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1. Introduction

Numerical simulation for the incompressible magnetohydrodynamics (MHD) system is important in plasma physics. There
have been a lot of efforts in designing stable and efficient numerical methods for solving the MHD equations.

The MHD system has various conserved quantities. Among them, the energy law and the magnetic Gauss law (V - B =0)
have been proved crucial both for the MHD physics and for computation, cf,, [1]. Moreover, topology of magnetic and
fluid fields plays an important role in many applications of MHD. The linking and knot structures of the magnetic field
are rearranged in magnetic reconnection and this fact leads to a number of consequences in physics. The helicity of a
divergence-free vector field, which is conserved in non-dissipative systems (ideal flows), is a standard measure for the
extent to which the field lines wrap and coil around one another [2]. Fluid and MHD helicity is known to be important in
the turbulence regime as discussed in, for example, [3,4]. Helicity also provides a local lower bound for the energy [5, p.
122], i.e., a topological obstruction of energy relaxation. We refer to [5-9] and the references therein for more discussions
on MHD helicity, and [10] for discussions on knots in plasma physics.

In many algorithms, these conservation laws are only approximated up to a discretization error, rather than exactly
conserved. These approximation errors may then pollute the solution with unphysical behavior. It is therefore of great
interest to construct numerical methods that precisely preserve the helicity up to the machine precision, together with
other conservative quantities including the energy and the magnetic Gauss law. These conservation laws are related to each
other. For example, to obtain well defined magnetic helicity [ A, - By dx at the discrete level, where Ay is any magnetic
potential of By, satisfying V x A, = By, the discrete magnetic field By, has to be precisely divergence-free. As a consequence,
it is necessary to use algorithms preserving the magnetic Gauss law.
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While it is very difficult to provide a complete review of the huge literature on MHD simulations, let us only mention
some early work on finite element methods [11,12], and recent work on finite element methods that preserve the energy
law and the magnetic Gauss law at the discrete level [13-15]. However, neither magnetic nor cross helicity is preserved in
most, if not all, of these finite element schemes even in a semi-discretization with continuous time. We refer to Section 3.1
below and [16] for an analysis of the artificial helicity pollution in one of these schemes (note that many schemes do not
preserve the precise divergence-free condition of the magnetic field, so the helicity is even not defined for the numerical
solutions).

On the other hand, we mention some existing efforts on helicity-preserving schemes. Liu and Wang [17] studied helicity-
preserving finite difference methods for axisymmetric Navier-Stokes and MHD flows. Rebholz [18,19] constructed energy-
and helicity-preserving finite element methods for the Navier-Stokes equations. See [20] for further discussions on, e.g.,
turbulence models. Kraus and Maj [21] studied helicity-preserving schemes for the MHD system based on discrete exterior
calculus. To the best of our knowledge, however, it remains open to construct helicity-preserving finite element methods for
MHD.

The goal of this paper is to construct finite element methods for the incompressible MHD system preserving the energy,
the magnetic Gauss law and the magnetic and cross helicity at the discrete level in the ideal MHD limit. Actually, the
proposed scheme preserves the local helicity as well, meaning that the helicity is conserved on any subdomain of Q if the
field has certain vanishing conditions on its boundary. This in turn provides a lower bound for the local discrete energy, i.e.,
a topological obstruction of energy relaxation at the discrete level. As demonstrated by the numerical results, the proposed
algorithm also shows a significant improvement on the approximation of helicity even for the resistive incompressible MHD
models, compared to popular schemes that are not constructed with an emphasis on structure-preservation. We remark that
a slightly different version of the local helicity is defined by the Woltjer invariant,

Wy = / A - Bdx,
¢e(U)

where ¢ is the flow of the velocity vector field, U is any subdomain of  and B -n3y =0 on dU. In this paper, we only
consider fixed domains and will not deal with the Woltjer invariant where the domain is dragged by the flow.

To preserve several conserved quantities at the discrete level, we adopt a discrete differential form point of view. Compar-
ing to recent efforts [22,23] on structure-preserving discretization for the fluid mechanics with H(div)-conforming velocity,
we use an H(curl)-based formulation for the fluid part to preserve the helicity. A similar discretization for the Navier-Stokes
equations based on the Nédélec edge element can be found in [24]. However, helicity-preservation was not addressed
there. Comparing with existing works for the MHD discretization, e.g., [13,15], we introduce the discrete Hodge dual (L2
projections) of the magnetic field and the vorticity as independent variables in proper spaces. As a summary, we use
(up, @p, jp, En, Hp, By, Pp) € [H’&(curl, QP x Hg(div, Q) x Hg(grad) as variables, where uy, is the velocity, @y, is the vortic-
ity, j is the current density, Ej is the electric field, Hy is the magnetizing field, By is the magnetic field, and Py is the
total pressure, respectively. Here we introduce the vorticity variable @y € Hg(curl, 2) independent of V x up, € Hg(div, Q)
and the magnetic variable Hy, € Hg(curl, ) independent of By, € Hg(div, ). Together with carefully designed discrete vari-
ational forms ((16) below), these choices of unknowns and spaces are the key of the helicity conservation. The algorithm
is valid for unstructured meshes on general domains and can be of arbitrary order in the framework of the finite element
exterior calculus (FEEC) [25,26].

The resulting system has more variables than the scheme in, e.g., [15], but is still easy to solve. In the numerical tests,
we use iterative methods to solve the algebraic systems.

