39] E. Weinan, B. Engquist, et al., The heterogenous multiscale methods, Commun. Math. Sci. 1 (2003) 87–132.
[40] E. Weinan, W. Ren, E. Vanden-Eijnden, A general strategy for designing seamless multiscale methods, J. Comput. Phys. 228 (2009) 5437–5453.
[41] M. Amabili, Hyperelasticity of Soft Biological and Rubber Materials, Cambridge University Press, 2018, pp. 151–224.
[42] C. Gasser, R. Ogden, G. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface 3 (2006) 

15–35.
[43] J. Humphrey, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer Science & Business Media, 2013.
[44] T. Carew, R. Vaishnav, D. Patel, Compressibility of the arterial wall, Circ. Res. 23 (1968) 61–68.
[45] C. Chuong, Y. Fung, Compressibility and constitutive equation of arterial wall in radial compression experiments, J. Biomech. 17 (1984) 35–40.
[46] W. Hao, S. Gong, S. Wu, J. Xu, M. Go, A. Friedman, D. Zhu, A mathematical model of aortic aneurysm formation, PLoS ONE 12 (2017) 2:e0170807.
[47] D.A. Vorp, J.P. Vande Geest, Biomechanical determinants of abdominal aortic aneurysm rupture, Arterioscler. Thromb. Vasc. Biol. 25 (2005) 1558–1566.
[48] D.A. Vorp, Biomechanics of abdominal aortic aneurysm, J. Biomech. 40 (2007) 1887–1902.
[49] J. Zhang, J. Schmidt, E. Ryschich, H. Schumacher, J. Allenberg, Increased apoptosis and decreased density of medial smooth muscle cells in human 

abdominal aortic aneurysms, Chin. Med. J. 116 (2003) 1549–1552.
[50] M.I. Patel, P. Ghosh, J. Melrose, M. Appleberg, Smooth muscle cell migration and proliferation is enhanced in abdominal aortic aneurysms, Aust. N.Z. J. 

Surg. 66 (1996) 305–308.
[51] N. Airhart, B.H. Brownstein, J.P. Cobb, W. Schierding, B. Arif, T.L. Ennis, R.W. Thompson, J.A. Curci, Smooth muscle cells from abdominal aortic aneurysms 

are unique and can independently and synergistically degrade insoluble elastin, J. Vasc. Surg. 60 (2014) 1033–1041.
23

