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Abstract A general analysis framework is presented in this paper for many different types of finite ele-
ment methods (including various discontinuous Galerkin methods). For the second-order elliptic equation
—div(aVu) = f, this framework employs four different discretization variables, up, pp, @y and pp, where up
and py, are for approximation of v and p = —aVu inside each element, and @ and pjp are for approximation of
residual of © and p - n on the boundary of each element. The resulting 4-field discretization is proved to satisfy
two types of inf-sup conditions that are uniform with respect to all discretization and penalization parameters.
As a result, many existing finite element and discontinuous Galerkin methods can be analyzed using this general

framework by making appropriate choices of discretization spaces and penalization parameters.
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1 Introduction

In this paper, we propose an extended Galerkin analysis framework for most of the existing finite element
methods (FEMs). We will illustrate the main idea by using the following elliptic boundary value problem:

—div(aVu) = f in Q,
u=0 onI'p, (1.1)
—(aVu)-n=0 onTy,

where Q C RY (d > 1) is a bounded domain and its boundary, 952, is split into Dirichlet and Neumann
parts, namely 02 = I'p UT'yy. For simplicity, we assume that the (d — 1)-dimensional measure of I'p
is nonzero. Here, m is the outward unit normal direction of I'y, and a : R — R? is a bounded and
symmetric positive definite matrix, with its inverse denoted by ¢ = a~'. By setting p = —aVu, the
above problem can be written as

ecp+Vu=0 inQQ,

(1.2)
—divp=—f inQ
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with the boundary condition u =0 on I'p and p-n =0 on I'y.

There are two major variational formulations for (1.1). The first is to find
ue Hp(Q) :={ve HY(Q) :v|p, =0}
such that for any v € H}(Q),
/(aVu) -Vode = / fvda. (1.3)
Q Q
The second one is to find
p € Hy(div;Q):={gc H(div;Q) :q-n=00on Ty}, uecL*Q)

such that for any g € Hy(div; Q) and v € L*(Q),

/cp-qu—/udiqux:(),
Q Q

—/Udivpdxz—/fvdx.
Q Q

In correspondence to the two variational formulations, two different conforming finite element methods
have been developed. The first one, which approximates u € H} (), can be traced back to the 1940s [31]
and the Courant element [25]. After a decade, many works, such as [17,28,29,32,37,40,50,51], proposed
more conforming elements and presented serious mathematical proofs concerning error analysis and,
hence, established the basic theory of FEMs. These primal FEMs contain one unknown, namely u, to

(1.4)

solve. The second one, which approximates p € Hy (div;§2) and u € L?() based on a mixed variational
principal, is called the mized FEMs [3,7,9,12,36,43]. These mixed methods solve two variables, namely
flux variable p and u, and the condition for the well-posedness of mixed formulations is known as inf-sup
or the Ladyzhenskaya-Babuska-Breezi (LBB) condition [9)].

Contrary to the continuous Galerkin methods, the discontinuous Galerkin (DG) methods, which can
be traced back to the late 1960s [5,34], aim to relax the conforming constraint on u or p-n. To maintain
consistency of the DG discretization, additional finite element spaces need to be introduced on the element
boundaries. In essence, the numerical fluxes on the element boundaries were introduced explicitly and
therefore eliminated. In most existing DG methods, only one such boundary space is introduced as, for
example, Lagrangian multiplier space, either for u as the primal DG methods [14,24,27] or for p-n as the
mixed DG methods [30]. Primal DG methods have been applied to purely elliptic problems; examples
include the interior penalty methods studied in [2,6,48] and the local DG method for the elliptic problem
in [24]. Primal DG methods for diffusion and elliptic problems were considered in [13]. A review of the
development of DG methods up to 1999 can be found in [23].

Given Q C RY, for any D C Q, and any positive integer m, let H™ (D) be the Sobolev space with the
corresponding usual norm and semi-norm, denoted by || - |[n,p and | - ;. p, respectively. The L2-inner
product on D and 9D are denoted by (-,-)p and (-, -)ap, respectively. ||-[lo.p and ||-[lo,op are the norms
of Lebesgue spaces L?(D) and L?(9D), respectively. We abbreviate || - |l;m.p and |« [.p by || - ||m and
| - |m, respectively, when D = Q, and || - |lo = || - |o,0-

We denote by {7,}, a family of shape-regular triangulations of Q. Let hx = diam(K) and h =
max{hy : K € T,}. We also denote by H™(T) the space of functions on Q whose restriction to each
element K belongs to the space H™(K) for any m > 0. For any K € T, denote nk as the outward unit
normal of K. Denote by &, the union of the boundaries of the elements K of Tj,.

Associated with the triangulation 7y, denote Vj, and @} to be the generic piecewise smooth scalar
and vector-valued discrete spaces on the triangulation 7y, respectively. In addition, V}, and Q;, are the
generic piecewise smooth discrete spaces on &y, respectively.



Hong Q G et al. Sci China Math 3
In this paper, we consider the following problem: Find (pp, un, Pn,@n) € Qn x Vi, X Q1 x V3, such that

(epn,an)kx — (un,divgn) x + (Un, qn - n)ox =0, Van € Qp,
(Ph, Vun)k — (Dn -y vn)ox = —(f,on)k, Yop € Vi, (15)
([ur] = 77 Pn,dn) =0, Vdn € Qn,
{

[pr] — 0~ Y, o) =0, Yo, € Vi,

where uy, := Uy + Un, Pn := Pn + Pr and <-, > = ZEGS;I,<" '>e~

We will explain the relevant technical details for (1.5) in the following sections. Here, we make the
following general comments:

1. Under proper choices of the discrete spaces, the formulation (1.5) recovers the analysis of H*
conforming finite element if we eliminate all the discretization variables except u;. By eliminating py,
the formulation (1.5) recovers some special cases of the hybrid methods [20]. If we further eliminate iy,
the resulting system solves two variables p;, and wj, which recovers the H(div) mixed finite element
method.