The rest of the paper is organized as follows. In Section 2 we provide preliminaries and notation. In Section 3 we present
our algorithm that preserves the helicity. In Section 4, we present numerical results on the convergence and helicity-
preserving properties of our algorithms. In Section 5, we give some concluding remarks. In the Appendix, we show the
well-posedness of the scheme presented in Section 3.

2. Preliminaries
2.1. Notation

Helicity can be defined on 3D contractible domains. One can extend the definition to nontrivial topology and differ-
ent space dimensions [5, Chapter 3]. However, for simplicity of presentation, in this paper we assume that @ c R3? is a

contractible bounded Lipschitz domain.
We use the standard notation for the inner product and the norm of the L% space

1/2
(u,v) ::/u-vdx, lujl := /|u|2dx
Q

Q
Define the following H(D, 2) space with a given linear operator D, which is either grad, curl, or div:

2



K. Hu, Y.-]. Lee and J. Xu Journal of Computational Physics 436 (2021) 110284

H(D, Q) :={v e L*(Q), Dv € L>(Q)},
and

Ho(D, Q) :={ve H(D,Q),tpv=00n 9L},
where tp is the trace operator:

v, D =grad,
tpv:=4{ vxn, D=curl,
v-n, D=div.

We also define:
L3(Q)=vel*(Q): / vdx=0
Q

By definition, Ho(grad, ©2) coincides with H(l)(Q).
The de Rham complex in three space dimensions with vanishing boundary conditions reads:

curl div

0 — Ho(grad, @) =% Hy(curl, @)~ Ho(div. @) —5 12(@) — 0 (1)

The sequence (1) is exact on contractible domains, meaning that A/(curl) = R(grad) and N(div) = R(curl), where N and
R denote the kernel and range of an operator, respectively.

The main idea of the discrete differential forms [25,26] or the finite element exterior calculus [27,28] is to construct
finite element discretizations for the spaces in (1) such that they fit into a discrete sequence:

d . i
0 — Hl(grad, @) 25 Hhi(curl, @) % Hi(div, @) % 12M@Q) — 0
The discrete de Rham sequences can be of arbitrary order [26,29]. We use Qfl‘“‘, the L? projection to Hg(curl, Q):

3
Qg [LZ(Q)] — Hi\(curl, ), )
and the discrete curl operator Vj,x : Hii(div, ) — H{j(curl, ©) defined by the following relation:

(Va xU,V)=(U,V x V), Y(U,V)eH:div, Q) x H}(curl, Q). (3)

We shall also use the L? adjoint operator of the discrete gradient, i.e., the discrete divergence operator Vj,- : Hg(curl, Q) —
Hg(grad, Q) defined by

(Vi Vi, ) :=—(Vh, Von), V(vh, éy) € Hy(curl, Q) x Hi(grad, Q). 4)

Let V;, be any subspace of L? and Py, 1?2 — V), be the L? projection. Then we will frequently use the following
property:

(Py,u,v) = (u,Py,v), Vu,vel? (5)

For any time-dependent function, we use a subscript t to denote its time derivative. For example, (uy); is the time derivative
of the velocity if uy is the velocity field.

2.2. MHD equations and conserved quantities

Consider the following system of equations in Q x (0, T]:

duU—ux®@+R'VxVxu—cjxB+VP=f, (6a)
ji—-VxB=0, (6b)

&%B+V xE=0, (6¢)

R,'j— (E+uxB)=0, (6d)

V-u=0, (6e)
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where d;u = du/dt and 9;B = dB/dt are the time derivatives of u and B; u is the fluid velocity; and j, B and E are
the volume current density, the magnetic field and the electric field, respectively. In (6a), we use the total pressure P :=
1/2|u|? + p as an unknown, where p is the physical pressure. The fluid momentum equation (6a) is in the Lamb form
[30] with the vorticity @ :=V x u. In (6), j x B is called the Lorentz force, the force that the magnetic field exerts on the
conducting fluid, and ¢ := V/%/V2 is the coupling number, where V4 and V are the scales of the Alfvén speed and of the
flow, respectively. The parameters R, and Ry, are the fluid and magnetic Reynolds numbers, respectively. Throughout this
paper, we will refer to the version of (6) without R;,!j and R;'V x V x u (formally, R, = Ry = 00), as the ideal MHD system.
We consider the following boundary conditions for (2.2) on 92 x (0, T]:

1
uxn=0, P::p—|—§|u|2:0, B-n=0, and Exn=0, (7)

where n is the unit outer normal vector. The initial conditions for the fluid velocity and the magnetic field are given for any
xXeQ

u(x,0)=uo(x), B(x,0)=Bo(X). (8)

In fact, the boundary conditions for u and P in (7) can be seen as a vorticity boundary condition since u x n =0 implies
(Vxu)-n=0 on 92. We refer to [24,31] for similar boundary conditions for the Navier-Stokes equations. As we shall see
below, these boundary conditions are the ones that lead to the helicity conservation of ideal MHD systems.

We briefly review some conserved quantities of (7) below. First of all, the MHD equation (6) preserves the energy.

Theorem 1. The MHD system (6) with the boundary condition (7) satisfies the following energy identity:
1d cd

23 5 2 1BIS+ R IV x ullg + oRy IIG = (F. ). o

2
llullg +

The energy law (9) is well known (see, for example, [32]) and the key of the proof is a cancelation between the Lorentz
force term (j x B,u) = ((V x B) x B,u) obtained by multiplying u to the equation (6a) and the magnetic advection
(u x B,V x B) obtained by multiplying B to (6¢). This cancelation reflects the symmetry in the operator structure of the
MHD system (cf., [33, (4.7)]).

