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Abstract A general analysis framework is presented in this paper for many different types of finite ele-

ment methods (including various discontinuous Galerkin methods). For the second-order elliptic equation

−div(α∇u) = f , this framework employs four different discretization variables, uh,ph, ǔh and p̌h, where uh

and ph are for approximation of u and p = −α∇u inside each element, and ǔh and p̌h are for approximation of

residual of u and p ·n on the boundary of each element. The resulting 4-field discretization is proved to satisfy

two types of inf-sup conditions that are uniform with respect to all discretization and penalization parameters.

As a result, many existing finite element and discontinuous Galerkin methods can be analyzed using this general

framework by making appropriate choices of discretization spaces and penalization parameters.
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1 Introduction

In this paper, we propose an extended Galerkin analysis framework for most of the existing finite element
methods (FEMs). We will illustrate the main idea by using the following elliptic boundary value problem:






− div(α∇u) = f in Ω,

u = 0 on ΓD,

− (α∇u) · n = 0 on ΓN ,

(1.1)

where Ω ⊂ Rd (d ! 1) is a bounded domain and its boundary, ∂Ω, is split into Dirichlet and Neumann
parts, namely ∂Ω = ΓD ∪ ΓN . For simplicity, we assume that the (d − 1)-dimensional measure of ΓD

is nonzero. Here, n is the outward unit normal direction of ΓN , and α : Rd → Rd is a bounded and
symmetric positive definite matrix, with its inverse denoted by c = α−1. By setting p = −α∇u, the
above problem can be written as {

cp+∇u = 0 in Ω,

− divp = −f in Ω
(1.2)
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with the boundary condition u = 0 on ΓD and p · n = 0 on ΓN .

There are two major variational formulations for (1.1). The first is to find

u ∈ H1
D(Ω) := {v ∈ H1(Ω) : v |ΓD = 0}

such that for any v ∈ H1
D(Ω),

∫

Ω
(α∇u) ·∇v dx =

∫

Ω
fv dx. (1.3)

The second one is to find

p ∈ HN (div;Ω) := {q ∈ H(div;Ω) : q · n = 0 on ΓN}, u ∈ L2(Ω)

such that for any q ∈ HN (div;Ω) and v ∈ L2(Ω),






∫

Ω
cp · q dx−

∫

Ω
u divq dx = 0,

−
∫

Ω
v divp dx = −

∫

Ω
fv dx.

(1.4)

In correspondence to the two variational formulations, two different conforming finite element methods
have been developed. The first one, which approximates u ∈ H1

D(Ω), can be traced back to the 1940s [31]
and the Courant element [25]. After a decade, many works, such as [17,28,29,32,37,40,50,51], proposed
more conforming elements and presented serious mathematical proofs concerning error analysis and,
hence, established the basic theory of FEMs. These primal FEMs contain one unknown, namely u, to
solve. The second one, which approximates p ∈ HN (div;Ω) and u ∈ L2(Ω) based on a mixed variational
principal, is called the mixed FEMs [3, 7, 9, 12, 36, 43]. These mixed methods solve two variables, namely
flux variable p and u, and the condition for the well-posedness of mixed formulations is known as inf-sup
or the Ladyzhenskaya-Babuška-Breezi (LBB) condition [9].

Contrary to the continuous Galerkin methods, the discontinuous Galerkin (DG) methods, which can
be traced back to the late 1960s [5,34], aim to relax the conforming constraint on u or p ·n. To maintain
consistency of the DG discretization, additional finite element spaces need to be introduced on the element
boundaries. In essence, the numerical fluxes on the element boundaries were introduced explicitly and
therefore eliminated. In most existing DG methods, only one such boundary space is introduced as, for
example, Lagrangian multiplier space, either for u as the primal DG methods [14,24,27] or for p ·n as the
mixed DG methods [30]. Primal DG methods have been applied to purely elliptic problems; examples
include the interior penalty methods studied in [2,6,48] and the local DG method for the elliptic problem
in [24]. Primal DG methods for diffusion and elliptic problems were considered in [13]. A review of the
development of DG methods up to 1999 can be found in [23].

Given Ω ⊂ Rd, for any D ⊆ Ω, and any positive integer m, let Hm(D) be the Sobolev space with the
corresponding usual norm and semi-norm, denoted by ‖ · ‖m,D and | · |m,D, respectively. The L2-inner
product on D and ∂D are denoted by (·, ·)D and 〈·, ·〉∂D, respectively. ‖ · ‖0,D and ‖ · ‖0,∂D are the norms
of Lebesgue spaces L2(D) and L2(∂D), respectively. We abbreviate ‖ · ‖m,D and | · |m,D by ‖ · ‖m and
| · |m, respectively, when D = Ω, and ‖ · ‖0 = ‖ · ‖0,Ω.

We denote by {Th}h a family of shape-regular triangulations of Ω. Let hK = diam(K) and h =
max{hK : K ∈ Th}. We also denote by Hm(Th) the space of functions on Ω whose restriction to each
element K belongs to the space Hm(K) for any m ! 0. For any K ∈ Th, denote nK as the outward unit
normal of K. Denote by Eh the union of the boundaries of the elements K of Th.

Associated with the triangulation Th, denote Vh and Qh to be the generic piecewise smooth scalar
and vector-valued discrete spaces on the triangulation Th, respectively. In addition, V̌h and Q̌h are the
generic piecewise smooth discrete spaces on Eh, respectively.
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In this paper, we consider the following problem: Find (ph, uh, p̌h, ǔh) ∈ Qh ×Vh × Q̌h × V̌h such that






(cph, qh)K − (uh, divqh)K + 〈ûh, qh · n〉∂K = 0, ∀ qh ∈ Qh,

(ph,∇vh)K − 〈p̂h · n, vh〉∂K = −(f, vh)K , ∀ vh ∈ Vh,

〈!uh" − τ−1p̌h, q̌h〉 = 0, ∀ q̌h ∈ Q̌h,

〈[ph]− η−1ǔh, v̌h〉 = 0, ∀ v̌h ∈ V̌h,

(1.5)

where ûh := ūh + ǔh, p̂h := p̄h + p̌h and 〈·, ·〉 :=
∑

e∈Eh
〈·, ·〉e.

We will explain the relevant technical details for (1.5) in the following sections. Here, we make the
following general comments:

1. Under proper choices of the discrete spaces, the formulation (1.5) recovers the analysis of H1

conforming finite element if we eliminate all the discretization variables except uh. By eliminating p̌h,
the formulation (1.5) recovers some special cases of the hybrid methods [20]. If we further eliminate ǔh,
the resulting system solves two variables ph and uh, which recovers the H(div) mixed finite element
method.

2. The relationship between the formulation (1.5) and DG methods is twofold. First, by simply taking
the trivial spaces for ǔh and p̌h, the formulation (1.5) recovers most of DG methods shown in [4]. Second,
if we confine to a special choice

ūh = {uh} and p̄h = {{ph}},

by virtue of the characterization of the hybridization and the DG method [20], the formulation (1.5) can
be related to some DG methods if we eliminate both p̌h and ǔh (see Section 4 for details).

