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1. Introduction

Adaptive finite element methods (AFEMs) have been an active research area since the pioneering work [1]. In contrast
to finite elements based on quasi-uniform meshes, AFEMs produce a sequence of locally refined grids that is able to resolve
the singularity arising from irregular data in the underlying boundary value problems. Readers are referred to e.g., [2-4]
for a thorough introduction. Among the key concepts in AFEMs, a posteriori error estimates are the building block for
comparing errors on different elements and marking elements with large errors for refinement. For details on various
AFEM error estimation techniques we refer to works on: explicit residual estimators [4]; implicit estimators based on local
problems [1,5-7]; recovery-based estimators; [8-12]; hierarchical basis estimators [13-16]; functional estimators [17];
and equilibrated estimators [18-21].

On the other hand, parallel with the development of AFEMs, there are also substantial research efforts in studying
efficient preconditioning, which is a technique for approximating the inverse of a differential operator. Usually, such
approximations are aimed at accelerating Krylov subspace iterative methods for solving linear systems resulting from
discretized partial differential equations. Popular techniques used for preconditioning include e.g., multigrid [22-27]
and domain decomposition/subspace correction methods [28-30]. In practice, subspace correction methods provide an
efficient way of reducing the condition number of a large-scale but finite-dimensional linear system. However, the analysis
of uniform convergence rate of those methods often benefits from the general setting of infinite-dimensional Hilbert
spaces (see, for example, [31-33]).

In this paper we present a general framework relating abstract operator preconditioning [30,32-35] to a posteriori error
estimates. In particular, we shall show that such standard techniques for developing preconditioners also yield reliable
and efficient error estimators. Here, for clarity of presentation, we focus on the symmetric and positive-definite problems
although extensions to more general cases are definitely within reach. As a simple example, with this framework, we are
able to recover the classical residual error estimators for elliptic equations in primal form.

The rest of this paper is organized as follows. In Section 2, we set up the model variational problem and define the
operator notation which is convenient when constructing preconditioners. In Section 3, we develop the main theory on
posteriori error estimates via preconditioning. Section 4 is devoted to the example of second order elliptic equation that
illustrates the aforementioned abstract theory. Concluding remarks are found in Section 5.
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2. Preliminaries

Let V be a Hilbert space and V' denote the dual space of V. Let a : V x V — R be a continuous bilinear form and
f € V'. We consider the following variational problem: Find u € V such that for all v € V

a(u, v) = {f, v). (2.1)

Here (-, -) is the duality pairing between V' and V. Let || - ||y denote the norm on V and || - ||y the dual norm of V.
For simplicity, we assume that the bilinear form a(-, -) is symmetric and positive-definite (SPD). The continuity and
positive-definiteness of a(-, -) imply

a(v, w) <allvlviiwly, (2.2a)
a(v, v) > ey, (2.2b)

for all v, w € V, where o, @ > 0 are absolute constants. Such a bilinear form naturally defines a bounded isomorphism
A :V — V' for which we have

(Av, w) == a(v, w), Yv,w e V.
Hence, (2.1) is equivalent to the operator equation

Au=f. (2.3)
(2.2a) and (2.2]31) imply that A induces the inner product (A-,-) on V. For all v € V, the A-norm on V is defined as
lv]la ;= (Av, v)2, which is equivalent to the V-norm.
2.1. Approximation from a subspace

Let us consider a general case where we approximate the solution to (2.1) by restricting it to a subspace V;, C V,

namely: Find u;, € V} such that

a(up, v) = (f, v) for all v € V. (2.4)

Note that the subspace Vj, does not even have to be finite dimensional, although it usually is in applications. It follows
from (2.2a), (2.2b) and the well-known Lax-Milgram theorem that (2.4) admits a unique solution.

For such a subspace Vj, C V, we consider the natural inclusion I, : V, < V and its adjoint Q, := I} : V' — V; defined
as

(Qng, vp) = (g, Iyvy) forallg e V' and v, € Vj.