We now discuss the helicity conservation for (6). There are two kinds of helicity in the MHD system: the magnetic
helicity H;,; and the cross helicity H., which are defined, respectively, as follows:

Hm ::/B-Adx, and H. ::/B-udx.
Q Q

Here A is any potential such that V x A = B. The definition of #,, is gauge invariant, i.e., not depending on the choice of
the magnetic potential A since jQ B - V¢ dx =0 for any scalar field ¢ with the given boundary conditions.

In ideal MHD systems, the magnetic and cross helicity is conserved. We state a slightly more general helicity identity as
follows. The proofs (usually with vanishing boundary conditions and R, = R = o0) can be found in, e.g., [34].

Lemma 1. For the MHD system (6), the following identity holds:

d
aMm:—f(AtJrzE)xA.mis—zk,;ffB.V><Balx, (10)
Q2 Q

d

a?{c:/([uxB]xu—PB—R;(VxB)><u—Re‘lwxB)-nds+ff-de—(R;1+R;1)[V><B-qudx.
Q2 Q Q

(11)

Here the first term on the right hand side of (10) is due to the contribution of boundary terms and the second term
reflects the effect of diffusion. With the boundary condition B -n =0 as (7), we can choose A such that A x n =0 and
thus the first term vanishes. In ideal MHD systems, the second term also vanishes and therefore the magnetic helicity is
conserved. Similarly, with the boundary conditions in (7) and f being any gradient field, the right hand side of (11) vanishes
in the ideal MHD limit and therefore the cross helicity is conserved. This observation is summarized in the following
theorem.

Theorem 2. In the ideal MHD systems with the boundary conditions (7) with f being a gradient field, the magnetic helicity and the
cross helicity are conserved in the evolution:
d d

—Hp = —He =0.
" dtHC
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Note that the magnetic helicity is conserved as long as (formally) R;;! =0, even if R, is finite.
3. Helicity-preserving numerical discretization

In this section, we construct finite element methods that preserve both magnetic and cross helicity. To motivate the
scheme, in Section 3.1 we show that extra terms pollute the helicity in some existing numerical schemes, e.g., the algorithms
in [15]. We present our new finite element methods in Section 3.2 and prove their properties.

3.1. Helicity-pollution in non-conservative schemes

Let VI c [H{(2)]® and Q" € L2(2) be an inf-sup stable Stokes finite element pair and Q) : [L?(Q)]> — V" be the L?
projection. Define Zj := Vi x Q" x Hg(div, Q) x Hg(curl, Q) x Hg(curl, €2). A natural discretization of (6), in the spirit of
existing discretization schemes, e.g., [15,35], is the following: Find (up(t), Py (t), Bp(t), Ex(t), jo(t)) € Zy such that for any
(Vh, Qn, Ch, Fp, k) € Zy:

(dettn, vi) — U x (V x up), V) + R (V x up, V x vp) — (P, V - i) — c(jip X By, vi) = (f, Vi), (12a)
(Jn.kn) — (By, V x k) =0, (12b)

(0¢Bp, Cp) + (V x Ep,Ch) =0, (12¢)

Ry (- Fn) — (Ep +up x By, Fy) =0, (12d)

(up, VQp) =0. (12e)

From (12b) and (12d), we have ji, = V}, x By, and Ry;! jj, = Q" (Ep +uy, x By) = Ep + Q5" (uy x Bp) (since Ej, is already
in Hg(curl, Q)), respectively. Therefore
En =Ry, Vi x By — Q" (uy x Bp). (13)

From (12c), (Bp): +V x E, =0, and %(V - Bp) = 0. Assume that Bg, the initial data of Bp, satisfies the divergence-free
condition V - Bg = 0. Then the divergence-free condition V - B, =0 holds at any time t > 0. Therefore there exists A, €
Hg(curl) such that V x Ay = By,. Then V x ((Ap): + E;) =0 and without loss of generality (Aj is chosen up to a gradient
potential), we have (Ap); + E; = 0. Substituting E, by (13), we have

(An)e = =Ry 'V x B + Q" (uy, x Bp).

Consequently, by the Leibniz rule and integration by parts,

d _
E(Ah, Bp) = 2((An)t, By) = —2Ry,' (By, Vi x Bp) + 2(up, x Bp, QS By)

= —2R; " (Bn, Vi X By) + 2(up x By, (QS"™ —1)By,).

For the second equality we have used the property (5). Here the first term on the right hand side is due to the magnetic
diffusion which is consistent with the continuous level (10), while the second term is nonphysical due to the numerical
scheme.

To see the pollution of the cross helicity, take vy = Q) By in (12a) and €, = Qv in (12c), where Qv : 2 —
Hg(div, Q) is the L? projection to the finite element space:

d
a("h, Bp) = ((up)t, Bp) + ((Bp)e, up)

= (up x (V x up), QY By) — (up x (Q™V x uy), By)
+¢((Vh x Bp) x By, (Q) —1)By) — (Ph. V- Qy Bp) + (f. By)
— Ry (Vi x By, V x up) — RN (Vup, VQY By)

= (up x (V x uy), (Q) —Bp) + (u, x (I — QE"™)V x uy), By)
+¢((Vi x By) x By, (Q) —1)By) — (Py. V- Q) By) + (f. By)
— Ry (Vi x By, V x up) — Ry (Vup, VQY By),

where the last three terms are due to source or diffusion terms as the continuous level, and the remaining terms are
nonphysical due to the numerical discretization.
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3.2. Full-discrete finite element formulation