3. In Subsection 4.1, the formulation (1.5) can be compared with most hybridized discontinuous
Galerkin (HDG) methods if we eliminate p̌h. In 2009, a unified formulation of the hybridization of
discontinuous Galerkin, mixed, and continuous Galerkin methods for second-order elliptic problems was
presented in [21]. The resulting system needs to solve three variables, one approximating u, one approx-
imating p, and the third one approximating the trace of u on the element boundary. A projection-based
error analysis of HDG methods was presented in [22], in which a projection operator was tailored to
obtain the L2 error estimates for both potential and flux. More references to the recent developments of
HDG methods can be found in [18].

4. In Subsection 4.2, the formulation (1.5) can be compared with most weak Galerkin (WG) methods
if we eliminate ǔh. With the introduction of weak gradient and weak divergence, a WG method for a
second-order elliptic equation formulated as a system of two first-order linear equations was proposed and
analyzed in [46,47]. In fact, the weak Galerkin methods in [46] solve two variables, one approximating u
and the other one approximating the flux p · n on the element boundary, which differs from the method
proposed in this paper when α is not piecewise constant. While the weak Galerkin methods in [47] solve
three variables, one approximating u, one approximating p, and the third one approximating the flux
p · n on the element boundary. A summary of the idea and applications of WG methods for various
problems can be found in [45].

In addition, we study two types of uniform inf-sup conditions for the proposed formulation in Sec-
tion 3, by which the well-posedness of the formulation (1.5) follows naturally. With these uniform inf-sup
conditions, we obtain some limiting of the formulation (1.5) in Subsection 4.4.

1. If the parameters in the Nitsche’s trick are set to be τ = (ρhe)−1, η ∼= τ−1, the formulation (1.5)
is shown to converge to the H1 conforming method as ρ → 0 under certain conditions pertaining to the
discrete spaces.

2. If the parameters in the Nitsche’s trick are set to be η = (ρhe)−1, τ ∼= η−1, the formulation (1.5)
is shown to converge to the H(div) conforming method as ρ → 0 under certain conditions pertaining to
the discrete spaces.

Throughout this paper, we shall use the letter C, which is independent of mesh-size and stabiliza-
tion parameters, to denote a generic positive constant which may stand for different values at different
occurrences. The notations x " y and x # y mean x $ Cy and x ! Cy, respectively.

 http://engine.scichina.com/doi/10.1007/s11425-019-1809-7
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2 Derivation of the method

Let E i
h = Eh \∂Ω be the set of interior edges and E∂

h = Eh \E i
h be the set of boundary edges. Furthermore,

for any e ∈ Eh, let he = diam(e). Let e be the common edge of two elements K+ and K−, and let
ni = n |∂Ki be the unit outward normal vector on ∂Ki with i = +,−. For any scalar-valued function
v ∈ H1(Th) and vector-valued function q ∈ H1(Th), let v± = v |∂K± and q± = q |∂K± . Then, we define
averages {·}, {{·}} and jumps !·", [·] as follows:

{v} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−) on e ∈ E i

h,

!v" = v+n+ + v−n−, [q] = q+ · n+ + q− · n− on e ∈ E i
h,

!v" = vn, {v} = v, {{q}} = q, [q] = 0 on e ∈ ΓD,

!v" = 0, {v} = v, {{q}} = q, [q] = q · n on e ∈ ΓN .

(2.1)

The notation follows the rules: (i) {{·}} and !·" are vector-valued operators; (ii) {·} and [·] are scalar-valued
operators.

For simplicity of the exposition, we use the following convention:

(·, ·) :=
∑

K∈Th

(·, ·)K , 〈·, ·〉 :=
∑

e∈Eh

〈·, ·〉e, 〈·, ·〉∂Th :=
∑

K∈Th

〈·, ·〉∂K . (2.2)

For any scalar-valued function v and vector-valued function q, we denote

〈v, q · n〉∂Th :=
∑

K∈Th

〈v, q · nK〉∂K .

Here, we specify the outward unit normal direction n corresponding to the element K, namely nK . In
addition, let ∇h and divh be defined as

∇hv |K := ∇v |K , divhq |K := divq|K , ∀K ∈ Th.

Lemma 2.1. With the averages and jumps defined in (2.1), we have the following identities [4]:

(v, divhq) + (∇hv, q) = 〈v, q · n〉∂Th = 〈{{q}}, !v"〉+ 〈[q], {v}〉, ∀ q ∈ H1(Th), v ∈ H1(Th). (2.3)

For any qh ∈ Qh and vh ∈ Vh, integration by parts gives
{
(cp, qh)K − (u, divhqh)K + 〈qh · n, u〉∂K = 0, ∀ qh ∈ ph,

(p,∇hvh)K − 〈p · n, vh〉∂K = −(f, vh)K , ∀ vh ∈ Vh.
(2.4)

We introduce the 4-field discretization variables as

u ≈ uh, p ≈ ph in K,

u ≈ ûh, p ≈ p̂h on ∂K.
(2.5)

Here, we point out that ûh and p̂h are single-valued on Eh. Then we obtain the major but natural part
of the DG formulation:

{
(cph, qh)K − (uh, divhqh)K + 〈qh · n, ûh〉∂K = 0, ∀ qh ∈ Qh,

(ph,∇hvh)K − 〈p̂h · n, vh〉∂K = −(f, vh)K , ∀ vh ∈ Vh.
(2.6)

Next, define ûh and p̂h on the boundary

ûh := ūh + ǔh, p̂h := p̄h + p̌h on ∂K.

Here, p̄h and ūh are some approximations of p and u on the element boundary in terms of uh and ph

from inside of elements. In the simple case,

p̄h := {{ph}}, ūh := {uh}.
 http://engine.scichina.com/doi/10.1007/s11425-019-1809-7
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.. K−. K+. e.

p̌h

.

ǔh

Figure 1 DG notation

We apply the Nitsche’s trick to ǔh ∈ V̌h and p̌h ∈ Q̌h to impose weak continuity (see Figure 1):

p̌h ≈ τ!uh", ǔh ≈ η[ph].

More precisely, {
〈!uh" − τ−1p̌h, q̌h〉 = 0, ∀ q̌h ∈ Q̌h,

〈[ph]− η−1ǔh, v̌h〉 = 0, ∀ v̌h ∈ V̌h.
(2.7)

Collecting (2.6) and (2.7), we obtain a common case of (1.5) as






(cph, qh)K − (uh, divhqh)K + 〈ûh, qh · n〉∂K = 0,

(ph,∇hvh)K − 〈p̂h · n, vh〉∂K = −(f, vh)0,K ,

〈!uh" − τ−1p̌h, q̌h〉 = 0,

〈[ph]− η−1ǔh, v̌h〉 = 0,

(2.8)

where ûh := {uh}+ ǔh and p̂h := {{ph}}+ p̌h. In the context of this paper, we will mainly focus on the
analysis of the 4-field formulation (2.8).

3 Unified analysis of the 4-field formulation

In this section, we shall present two types of the inf-sup condition for the formulation (2.8). In both
cases, the parameter ρ is assumed to be a positive constant. For the sake of simplicity of the exposition,
we also abbreviate the dependence of both ρ and mesh size h to ρh := ρh.

3.1 Some equivalent formulations

Let Q̌p
h : L2(Eh) → Q̌h and Q̌u

h : L2(Eh) → V̌h be the L2 projections. We first give some equivalent
formulations which will be useful in the analysis.