http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4B8D59F2834ED500AAC945138B0E7CF6s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4B8D59F2834ED500AAC945138B0E7CF6s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibCB674CD1C67F3F2AFDED18B072A128B0s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibCB674CD1C67F3F2AFDED18B072A128B0s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibCB674CD1C67F3F2AFDED18B072A128B0s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib8B140DD6E8331D1A772DE0FD03E2A30As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF989D61AB1B8DF40925A5CF92D745D65s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib8D5ED87DF6906CB4AF6140B20051D7AEs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib8D5ED87DF6906CB4AF6140B20051D7AEs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib2FE2DEE2AC449C2393093512CF5BF837s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib2FE2DEE2AC449C2393093512CF5BF837s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib42186A2C23F13284F9EA0CF217265E8Bs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib596F774992A3C2680393E2CDF5BEFFB8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib596F774992A3C2680393E2CDF5BEFFB8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib475E743DC74071216E10BECD379D79D8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib475E743DC74071216E10BECD379D79D8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibFB5A2AC0470025B5BE2F04D2300823DFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibFB5A2AC0470025B5BE2F04D2300823DFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibABC855E052F8BA7F85C0029B62EF621As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibABC855E052F8BA7F85C0029B62EF621As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib512FBF6290AD46E1E3408D0E31B6F54Fs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibEA5F107A73B58E14E398D41211EE3364s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib8E4202F82D0FA00737C286BF06A63A1Cs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib8E4202F82D0FA00737C286BF06A63A1Cs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib876310925B625396EFB181D0E135EFDBs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib876310925B625396EFB181D0E135EFDBs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib0DF1B712799F307AF8F0827A6ACF6196s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib0DF1B712799F307AF8F0827A6ACF6196s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibE25D00A1FD0F18BE7FF0F07F53FABD8Es1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib2C43A150D3D95277A66AB4FB35D9F96As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib2C43A150D3D95277A66AB4FB35D9F96As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibADEAADA604A7FF65597350EA2C052F78s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibADEAADA604A7FF65597350EA2C052F78s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC84A3F85C2ED0F5DF51F445E06120F1As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC84A3F85C2ED0F5DF51F445E06120F1As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF23F72C35B4D43107B0C523C6EBA7DEBs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF23F72C35B4D43107B0C523C6EBA7DEBs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF222CDF39AEAA9DB2FA357B04A676CB9s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF222CDF39AEAA9DB2FA357B04A676CB9s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib0E8E090623C1A7FBF4B090A491104E57s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib0E8E090623C1A7FBF4B090A491104E57s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC4B7818B87E5D916570655D6A46F099Es1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC4B7818B87E5D916570655D6A46F099Es1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibCD4E1714A674E031300E4FBA969BDB62s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibCD4E1714A674E031300E4FBA969BDB62s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib85F10E21B18B9A82EF47785E87198892s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib85F10E21B18B9A82EF47785E87198892s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4991629FD798F3E05E68B95D9B8B30B6s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4991629FD798F3E05E68B95D9B8B30B6s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib538FE000A253E17A90523C013ABC23A3s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib538FE000A253E17A90523C013ABC23A3s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib15A2C15D9F3B89342C6ACEF14EBAEFD5s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib15A2C15D9F3B89342C6ACEF14EBAEFD5s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibFF42DD34D3B29B9D596AD215793ED488s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib1448402CA79658048165C04C139825BCs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC43AE3C896D7D158C759117B9BF3D4B8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib66F710B9CD0A0B6B5517946C000A4381s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib66F710B9CD0A0B6B5517946C000A4381s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib53E3713DDAE6B2EE14DD46D493DEFA35s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC1DF1539B6A38C99054E7120FFC2D39Fs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibA7B54836BC6E99F47C6A56E08C04D74As1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibD2357BDBC55F5115085E819EFF5DF775s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC0055FA4CDC19A2690BFEE3643413A7Ds1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib90D71B2CC68252B3BA8587DC59A3C1B5s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib74ECE31E8A6586D06A856E18210AFD5Bs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib74ECE31E8A6586D06A856E18210AFD5Bs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF10194392AD2C44F8E1C6FD817DE04DFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF10194392AD2C44F8E1C6FD817DE04DFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibA216EE950AD682C3DE1CC1BBF702B5DDs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibA216EE950AD682C3DE1CC1BBF702B5DDs1


W. Hao, P. Sun, J. Xu et al. Journal of Computational Physics 433 (2021) 110181
[52] A.W. Chung, K. Au Yeung, G.G. Sandor, D.P. Judge, H.C. Dietz, C. van Breemen, Loss of elastic fiber integrity and reduction of vascular smooth muscle 
contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome, Circ. 
Res. 101 (2007) 512–522.

[53] H. Yanagisawa, J. Wagenseil, Elastic fibers and biomechanics of the aorta: insights from mouse studies, Matrix Biol. 85–86 (2020) 160–172.
[54] T. Richter, Fluid-Structure Interactions, Lecture Notes in Computational Science and Engineering, vol. 118, Springer International Publishing, 2017.
[55] L. Gastaldi, A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 9 (2001) 123–156.
[56] F. Nobile, L. Formaggia, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 7 (2010) 

105–132.
[57] T. Hughes, L. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: 

a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Eng. 59 (1986) 
85–99.

[58] L. Franca, T. Hughes, A.M.I. Loula, A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element 
formulation, Numer. Math. 53 (1988) 123–141.

[59] T. Tezduyar, Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech. 28 (1992) 1–44.
[60] M. Braack, E. Burman, V. John, G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Eng. 196 

(2007) 853–866.
[61] T.E. Tezduyar, S. Mittal, S. Ray, R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure 

elements, Comput. Methods Appl. Mech. Eng. 95 (1992) 221–242.
[62] G. Scovazzi, B. Carnes, X. Zeng, S. Rossi, A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible 

solid dynamics: a dynamic variational multiscale approach, Int. J. Numer. Methods Eng. 106 (2016) 799–839.
[63] N.M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div. 85 (1959) 67–94.
[64] J. Xu, K. Yang, Well-posedness and robust preconditioners for discretized fluid-structure interaction systems, Comput. Methods Appl. Mech. Eng. 292 

(2015) 69–91.
[65] J.A. Sethian, Fast marching methods, SIAM Rev. 41 (1999) 199–235.
[66] A.G. Churbanov, P.N. Vabishchevich, Numerical solution of boundary value problems for the Eikonal equation in an anisotropic medium, J. Comput. 