We present a helicity-preserving full discretization for the MHD system. We use the Crank-Nicolson method as the
temporal scheme. Similar conclusions also hold for semi-discretization with continuous time. We begin our discussion by
defining

Xy = [Hi(curl, 2)1° x HE(div, ) x H{(grad, Q). (14)

Below we use uy, By, ®n, P, ji, Hy, Ep to denote the variables evaluated at the midpoint of the time interval [ty, th41].
For u;, and By, this means

n+1 n n+1 n
u +u B, +B
up =-1__~h  and B =t h (15)
2 2
For other variables whose time derivatives do not appear in the equations, one defines, e.g., P, := PZ“/Z as an independent
variable without referring to P} or P;“, i.e., one uses stagger grids in the time direction.
We also denote
1
D | a-bdx:=—(f a1 . b ldx— | " b dx),
At
Q Q Q
as the difference of the inner product at two successive time steps.
The main scheme can be written as follows.
Algorithm 1 Main algorithm.
Given (u°, B®) € Hl(curl, @) x Hi(div, ) and f € L2(),
forn=0,1,---, N do
Find (!, @) T2, itV T2 HET2 B pIY2) € Xy, such that for all (v, py, Ky, Fy, Gh, Cp, Qn) € Xp:
(Deuty, vi) — (up X @y, Vi) + R (V x up, V x V) + (VPy, vy) — c(jiy x Hy, vip) = (F, vp), (16a)
(D¢By, Cp) + (V x Ep, Cp) =0, (16b)
(R jh — [En + up x Hyl, G) =0, (160)
(@h, ) — (V x up, ) =0, (16d)
(Jn- kn) — (Bp, V x ky) =0, (16e)
(B, Fn) — (Hp, F) =0, (16f)
(up, VQp) =0, (16g)
where
un+1 —u? n+1 _ B!
Deuy = b b and D.Bjp:=—-t—", 17
tUp A tBn AL (17)
and
un+1 +u Bn+1 +B"
up = —h __ h 5 h B Bh = —h " h 5 h , @hi= (x)2+1/2, Ph = PZ+1/2,
Ej = Ez+l/2 Hy = H;1+1/2 = jz+1/2
end for

Fig. 1 summarizes the choice of variables and spaces.

Remark 1. There are a number of variables in (16). However, several of them can be obtained easily as projections of other
variables. For example, from (16c)-(16g), we have

En=Ry,' Vi x By — Q5™ (up x Hp),  @n = Q" (V x up),
jn="VnxBp, Hyp=QBy.

In particular, @, and Hj, can be obtained by the local projections of V x u, and By, respectively. Therefore in the numerical
tests, one can solve the system (16) efficiently.
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Hl(grad) =— H(curl) ~l, Hl(div) v "

E;,

coupling: uy, x Hj

By, >
DB, = -V x Ej, DV -Bj, =0

wp, = QP L(V x uy)
grad curl . di 2.h
Hl(grad) =— H}(cwrl) == H}(div) —= L
P, u V X uy,
Vi -up =0
H); =B,
Jn=0By
A0 _d Al d A2 d A3
Ej, B,
DB, = —dEj, Dy(dBy,) =0
coupling: up, A Hy,
wyp, = *(duyp)
A(J d Al d A2 d A3

Dh up, duy,

dpup =0

Fig. 1. Choice of variables, spaces and their relations. Top: functions and differential operators. Bottom: differential form point of view.

In the analysis below, we will need the following basic fact about the Crank-Nicolson scheme.

Lemma 2. For any given a = (@")n=0,1,.... N C [LZ(Q)]3, we have

1
(Dea. @)= — (Ila™"|? - a"|1?) .

Furthermore, for any pair of vectors (@*, b™)n—o.1..... N C [L*(22)]* x [L%(R2)]3, we have the following identity:

Dt/a~bdx:/Dta-bdx+/a-Dtbdx,

where
1
tha-bdx::— (/a”“ -b”“dx—/a”-b”dx).
At
Recall that
a™! —q" at! 4 q"
Dia := , a:= s
At 2

and the same convention is used for D:b and b.

The Gauss law V - B =0 is automatically preserved in (16). Namely, we have

Theorem 3. If the initial data satisfies V - BY = 0, then we have

V.-Bl=0 Vn>0.

The proof is the same as in [15]. For completeness, we include the proof here.

Proof. From the equation
(D¢Bp, Ch) + (V x Ep, Cp) =0 ¥Cy € HA(div, ).

We have that D;B, = —V x Ej. Taking divergence, we obtain that
D:V - By =0.

This completes the proof. O

(18)

(22)

(23)



K. Hu, Y.-]. Lee and J. Xu Journal of Computational Physics 436 (2021) 110284

We now show the energy law for (16):

Theorem 4. The discrete energy law holds:
[(Detty, up) + c(D¢Bp, Bp)] + Ry IV x up |1 + Ry 1> = (F up). (24)
and

1/2
(2 4 B ?) <2 > (luli® +cll BRI )——R ‘Z(Arnwxu”/ I
j=0

n n
- i+1/2 1 ;
— Ry Y (AD)[Vy x BTV + E(At)cf,Re > IfI22, (25)
j=0 j=0

where cp is the constant in the Poincaré inequality ||up|| < cp||V X% up|| for uy, satisfying Vi, - up, = 0.