We introduce the operator A;, := QuAl; : Vi, — V; which approximates A on V}. In this way, the discrete problem (2.4)
reads

Apup = Quf .
3. A posteriori error estimates by preconditioning

A posteriori error estimates are of the form

Cinn < llu—uplly < G,

where C;, G, are absolute positive constants and »;, is computed from uy. In AFEMs, n;, is the sum of error indicators on
all elements. The local error indicators can be used to compare errors on different elements and those elements with
large errors will be refined. In this way, the errors estimated by 5y are equidistributed over all elements in the mesh. The
optimal computational complexity of AFEMs is often attributed to the aforementioned equidistribution of errors. Rigorous
analysis of convergence and optimality of AFEMs can be found in e.g., [36-40].

3.1. Links with operator preconditioning

Let
e:=u—up,
r=f—Au, eV’
Clearly, from our discussion above, it follows that constructing a posteriori error estimators is equivalent to estimating
a norm of the error e = A~'r by computable bounds. We note, however, that a direct computation of the norm of A~'r

will be, in general, impossible or too expensive, since one needs to compute the action of A~! on r. As we pointed out in
the introduction, approximating such action has been also studied for several decades and is known as preconditioning.
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Following this simple observation we now borrow some simple ideas from this field and apply them in constructing a
posteriori error estimators.

First, we need a bounded isomorphism (the preconditioner) B : V' — V, whose particular form will be given later. For
the time being we only assume that B is bounded and SPD, i.e., {-, B-) is an inner product on V’. Let S : V' — V be a SPD
operator, which we will refer to as “the smoother” and is such that its range approximates well the high frequency part
of the range of A™1, i.e., the result of the action Sr provides a good approximation to the high frequency components of
the error. Now, a simple choice for B is

B:= S+ IhA, ' Qn,

which is known as additive Schwarz preconditioner. Just to simplify the presentation, we will not consider the multiplicative
preconditioner in this paper although following the abstract framework developed in [32,33] similar results can also be
obtained in the multiplicative case as well. Let 8, 8 be two positive absolute constants. We say that B is a preconditioner

for A provided there exist constants 8 > 0 and B < oo, such that

BB v, v) < (Av,v) < B(B v, v), VvelV. (3.1)

The inequality (3.1) is known as spectral equivalence, or norm equivalence, and is a common ingredient in the analysis of
convergence of iterative methods for large-scale linear systems.

3.2. Estimating the residual

We now show that the norm (spectral) equivalence (3.1) naturally yields a two-sided estimate on |le||4. This is the
central result in this paper.

Theorem 3.1. Let (3.1) hold. Then we have the following two sided bound

B ir.Sr) < llel3 < B~ (r. Sr).

Proof. Since A is SPD, we use the Cauchy-Schwarz inequality to obtain

(Ae, BAe)? < (Ae, e) (ABAe, BAe). (3.2)
The inequality (3.1) implies

(ABAe, BAe) < B(B~'BAe, BAe) = B{Ae, BAe). (3.3)
Combining (3.2) and (3.3) yields

(r, Br) = (Ae, BAe) < B(Ae, e),
where we used r = Ae in the first equality. The upper bound

(Ae,e) < B~'(r, Br)
can be shown in a similar fashion. In summary, we have

B, Br) < (Ae, ) < B\(r, Br). (34)
On the other hand, for any v, € V}, (2.4) implies

(Qur, vn) = (r, va) = (f, va) — (Aptin, va) = 0,
i.e., Qur = 0. Hence,

Br = Sr + InA; '(Qur) = St (35)
Combining (3.4) and (3.5) completes the proof. O

Throughout the rest of this paper, (r, Sr) will serve as a (nearly) computable a posteriori error estimator that is proved
to be both an upper and lower bound of the error ||e||4. In order to derive an error estimator within our framework, the
key step is to suitably select the smoother S such that the spectral equivalence (3.1) holds.

3.3. Additive Schwarz smoother

In this subsection, we construct a particular S using the additive Schwarz method. For such a smoother, we present a
lemma that serves as a criterion for verifying (3.1).
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Forn e N, 1 <k <n,let V, C V be subspaces providing a decomposition of V, namely,

V=> Vi (36)
k=1

Let Iy : Vi — V be the natural inclusion and Qx : V' — V; denote its adjoint. We further set A, := QAl. Next, let
Sk : V,, = Vi be spectrally equivalent to Ak’]. More precisely, for 1 < k < n and v, € V}, we assume that

Y (S vk vk) < (Akvks vie) < V(S vk k) (3.7)

where y, ¥ are positive absolute constants. The smoother S (additive Schwarz method) is then defined to be

n
S = szsqu.
k=1

By the definition of B, we obtain

n
B=InAy Qi+ D SiQ.

k=1

The norm of B can be estimated using the following lemma, which can be found in e.g., [29,32,33,41].

