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1. Introduction

Adaptive finite element methods (AFEMs) have been an active research area since the pioneering work [1]. In contrast
o finite elements based on quasi-uniform meshes, AFEMs produce a sequence of locally refined grids that is able to resolve
he singularity arising from irregular data in the underlying boundary value problems. Readers are referred to e.g., [2–4]
or a thorough introduction. Among the key concepts in AFEMs, a posteriori error estimates are the building block for
omparing errors on different elements and marking elements with large errors for refinement. For details on various
FEM error estimation techniques we refer to works on: explicit residual estimators [4]; implicit estimators based on local
roblems [1,5–7]; recovery-based estimators; [8–12]; hierarchical basis estimators [13–16]; functional estimators [17];
nd equilibrated estimators [18–21].
On the other hand, parallel with the development of AFEMs, there are also substantial research efforts in studying

fficient preconditioning, which is a technique for approximating the inverse of a differential operator. Usually, such
pproximations are aimed at accelerating Krylov subspace iterative methods for solving linear systems resulting from
iscretized partial differential equations. Popular techniques used for preconditioning include e.g., multigrid [22–27]
nd domain decomposition/subspace correction methods [28–30]. In practice, subspace correction methods provide an
fficient way of reducing the condition number of a large-scale but finite-dimensional linear system. However, the analysis
f uniform convergence rate of those methods often benefits from the general setting of infinite-dimensional Hilbert
paces (see, for example, [31–33]).
In this paper we present a general framework relating abstract operator preconditioning [30,32–35] to a posteriori error

stimates. In particular, we shall show that such standard techniques for developing preconditioners also yield reliable
nd efficient error estimators. Here, for clarity of presentation, we focus on the symmetric and positive-definite problems
lthough extensions to more general cases are definitely within reach. As a simple example, with this framework, we are
ble to recover the classical residual error estimators for elliptic equations in primal form.
The rest of this paper is organized as follows. In Section 2, we set up the model variational problem and define the

perator notation which is convenient when constructing preconditioners. In Section 3, we develop the main theory on
osteriori error estimates via preconditioning. Section 4 is devoted to the example of second order elliptic equation that

illustrates the aforementioned abstract theory. Concluding remarks are found in Section 5.
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2. Preliminaries

Let V be a Hilbert space and V ′ denote the dual space of V . Let a : V × V → R be a continuous bilinear form and
f ∈ V ′. We consider the following variational problem: Find u ∈ V such that for all v ∈ V

a(u, v) = ⟨f , v⟩. (2.1)

Here ⟨·, ·⟩ is the duality pairing between V ′ and V . Let ∥ · ∥V denote the norm on V and ∥ · ∥V ′ the dual norm of V ′.
For simplicity, we assume that the bilinear form a(·, ·) is symmetric and positive-definite (SPD). The continuity and
positive-definiteness of a(·, ·) imply

a(v, w) ≤ α∥v∥V∥w∥V , (2.2a)

a(v, v) ≥ α∥v∥
2
V , (2.2b)

for all v, w ∈ V , where α, α > 0 are absolute constants. Such a bilinear form naturally defines a bounded isomorphism
A : V → V ′ for which we have

⟨Av, w⟩ := a(v, w), ∀v, w ∈ V .

ence, (2.1) is equivalent to the operator equation

Au = f . (2.3)

2.2a) and (2.2b) imply that A induces the inner product ⟨A·, ·⟩ on V . For all v ∈ V , the A-norm on V is defined as
∥v∥A := ⟨Av, v⟩

1
2 , which is equivalent to the V -norm.

2.1. Approximation from a subspace

Let us consider a general case where we approximate the solution to (2.1) by restricting it to a subspace Vh ⊂ V ,
amely: Find uh ∈ Vh such that

a(uh, v) = ⟨f , v⟩ for all v ∈ Vh. (2.4)

ote that the subspace Vh does not even have to be finite dimensional, although it usually is in applications. It follows
rom (2.2a), (2.2b) and the well-known Lax–Milgram theorem that (2.4) admits a unique solution.