Proof. Taking vy, =uy and Qp = P, in the momentum equation of (16), we obtain

(Detty, up) + RV x up |12 — c([Vh x Bp] x Qc”rlBh, up) =(f,up).
Moreover, we have that
(DtBp, By) = —(V x Ep, By) = —(V x [Ry; jp — Q5" (uy, x Q" Bp)]. Bp)
= —Ry' (jn. Vi % Bp) + (up x Q" By, Vi, x By)
= —Rp'ljnl? + Q" (uy, x Q" By), ji)
= =R ljnll® + (un x Q" By, i)

Here for the last identity we used the fact that jj, € Hg(curl, Q).
Therefore, we have

—c(up x QS By, j,) = c(D¢Bh, By) + cRpy Il s lI2.

This shows the equality (24). Then (25) follows from a sum and the estimate

_ 1
I(Foup)l < I flllupl < = R ey 2 lup? +5c Rell fII?

1 _ 1
< SRV < ul® + SGRASfIZ O

Remark 2. We have another version of the energy estimates using a dual norm for the right hand side. Specifically, define
Zp == {zy € Hi\(curl, Q) : V}, - z, = 0}.
By the discrete Poincaré inequality, ||zx]lz, := IV x 23|l is a norm on Zj. Then define the dual norm
I, vn)l
IFlls:= sup —————
vpeZy ”Vh”Zh

By definition, [{f, vi)| < || fll«IV x vp]. Therefore we can remove the Poincaré constant in (25) to get:

1/2
<||u”“|| + B2 <2 > (Il + cl BRI >——R 1Z<At)uwu”/ &

n
— ] 1 2 .
— Ry > ALV, x BT ||2+(At)Re§ | FI12)2,
j=0 j=0

We now discuss the magnetic and cross helicity for the discrete MHD system. The following theorems can be similarly
stated and proved for any contractible subdomain if the variables satisfy the conditions (7) on the boundary of the sub-
domain. Therefore we obtain identities for both local and global helicity. For simplicity of presentation, we focus on the
helicity on €, i.e., the global helicity.
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Theorem 5. For any solution of the discrete ideal MHD system (16), the following identity of the magnetic helicity holds:

Dt/Bh-Ahdx=R,;1/Hh-jhdx, (26)
Q Q

where Aj € H(h)(curl, Q) is any vector potential of By, satisfying V x Ap = By, in Q.

Proof. Since the magnetic Gauss law is precisely preserved, there exists A € Hg(curl, Q), such that V x Ay = By, in Q.
Hence

Dt/Bh-Ath:/V><DtAh-Ath-i-/DtAh-Bth:/DtAh-VXAth-‘r/DtAh-BthZZ/DtAh~Bth.
Q Q Q Q Q Q

Note that D¢B, = —V x E, and D¢Bj =V x D;Ay,. Therefore, there exists ¢ H’a(grad, Q) such that D;Ap = —Ep — V.
This means

/DtAh-Bth=—/(Eh-{-V(f)h)-Bth:—/Eh~Bth. (27)
Q Q Q

However, E, = —Q;‘“l(uh X Q;““Bh) + R;lQﬁ‘”ljh by (16c) and (16f). Therefore,

(By, En) = Rey' (Bn Q§™n) = Ry’ (@5 B, ) - (28)

This completes the proof. O
We now show identities for the cross helicity.
Theorem 6. The following identity holds for the cross helicity:

Dt/uh -Bpdx=—R;'(V xuy, V x Hp) — Ry, (V x uy, jin) + (f, Hp). (29)

Proof. Taking v, = Q,ﬁ”“Bh, we have from (16a):

(Deutp, Bp) + (QE[V x up] x up, QS By) + (Vpy, By) + Rg (V x up, V x Q5" By) = (f, Q§""By).  (30a)
We also note by (16¢) and (16f) that

Ep = —Q" [uy x Q™ By] + Ry, . (31a)
On the other hand, we have that

DBy =—V x Ep =V x Q" [uy x Q""By] — R,V x ji. (32a)
Consequently,

D; / up, - Bpdx = (Deuty, Bp) + (up, DeBy)
Q
= —(QF™V x up) x un, Q"' By) — (Vpp, By) — R7'(V x uy, V x Q5 By,)
+up, V x QM up x QM B]) — Ry, (V x up, i) + (F. Q' By)
=—R,'(V xup, V x Hp) = Ry, (@n, ) + (f Hp). O

From Theorem 5 and Theorem 6, we see that the discrete magnetic helicity and the discrete cross helicity are both
conserved in the ideal MHD limit with suitable boundary conditions. We summarize this result as follows.

Theorem 7. Assume that (f, H) = 0. Then we have the helicity conservation in the ideal MHD limit:

Dt/Bh-Ath=0, Dt/Bh~uth=0,
Q Q
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ie.,

/Bg-Agdx:-.:/B,‘j-Agdx, /Bg.ugdx:-:/ag-ugdx.
Q Q Q Q

The helicity provides a lower bound for the energy [5]. Thanks to the discrete de Rham complex and its properties and
a judicious choice of the discrete formulation of the MHD equations, this bound can be carried over to the discrete level,
supplying a control of the (local) discrete energy from below. We focus on the magnetic helicity, although a similar result
holds for any divergence-free field.