2. The relationship between the formulation (1.5) and DG methods is twofold. First, by simply taking
the trivial spaces for 45, and Py, the formulation (1.5) recovers most of DG methods shown in [4]. Second,
if we confine to a special choice

up ={un} and pp = {pn},

by virtue of the characterization of the hybridization and the DG method [20], the formulation (1.5) can
be related to some DG methods if we eliminate both p;, and 4 (see Section 4 for details).

3. In Subsection 4.1, the formulation (1.5) can be compared with most hybridized discontinuous
Galerkin (HDG) methods if we eliminate py. In 2009, a unified formulation of the hybridization of
discontinuous Galerkin, mixed, and continuous Galerkin methods for second-order elliptic problems was
presented in [21]. The resulting system needs to solve three variables, one approximating u, one approx-
imating p, and the third one approximating the trace of u on the element boundary. A projection-based
error analysis of HDG methods was presented in [22], in which a projection operator was tailored to
obtain the L? error estimates for both potential and flux. More references to the recent developments of
HDG methods can be found in [18].

4. In Subsection 4.2, the formulation (1.5) can be compared with most weak Galerkin (WG) methods
if we eliminate 4. With the introduction of weak gradient and weak divergence, a WG method for a
second-order elliptic equation formulated as a system of two first-order linear equations was proposed and
analyzed in [46,47]. In fact, the weak Galerkin methods in [46] solve two variables, one approximating u
and the other one approximating the flux p - n on the element boundary, which differs from the method
proposed in this paper when « is not piecewise constant. While the weak Galerkin methods in [47] solve
three variables, one approximating u, one approximating p, and the third one approximating the flux
p - n on the element boundary. A summary of the idea and applications of WG methods for various
problems can be found in [45].

In addition, we study two types of uniform inf-sup conditions for the proposed formulation in Sec-
tion 3, by which the well-posedness of the formulation (1.5) follows naturally. With these uniform inf-sup
conditions, we obtain some limiting of the formulation (1.5) in Subsection 4.4.

1. If the parameters in the Nitsche’s trick are set to be 7 = (ph.)~!, n = 771, the formulation (1.5)
is shown to converge to the H' conforming method as p — 0 under certain conditions pertaining to the
discrete spaces.

2. If the parameters in the Nitsche’s trick are set to be n = (phe)™!, 7 = =1, the formulation (1.5)
is shown to converge to the H(div) conforming method as p — 0 under certain conditions pertaining to
the discrete spaces.

Throughout this paper, we shall use the letter C, which is independent of mesh-size and stabiliza-
tion parameters, to denote a generic positive constant which may stand for different values at different
occurrences. The notations x <y and z 2 y mean x < Cy and x > Cy, respectively.
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2 Derivation of the method

Let & = &,\ 09 be the set of interior edges and £7 = &, \ £ be the set of boundary edges. Furthermore,
for any e € &, let h, = diam(e). Let e be the common edge of two elements K+ and K, and let
n' = n|yxi be the unit outward normal vector on K® with i = +, —. For any scalar-valued function
v € H(T;,) and vector-valued function ¢ € H'(Ty,), let v¥ = v |yx+ and g& = q|yx+. Then, we define
averages {-}, {-} and jumps [-], [] as follows:

=50 +v), fah=3(@" +a7) onced,

[v] =vTnt +v ™ n~, [g=q¢" - n"+q -n~ onecé, (2.1)
[v] =vn, {v}=v, {g}=q, [q/=0 oneclp,

[]=0. {t}=v. fa}=q. lg=q-n oncely.

The notation follows the rules: (i) {-}} and [-] are vector-valued operators; (ii) {-} and [-] are scalar-valued
operators.
For simplicity of the exposition, we use the following convention:

('7') = Z ('7 ')Kv <7> = Z <’7’>67 <'v '>3Th = Z <'7 '>3K' (2'2)

KeTy e€&y KeTy,

For any scalar-valued function v and vector-valued function q, we denote

<Uv q: n>87_h = Z <Uv q: nK>8K-
KeTh

Here, we specify the outward unit normal direction n corresponding to the element K, namely ng. In
addition, let Vj, and div;, be defined as

Vh’l)|K = VU|K, dthq|K = divq|K, VK €Ty
Lemma 2.1.  With the averages and jumps defined in (2.1), we have the following identities [4]:
(v,divig) + (Viv,q) = (v.q a7, = (fa}, [v]) + (g, {v}), Vg€ H(Th), veH'(T). (23)

For any g, € Qp, and v, € V},, integration by parts gives

(ep,an)k — (u, divign)k + (qn - n,u)ox =0, Vaqn € pa, (2.4)
(P, Vavn)k — (p-n,vp)ox = —(f,on)k, Vup € Vi,
We introduce the 4-field discretization variables as
U~ Up, = in K,
hy P~ Dh (2.5)

u =i, p~pp, onodK.

Here, we point out that u; and pj are single-valued on &;,. Then we obtain the major but natural part
of the DG formulation:

{(Cph,Qh)K — (un,divrgr)x + (gn - M, n)ox =0, Van € Qn, (2.6)

(Ph, Vivn) ik — (Pn -y vn)ox = —(f,vn)k,  Yvn € Vi
Next, define 4, and p, on the boundary
Up, := Up + Up, Pp:=Pn+Pn on oK.

Here, pp, and 4, are some approximations of p and w on the element boundary in terms of u; and py,
from inside of elements. In the simple case,

pr={pn}, Un:={un}.
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Figure 1 DG notation
We apply the Nitsche’s trick to @, € V3, and pi € Q) to impose weak continuity (see Figure 1):

Pn = Tlun], an = n[pa).