3-field formulation I. By (2.7), we have the explicit expression of p̌h as

p̌h = τQ̌p
h!uh" on Eh. (3.1)

Denote

ũh = (uh, ǔh) and ṽh = (vh, v̌h).

Then the formulation (2.8) can be recast as

{
ah(ph, qh) + bh(qh, ũh) = 0, ∀ qh ∈ Qh,

bh(ph, ṽh)− ch(ũh, ṽh) = −(f, vh), ∀ ṽh ∈ Ṽh,
(3.2)

where
ah(ph, qh) := (cph, qh),

bh(qh, ṽh) := −(divhqh, vh) + 〈[qh], v̌h + {vh}〉,

ch(ũh, ṽh) := 〈τQ̌p
h!uh", Q̌p

h!vh"〉+ 〈η−1ǔh, v̌h〉.
 http://engine.scichina.com/doi/10.1007/s11425-019-1809-7
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We note that (3.2) is equivalent to the formulation (2.8). Firstly, the solution (ph, uh, ǔh) obtained
from (2.8) coincides the solution of (3.2). On the other hand, having the solution (ph, uh, ǔh) of (3.2),
we can construct p̌h via (3.1). It is straightforward to show that (ph, uh, p̌h, ǔh) is the solution of (2.8).

3-field formulation II. By (2.7), we have the explicit expression of ǔh as

ǔh = ηQ̌u
h[ph] on Eh. (3.3)

Denote p̃h = (ph, p̌h) and q̃h = (qh, q̌h). Then the formulation (2.8) can be recast as
{
aw(p̃h, q̃h) + bw(q̃h, uh) = 0, ∀ q̃h ∈ Q̃h,

bw(p̃h, vh) = −(f, vh), ∀ vh ∈ Vh,
(3.4)

where
aw(p̃h, q̃h) := (cph, qh) + 〈ηQ̌u

h[ph], Q̌u
h[qh]〉+ 〈τ−1p̌h, q̌h〉,

bw(q̃h, vh) := (∇hvh, qh)− 〈!vh", q̌h + {{qh}}〉.

By using a similar argument, we know that (3.4) is equivalent to the formulation (2.8).

2-field formulation. By plugging in (3.1) and (3.3) into (2.6) and the DG identity (2.3), the 4-field
formulation with (ph, p̌h, uh, ǔh) is equivalent to the following 2-field formulation, which seeks (ph, uh)
∈ Qh × Vh such that {

a(ph, qh) + b(qh, uh) = 0, ∀ qh ∈ Qh,

b(ph, vh)− c(uh, vh) = −(f, vh), ∀ vh ∈ Vh

(3.5)

with 




a(ph, qh) = (cph, qh) + 〈ηQ̌u
h[ph], Q̌u

h[qh]〉,
b(ph, vh) = (ph,∇hvh)− 〈{{ph}}, !vh"〉

= −(divhph, vh) + 〈[ph], {vh}〉,

c(uh, vh) = 〈τQ̌p
h!uh", Q̌p

h!vh"〉.

(3.6)

We note that (3.5) is equivalent to the formulation (2.8). Firstly, the solution (ph, uh) obtained from (2.8)
coincides the solution of (3.5). On the other hand, having the solution (ph, uh) of (3.5), by using (3.1)
and (3.3), we can construct p̌h and ǔh, respectively. It is straightforward to show that (ph, uh, p̌h, ǔh)
is the solution of (2.8). Hence, the 4-field formulation (2.8), the 3-field formulations (3.2) and (3.4), and
the 2-field formulation (3.5) are mutually equivalent.

Furthermore, if the choice of the spaces Qh, V̌h, Vh and Q̌h satisfying [Qh] ⊂ V̌h and !Vh" ⊂ Q̌h, then
the projections Q̌u

h and Q̌p
h reduce to identities. In this case, (3.5) reduces to the local discontinuous

Galerkin (LDG) method proposed in [15].

Remark 3.1 (Consistency). Let (p, u) ∈ H(div,Ω)×H1(Ω) be the exact solution of (1.2). Recalling
the DG notation (2.1) and the formulation (3.5), we have

{
a(p, qh) + b(qh, u) = 0, ∀ qh ∈ Qh,

b(p, vh)− c(u, vh) = −(f, vh), ∀ vh ∈ Vh,
(3.7)

which shows the consistency of the 2-field formulation (3.5). The equivalence of (3.5) and (2.8) implies
the consistency of the latter. In fact, the formulation (2.8) seeks

(ph, p̌h, uh, ǔh) ∈ Qh × Vh × Q̌h × V̌h

is consistent since (p,0, u, 0) satisfies the formulation (2.8).

For k ! 0, we specify several spaces as follows:

V k
h := {vh ∈ L2(Ω) : vh |K ∈ Pk(K), ∀K ∈ Th},

Qk
h := {ph ∈ L2(Ω) : ph |K ∈ Pk(K), ∀K ∈ Th},

Qk,RT
h := {ph ∈ L2(Ω) : ph |K ∈ Pk(K) + xPk(K), ∀K ∈ Th},

(3.8)

 http://engine.scichina.com/doi/10.1007/s11425-019-1809-7
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where Pk(K) is the space of polynomial functions of degree at most k on K, and

Pk(K) := [Pk(K)]d.

Let Q̌(e) and V̌ (e) denote some local spaces on e which will be specified at their occurrences. For
k ! 0, we specify several spaces as follows:

Q̌k
h := {p̌h ∈ L2(Eh) : p̌h |e ∈ Pk(e), ∀ e ∈ E i

h, p̌h |ΓN = 0},
V̌ k
h := {v̌h ∈ L2(Eh) : v̌h |e ∈ Pk(e), ∀ e ∈ E i

h, v̌h |ΓD = 0},
(3.9)

where Pk(e) is the space of polynomial functions of degree at most k on e.

3.2 Grad-based uniform inf-sup condition

We shall consider the well-posedness of the formulation (2.8) in the grad-based case when τ = (ρhe)−1, η ∼=
τ−1 = ρhe. For any ph ∈ Qh, p̌h ∈ Q̌h, uh ∈ Vh, ǔh ∈ V̌h, define the norms

‖p̃h‖20,ρh
:= (cph,ph)︸ ︷︷ ︸

‖ph‖2
0,c

+ 〈ρhep̌h, p̌h〉︸ ︷︷ ︸
‖p̌h‖2

0,ρh

,

‖ũh‖21,ρh
:= (∇huh,∇huh) + 〈ρ−1h−1

e Q̌p
h!uh", Q̌p

h!uh"〉︸ ︷︷ ︸
‖uh‖2

1,ρh

+ 〈ρ−1h−1
e ǔh, ǔh〉︸ ︷︷ ︸

‖ǔh‖2

0,ρ−1
h

.
(3.10)

We note that the norms in (3.10) depend on both the parameter ρ and mesh size h, and the dependence
can be abbreviated to ρh. Here, we assume that Q̌h contains piecewise constant function space to
guarantee that ‖ · ‖1,ρh is indeed a norm. We further note that the norm ‖ · ‖1,ρh can be extended to
(Vh +H1(Ω))× V̌h. The following norms are induced from (3.10):

‖f‖−1,ρh := sup
vh∈Vh\{0}

(f, vh)

‖vh‖1,ρh

.

Using the 3-field formulation II (3.4), we will show the grad-based inf-sup condition as well as the
quasi-optimal error estimate under the following assumption.