Proposition 1. There exists a positive constant C such that

Hn ::/Bh-Ah dx < C||Bp|%. (33)
Q
Proof. Choose Aj € Hg(curl, Q) such that V x A, = By, (Ap, Vi) =0, Yy € Hg(grad, Q), and A, x n =0 on 99Q. By
the discrete Poincaré inequality [26,28], there exists a universal positive constant C such that ||Ay|| < C||V x Ayl = C||By].
Consequently,
’Hm=[Ah~Bth§IIAhIIIIBhIISCIIBhIIZ. O (34)
Q
Note that the same argument works for variables at each time step, i.e., B} and A}. Then we get estimates at each time
step
/Bﬂ.Agdxg CIIBM%, Vn,
Q

in addition to the estimates at midpoints

n+1/2  ant1/2 n+1/2 2
th 2. A ?dx < c B2,
Q
which is stated in Proposition 1 by our convention of notation.

4. Numerical experiments

We report a couple of numerical tests on the convergence and the helicity conservation of the proposed scheme. In
particular, we investigate and compare helicity changes with various Reynolds numbers in different algorithms. The im-
plementation is based on the FEniCS project [36], and we choose the finite element spaces in the lowest order discrete
de Rham sequence (first order Nédélec and Raviart-Thomas elements etc.).

4.1. Convergence of the algorithm

In this section, we carry out a 3D convergence test with the following form of solutions on the domain € = (0, 1)3. Let

p=hh(y)h(z), (35)
where h(u) = (u? — w)?. Further, we let

g1)=4-2t, gt =1+t and g3(t)=1-t. (36)
We now introduce analytic velocity and magnetic fields that satisfy the boundary conditions. Namely,

—g1h’ (0h(y)h(z)
u=\| —gh(x)h'(y)h(2) and B=w=V xu.
—g3hX)h(y)h'(2)

With this setting, u x n =0, B-n =0 and the modified pressure P = |u|2/2 + p satisfies the boundary condition. Further-
more, it holds that V - B = 0. In the tests below, we include nonzero source terms in Algorithm 1 due to the choice of the
true solution.

10
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Table 1

Number of iterations of preconditioned
MINRES to achieve relative tolerance 10~'°
for solving (37), At =1.

Mesh size Iteration Numbers
hy=hy=h,=272 11
hy=hy=h,=273 11
hy=hy=h,=2"% 13
hy=hy=h,=275 13
hy=hy=h,=2"6 13

Table 2
Convergence results for the MHD system. The error is computed at the time
level T =1 with the Crank-Nicolson time stepping with At =0.01. R, = Ry, =

104,
h |B—Bpllo order [u—uyllo order |p—pplli  order
272 160E-3 X 4.15E-4 X 2.15E-4 X
273 780E-4 104  218E-4 093  124E-4 0.79
274 3.40E-4 1.20 1.05E-4 1.05 6.44E-5 0.95
275 163E-4 106  5.30E-5 099  3.25E-5 0.99

Before presenting the convergence results, we first make some remarks on the solvers of the coupled system. As we shall
see, the coupled system is easy to solve, even though it has more independent variables than existing schemes, e.g., those
in [15].

In the tests below, we will solve the coupled system (16) with an iterative process, referred to as the outer iteration.
In each outer iteration, the first step is to solve up, Py by treating other terms in the momentum equation explicitly, i.e.,
solving the following problem: find (uy, Py) € Hg(curl, Q) x Hﬁ(grad, Q) for given F and g, such that

(At)_l(uh, vp) + (VPy,vy) =(F,vp), Vvpe Hg(curl, Q) (37a)
(,VQp) = (8, Q). VQp € Hi(grad, Q). (37Db)

If F =0, the above system boils down to a Poisson equation for P. We solve (37) by an AMG-preconditioned minimum
residual iterative method. Table 1 shows the uniform convergence with respect to the mesh size. After obtaining uy and Py
from solving (37), we update other variables in (16) by simple operations. For example, w, and Ej are updated from (16d)
and (16¢) by the L? projections of V x u;, and —uy, x By, respectively.

The outer iterations typically take about 4 to 5 iterations to achieve the appropriate tolerance, e.g., the difference of the
L2 norms between two consecutive iterations divided by the time step size is smaller than 10~7. As R, and R, become
smaller, the convergence takes more nonlinear (outer) iterations.

The convergence results are shown in Table 2.

4.2. Tests for helicity conservation

In this section, we investigate the helicity behavior of our algorithms with various Reynolds numbers. We also compare
the algorithm to another discretization based on existing schemes [12].
In the tests below, we use the following initial conditions for ug = (ug, up, u3)’:

U =—sin(mw(x —1/2))cos(m(y —1/2))z(z—1)

uy =cos(mw(x—1/2))sin(w(y —1/2))z(z—1) andusz =0.
For the magnetic field, we provide the following initial condition:

B =(— sin(;rx) cos(w y), cos(mwx) sin(w y), O)T.
Fig. 2 shows the initial conditions for uy and Bj. We note that the desired boundary conditions are satisfied:

u) xn=0 and B) n=00ndQ. (38)
Furthermore, we have V - Bg =0 for the initial data and the helicity vanishes, i.e., Hpn = H = 0.

Fig. 3 shows the energy and [, (V . Qgi"uh> dx plot as a function of time with different Reynolds numbers.