Lemma 3.2. We have the following identity

n

(B™'v,v) = inf  (Avp, v) + (S vk, vi),
UerZ;::l vg=v =1

where the infimum is taken over v, € Vy and v, € Vi for 1 <k < n.

The proof that B is a good preconditioner for A is standard. We include it here for completeness and we follow the
proof in [33].

Lemma 3.3. For each k, let

M(k) = {j: sup a(v;, v) # 0},

vieVj, vV
and M := maxy<x<p #M(k). In addition, assume that for all v € V, there exist v, € V, and v, € Vi, with 1 < k < n satisfying
n n
lonlly + D Ioelli < Geanllvll, v=vn+ ) _ i (38)
k=1 k=1
Then (3.1) holds with constants B = 2max(1, M), B = min(1, y )Cy.
Proof. For v € V, assume the decomposition v = vy + ZZ=1 vg With v, € Vy, v € V. Direct calculation shows that

n
E Uk

k=1

2
2 2
vl < 2llvnllz + 2

A (3.9)

n
= 2llonll; +2 ) (Avj, ).
j.k=1

The definition of M(k) and M implies

n
2 (v ) = ZZ by 1)

J.k= =1 jeM(k)

<fZ D lvliz + lwell < MvaknA

=1 jeM(k)
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Combining the previous estimate with (3.9) and (3.7) gives

n
VI3 < 2(Anvn, Vi) +2M D (Avi, vi)

k=1 (3.10)

n
< 2max(1, 7M) ((Ahvh, vn) + Y (S vk vk)) :

k=1
Taking the infimum with respect to all decompositions and using Lemma 3.2, we obtain the upper bound
lloll} < 2 max(1, yM)(B'v, v).

For the lower bound in (3.1), let v = vy + Zzzl v, be the decomposition that satisfies (3.8). It then follows from (3.7)
and (3.8) that

n n
(Anvn. vr) + D (S Tk v < lonll + D v~ (Akvi, vi)
k=1 k=1

n
<max(1,y™") (nvhni +y ||vk||,%) < max(1, y " )Catav IV}
k=1

Using the previous estimate and Lemma 3.2, we obtain
(B~'v, v) < max(1, y")CaabllvlI7-

The proof is complete. O
4. Examples

In this section, we consider the typical example of a scalar elliptic equation. Let V = H(}(.Q) where 2 c R%is a
Lipschitz polytope. For a given f € [>(2) and K € [W;O(.Q)]dx‘j, the bilinear and linear forms in Eq. (2.1) are:

a(u, v) :=f KVu-Vudx, (f,v):= / fudx.
fo) o)

In addition, we assume K is piecewise constant and uniformly elliptic, i.e.,
alsl* < ETK(XE <al§)’, VEER".xeR.

Hence, (2.2a) and (2.2b) hold.
Let 7; be a conforming and shape-regular simplicial partition of £2 aligned with discontinuities of K. Let P,(D) denote
the set of polynomials of degree at most p on a domain D. The subspace V, C V is

Vi =t {vn € V :vplre Pp(T) for all T € 1},

where p > 1 is an integer.
Let {x¢},_, denote the set of vertices in 7;. For each xy, let ¢, denote the continuous piecewise linear function that
takes the value 1 at x; and 0 at other vertices. Furthermore, we denote £2; := supp ¢ for 1 < k < n. Obviously we have

n n

2= Y ax=1 (4.1)
k=1 k=1

IVrllioooy = hy ' = (diams2,) ™" (4.2)

4.1. A posteriori error estimates for Lagrange elements

Now, let V, = H&(Qk) which is a subspace of V = H&(.Q) by zero extension. The partition of unity (4.1) implies

n
V= Z Vi
k=1

We note that the framework also works for other local patches, as long as their union covers £2.
For a fixed k, the set M(k) defined in Lemma 3.3 translates into

M(k) = {j : 2N 82 # 0.