Assumption 3.2. The spaces Qh, Q̌h and Vh satisfy the following conditions:
(a) Q̌h contains piecewise constant function space;
(b) ∇hVh ⊂ Qh;
(c) {{Qh}} ⊂ Q̌h.

Lemma 3.3. Under the Assumption 3.2, for any ρ0 > 0 and 0 < ρ $ ρ0, we have

inf
vh∈Vh\{0}

sup
p̃h∈Q̃h\{0}

bw(p̃h, vh)

‖vh‖1,ρh‖p̃h‖0,ρh

! βw, (3.11)

where βw > 0 is independent of both mesh size h and ρ.

Proof. Since ∇hVh ⊂ Qh and {{Qh}} ⊂ Q̌h, taking

ph = ∇hvh, p̌h = −ρ−1h−1
e Q̌p

h!vh" − {{∇hvh}},

we have
bw(p̃h, vh) = (∇hvh,∇hvh) + 〈ρ−1h−1

e Q̌p
h!vh", Q̌p

h!vh"〉 = ‖vh‖21,ρh
.

Then for any ρ0 > 0 and ρ $ ρ0, we obtain

‖p̃h‖20,ρh
= (c∇hvh,∇hvh) + ‖ρ1/2h1/2

e {{∇hvh}}+ ρ−1/2h−1/2
e Q̌p

h!vh"‖20,Eh

$ C(ρ0){(∇hvh,∇hvh) + ‖ρ−1/2h−1/2
e Q̌p

h!vh"‖20,Eh
}

$ βw‖vh‖21,ρh
. (3.12)

Then, we obtain the desired result.

 http://engine.scichina.com/doi/10.1007/s11425-019-1809-7
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The boundedness of aw(·, ·) on the discrete spaces follows from the standard trace inequality. For the
boundedness of bw(·, ·), we use the Cauchy-Schwarz inequality, the trace inequality, and the following
inequality:

h−1
e ‖!vh"‖20,e " |∇hvh|20,ωe

+ h−1
e ‖Q̌p

h!vh"‖20,e (3.13)

provided that Q̌h contains piecewise constant function space. Here,

ωe :=
⋃

e⊂∂K

K.

The coercivity of aw(·, ·) is obvious, and hence (3.4) is well-posed on the discrete spaces. Due to the
equivalence between (2.8) and (3.4), we have the first main result.

Theorem 3.4. Under Assumption 3.2, if we choose τ = (ρhe)−1, η ∼= τ−1 = ρhe in the formula-
tion (2.8), then we have the following:

(1) There exists ρ0 > 0 such that the extended Galerkin (XG ) method is uniformly well-posed with
respect to the norms ‖ · ‖0,ρh and ‖ · ‖1,ρh when ρ ∈ (0, ρ0] and the following estimate holds:

‖ph‖0,c + ‖p̌h‖0,ρh + ‖uh‖1,ρh + ‖ǔh‖0,ρ−1
h

" ‖f‖−1,ρh . (3.14)

(2) Let (p, u) ∈ H1/2+ε(Ω) × H1(Ω) be the solution of (1.2) and (p̃h, ũh) ∈ Q̃h × Ṽh be the solution
of (2.8). We have the quasi-optimal approximation as follows:

‖p− ph‖h,c + ‖p̌h‖0,ρh + ‖u− uh‖1,ρh + ‖ǔh‖0,ρ−1
h

" inf
rh∈Qh,wh∈Vh

(‖p− rh‖h,c + ‖u− wh‖1,ρh), (3.15)

where
‖p‖2h,c := (cp,p) + 〈he{{p}}, {{p}}〉+ 〈he[p], [p]〉, ∀p ∈ Qh +H1/2+ε(Ω). (3.16)

(3) If p ∈ Hk+1(Ω), u ∈ Hk+2(Ω) (k ! 0) and we choose the spaces

Qh × Q̌h × Vh × V̌h = Qk
h × Q̌k

h × V k+1
h × V̌h

for any V̌h, then we have the error estimate

‖p− ph‖0,c + ‖p̌h‖0,ρh + ‖u− uh‖1,ρh + ‖ǔh‖0,ρ−1
h

" hk+1(|p|k+1 + |u|k+2). (3.17)

Proof. Step 1. The uniform inf-sup condition on discrete spaces. From the Brezzi theory [9, 12],

the discrete well-posedness of (3.4) implies

‖ph‖0,c + ‖p̌h‖0,ρh + ‖uh‖1,ρh " ‖f‖−1,ρh .

Note that ǔh = ηQ̌u
h[ph], and using the trace inequality, we have

‖ǔh‖20,ρ−1
h

∼= 〈ρheQ̌u
h[ph], Q̌u

h[ph]〉 " ‖ph‖20,c, (3.18)

which gives (3.14).

Step 2. Quasi-optimal error estimates. Using the trace inequality and the inverse inequality, the norm
‖ ·‖h,c defined in (3.16) is equivalent to ‖ ·‖0,c on the discrete space Qh. Therefore, we have the following
inf-sup condition:

sup
q̃h∈Q̃h\{0},vh∈Vh\{0}

ãw((r̃h, wh), (q̃h, vh))

‖q̃h‖h,ρh + ‖vh‖1,ρh

# ‖r̃h‖h,ρh + ‖wh‖1,ρh , ∀ r̃h ∈ Q̃h, wh ∈ Vh, (3.19)

where

ãw((r̃h, wh), (q̃h, vh)) := aw(r̃h, q̃h) + bw(q̃h, wh) + bw(r̃h, vh),

‖r̃h‖2h,ρh
:= ‖rh‖2h,c + ‖řh‖20,ρh

= (crh, rh) + 〈he{{rh}}, {{rh}}〉+ 〈he[rh], [rh]〉+ 〈ρheřh, řh〉.
 http://engine.scichina.com/doi/10.1007/s11425-019-1809-7
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Note that the norm ‖ · ‖h,ρh can be extended to (Qh +H1/2+ε(Ω)) × Q̌h. Recalling the consistency of
the 3-field formulation, we have for any r̃h ∈ Q̃h, wh ∈ Ṽh,

‖r̃h − p̃h‖h,ρh + ‖wh − uh‖1,ρh " sup
q̃h∈Q̃h\{0},vh∈Vh\{0}

ãw((r̃h − p̃h, wh − uh), (q̃h, vh))

‖q̃h‖h,ρh + ‖vh‖1,ρh

= sup
q̃h∈Q̃h\{0},vh∈Vh\{0}

ãw((r̃h − (p,0), wh − u), (q̃h, vh))

‖q̃h‖h,ρh + ‖vh‖1,ρh

" ‖r̃h − (p,0)‖h,ρh + ‖wh − u‖1,ρh . (3.20)

Here, in the last step, the boundedness of aw(·, ·) and bw(·, ·) defined in (3.4) is applied by using (3.13)
and the Cauchy-Schwarz inequality, namely,

aw(r̃h − (p,0), q̃h) = (c(rh − p), qh) + 〈ηQ̌u
h[rh − p], Q̌u

h[qh]〉+ 〈τ−1řh, q̌h〉
" ‖(r̃h − (p,0))‖h,ρh‖q̃h‖h,ρh ,

bw(r̃h − (p,0), vh) = (∇hvh, rh − p)− 〈!vh", řh〉 − 〈!vh", {{rh − p}}〉
" ‖(r̃h − (p,0))‖h,ρh‖vh‖1,ρh (by (3.13)),

bw(q̃h, wh − u) = (∇(wh − u), qh)− 〈!wh − u", q̌h + {{qh}}〉
" ‖q̃h‖h,ρh‖wh − u‖1,ρh (by {{Qh}} ⊂ Q̌h).