To evaluate the magnetic helicity of our algorithm, we obtain B, and compute the potential A, by solving the following
equation: find Ay € H (curl, ) such that

11
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Fig. 2. Top view, or projection on the xy-plane of initial data uﬂ and B,?. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)
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Fig. 3. (left) Energy and (right) fﬂ (V . Qg“’uh) dx plot as a function of time with different Reynolds numbers. Note that h = 1/8, At = 1/1000 and
Rm =107,

(V x Ap, V x Cp) = (Bp, V x Cp), VCy € Hi(curl, Q). (39)

Since curl has a nontrivial kernel, (39) is a singular system. However, this non-uniqueness does not affect the helicity. In the
implementation, we apply the Krylov space method, i.e., GMRES with ILU preconditioners, to solve (39), which is known to
converge for consistent singular problems [37,38].

We now discuss the effect of the resistivity on the cross and magnetic helicity. Fig. 4 shows the evolution of helicity
in Algorithm 1 with various choices of R, and Rp. As R, and Ry, increase, the helicity is closer to be conserved. This is
consistent with Theorem 7 stating that both the magnetic and the cross helicity are conserved in the ideal MHD limit.

To compare the helicity from Algorithm 1 and other algorithms, we consider another finite element algorithm based on
the scheme proposed in [12] for solving the stationary incompressible MHD system.

The finite element scheme presented in [12] has By in the Nédélec space with any stable Stokes pair for uy and Pj. To
show the effect of the discretization for the magnetic part and adapt the scheme to the vorticity boundary conditions (7),
we shall only use the scheme for the magnetic part of the algorithm and consider the time-dependent setting.

Algorithm 0. Find (uy,, @y, By, Pp) € Hjj(curl, ) x H{j(curl, ) x Hj}(curl, ) x HP(grad, ) such that for all (vy, pty, Ch, Qn) €
HP (curl, ) x HB (curl, @) x Hi(curl, @) x Hf\(grad, ),

(Detty, Vi) — (g X @p, Vi) + RN (Y x . V x vp) + (V Py, vp) — c((V x Bp) x By, vy) =0, (40a)
(@n, ) — (V x up, mp) =0, (40b)

(DB, Ch) — (up x By, V x Cp) + Ry, (V x By, V x Cp) =0, (40c)

(up, VQp) =0. (40d)

12
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Fig. 4. Changes in the right hand side of the equation for H. (left) (29) and H, (right) (26) obtained by Algorithm 1 with various choices of R, and Rp,.

Here h =1/16 and At =1/1000.
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Fig. 5. H. (left) and H;, (right) from Algorithm 0 and Algorithm 1, respectively, with R, Ry, = 5000, ¢ =0.01, h=1/16 and At =1/1000.

In Algorithm 0, we use the Crank-Nicolson time stepping as Algorithm 1. In [12] there is a Lagrange multiplier to impose
the weak divergence-free condition for the magnetic field, i.e.,

(By,Vzp) =0, Vzy € Hi(grad, Q). (41)
However, we may drop this constraint in the above time dependent formulation because we conclude (D;By, Vz) =
0, Vz, € H’g(grad, Q) by taking Cp = Vz, in (40c), i.e, if the initial data satisfies (41), then the solution satisfies (41)
at any time step.

Fig. 5 compares the cross and magnetic helicity produced in Algorithm 0 and Algorithm 1, respectively. In fact, for
Algorithm 0, we do not even have a precise definition of the magnetic helicity since the discrete magnetic field is not
divergence-free. The curve in Fig. 5 for H,; demonstrates a discrete helicity computed by projecting the magnetic field to
the divergence-free Raviart-Thomas space.

Fig. 5 shows that even for the resistive MHD systems, our asymptotic-helicity-conservative scheme Algorithm 1 shows
a significant difference in the helicity behavior compared to Algorithm O which is not designed with an emphasis on the
helicity-preservation.

Fig. 6 shows the helicity from computation with various fluid Reynolds numbers and a large magnetic Reynolds number.
The cross helicity varies in the time evolution, while the magnetic helicity nearly remains constant. This agrees with the
fact that the evolution of the cross helicity depends on R, and R;, while the magnetic helicity only depends on R, (see
Lemma 1). Fig. 6 also shows the helicity in the ideal MHD system (formally R, = R, = 00), where both the cross helicity
and the magnetic helicity are conserved.

We also plot the snapshot of the velocity and magnetic fields in the time evolution in Fig. 7 to verify the stability of our
computation.
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Fig. 6. Plot of the cross helicity (left) and the magnetic helicity (middle) with Ry, = 107 and various finite values of R., and (right) Plot of cross and
magnetic helicity for the ideal case (R;; = R, = 00) obtained from Algorithm 1 with c=1,h=1/8 and At =1/1000.

Fig. 7. Plot of stream tube of the magnetic field B, obtained with Algorithm 1 with R, = 0o, Ry =00, h=1/16 and At =1/1000. The lines with arrows
show uy. The plot shows a sequence of magnetic tubes as time goes from top left to right and then at the next row from left to right, each of which
corresponds to the time level T =0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0 and 1.1, respectively.

5. Conclusion

We constructed finite element methods that preserve the discrete energy law, the magnetic Gauss law and the magnetic,
cross helicity precisely at the discrete level. The construction relies on discrete de Rham complexes and mathematical
properties of the MHD system. In particular, the Lorentz force term and the magnetic advection term cancel with each other
in the proof of the energy law, and the fluid and magnetic advection terms cancel with each other in the proof of the cross
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helicity conservation. These cancelations reflect the symmetry in the operator structures of the MHD system [33], carried
over from the continuous level to the discrete level, and can be important for the construction of efficient solvers [33].
For the spatial discretization, we used finite element differential forms, e.g., the Nédélec and Raviart-Thomas elements,
in the numerical tests. The discussions in this paper also hold with other discrete de Rham complex, e.g., spline spaces [39].
To preserve the helicity and energy in the full discretization, we used the Crank-Nicolson scheme as the temporal dis-
cretization, cf., [19]. One can choose other temporal schemes that preserve quadratic invariants, cf., [40].
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Appendix A. Existence and uniqueness of solutions

In this appendix, we discuss the existence and uniqueness of solutions to the nonlinear scheme. For technical issues and
for simplicity, we will actually work on a slightly modified system other than (16). We first introduce some notation.
Define

Zy:={veHicurl,Q):V, vy =0}, HEdiv0, ) :={Cy € HA(div,2):V-C; =0}
Lemma 3. For B, € H}\(div0, ), we have Vi, - (Q§""By) = 0.