In this case, M = maxy<k<p #M(k) is an absolute constant by the shape-regularity of 7.
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Throughout the rest of this paper, we adopt the notation C; < C; provided C; < C3C, with C3 being a generic constant
dependent only on K and M. We say C; =~ C, provided C; < (; and G, < Cy. Given an element T and a face e, let hy and
he denote the diameter of T and e, respectively. The shape-regularity of 7; implies that hy = hy = he if X, € T Ne and we
will use these notions interchangeably.

We set S = Ak’1 and thus ¥ = y = 1in (3.7). The corresponding smoother S yields an error estimator. In order to
show the reliability and efficiency, we need to verify (3.8) in Lemma 3.3.

Corollary 4.1. We have the following estimate

n

lelf = D (Qer, A Qur).

k=1

Proof. To verify (3.8), we take v, = ITyv € Vj, where IT, is a H'-stable interpolation which also enjoys standard
approximation properties:

n
TTh0 gy + D hi o = vl ) + 0 = vl o) S 10050 0. 43)
k=1

A simple choice for [Ty is the Clément interpolation [42]. We now set vy = ¢y(v — ITyv). Hence, v = v, + ZZ=1 vk is a
decomposition. It follows from (4.2) and (4.3) that

n n
2 2 _ 2 2
lonllz + Y Ioel; = 1Tl gy + D lok(v = Thv)lfa g,
k=1 k=1

n
2 -2 2 2
ST gy + D il = Mol g + [0 = Mol g
k=1
S g S VIE-
Hence, (3.8) are verified. Finally, we conclude Corollary 4.1 from Theorem 3.1 and Lemma 3.3. O

For ¢ € Vi, we have

(Qr.o) = [ fedx —a(un, ¢).
2k
Hence, computing ny := Ak‘ler € Vi, amounts to solving the variational problem:
a(ne, @) = | fedx —a(up, @), Vo € V. (4.4)
2k
Taking ¢ = ny in (4.4) implies that
Imelly = (Qur A Qur).

It then follows from the previous identity and Corollary 4.1 that
n
lellz = > lmell3. (45)
k=1

4.2. Computable error estimator

Unfortunately, |[n¢]la is not available in practice because (4.4) is local but still not fully computable. To implement the
estimator in Corollary 4.1, we consider the approximate problem: Find 7 € Vj such that

ai @)= | fedx—a(un, @), Ve € Vi, (4.6)
2k

~ 1
where Vi, C Vj is a subspace of piecewise polynomials. Roughly speaking, the approximate estimator (Zzzl ||ﬁkﬂj)7
is expected to be an accurate upper and lower bound of |le||4 provided the degree of piecewise polynomials in Vj is
sufficiently high.

Taking ¢ = 7 in (4.6) and (4.4), we obtain

I7klI2 = alie, k) < lllall Tkl a-
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Combining the previous estimate with (4.5) provides the following computable lower bound for the error

n n
D UdE =D Il < lellz (4.7)
k=1 k=1

To derive a computable upper bound for ||e]4, let us first write the action of the residual on V; = H&(.Qk). We denote
the set of all (d — 1)-dimensional faces in the triangulation 7; by &. Clearly, &, = £ U 5,? where Sﬁ denotes the set of all
boundary faces and £° the interior faces. We further denote 7|, by 7x and &| 2 by &, respectively. Note that &, does
not include the faces on 9£2;. For each T € 7y, let

rr .= (f + divKkVuy)|r.

Further, for each e € &, let T;, T, € 7, be the two elements sharing e, n; (resp. ny) the outward unit normal to 3K,
(resp. 0K3), and

e .= KVup|r,-n1 + KVuylr,-n;.

It then follows from (4.4) and integration by parts that

a(nk, @) = Z / rredx + Z repds, VYo € V. (4.8)
T

TeTk ecg Ve

Now, let us introduce the computable quantity

1

2

o= [ D IR + Y hellreliZy |

TeTy ec&y

which is the standard explicit residual error estimator. We take ¢ = 1, and use (4.8) and the Cauchy-Schwarz inequality
to obtain that

ey = alne. me) = Y f remedx + Y [ remds
T

TeTy ecg Ve

< X Ikl i lizery + D Inellizgey el

TeTk ec&y

< ac | D0 h Iz + D b ikl

TeTk ec&y

Finally, combining the previous inequality with the trace inequality and the Poincaré inequality || n]| 220 S hie Vel 2 20
yields