The quasi-optimal approximation (3.15) then follows from (3.18), (3.20) and the triangle inequality.
Consequently, the error estimate (3.17) follows directly from (3.15) and interpolation theory.

Remark 3.5. In Step 2, with the help of norm ‖ · ‖h,c in (3.16), we avoid using the trace inequality
in the proof of boundedness of aw(·, ·) and bw(·, ·) on the continuous spaces. Whence, the quasi-optimal
approximation holds with the minimal regularity requirement.

3.3 Div-based uniform inf-sup condition

In light of the formulation of b(·, ·) in (3.6), we now establish the div-based inf-sup condition. For any
ph ∈ Qh, p̌h ∈ Q̌h, uh ∈ Vh, ǔh ∈ V̌h, the norms are defined by

‖p̃h‖2div,ρh
:= (cph,ph) + (divhph, divhph) + 〈ρ−1h−1

e Q̌u
h[ph], Q̌u

h[ph]〉︸ ︷︷ ︸
‖ph‖2

div,ρh

+ 〈ρ−1h−1
e p̌h, p̌h〉︸ ︷︷ ︸

‖p̌h‖2

0,ρ−1
h

,

‖ũh‖20,ρh
:= (uh, uh)︸ ︷︷ ︸

‖uh‖2
0

+ 〈ρheǔh, ǔh〉︸ ︷︷ ︸
‖ǔh‖2

0,ρh

.
(3.21)

Note that the norm ‖ · ‖div,ρh can be extended to (Qh +H(div,Ω))× Q̌h.

Assumption 3.6. The spaces Qh, Vh and V̌h satisfy the following conditions:

(a) let Rh := Qh ∩H(div,Ω) and Rh × Vh be a stable pair for the mixed method;

(b) divhQh = Vh;

(c) {Vh} ⊂ V̌h.

In light of (3.6), the boundedness of a(·, ·) is obvious. The boundedness of b(·, ·) and c(·, ·) on discrete
spaces can be derived from the Cauchy-Schwarz inequality, the trace inequality and the assumption
{Vh} ⊂ V̌h. We are now in the position to state the second main result.

Theorem 3.7. Under Assumption 3.6, if we choose η = (ρhe)−1, τ ∼= η−1 = ρhe in the formula-
tion (2.8), then we have the following:

(1) There exists ρ0 > 0, such that the XG method is uniformly well-posed with respect to the norms
‖ · ‖div,ρh and ‖ · ‖0,ρh when ρ ∈ (0, ρ0] and the following estimate holds:

‖ph‖div,ρh + ‖p̌h‖0,ρ−1
h

+ ‖uh‖0 + ‖ǔh‖0,ρh " ‖f‖0. (3.22)
 http://engine.scichina.com/doi/10.1007/s11425-019-1809-7
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(2) Assume further that

(d) [Qh] ⊂ V̌h. (3.23)

Let (p, u) ∈ H(div,Ω) × H1/2+ε(Ω) be the solution of (1.2) and (p̃h, ũh) ∈ Q̃h × Ṽh be the solution
of (2.8). We have the following quasi-optimal approximation:

‖p− ph‖div,ρh + ‖p̌h‖0,ρ−1
h

+ ‖u− uh‖h,0 + ‖ǔh‖0,ρh

" inf
rh∈Qh,wh∈Vh

(‖p− rh‖div,ρh + ‖u− wh‖h,0), (3.24)

where

‖u‖2h,0 := ‖u‖20 + 〈he{u}, {u}〉+ 〈he!u", !u"〉, ∀u ∈ Vh +H1/2+ε(Ω). (3.25)

(3) If p ∈ Hk+2(Ω), u ∈ Hk+1(Ω) (k ! 0), and we choose the spaces

Qh × Q̌h × Vh × V̌h = Qk,RT
h × Q̌h × V k

h × V̌ k
h

or Qk+1
h × Q̌h × V k

h × V̌ k+1
h for any Q̌h, then the following estimate holds:

‖p− ph‖div,ρh + ‖p̌h‖0,ρ−1
h

+ ‖u− uh‖0 + ‖ǔh‖0,ρh " hk+1(|p|k+2 + |u|k+1). (3.26)

Proof. Step 1. The uniform inf-sup condition on discrete spaces. We first consider the inf-sup

condition for b(·, ·). For any vh ∈ Vh, there exists qc
h ∈ Rh ⊂ Qh, such that divqc

h = vh, [qc
h] = 0 and

‖qc
h‖0 + ‖divqc

h‖0 " ‖vh‖0 or ‖qc
h‖div,ρh " ‖vh‖0. (3.27)

Define the operator B : Qh → V ′
h by 〈Bqh, vh〉 = b(qh, vh) for all qh ∈ Qh and vh ∈ Vh. Let

K = KerB := {qh ∈ Qh : −(divhqh, vh) + 〈[qh], {vh}〉 = 0, ∀ vh ∈ Vh},
H = KerB′ := {vh ∈ Vh : −(divhqh, vh) + 〈[qh], {vh}〉 = 0, ∀ qh ∈ Qh}.

Clearly, we have H = {0} from (3.27). Next, we consider the coercivity of a(·, ·) on K. Define the lifting
operator r : L2(Eh) 0→ Vh by

∫

Ω
r(w)vh dx =

∑

e∈Eh

∫

e
w{vh}ds, ∀ vh ∈ Vh. (3.28)

Then, a standard scaling argument gives

‖r(w)‖0 " h−1/2
e ‖w‖20,Eh

, ∀w ∈ L2(Eh). (3.29)

Using the definition of lifting operator r and the assumption that {Vh} ⊂ V̌h, we have

r(Q̌u
h[qh]) = divhqh

for any qh ∈ K. Then the coercivity of a(·, ·) on K is shown as follows: For any qh ∈ K,

a(qh, qh) = (cqh, qh) + 〈ηQ̌u
h[qh], Q̌u

h[qh]〉
# (cqh, qh) + (r(Q̌u

h[qh]), r(Q̌u
h[qh])) + 〈ρ−1h−1

e Q̌u
h[qh], Q̌u

h[qh]〉
= (cqh, qh) + (divhqh, divhqh) + 〈ρ−1h−1

e Q̌u
h[qh], Q̌u

h[qh]〉 = ‖qh‖2div,ρh
.

By [7, Theorem 4.3.1], we have the discrete well-posedness of (3.5). Then, we have

‖ph‖div,ρh + ‖uh‖0 " ‖f‖0,

which implies (3.22) by using p̌h = τQ̌p
h!uh", ǔh = ηQ̌u

h[ph] and the trace inequality.
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Step 2. Quasi-optimal error estimates. Using the trace inequality and the inverse inequality, the norm
‖ · ‖h,0 defined in (3.25) is equivalent to ‖ · ‖0 on the discrete space Vh. Therefore, we have the following
uniform inf-sup condition:

sup
qh∈Qh\{0},vh∈Vh\{0}

ã((rh, wh), (qh, vh))

‖qh‖div,ρh + ‖vh‖h,0
# ‖rh‖div,ρh + ‖wh‖h,0, ∀ rh ∈ Qh, wh ∈ Vh, (3.30)

where
ã((rh, wh), (qh, vh)) := a(rh, qh) + b(qh, wh) + b(rh, vh)− c(wh, vh).