More precisely,

<|Iuhﬂ - Tﬁlﬁhaq}» = Oa quh S Qha (2 7)
([pn] =0~ Vin, on) =0, Vo, € Vi,
Collecting (2.6) and (2.7), we obtain a common case of (1.5) as
cPh,qn) Kk — (un, divagn)x + (Un, qn - M)ox =0,
(2.8)

Tun] — 7 'Pn, gn) =0,

(
(Ph, Vavn)k — (D -, vn)ox = —(f,vn)o, ks
(
([pn] =0~ Vin, o) = 0,

where 4y, := {un} + @n and Py, := {pr}} + Pr. In the context of this paper, we will mainly focus on the
analysis of the 4-field formulation (2.8).

3 Unified analysis of the 4-field formulation

In this section, we shall present two types of the inf-sup condition for the formulation (2.8). In both
cases, the parameter p is assumed to be a positive constant. For the sake of simplicity of the exposition,
we also abbreviate the dependence of both p and mesh size h to pp, := ph.

3.1 Some equivalent formulations
Let Q) : L*(&,) — Qp, and QU : L2(E,) — Vi, be the L? projections. We first give some equivalent
formulations which will be useful in the analysis.

3-field formulation I. By (2.7), we have the explicit expression of pj as

prn= 79, [un] on & (3.1)

Denote

up = (uh,ﬂh) and 0p = (Uh,ﬁh).

Then the formulation (2.8) can be recast as

{ah(piu(Ih) +bn(gn,Un) =0, VYan € Qn, (3.2)

b, (Pny 1) — cu(in, on) = —(f,on), Vin € Vi,
where
an(Pn, qn) = (cPh, qn),
br(qn, 0n) = —(divagn,va) + ([gn], 0n + {vn}),
en(n, ) = (1 [unl, @ lval) + (0™ i, On).
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We note that (3.2) is equivalent to the formulation (2.8). Firstly, the solution (pp,un, %) obtained
from (2.8) coincides the solution of (3.2). On the other hand, having the solution (pp, up,an) of (3.2),
we can construct Py via (3.1). Tt is straightforward to show that (pp,un, Pn, @p) is the solution of (2.8).

3-field formulation II. By (2.7), we have the explicit expression of iy, as

up, = nQkps] on &. (3.3)

Denote pn, = (pr,Pr) and G = (qn, gr)- Then the formulation (2.8) can be recast as

{aw(ﬁh,qh> + bu(dnun) =0, ¥ a@n € Qn,
bw(Phsvn) = —=(fivn), Vun € Vi,
where
aw (P, Gn) = (cPn, qn) + Q4 [Pnl, Qhlanl) + (77 P, qn),
bw(Gnsvn) == (Vion, gn) — ([vn], gn + {an}).
By using a similar argument, we know that (3.4) is equivalent to the formulation (2.8).

2-field formulation. By plugging in (3.1) and (3.3) into (2.6) and the DG identity (2.3), the 4-field
formulation with (pp, Pr,un, @n) is equivalent to the following 2-field formulation, which seeks (pp,up)
€ Qp X Vy, such that

a(pn,qn) +b(gn,un) =0, Vaq, € Qn, (3.5)
b(phvvh) - C(Uh,’l}h) = 7(fa Uh)v v/Uh S Vh .
with
a(pn. qn) = (cpr. an) + (N9} [pn], O lan)),
b(Ph,vn) = (Pr, Vion) — ({pn}, [vnl) (3.6)

= —(divapn, vn) + ([pn], {vn}),
c(un, o) = (TQy[un], Qulvn])-

We note that (3.5) is equivalent to the formulation (2.8). Firstly, the solution (pp,up) obtained from (2.8)

coincides the solution of (3.5). On the other hand, having the solution (pp,up) of (3.5), by using (3.1)

and (3.3), we can construct Py, and 4y, respectively. It is straightforward to show that (pp,un, Dn, @n)

is the solution of (2.8). Hence, the 4-field formulation (2.8), the 3-field formulations (3.2) and (3.4), and
the 2-field formulation (3.5) are mutually equivalent.

Furthermore, if the choice of the spaces Qp,, Vi, Vi, and Qy, satisfying [Qn] C Vi, and [V,,] C Qp, then

the projections Q% and QZ reduce to identities. In this case, (3.5) reduces to the local discontinuous
Galerkin (LDG) method proposed in [15].

Remark 3.1 (Consistency). Let (p,u) € H(div,Q) x H'(Q) be the exact solution of (1.2). Recalling
the DG notation (2.1) and the formulation (3.5), we have

{a(n an) +b(gn,u) =0, VYay € Qn,

3.7)
b(p,vn) — c(u,vp) = —(f,vn), Vo € Vi,

which shows the consistency of the 2-field formulation (3.5). The equivalence of (3.5) and (2.8) implies
the consistency of the latter. In fact, the formulation (2.8) seeks

(Phy Phy Un, ) € Qn X Vi, x Qp x Vi

is consistent since (p, 0, u, 0) satisfies the formulation (2.8).

For k > 0, we specify several spaces as follows:

ViE = {v, € L*(Q) s vp |k € Pr(K),VK € Th},
Qh = {pn € L*(Q) : pn|x € Pr(K), VK € Tp.}, (3.8)

w = {pn € L(Q) 1 pn [ € Pr(K) + aPy(K), VK € T},
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where Py, (K) is the space of polynomial functions of degree at most k on K, and
Pi(K) = [Pi(K))".

Let Q(e) and V(e) denote some local spaces on e which will be specified at their occurrences. For
k > 0, we specify several spaces as follows:

QF == {pn € L*(&)) : Pnle € Prle), Ve € &, prlry = 0},

% ; 2 V o (3.9)
Vi = {0n € L*(En) : Un |e € Prle), Ve € &, U |rp, = 0},

where Py (e) is the space of polynomial functions of degree at most k on e.