Proof. Denote Hj, := Q" By,.

(Vi -Hp,Vy-Hp) =—(VVy-Hp, Hy) = —(VVy - Hp, By) = (V- Hp, V-Bp)=0. O

For functions in Z; and Hg(div 0, 2), we recall the following Gaffney type inequalities [41]: there exist positive constants
C such that

lvplls+s < CIV x vpll, Yvp € Zp, (A1)
1Byl ;345 < Cl|Vh x Bpll, VB € Hi(div0). (A2)

Here § € (0, 3] is a positive number depending on the regularity of the domain € c R3. If Q is convex or has C!'! boundary,
we can choose § = 3. In the sequel, we assume that €2 is such that we can choose § =1, i.e., Z, < L*(Q).

In the analysis below, we slightly modify the diffusion term in equations (16) and assume that all the variables at the
n-th time step are zero to avoid dealing with the cross terms between the n-th and the (n + 1)-th time steps. The same
analysis works for, e.g., a backward Euler time discretization.

Consider the following variational form: find (uy, Bp) € Zj, X Hg(divo, Q), such that for any (v,, Cp) € Z, x Hg(divO, Q),

(A Ny, vi) — (up x QY x up), vi) + Ry 1V x up, V x Vi) — (Vg x Bp) x Q5" By, vy) = (F, vp), (A3)

1 1
(A1 (Bp, Cp) — (up x Q™ By, Vi x Cp) + 5R;‘(v x QS By, V x QS Cy) + ER;%vh X Bp, Vi x Cp) = (G, Cp).
(A4)

Here F and G denote some general source terms.

Comparing with (16), we modified the magnetic diffusion term in (A.4) by changing %an1 (Vh x B,V x Cp) to
RNV x QUIBy, V x Q§UCy).

We write (A.3)-(A.4) in the following standard form: find (up, By) € Zp x Hg(divo, Q), such that for any (vj, Cp) €
Zy x HB(div0, ©),
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a((up, Bp), Uy, By); (v, Cp)) = ((F, €G), (vy, Cp)), (A.5)

where the trilinear form a(; -, -) is defined by

a((wh, Kp), (un, Bp); (vi, Cn)) i= (AD) ™ (uy, vip) — (W x QU™N(V x up), vp)
+ RNV x up, V x Vi) — c((Vh x Bp) x QMK p, vi) + (A~ 'c(Bp, Ch)

1
— (Wi x Q§"'Bh, Vi X Cn) + S CRy,! (Vi x By, Vi x Cp)

1
+ EcR,;l(v x QS By, Vi, x QUMICy).
Introduce the following norm:
I, By = (AD ™ upll* + (AD "l Bull® + R IV x upl® + ¢RI Vi x Bull> + Ry IV x Q5 B>
From Lemma 3, (A.1) and (A.2), we can further bound the following terms by the || - ||y norm:

lwnllps + IBn il + Q™ Bhlla < CliCun, Bn)llv-

We include the existence theorem for nonlinear variational forms, which is given in, for example, [42]. Since we focus
on the discrete level, we only state the results for finite dimensional problems.

Theorem 8. Assume that V is a finite dimensional vector space, and there exists a positive constant « such that a bounded trilinear
forma(-; -, -) on V satisfies

av;v,v)>a|v|?, VveV.

Then the problem: given f € V*, find u € V, such that forallv e V,
a(u; u,v) = f(v),
has at least one solution.
Lemma 4. The trilinear form a(-, -, ) is bounded, i.e., there exists a positive constant C such that

la((up, Bp); (Vg, Cp), (Wp, Kp))| < Cll(up, Bp)llv | (vh, C)llv | (wh, Kp)llv.

Proof. It suffices to bound the nonlinear terms:

1
|Wh x QECV ), )| < IV Wil Vil

SV xup|lIV x wp[[IV x vpll,
1 |
| (Vi x Br) x Q" K, vi)| < 1 x BallIQ5 Killys Va5
1
S VR X BlllV x QR Kp|lIV x vhl,
and the estimate for (w, x Qfl”“Bh, Vi x Cp) is the same. O
Lemma 5. The trilinear form a(-, -, -) is coercive, i.e., there exists a positive constant « such that

a((up, Bn); (up, Bp), (un, Bp)) > ol (up, By)|1%.
Proof.

a((up, Bn): (g, By, (up, Bp) = (A [up|® + (AD ™ || By > + Ry IV x uy |2
+ %cR;l IVh > Brll* + %cR;lnv x QF'Byl®. D
We are now in a position to state the existence of solutions to the discrete variational form.
Theorem 9. For any (F, G) € (Z)* x (Hg(div 0), Q)*, there exists at least one solution for (A.5).

The uniqueness of solutions of (A.5) with small data follows from standard argument, cf., [42].
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