Recalling the consistency of the 2-field formulation, we have for any rh ∈ Qh, wh ∈ Vh,

‖rh − ph‖div,ρh + ‖wh − uh‖h,0 " sup
qh∈Qh\{0},vh∈Vh\{0}

ã((rh − ph, wh − uh), (qh, vh))

‖qh‖div,ρh + ‖vh‖h,0

= sup
qh∈Qh\{0},vh∈Vh\{0}

ã((rh − p, wh − u), (qh, vh))

‖qh‖div,ρh + ‖vh‖h,0
" ‖rh − p‖div,ρh + ‖wh − u‖0,h. (3.31)

Here, in the last step, we apply the boundedness of a(·, ·), b(·, ·) and c(·, ·) as follows:

a(rh − p, qh) = (c(rh − p), qh) + 〈ηQ̌u
h[rh − p], Q̌u

h[qh]〉
" ‖rh − p‖div,ρh‖qh‖div,ρh ,

b(rh − p, vh) = −(divh(rh − p), vh) + 〈[rh − p], {vh}〉
" ‖rh − p‖div,ρh‖vh‖h,0 (by {Vh} ⊂ V̌h),

b(qh, wh − u) = −(divhqh, wh − u) + 〈[qh], {wh − u}〉
" ‖qh‖div,ρh‖wh − u‖h,0 (by [Qh] ⊂ V̌h),

c(wh − u, vh) = 〈τQ̌p
h!wh − u", Q̌p

h!vh"〉 " ‖wh − u‖h,0‖vh‖h,0.

Similar to (3.20) in Theorem 3.4, we have the the quasi-optimal approximation (3.24), which directly
leads to the error estimate (3.26) from the interpolation theory.

Remark 3.8. Similar to the grad-based analysis, a norm ‖ · ‖h,0 is introduced in (3.25) to obtain the
quasi-optimal approximation under the minimal regularity assumption. The assumption (d) in (3.23) is
necessary for the quasi-optimal error estimate, though it is not required in the discrete well-posedness.

4 Relationship with existing methods and analysis

In this section, we exploit the relationship between the formulation (2.8) and several existing numerical
methods, which leads to the well-posedness and error estimates of the existing numerical methods. We
follow the three different variants of the 4-field system by eliminating either p̌h or ǔh, or both.

4.1 Eliminating p̌h

After eliminating p̌h via (3.1), the resulting 3-field formulation (3.2) is a generalization of the stabilized
hybrid mixed method [30], or some special cases of the HDG method [20–22,33,38].

Some special cases. More precisely, let us consider the case in which

η =
1

4
τ−1, V̌h = Q̌h · n,

[Qh] ⊂ V̌h or {Vh} ⊂ V̌h.
(4.1)

If we denote
ûh := Q̌u

h{uh}+ ǔh ∈ V̌h and v̂h := Q̌u
h{vh}+ v̌h ∈ V̌h,
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then the 3-field formulation (3.2) is shown to be: Find (ph, uh, ûh) ∈ Qh × Vh × V̌h such that for any
(qh, vh, v̂h) ∈ Qh × Vh × V̌h,






(cph, qh)K − (uh, divhqh)K + 〈ûh, qh · n〉∂K = 0,

− (divhph, vh)K + 〈2τ(ûh − Q̌u
huh), Q̌u

hvh〉∂K = −(f, vh)K ,

〈ph · n, v̂h〉∂K − 〈2τ(ûh − Q̌u
huh), v̂h〉∂K = 0.

(4.2)

The above formulation shows that ph and uh can be represented by ûh locally from the first and the
second equations. As a result, a globally coupled equation solely for ûh on Eh can be obtained.

It can be shown that (4.2) reduces to the standard HDG method [20–22], if

Q̌u
huh = uh, Q̌u

hvh = vh or Vh |Eh ⊂ V̌h. (4.3)

Moreover, the formulation (4.2) coincides with the HDG with the reduced stabilization method [33, 38].
In particular, the grad-based analysis in Subsection 3.2 is fit for the HDG with the reduced stabilization
method, with the choice

Qh × Vh × V̌h = Qk
h × V k+1

h × V̌ k
h .

Specific choices of the discrete space and the corresponding numerical methods are summarized in
Table 1. We refer to [30] for discussion from the HDG to the hybrid mixed methods [3, 12, 20] and the
mixed methods [7, 10–12,36,43].

Remark 4.1. We should note that the uniform inf-sup condition for the HDG method when η =
1
4τ

−1 = O(1), Qh = Qk
h, Vh = V k

h , V̂h = V̂ k
h is not proved in Section 3.

Minimal stabilized div-based method. In light of Theorem 3.7, the div-based inf-sup condition
holds for any Q̌h. Hence, when choosing Q̌h = {0}, the 3-field formulation (3.2) reduces to a stabilized
div-based method with minimal stabilization, whose well-posedness and the quasi-optimal error estimate
are guaranteed under Assumptions 3.6 and (3.23).

Furthermore, with the assumption (3.23) and Q̌h = {0}, the 2-field formulation (3.5) reduces to the
mixed DG method [30]. This implies that the mixed DG method proposed in [30] can be interpreted as
the minimal stabilized div-based method.

Mixed method. Finally, we remark that, if we take τ = ρh, ρ → 0, and choose

Qh × Vh × V̌h = Qk+1
h × V k

h × V̌ k+1
h

or
Qh × Vh × V̌h = Qk,RT

h × V k
h × V̌ k

h ,

then the 3-field formulation (3.2) implies the mixed method by eliminating ǔh. We make this statement
rigorous in Subsection 4.4.2.

Table 1 From (2.8) to existing methods

Qh Q̌h Vh V̌h Reference inf-sup condition

Qk
h Q̌k+1

h V k+1
h V̌ k+1

h HDG in [33] gradient-based

Qk+1
h Q̌k+1

h V k
h V̌ k+1

h HDG in [21] div-based

Qk,RT
h Q̌k

h V k
h V̌ k

h HDG in [21] div-based

Qk
h Q̌k

h V k+1
h V̌ k

h HDG with reduced stabilization in [33,38] gradient-based

Qk
h Q̌k

h V k
h V̌ k

h HDG in [19,22] not proved

Qk+1
h {0} V k

h V̌ k
h Mixed DG in [30] div-based

Qk,RT
h Q̌k

h V k
h V̌ k+1

h WG in [46] div-based

Qk
h Q̌k

h V k+1
h V̌ k

h WG-MFEM in [47] grad-based

Qk
h Q̌k

h V k+1
h {0} LDG in [24] grad-based
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4.2 Eliminating ǔh

After eliminating ǔh via (3.3), the resulting 3-field formulation (3.4) is a generalization of the stabilized
hybrid primal method [30], or some special cases of the WG-MFEM method [47]. In fact, in the case
when α is not piecewise constant, the WG-MFEM method in [47] differs from the formulation (3.4).