3.2 Grad-based uniform inf-sup condition

~

We shall consider the well-posedness of the formulation (2.8) in the grad-based case when 7 = (ph,) ™1, 7 =
71 = phe. For any p, € Qn,pn € Qn,un € Vi, iy, € Vi, define the norms

||ﬁh| (2),ph = (Cphvph)—’_ <ph’6ﬁh7ph>,
—_— — ——
BT
N 141 % . 1. 1. . 3.10
lanl2,,, = (i, oun) + (o~ QL Tund, @2Lunl) + (e ain, in) (3.10)
fnl,, ol

h

We note that the norms in (3.10) depend on both the parameter p and mesh size h, and the dependence
can be abbreviated to pj,. Here, we assume that Q) contains piecewise constant function space to

guarantee that || - || 5, is indeed a norm. We further note that the norm | - ||1,,, can be extended to
(Vi + H(Q)) x V,. The following norms are induced from (3.10):
(f,vn)
[fll-1p i=  sup

onevin{o} 1onll1pn

Using the 3-field formulation IT (3.4), we will show the grad-based inf-sup condition as well as the
quasi-optimal error estimate under the following assumption.

Assumption 3.2.  The spaces Qn, Qn and Vi, satisfy the following conditions:
(a) Qh contains piecewise constant function space;
(b) ViVi C Qn;
(c) fQn} C Qn.

Lemma 3.3.  Under the Assumption 3.2, for any po > 0 and 0 < p < po, we have

bw (f)ha 'Uh)
Dh

inf B, (3.11)

up
vn €V} 5, ca (o3 VR

| L,pn 0,pn

where By, > 0 is independent of both mesh size h and p.
Proof.  Since V,,V,, C Q) and {Q1} C Qp, taking
pr="Vuvn, Pn=—p "h'Qufon] — {Vavr},
we have
bu (B vn) = (Vavn, Vo) + (o7 he Qo] @nlvn]) = llonll3,, -
Then for any pg > 0 and p < pg, we obtain
B3, = (€Vhvn, Vivn) + [0 20 2 {V on} + o~ 202 O [unl I3 .,
< Clpo){(Vnon, Vivw) + 07202 Qp[un] 15 e, }
< Bullval? - (3.12)

Then, we obtain the desired result. O
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The boundedness of a,,(-,-) on the discrete spaces follows from the standard trace inequality. For the
boundedness of by (-, ), we use the Cauchy-Schwarz inequality, the trace inequality, and the following
inequality:

he N lond13.e S [Vavnlg e, + he Q0 TonlIG . (3.13)
provided that Q;, contains piecewise constant function space. Here,

We 1= U K.

eCOK

The coercivity of a,(-,-) is obvious, and hence (3.4) is well-posed on the discrete spaces. Due to the
equivalence between (2.8) and (3.4), we have the first main result.

Theorem 3.4.  Under Assumption 3.2, if we choose 7 = (phe)™', n = 771 = ph, in the formula-
tion (2.8), then we have the following:

(1) There exists pg > 0 such that the extended Galerkin (XG) method is uniformly well-posed with
respect to the norms || - ||o,p, and || - ||1,p, when p € (0, po] and the following estimate holds:

[Pnllo.c + Bnllo.p. + lunllpn + lanllo ot S 1711100 (3.14)

(2) Let (p,u) € HY/2T¢(Q) x HY(Q) be the solution of (1.2) and (pn,in) € Qn X Vi be the solution
of (2.8). We have the quasi-optimal approzimation as follows:
1P = Phllnc + 1Pnllopn + [lv = unllrp, + lanllo -

< inf — , — 3.15
S ot (P =l u = wnli). (3.15)

where
IplI7. = (cp,p) + (hefp}, {0}) + (helpl. [P)), VP € Qu+ HY*(Q). (3.16)
(3) If p€ H*1(Q),u € H**2(Q) (k > 0) and we choose the spaces

QnxQux Vi x Vi =QF xQF x VFT x W,
h h h
for any Vi, then we have the error estimate
lp = Pallo.c + 1B llo,pn + llw = unllp, + l@ally -1 € B (IPlrsr + fulis2)- (3.17)

Proof. Step 1.  The uniform inf-sup condition on discrete spaces. From the Brezzi theory [9,12],

the discrete well-posedness of (3.4) implies

Ipnllo.c + IBnllo.pn + llunllton S NFI=1.0n-

Note that i, = nQ[ps], and using the trace inequality, we have

lanllg -+ = (phe Qppal, Qhlpal) S I1Pall5.c: (3.18)

which gives (3.14).
Step 2.  Quasi-optimal error estimates. Using the trace inequality and the inverse inequality, the norm

I ||n,c defined in (3.16) is equivalent to || - ||o,c on the discrete space Qy,. Therefore, we have the following
inf-sup condition:

auw ((Phs wh), (g, vn))

Lons VPR €Qn, wy € Vi, (3.19)
hoon T ”UhHLPh o

sup a
dne0m\ {0} unevifoy [19n]

2 17 nllnpn + [[wn]

where

A ((Trywn), (@nsvn)) = Gw(Th, @n) + buw(@n, wn) + by (Th, vh),
7617 = Irnllh e + 176115, = (crnrn) + (heflrnd, frad) + (helrnl, [rn]) + (phetn, 7r).




Hong Q G et al. Sci China Math 9

Note that the norm || - ||, can be extended to (Qp + H'/?T¢(Q2)) x Q). Recalling the consistency of
the 3-field formulation, we have for any 7, € Qp,wy € Vp,

aw ((Tr — Dh, wn — un), (Gn, vn))

7= Brllg o =l & cvor @l + ol
el (0w~ ) (@)
Gn€Qr\{0}, v, EVR\{0} anllnpn + lvrll,pn
S I7n = @ 0)llnpn + lwn = ulf1,p,.- (3.20)

Here, in the last step, the boundedness of a,(-,-) and by (-, -) defined in (3.4) is applied by using (3.13)
and the Cauchy-Schwarz inequality, namely,

aw(Fh = (P,0),dn) = (c(rn — p), qn) + (NQhlrn — P, Qplan]) + (77 Fn, Gn)
ST = (@ 0)npn l|@n R,
b (Tr — (P, 0),vn) = (Vion, . — p) — ([vn], #r) — ([on], {rn — P})
ST = (@, 0)npn lonllr,p, - (by (3.13)),
bw(Gn, wp —u) = (V(wn —u),qn) — ([wn —u],qn + {arn})
S NGnlln.pnllwn = ullip,  (by £Qu} C Qn).