Nl—=

2 -2 2 2
mkllz < Sk (hk Mkll2 g, + ||V771<||Lz(9k)> S Sellmiella-

Hence, using (4.5) and the previous inequality, we obtain the following computable upper bound for the error

n n
lelz = > " lmell3 <> ¢2. (4.9)
k=1 k=1

So far the finite element error ||e||4 is estimated from below and above by two different estimators. To show that either

(ke ||7ik||f\)% or (Yp_, ¢2)? is a two-sided bound of |le|l4, we use the bubble function technique due Verfiirth, which
seems to be indispensable tool in deriving such estimates. To keep the presentation self-contained as much as possible, we
give the details of deriving the two-sided estimates below and we note that such arguments are standard, see, e.g., [43].
For each T € 7, and e € &, the volume and face bubble functions are defined as

or = l_[ b, Ge = l_[(]bkv
xgeT xgee

respectively. Let 2, denote the union of elements sharing e as a face. We note that ||¢r||ioory = 1, [|@ellioo(2,) ~ 1, and
suppgr C T, suppg. C £2.. Given an integer m > 0, it is well-known (see [43]) that for v € P,(T) and w € Pn(e), we
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have the following estimates:

1
lgrvllr < vl < llg7 vl (4.10a)
1
[pewlle < llwlle < lge wlles (4.10b)
1
Ecwll @, = hé lwlle, (4.10¢)

where E.w € Pp(£2.) is an extension of w, such that (E.w)|e= w. _
To show that >",_, I[7klI3 is an upper bound for |e||3, we take Vj in (4.6) as

Vk = Z ¢)T7Dp71(9k) + Z ¢e7)p71(-9k)s
TeTk ecty
which is clearly a subspace of V. Similarly to (4.8), one can rewrite (4.6) as
(i )= ) /TT(PdX+ > [ repds, Vo Vi (4.11)
TeT VT ecg, Ve
Let Qr denote the L*-projection onto Pp—1(T). Using (4.10a), (4.11) with ¢ = ¢rQrr7 € Vk, the Cauchy-Schwarz and

inverse inequalities, we have

1QrrrllF < /rﬂﬂd’H' f(QTrT — r7)pdx
T T

~ ali, o)+ [ (@rrr = rrjods (4.12)
< by lallells + 1Qrrr — rrlizllelr
< (7' WAklla + IQerr — rrlir) IQrrr .
It then follows from (4.12), (4.10a), and (id — Qr)(divK Vuy) = 0 that
lrrllr < 1Qrrrlir + lirr — Qrrrllr
< by e+ IF = Qef N
On the other hand, taking ¢ = ¢.E.r. € Vk in (4.11) and using (4.10b), (4.10c), we have

lIrell? < /rewds=a(?ik,<p)— > / rrodx
e T

TeTk.TCS2e

(4.13)

< b Mdlallelle, + Z lrrlirllellr (4.14)
TeTpTC2e

_1 1
S (he 2+ D hZlirrlr)relle.

TeTi. TCR2e

Hence, combining (4.9), (4.13), (4.14) and using the shape regularity of 7;, we obtain the computable upper bound based
on 7g:

n n
2 2 ~ 2 2
lelZ < >Nzl < D Iz + oser (F),
k=1 k=1

1
where oscr; () = (ZTeTh h% IIf —QTf||%) 2 is called the data oscillation in the literature. Compared with | e||4, the quantity
oscy;(f) is a higher order term provided f is piecewise smooth.

Similarly, using (4.8) with ¢ = ¢7Qrr7, @ = @eE.re, and (4.5) we obtain

n n

2 2 2 2 2
> gl < ) Iz + oser (F) < llell? + oser (F),
k=1 k=1

which is a lower bound based on ¢.
5. Concluding remarks
For SPD problems, we have shown how preconditioning can be used to derive a posteriori error estimates. Extensions

of this abstract theoretical framework and its application to derive estimators for indefinite, nonconforming, and
discontinuous Galerkin methods are ongoing. A close inspection of the arguments shows that not only preconditioning can
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give a unified way to derive a posteriori error estimators. This is a two-way street: the a posteriori error estimators may
provide efficient smoothers for multilevel methods. For example, the operator S we have introduced in our framework is
a clear analogue of smoothing (relaxation) operator. We hope that some of the error indicators and estimators may give
efficient smoothers in case of non-symmetric and or indefinite problems which are, in general, hard to precondition.
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