Some special cases. Denote

p̂h := Q̌p
h{{ph}}+ p̌h ∈ Q̌h, q̂h := Q̌p

h{{qh}}+ q̌h ∈ Q̌h.

Again, under the conditions that

τ =
1

4
η−1, Q̌h · n = V̌h,

!Vh" ⊂ Q̌h or {{Qh}} ⊂ Q̌h,
(4.4)

(3.4) can be recast as: Find (ph, uh, p̌h) ∈ Qh × Vh × Q̌h such that for any (qh, vh, q̌h) ∈ Qh × Vh × Q̌h,






(cph, qh)K + (∇huh, qh)K − 〈2η(p̂h − Q̌p
hph), Q̌

p
hqh〉∂K = 0,

(ph,∇hvh)K − 〈p̂h, vhn〉∂K = −(f, vh)K ,

− 〈∇huh, q̂h〉∂K + 〈2η(p̂h − Q̌p
hph), q̂h〉∂K = 0.

(4.5)

Similarly, the above formulation shows that ph and uh can be represented by p̂h, and hence, a globally
coupled equation solely for p̂h on Eh can be obtained. Moreover, this formulation is the weak Galerkin
mixed finite element method (WG-MFEM) [47], if

Q̌p
hph = ph, Q̌p

hqh = qh or Qh |Eh ⊂ Q̌h. (4.6)

Several possible discrete spaces and the corresponding analysis tools are listed as follows:

1. Qh = Qk,RT
h , Vh = V k

h , Q̌h = Q̌k
h, τ = O(h): div-based analysis;

2. Qh = Qk+1
h , Vh = V k

h , Q̌h = Q̌k+1
h , τ = O(h): div-based analysis;

3. Qh = Qk
h, Vh = V k+1

h , Q̌h = Q̌k
h (or Q̌k+1

h ), τ = O(h−1): grad-based analysis.

We refer to [30] for discussion from the WG to the hybrid primal methods [41, 42, 49] and the primal
methods [1, 16, 26,28, 35,39, 44].

Minimal stabilized grad-based method. In light of Theorem 3.4, the grad-based inf-sup condition
holds for any V̌h. Hence, when choosing V̌h = {0}, the 3-field formulation (3.4) reduces to a stabilized
grad-based method with minimal stabilization, whose well-posedness and the quasi-optimal error estimate
are guaranteed under Assumption 3.2.

Furthermore, with the assumption (3.23) and V̌h = {0}, the 2-field formulation (3.5) reduces to an
LDG method [24] in the mixed form.

Primal method. We remark that, if we take η → 0 and choose

Qh × Vh × Q̌h = Q0
h × V 1

h × Q̌0
h,

the WG method is equivalent to the nonconforming finite element method discretized by the Crouzeix-
Raviart element. When choosing

Qh × Vh × Q̌h = Q1
h × V 2

h × Q̌1
h

and taking η → 0, the formulation (4.4) is getting unstable. In this case, the stabilization is needed for
the hybrid primal method which induces to the WG method.
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4.3 Eliminating both p̌h and ǔh

By plugging in (3.1) and (3.3) into (2.6) and the DG identity (2.3), the 4-field formulation with
(ph, p̌h, uh, ǔh) turns out to the 2-field formulation (3.5) with (ph, uh), which can be viewed as a special
DG scheme in the mixed form. Taking the advantage of unified analysis in Section 3, the grad-based or
div-based analysis can be applied to the DG scheme (3.5) with various choices of the discrete spaces.

Remark 4.2. There are four fields in the original formulation (2.8): ph, p̌h, uh, ǔh. Theoretically, by
eliminating any m fields for m $ 3, the number of possible formulations can be

C1
4 + C2

4 + C3
4 = 4 + 6 + 4 = 14.

Some of them may be hybridizable. Under the special assumption, these algorithms lead to some special
interesting cases, e.g., the primal method or the mixed method.

Remark 4.3. In this paper, the analysis framework is established with a special choice

p̄h = {{ph}}, ūh = {uh},

which includes the mixed DG [30] and mixed LDG [15]. Furthermore, the 4-field formulation (1.5) has
the capacity to recover more involved DG schemes by choosing different p̄h and ūh [30].

4.4 Some limiting case of 2-field formulation as ρ → 0

With the uniform inf-sup conditions, we revisit some limiting of the formulation in the case of ρ → 0 [30].

4.4.1 A limiting case based on the grad-based analysis

First, having the grad-based inf-sup condition, we discuss the limiting of the formulation (3.5) in the case
of τ = (ρhe)−1, η ∼= τ−1 = ρhe as ρ → 0. Given the H1 conforming subspace V c

h := Vh ∩H1
D(Ω) ⊂ Vh,

we consider the following scheme for solving the Poisson equation (1.1): Find (uc
h,p

c
h) ∈ V c

h ×Qh such
that {

(cpc
h, qh) + (∇uc

h, qh) = 0, ∀ qh ∈ Qh,

(pc
h,∇vch) = −(f, vch), ∀ vch ∈ V c

h .
(4.7)

Then, under the condition that ∇V c
h ⊂ ∇hVh ⊂ Qh, the well-posedness of (4.7) implies that (see [8])

‖pc
h‖0,c + ‖uc

h‖1 " sup
vc
h∈V c

h \{0}

−(f, vch)

‖vch‖1
" ‖f‖0. (4.8)

We further note that, when c is piecewise constant, the scheme (4.7) is equivalent to the primal finite
element by eliminating pc

h through pc
h = α∇uc

h. Thanks to the Theorem 3.4, we have the following
theorem.

Theorem 4.4. Assume that the spaces Qh, Vh and Q̌h satisfy
(a) ∇hVh ⊂ Qh;
(b) {{Qh}} ⊂ Q̌h, !Vh" ⊂ Q̌h;
(c) Vh = V k

h (k ! 1).
Then the formulation (3.5) with τ = (ρhe)−1, η ∼= τ−1 = ρhe converges to the primal method (4.7) as
ρ → 0. Furthermore, let (pτ

h, u
τ
h) be the solution of (3.5) and (pc

h, u
c
h) be the solution of (4.7). We have

‖pτ
h − pc

h‖0,c + (‖∇h(u
τ
h − uc

h)‖20 + ‖h−1/2
e !uτ

h − uc
h"‖20,Eh

)
1
2 " ρ

1
2 ‖f‖0. (4.9)

Proof. Recall the 2-field formulation (3.5),
{
(cpτ

h, qh) + 〈ηQ̌u
h[p

τ
h], Q̌u

h[qh]〉+ (∇hu
τ
h, qh)− 〈!uτ

h", {{qh}}〉 = 0, ∀ qh ∈ Qh,

(pτ
h,∇hvh)− 〈{{pτ

h}}, !vh"〉 − 〈τ!uτ
h", !vh"〉 = −(f, vh), ∀ vh ∈ Vh,

(4.10)

where the condition !Vh" ⊂ Q̌h is used.
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Note that for any given vh ∈ Vh, there exists a vIh ∈ V c
h , such that

‖vh − vIh‖0 + ‖∇h(vh − vIh)‖0 "
( ∑

e∈Eh

h−1
e ‖!vh"‖20,e

) 1
2

$ ρ
1
2 ‖vh‖1,ρh . (4.11)

Define

δph := pτ
h − pc

h, δuh := uτ
h − uc

h.