The quasi-optimal approximation (3.15) then follows from (3.18), (3.20) and the triangle inequality.
Consequently, the error estimate (3.17) follows directly from (3.15) and interpolation theory. O

Remark 3.5. In Step 2, with the help of norm || - ||n,c in (3.16), we avoid using the trace inequality
in the proof of boundedness of a, (-, ) and b, (-, ) on the continuous spaces. Whence, the quasi-optimal
approximation holds with the minimal regularity requirement.

3.3 Div-based uniform inf-sup condition

In light of the formulation of b(-,-) in (3.6), we now establish the div-based inf-sup condition. For any
Pr € Qn, Dy € Qh, up € Vi, up, € V;“ the norms are defined by

1B1lGiv. = (cPh:PR) + (divaps, divapr) + (o~ k. ' Ok [pnl, Qhpn]) + (0~ he ' P, Br),

2 5, 1|2
th”dxv,ph thllo,p;1 (321)
@n 5., = (un,un) + (pheiin, in) -

——

llun i3 lanli3,,,

Note that the norm || - [|giv,p, can be extended to (Q + H(div,Q)) x Qp.

Assumption 3.6.  The spaces Qp, Vi, and Vj, satisfy the following conditions:

(a) let Ry, := QN H(div,Q) and Ry, x V3, be a stable pair for the mized method;

(b) div,Qp = Vs

(C) {Vh} C Vh.

In light of (3.6), the boundedness of a(-,-) is obvious. The boundedness of b(-,-) and ¢(-,-) on discrete
spaces can be derived from the Cauchy-Schwarz inequality, the trace inequality and the assumption
{Vi} € V. We are now in the position to state the second main result.

Theorem 3.7.  Under Assumption 3.6, if we choose n = (phe)™',7 = n~! = ph. in the formula-
tion (2.8), then we have the following:

(1) There exists py > 0, such that the XG method is uniformly well-posed with respect to the norms
| - lldiv,pn and || - ||o,p, when p € (0, po] and the following estimate holds:

[Prllaiv.o + 1Pnllo o0 + llunllo + l@nllo.pn < 1 fllo- (3.22)
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(2) Assume further that
(d) [Qn] C Vi (3.23)

Let (p,u) € H(div,Q) x HY?(Q) be the solution of (1.2) and (pp,@n) € Qn x Vi be the solution
of (2.8). We have the following quasi-optimal approzimation:

1P = Prllaiv.pn + 1Pnllo o + 1w = unllno + llanllo,pn

< i _ , _
S e, ey, (P = mallai.p + llu = wallno), (3.24)

where
lll? 0 = ull§ + (he{u}, {u}) + (helul, [ul),  Vu e Vi + H/?T(Q). (3.25)

(3) If p € H**2(Q),u € H**1(Q) (k > 0), and we choose the spaces
Qn % Qn x Vi x Vi = QP x Qp x VF x V¥
or QZ‘H X Qp X VE x f/}fﬂ for any Qn, then the following estimate holds:

0.on S P (IDlks2 + [ulkra). (3.26)

12 = pallaiv.pn + 1Pl -t + 1w = unllo + |[n]

Proof. Step 1. The uniform inf-sup condition on discrete spaces. We first consider the inf-sup

condition for b(-,-). For any v, € V4, there exists gf, € R, C Qp, such that divgy, = vy, [g};] =0 and

lgrllo + Idivagllo < lonllo or  [lg;llaiv,e. < Il llo- (3.27)
Define the operator B : Qn — V], by (Bgqn,vi) = b(qn,vp) for all g, € Qp, and vy € V3. Let

K =KerB :={qp, € Qn : —(divpgn,vn) + {[qn], {vn}) =0, Vv, € V3 },
H = KerB' := {vj, € Vjy : —(divign,vn) + ([an], {vn}) =0, Van € Qn}.

Clearly, we have H = {0} from (3.27). Next, we consider the coercivity of a(-,-) on K. Define the lifting
operator 7 : L2(&,) — Vj, by

/ r(w)v, do = Z w{vp}ds, Yo, € V. (3.28)
Q

ec&p V€

Then, a standard scaling argument gives
Ir(w)llo S he P llwlfe,, Ywe L?(E). (3.29)
Using the definition of lifting operator r and the assumption that {V;} C V,, we have
r(Qplan]) = divign
for any gj, € K. Then the coercivity of a(:,-) on K is shown as follows: For any g, € K,

a(gn, an) = (can. an) + (nQ5[an], O an])
2 (cqn, qn) + (r(Qklan)), r(Qklan))) + (p~"h. ' Oklan], Qiilan])
= (can, qn) + (divign, divagn) + (p~'h; ' Qitlan], Qklan)) = llanlliiy ,, -

By [7, Theorem 4.3.1], we have the discrete well-posedness of (3.5). Then, we have
[P llaiv.pn + llunllo S £ 1o,

which implies (3.22) by using py, = 79}, [us], @n = nQF[pn] and the trace inequality.
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Step 2.  Quasi-optimal error estimates. Using the trace inequality and the inverse inequality, the norm
I - ||n.0 defined in (3.25) is equivalent to || - ||o on the discrete space V},. Therefore, we have the following
uniform inf-sup condition:

&((T}“ wh)7 (Qh, Uh))
ane@u\{0}.onevi\{0} 1@nldiv.p + llvnllno

2 Irnlldaivion + lwnllno, Y7n € Qu, wip € Vi, (3.30)

where
a((rhv wh)v (qha ’Uh)) = (Z(’f‘h, Qh) + b(qha wh) + b(rha 'Uh) - C(U)h, 'Uh).