Appl. Math. 362 (2019) 55–67.
[67] J. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Science, Cambridge University Press, 

Cambridge, UK, 1996.
[68] A. Friedman, W. Hao, A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors, Bull. Math. Biol. (2014).
[69] W. Hao, A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model, PLoS ONE 9 (2014) e90497.
[70] W. Hao, E.D. Crouser, A. Friedman, Mathematical model of sarcoidosis, Proc. Natl. Acad. Sci. USA (2014).
[71] H. Lee, S. Xu, Finite element error estimation for quasi-Newtonian fluid-structure interaction problems, Appl. Math. Comput. 274 (2016) 93–105.
[72] M.V. De Ceniga, R. Gomez, L. Estallo, L. Rodriguez, M. Baquer, A. Barba, Growth rate and associated factors in small abdominal aortic aneurysms, Eur. 

J. Vasc. Endovasc. Surg. 31 (2006) 231–236.
24

http://refhub.elsevier.com/S0021-9991(21)00076-0/bib150644DF89E8A61B2A6B7BBFA4CD1E9Ds1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib150644DF89E8A61B2A6B7BBFA4CD1E9Ds1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib150644DF89E8A61B2A6B7BBFA4CD1E9Ds1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib339413CFE81EF9CB75895950CEC5B6C6s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib35412716E20491F76F5EC25E5EDCD698s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibCC962A414C8849C40E6AE6830DA3C242s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4413B5415434781CABCB64F77454FBDCs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4413B5415434781CABCB64F77454FBDCs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib08D80A0B92F897208061C3154F2E090Bs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib08D80A0B92F897208061C3154F2E090Bs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib08D80A0B92F897208061C3154F2E090Bs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4ABA13E97D1AC243F01BB7C38C04ECE8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib4ABA13E97D1AC243F01BB7C38C04ECE8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibC429391F452CF1CBCB3158D741BE2010s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibA4884ACA76664976042A59F99F862DCDs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibA4884ACA76664976042A59F99F862DCDs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibA5027B1A64A15C212CF5D56B46AFD5F8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibA5027B1A64A15C212CF5D56B46AFD5F8s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibB595328030718DAD197B2F6EC5008555s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibB595328030718DAD197B2F6EC5008555s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibFE7B9EEC937E2812469875836CD2E6F9s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib3AB9F4659CE249B0A44703F89BE679EFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib3AB9F4659CE249B0A44703F89BE679EFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibD2A323ACF2783EE9D7D11C24783EC6EAs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibD6942D461A56722719F550F4D2184EBFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibD6942D461A56722719F550F4D2184EBFs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib9B8F0A22CC10CF47AACBFDA0DF2E6945s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib9B8F0A22CC10CF47AACBFDA0DF2E6945s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib29A42EEE21608E6C4E85903B70051B60s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib498AB1EA4AAB0295389F6C51484CCA6Cs1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibF082E3D1947F12583F0D1272CBD9A907s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bib94A429CB963DBD671EEC8FF633CB17D9s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibEA6CFF0FBC9940139C510EC4DBB78731s1
http://refhub.elsevier.com/S0021-9991(21)00076-0/bibEA6CFF0FBC9940139C510EC4DBB78731s1

	Multiscale and monolithic arbitrary Lagrangian--Eulerian finite element method for a hemodynamic fluid-structure interactio...
	1 Introduction
	2 Model description
	2.1 Blood fluid motion
	2.2 Hyperelastic structure motion of the arterial wall
	2.3 The biological equation of smooth muscle cells (SMCs)
	2.4 Interface conditions

	3 The ALE weak form of FSI involving aneurysms
	3.1 Arbitrary Lagrangian--Eulerian mapping
	3.2 The weak form in the ALE frame

	4 The finite element approximation in the ALE frame
	4.1 The discrete ALE mapping and mixed finite element spaces
	4.2 Multiscale and monolithic ALE mixed finite element schemes
	4.3 Multiscale methods and algorithm descriptions
	4.3.1 The heterogeneous multiscale method (HMM)
	4.3.2 The Seamless multiscale method (SMM)

	4.4 Computations of the arterial wall thickness and the aneurysm radius

	5 Numerical simulations
	5.1 The test of 2D case
	5.2 Convergence test of the HMM/ALE-FEM
	5.3 The 3D validation on a patient CT scan data

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