Taking vch = vIh in (4.7), and subtracting (4.7) from the equation (4.10), we have






(cδph, qh) + 〈ηQ̌u
h[δ

p
h], Q̌

u
h[qh]〉+ (∇hδ

u
h , qh)− 〈!δuh", {{qh}}〉

= −〈ηQ̌u
h[p

c
h], Q̌u

h[qh]〉, ∀ qh ∈ Qh,

(δph,∇hvh)− 〈{{δph}}, !vh"〉 − 〈τ!δuh", !vh"〉
= −(f, vh − vIh)− (pc

h,∇h(vh − vIh)) + 〈{{pc
h}}, !vh"〉, ∀ vh ∈ Vh.

By the grad-based stability result for the 2-field formulation (3.5), we obtain

‖δph‖0,c + ‖δuh‖1,ρh

" sup
qh∈Qh\{0}

−〈ηQ̌u
h[p

c
h], Q̌u

h[qh]〉
‖qh‖0,c

+ sup
vh∈Vh\{0}

−(f, vh − vIh)− (pc
h,∇h(vh − vIh)) + 〈{{pc

h}}, !vh"〉
‖vh‖1,ρh

" ρ‖pc
h‖0,c + sup

vh∈Vh\{0}

‖f‖0‖vh − vIh‖0 + ‖pc
h‖0,c‖∇h(vh − vIh)‖0

‖vh‖1,ρh

+ ρ
1
2 ‖pc

h‖0,c

" ρ‖pc
h‖0,c + ρ

1
2 (‖f‖0 + ‖pc

h‖0,c) (by (4.11)). (4.12)

Finally, by the stability estimate (4.8), we have

‖δph‖0,c + ‖δuh‖1,ρh " ρ‖f‖0 + ρ
1
2 ‖f‖0 " ρ

1
2 ‖f‖0. (4.13)

This completes the proof.

Remark 4.5. The equivalence between ‖vh‖21,ρh
and (∇huh,∇huh)+〈ρ−1h−1

e !uh", !uh"〉 is not uniform
as ρ → 0. Therefore, the assumption !Vh" ⊂ Q̌h is necessary in (4.11).

Remark 4.6. A typical example that satisfies the assumption in Theorem 4.4 is Qh = Qk−1
h , Vh = V k

h ,
and Q̌h = Q̌k

h for k ! 1.

4.4.2 A limiting case based on the div-based analysis

Next, having the div-based inf-sup condition, we discuss the limiting of the formulation (2.8) in the case
of η = (ρhe)−1, τ ∼= η−1 = ρhe as ρ → 0. Consider the H(div) conforming subspace

Qc
h := Qh ∩HN (div,Ω) ⊂ Qh,

the mixed method when applying to the Poisson equation (1.1) can be written as: Find (pc
h, u

c
h) ∈ Qc

h×Vh

such that {
(cpc

h, q
c
h)− (uc

h, divq
c
h) = 0, ∀ qc

h ∈ Qc
h,

− (divpc
h, vh) = −(f, vh), ∀ vh ∈ Vh.

(4.14)

Then, under the condition that divQc
h = divhQh = Vh, the well-posedness of the mixed method

(see [7, 12]) implies that

‖pc
h‖H(div) + ‖vch‖0 " sup

vh∈Vh\{0}

−(f, vh)

‖vh‖0
" ‖f‖0. (4.15)

Thanks to Theorem 3.7, we have the following theorem.
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Theorem 4.7. Assume that the spaces Qh, V̌h and Vh satisfy
(a) divhQh = Vh;
(b) {Vh} ⊂ V̌h, [Qh] ⊂ V̌h;
(c) Qh = Qk,RT

h or Qk+1
h , k ! 0.

Then the formulation (3.5) with η = (ρhe)−1, τ ∼= η−1 = ρhe converges to the mixed method (4.14) as
ρ → 0. Furthermore, let (pη

h, u
η
h) be the solution of (3.5) and (pc

h, u
c
h) be the solution of (4.14). We have

‖pη
h − pc

h‖0,c + ‖divh(pη
h − pc

h)‖0 + ‖uη
h − uc

h‖0 " ρ
1
2 ‖f‖0. (4.16)

Proof. Recall the two-field formulation (3.5),
{
(cpτ

h, qh) + 〈η[pτ
h], [qh]〉 − (uτ

h, divhqh) + 〈{uτ
h}, [qh]〉 = 0, ∀ qh ∈ Qh,

− (divhp
τ
h, vh) + 〈[pτ

h], {vh}〉 − 〈τQ̌p
h!uτ

h", Q̌p
h!vh"〉 = −(f, vh), ∀ vh ∈ Vh,

(4.17)

where the condition [Qh] ⊂ V̌h is used.
For any given qh ∈ Qh, there exists qI

h ∈ Qc
h, such that

‖divh(qh − qI
h)‖0 + ‖qh − qI

h‖0 "
( ∑

e∈Eh

h−1
e ‖[qh]‖20,e

) 1
2

$ ρ
1
2 ‖qh‖div,ρh . (4.18)

Define
δph = pτ

h − pc
h, δuh = uτ

h − uc
h.

Taking qc
h = qI

h in (4.14), and subtracting (4.14) from (4.17), we have





(cδph, qh) + 〈η[δph], [qh]〉 − (δuh , divhqh) + 〈{δuh}, [qh]〉
= (uc

h, divh(qh − qI
h))− (cpc

h, qh − qI
h)− 〈{uc

h}, [qh]〉, ∀ qh ∈ Qh,

− (divhδ
p
h, vh) + 〈[δph], {vh}〉 − 〈τQ̌p

h!δuh", Q̌p
h!vh"〉 = 〈τQ̌p

h!uc
h", Q̌p

h!vh"〉, ∀ vh ∈ Vh.

By the div-based stability result for the 2-field formulation (3.5), we obtain

‖δph‖div,ρh + ‖δuh‖0

" sup
qh∈Qh\{0}

(uc
h, divh(qh − qI

h))− (cpc
h, qh − qI

h)− 〈{uc
h}, [qh]〉

‖qh‖div,ρh

+ sup
vh∈Vh\{0}

〈τQ̌p
h!uc

h", Q̌p
h!vh"〉

‖vh‖0

" sup
qh∈Qh\{0}

‖uc
h‖0‖divh(qh − qI

h)‖0 + ‖pc
h‖0‖qh − qI

h‖0
‖qh‖div,ρh

+ ρ
1
2 ‖uc

h‖0 + ρ‖uc
h‖0

" ρ
1
2 (‖uc

h‖0 + ‖pc
h‖0) + ρ

1
2 ‖uc

h‖0 " ρ
1
2 (‖uc

h‖0 + ‖pc
h‖0) (by (4.18)). (4.19)

By the stability estimate (4.15), we have

‖δp
h‖div,ρh + ‖δuh‖0 " ρ

1
2 (‖uc

h‖0 + ‖pc
h‖0) " ρ

1
2 ‖f‖0. (4.20)

This completes the proof.

5 Conclusion

The extended Galerkin analysis, presented in this paper, is based on a unified 4-field formulation for a
large class of numerical methods for solving second-order partial differential equations. Furthermore, we
establish two types of uniform inf-sup conditions for the formulation, which naturally lead to uniform
optimal error estimates for almost all the major finite element or Galerkin methods, such as HDG, WG
and DG.
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