Recalling the consistency of the 2-field formulation, we have for any r, € Qp, wy, € Vp,

a((rn — pn, wn — up), (qn, vn))

75 = Phllaiv,pn + [lwn — unllno < sup
o an€Qi\{0},v,€Vi\ {0} llgnllaiv, o + lvnlln,o
_ sup a((rn — p,wn —u), (qn, vn))
an€Qn\{0},v, €V \{0} th”diV,ph + ”Uh”h,o
S lrn = Pllaiv.pn + lwn — ullon- (3.31)

Here, in the last step, we apply the boundedness of a(:,-), b(+,) and ¢(-,-) as follows:

= (c(rn — p)an) + (nQp[rn — ), Oiilan])
S lrn = pllaiv,en lanllaiven
b(rn — p,vn) = —(divp(ry — p),vn) + ([rn — Pl {vn})

S lrn = Pllaivpnllonllno - (by {Va} C Vi),
b(qn, wn, —u) = —(divpgn, wn, — u) + ((qn], {wn — u})
S llanllaiv,pn lwn = ullno  (by [@n] C Vi),

c(wy, —u,vp) = (TQp[wy, — u], @1 [vn]) < lwn — ullnollvalno-

a(ry, — p,qn)

Similar to (3.20) in Theorem 3.4, we have the the quasi-optimal approximation (3.24), which directly
leads to the error estimate (3.26) from the interpolation theory. O

Remark 3.8.  Similar to the grad-based analysis, a norm || - |50 is introduced in (3.25) to obtain the
quasi-optimal approximation under the minimal regularity assumption. The assumption (d) in (3.23) is
necessary for the quasi-optimal error estimate, though it is not required in the discrete well-posedness.

4 Relationship with existing methods and analysis

In this section, we exploit the relationship between the formulation (2.8) and several existing numerical
methods, which leads to the well-posedness and error estimates of the existing numerical methods. We
follow the three different variants of the 4-field system by eliminating either p; or 4y, or both.

4.1 Eliminating pp,

After eliminating p,, via (3.1), the resulting 3-field formulation (3.2) is a generalization of the stabilized
hybrid mixed method [30], or some special cases of the HDG method [20-22, 33, 38].

Some special cases. More precisely, let us consider the case in which

1, - .
=-7, V= n,
=7 h=Qn (41)

[@Qnl C Vi or {Vi}C V.

If we denote
Gp = Qp{up} +up €V, and Oy, := Qp{vp} + 0p € Vi,
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then the 3-field formulation (3.2) is shown to be: Find (pp,un,Grn) € Qn X Vi, X Vi, such that for any
(Gh, VR, On) € Qp X Vi X Vi,

(epn.an)k — (un, divagn)x + (Gn, qn - n)ox =0,
— (divapn, vn) i + 27 (s — Q¥up), Q¥vn)ox = —(f,vn)k, (4.2)

(ph -1, 0n)or — (27 (an — Qun), 0n)ox = 0.

The above formulation shows that p;, and w, can be represented by wj locally from the first and the
second equations. As a result, a globally coupled equation solely for 4y on £, can be obtained.
It can be shown that (4.2) reduces to the standard HDG method [20-22], if

QZU}L = Up, szh =wvp or Vj |5h C Vh. (4.3)

Moreover, the formulation (4.2) coincides with the HDG with the reduced stabilization method [33, 38].
In particular, the grad-based analysis in Subsection 3.2 is fit for the HDG with the reduced stabilization
method, with the choice
Qn X Vi X Vi = Qf x VI x Vi,
Specific choices of the discrete space and the corresponding numerical methods are summarized in
Table 1. We refer to [30] for discussion from the HDG to the hybrid mixed methods [3,12,20] and the
mixed methods [7,10-12, 36,43].

Remark 4.1. We should note that the uniform inf-sup condition for the HDG method when n =
inl =0(1), Qn = Qk, Vj, =V}, Vi = th is not proved in Section 3.

Minimal stabilized div-based method. In light of Theorem 3.7, the div-based inf-sup condition
holds for any Q). Hence, when choosing Q; = {0}, the 3-field formulation (3.2) reduces to a stabilized
div-based method with minimal stabilization, whose well-posedness and the quasi-optimal error estimate
are guaranteed under Assumptions 3.6 and (3.23).

Furthermore, with the assumption (3.23) and Qj, = {0}, the 2-field formulation (3.5) reduces to the
mixed DG method [30]. This implies that the mixed DG method proposed in [30] can be interpreted as
the minimal stabilized div-based method.

Mixed method. Finally, we remark that, if we take 7 = ph, p — 0, and choose
Qn x Vi x Vi = Qi x Vi x Vit

or
§ o RT §
Qn x Vi x Vi, = QP x Vi x Vi,

then the 3-field formulation (3.2) implies the mixed method by eliminating ;. We make this statement
rigorous in Subsection 4.4.2.

Table 1 From (2.8) to existing methods

Qn Qn Vi Vi, Reference inf-sup condition
Z Q’Z+1 Verl Vf+1 HDG in [33] gradient-based

Qitt Qitt vk Vvl HDG in [21] div-based

QpRT )k v VE HDG in [21] div-based

Qr be V}iﬂ'l fo HDG with reduced stabilization in [33, 38] gradient-based

QF Qﬁ vk V,f HDG in [19,22] not proved

Qitt {0} v v Mixed DG in [30] div-based

QU Qk v VL WG in [46] div-based

QF Qk vErL ok WG-MFEM in [47] grad-based

QF QF V]f'H {0} LDG in [24] grad-based
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4.2 Eliminating up

After eliminating @ via (3.3), the resulting 3-field formulation (3.4) is a generalization of the stabilized
hybrid primal method [30], or some special cases of the WG-MFEM method [47]. In fact, in the case
when « is not piecewise constant, the WG-MFEM method in [47] differs from the formulation (3.4).