For such a subspace Vh ⊂ V , we consider the natural inclusion Ih : Vh ↪→ V and its adjoint Qh := I ′h : V ′
→ V ′

h defined
s

⟨Qhg, vh⟩ = ⟨g, Ihvh⟩ for all g ∈ V ′ and vh ∈ Vh.

We introduce the operator Ah := QhAIh : Vh → V ′

h which approximates A on Vh. In this way, the discrete problem (2.4)
eads

Ahuh = Qhf .

. A posteriori error estimates by preconditioning

A posteriori error estimates are of the form

C1ηh ≤ ∥u − uh∥V ≤ C2ηh,

here C1, C2 are absolute positive constants and ηh is computed from uh. In AFEMs, ηh is the sum of error indicators on
ll elements. The local error indicators can be used to compare errors on different elements and those elements with
arge errors will be refined. In this way, the errors estimated by ηh are equidistributed over all elements in the mesh. The
ptimal computational complexity of AFEMs is often attributed to the aforementioned equidistribution of errors. Rigorous
nalysis of convergence and optimality of AFEMs can be found in e.g., [36–40].

.1. Links with operator preconditioning

Let

e := u − uh,

r := f − Auh ∈ V ′.

learly, from our discussion above, it follows that constructing a posteriori error estimators is equivalent to estimating
norm of the error e = A−1r by computable bounds. We note, however, that a direct computation of the norm of A−1r
ill be, in general, impossible or too expensive, since one needs to compute the action of A−1 on r . As we pointed out in
he introduction, approximating such action has been also studied for several decades and is known as preconditioning.
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ollowing this simple observation we now borrow some simple ideas from this field and apply them in constructing a
osteriori error estimators.
First, we need a bounded isomorphism (the preconditioner) B : V ′

→ V , whose particular form will be given later. For
the time being we only assume that B is bounded and SPD, i.e., ⟨·, B·⟩ is an inner product on V ′. Let S : V ′

→ V be a SPD
operator, which we will refer to as ‘‘the smoother ’’ and is such that its range approximates well the high frequency part
of the range of A−1, i.e., the result of the action Sr provides a good approximation to the high frequency components of
the error. Now, a simple choice for B is

B := S + IhA−1
h Qh,

which is known as additive Schwarz preconditioner. Just to simplify the presentation, we will not consider the multiplicative
preconditioner in this paper although following the abstract framework developed in [32,33] similar results can also be
obtained in the multiplicative case as well. Let β, β be two positive absolute constants. We say that B is a preconditioner
or A provided there exist constants β > 0 and β < ∞, such that

β⟨B−1v, v⟩ ≤ ⟨Av, v⟩ ≤ β⟨B−1v, v⟩, ∀v ∈ V . (3.1)

he inequality (3.1) is known as spectral equivalence, or norm equivalence, and is a common ingredient in the analysis of
onvergence of iterative methods for large-scale linear systems.

.2. Estimating the residual

We now show that the norm (spectral) equivalence (3.1) naturally yields a two-sided estimate on ∥e∥A. This is the
entral result in this paper.

heorem 3.1. Let (3.1) hold. Then we have the following two sided bound

β
−1

⟨r, Sr⟩ ≤ ∥e∥2
A ≤ β−1

⟨r, Sr⟩.

roof. Since A is SPD, we use the Cauchy–Schwarz inequality to obtain

⟨Ae, BAe⟩2 ≤ ⟨Ae, e⟩⟨ABAe, BAe⟩. (3.2)

he inequality (3.1) implies

⟨ABAe, BAe⟩ ≤ β⟨B−1BAe, BAe⟩ = β⟨Ae, BAe⟩. (3.3)

ombining (3.2) and (3.3) yields

⟨r, Br⟩ = ⟨Ae, BAe⟩ ≤ β⟨Ae, e⟩,

here we used r = Ae in the first equality. The upper bound

⟨Ae, e⟩ ≤ β−1
⟨r, Br⟩

an be shown in a similar fashion. In summary, we have

β
−1

⟨r, Br⟩ ≤ ⟨Ae, e⟩ ≤ β−1
⟨r, Br⟩. (3.4)