Some special cases. Denote

b= fpn} + 91 € Qn,  Gn = fan} + dn € Qu.
Again, under the conditions that

1 - .
T=" LoQr-n=V,

Vil € Qn or {Qn} C Qu.

(4.4)

(3.4) can be recast as: Find (pp,un, pn) € Qn x Vi, X Qp, such that for any (qp,vn, dn) € Qn x Vi, X Qp,

(cPn,an)x + (Viun, qn)x — (20(Pn — Qhpn), Qhan)ox = 0,
(Ph, Vaon)k — (Pr, vnn)orx = —(f, vn) K, (4.5)
— (Vaun, dn)or + 2n(Br — Qhpn), dn)ox = 0.

Similarly, the above formulation shows that p; and u; can be represented by py, and hence, a globally
coupled equation solely for p;, on &, can be obtained. Moreover, this formulation is the weak Galerkin
mixed finite element method (WG-MFEM) [47], if

Qpn=pn, Qngn=an or Qulg, C Qn. (4.6)

Several possible discrete spaces and the corresponding analysis tools are listed as follows:

L Qn=QV" Vi, =V}, Qun=QF, 7= 0O(h): div-based analysis;

2. Q= QZ“, Vi, =V, Q) = QZH, 7 = O(h): div-based analysis;

3.Qn=Qk V) = V,f“, Q= QZ (or Vﬁ“), 7 =0O(h™!): grad-based analysis.
We refer to [30] for discussion from the WG to the hybrid primal methods [41,42,49] and the primal
methods [1,16,26,28,35,39,44].

Minimal stabilized grad-based method. In light of Theorem 3.4, the grad-based inf-sup condition
holds for any Vj,. Hence, when choosing Vj, = {0}, the 3-field formulation (3.4) reduces to a stabilized
grad-based method with minimal stabilization, whose well-posedness and the quasi-optimal error estimate
are guaranteed under Assumption 3.2.

Furthermore, with the assumption (3.23) and V;, = {0}, the 2-field formulation (3.5) reduces to an
LDG method [24] in the mixed form.

Primal method. We remark that, if we take n — 0 and choose
Qn x Vi x Qn= Q) xVl xQ,

the WG method is equivalent to the nonconforming finite element method discretized by the Crouzeix-
Raviart element. When choosing

Qn x Vi xQn=Q} x V72 xQj

and taking n — 0, the formulation (4.4) is getting unstable. In this case, the stabilization is needed for
the hybrid primal method which induces to the WG method.
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4.3 Eliminating both p;, and

By plugging in (3.1) and (3.3) into (2.6) and the DG identity (2.3), the 4-field formulation with
(Ph, D, Un,Gp) turns out to the 2-field formulation (3.5) with (pp,up), which can be viewed as a special
DG scheme in the mixed form. Taking the advantage of unified analysis in Section 3, the grad-based or
div-based analysis can be applied to the DG scheme (3.5) with various choices of the discrete spaces.

Remark 4.2. There are four fields in the original formulation (2.8): pp, P, un, @n. Theoretically, by
eliminating any m fields for m < 3, the number of possible formulations can be

Cl+C24+C3 =4+6+4=14.

Some of them may be hybridizable. Under the special assumption, these algorithms lead to some special
interesting cases, e.g., the primal method or the mixed method.

Remark 4.3. In this paper, the analysis framework is established with a special choice

prn={pn}, un={un},
which includes the mixed DG [30] and mixed LDG [15]. Furthermore, the 4-field formulation (1.5) has
the capacity to recover more involved DG schemes by choosing different p;, and @y, [30].
4.4 Some limiting case of 2-field formulation as p — 0

With the uniform inf-sup conditions, we revisit some limiting of the formulation in the case of p — 0 [30].

4.4.1 A limiting case based on the grad-based analysis

First, having the grad-based inf-sup condition, we discuss the limiting of the formulation (3.5) in the case
of 7= (phe)™t, n =2 771 = ph as p — 0. Given the H' conforming subspace Vi¢ := V;, N H5(2) C V,,
we consider the following scheme for solving the Poisson equation (1.1): Find (uf,pf) € V¢ x Qp such
that

c c c c c (47)
(Ph, Vop,) = —(f,v), Yo, € Vy.

Then, under the condition that VV,* C V, V3, C Qp, the well-posedness of (4.7) implies that (see [8])
— (f» U}i)

IPilloe + llupls S sup === S flo- (4.8)
v5 €VE\{0} [0, 11

{(cpiw an) + (Vui,,qn) =0, Yai € Qn,

We further note that, when ¢ is piecewise constant, the scheme (4.7) is equivalent to the primal finite
element by eliminating pj, through pf = aVuj. Thanks to the Theorem 3.4, we have the following
theorem.
Theorem 4.4.  Assume that the spaces Qp, Vi and Qy, satisfy

(a) VaVi C Qu; )

(b) £Qn} C Qn, [VA] € Qn;

(¢) Vih=VF (k> 1).
Then the formulation (3.5) with T = (phe)~t,n = 771 = ph. converges to the primal method (4.7) as
p — 0. Furthermore, let (p],u},) be the solution of (3.5) and (p§,u$) be the solution of (4.7). We have

T T g — T o 1 1
o7, = pillo.c + (IVh(uf, = up)llg + 1he V2 [uh, — wi 13 £,)% < 02 [1£lo- (4.9)
Proof.  Recall the 2-field formulation (3.5),

{(cpﬁ,qh) + (QiIprl, Oklanl) + (Viuh, qn) — ([uil, fan}) =0, Van € Qn,
(Phs Vavn) — (L} [on]) — (7lui], [vnl) = —(f,vn),  Von € Vi,

where the condition [V3,] C Qy, is used.

(4.10)
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Note that for any given vy, € V},, there exists a vﬁ € Vi, such that

_ 3 1
o — vl lo + [Va(on — w0 < ( Sk 1uvhﬂ||%,e) < ool (4.11)

eely
Define
P ._ T c u o, T c
6h = Py — Pp; 6}1 = Up T Up-

Taking v§ = vl in (4.7), and subtracting (4.7) from the equation (4.10), we have

(co),, an) + (nQ1167], Qiilanl) + (Vidh, qn) — (611, fan})
= —(nQppil, Qklanl), Van € Qu,
(05, Vo) — ({1}, [vnl) — (r[0RT, [vnl)
= —(f,vn — o) = (05, Va(on — oh)) + ({5} [val),  Von € Vi

By the grad-based stability result for the 2-field formulation (3.5), we obtain

103 llo,c + 155111,
<y ZWOMPELOM@D (s = o)~ (65 Valon — o) + (fpiD. D)
@.€Qu\{0} lgnllo,c vn€Vi\ {0} lvally,pn
c fllollon = villo + 1P Nl0.cl| Vi (vn — i) o 1 .
§ PthHo,c =+ sup || H ” h” ” h” || ( h)” + p2 ”thO’C
v €VR\{0} ||Uh||1,ph
(& 1 C
S plpgllo.c +p2(1fllo + IPRllo.c)  (by (4.11)). (4.12)
Finally, by the stability estimate (4.8), we have
165 llo,c + 10k 111,00 < Pl fllo + 2211 fllo S £2 110 (4.13)
This completes the proof. O

Remark 4.5.  The equivalence between |[vs[|7 ,, and (Vaun, Viun)+(p~ he ! [un], [us]) is not uniform
as p — 0. Therefore, the assumption [V},] C Qy, is necessary in (4.11).

Remark 4.6. A typical example that satisfies the assumption in Theorem 4.4 is Q) = fol, Vi = th,
and Qp = QZ for k > 1.

4.4.2 A limiting case based on the div-based analysis
Next, having the div-based inf-sup condition, we discuss the limiting of the formulation (2.8) in the case
of n = (phe)™t, 72 n~! = phe as p — 0. Consider the H (div) conforming subspace

Qz =QpN HN(diV,Q) C Qp,

the mixed method when applying to the Poisson equation (1.1) can be written as: Find (pf, uf) € Qf xV},
such that

o (4.14)
— (dlvph, vh) = —(f, ’Uh), Yoy € Vp.

Then, under the condition that divQj = div,Q, = V3, the well-posedness of the mixed method
(see [7,12]) implies that

{(cpz,qm — (uf,divg) =0, Vgf € Q5.

c c 7favh
186 + i o S sup =L < . (4.15)
onevifor  llvnllo

Thanks to Theorem 3.7, we have the following theorem.



16 Hong Q G et al. Sci China Math

Theorem 4.7.  Assume that the spaces Qp, Vi, and Vi, satisfy

(a) divaQp = Vi; )

(b) {Va} C Vi, [Qn] C Vi

(c) Qun=Qy"™" or Qi k>
Then the formulatzon (3.5) wzth n = (phe)™t, 7 2 n~! = ph, converges to the mizved method (4.14) as
p — 0. Furthermore, let (p),u]) be the solution of (3.5) and (p§,us,) be the solution of (4.14). We have

c . c c 1
1Pk = Phllo.c + [1diva(Ph — pi)llo + lluy — uillo < p2 [l fllo- (4.16)

Proof.  Recall the two-field formulation (3.5),

{(cpﬁ, an) + (mlp;l, lanl) — (ui, divegn) + ({uz}. [an]) =0, Van € Qn, (417
— (divaph, on) + ([PR), {vn}) — (7 Qi [upl, Qulvnl) = —(fivn),  Vvn € Vi,
where the condition [@j] C V}, is used.
For any given gy, € Q), there exists g/ € Qf, such that
: I I 1 2 : L
[diva(gn —gp)llo +llgn — gnllo < < > ho II[QhHo,e> < P2 |lgnllaiv,p - (4.18)
e€ly
Define
8, =P —Ph, On = uj, — uj.

Taking g = g} in (4.14), and subtracting (4.14) from (4.17), we have
(cdh, an) + (n[04], [an]) — (65, divian) + ({05}, [an])
= (uf,, divi(qn — q1)) — (cph. an — ai,) — {us}, [an]), Van € Qn,
— (diva ], o) + ([8F] {vn}) — (TQRI51]. Qrlvnl) = (rQplusl, Qrlonl), Vo € Vi
By the div-based stability result for the 2-field formulation (3.5), we obtain

165 laiv.on + 1167110

c : c c P c D
< sup (uf,, diva(gn — a3)) — (cpf an — ai) — ({ui}, [an]) n (T [ui], Lnlvnl)
™ aneQn\{0} l[qnlldiv,pn v €V \{0} lonllo
c di 41 c - 1
< wp Luilolldive(an = ablo + Iptlolla =afll |y e
an€Qn\{0} llqnllaiv.pn
1 c (& 1 (& 1 (& C
S p2([lugllo + PR llo) + 2% [luillo < 22 (uillo + IPRll0)  (by (4.18)). (4.19)
By the stability estimate (4.15), we have
u 1 (& C 1
105 laiv.pn + 19510 < 2 (luillo + 1Pk N0) < 2211 fllo- (4.20)
This completes the proof. O

5 Conclusion

The extended Galerkin analysis, presented in this paper, is based on a unified 4-field formulation for a
large class of numerical methods for solving second-order partial differential equations. Furthermore, we
establish two types of uniform inf-sup conditions for the formulation, which naturally lead to uniform
optimal error estimates for almost all the major finite element or Galerkin methods, such as HDG, WG
and DG.
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