On the other hand, for any vh ∈ Vh, (2.4) implies

⟨Qhr, vh⟩ = ⟨r, vh⟩ = ⟨f , vh⟩ − ⟨Ahuh, vh⟩ = 0,

.e., Qhr = 0. Hence,

Br = Sr + IhA−1
h (Qhr) = Sr. (3.5)

ombining (3.4) and (3.5) completes the proof. □

Throughout the rest of this paper, ⟨r, Sr⟩ will serve as a (nearly) computable a posteriori error estimator that is proved
o be both an upper and lower bound of the error ∥e∥A. In order to derive an error estimator within our framework, the
ey step is to suitably select the smoother S such that the spectral equivalence (3.1) holds.

.3. Additive Schwarz smoother

In this subsection, we construct a particular S using the additive Schwarz method. For such a smoother, we present a
emma that serves as a criterion for verifying (3.1).
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For n ∈ N, 1 ≤ k ≤ n, let Vk ⊂ V be subspaces providing a decomposition of V , namely,

V =

n∑
k=1

Vk. (3.6)

et Ik : Vk ↪→ V be the natural inclusion and Qk : V ′
→ V ′

k denote its adjoint. We further set Ak := QkAIk. Next, let
k : V ′

k → Vk be spectrally equivalent to A−1
k . More precisely, for 1 ≤ k ≤ n and vk ∈ Vk, we assume that

γ ⟨S−1
k vk, vk⟩ ≤ ⟨Akvk, vk⟩ ≤ γ ⟨S−1

k vk, vk⟩, (3.7)

here γ , γ are positive absolute constants. The smoother S (additive Schwarz method) is then defined to be

S :=

n∑
k=1

IkSkQk.

By the definition of B, we obtain

B = IhA−1
h Qh +

n∑
k=1

IkSkQk.

The norm of B can be estimated using the following lemma, which can be found in e.g., [29,32,33,41].

Lemma 3.2. We have the following identity

⟨B−1v, v⟩ = inf
vh+

∑n
k=1 vk=v

⟨Ahvh, vh⟩ +

n∑
k=1

⟨S−1
k vk, vk⟩,

here the infimum is taken over vh ∈ Vh and vk ∈ Vk for 1 ≤ k ≤ n.

The proof that B is a good preconditioner for A is standard. We include it here for completeness and we follow the
roof in [33].

emma 3.3. For each k, let

M(k) := {j : sup
vj∈Vj,vk∈Vk

a(vj, vk) ̸= 0},

nd M := max1≤k≤n #M(k). In addition, assume that for all v ∈ V , there exist vh ∈ Vh and vk ∈ Vk with 1 ≤ k ≤ n satisfying

∥vh∥
2
A +

n∑
k=1

∥vk∥
2
A ≤ Cstab∥v∥

2
A, v = vh +

n∑
k=1

vk. (3.8)

hen (3.1) holds with constants β = 2max(1, γM), β = min(1, γ )C−1
stab.

roof. For v ∈ V , assume the decomposition v = vh +
∑n

k=1 vk with vh ∈ Vh, vk ∈ Vk. Direct calculation shows that

∥v∥
2
A ≤ 2∥vh∥

2
A + 2


n∑

k=1

vk


2

A

= 2∥vh∥
2
A + 2

n∑
j,k=1

⟨Avj, vk⟩.

(3.9)

The definition of M(k) and M implies
n∑

j,k=1

⟨Avj, vk⟩ =

n∑
k=1

∑
j∈M(k)

a(vj, vk)

≤
1
2

n∑
k=1

∑
j∈M(k)

∥vj∥
2
A + ∥vk∥

2
A ≤ M

n∑
k=1

∥vk∥
2
A.
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ombining the previous estimate with (3.9) and (3.7) gives

∥v∥
2
A ≤ 2⟨Ahvh, vh⟩ + 2M

n∑
k=1

⟨Avk, vk⟩

≤ 2max(1, γM)

(
⟨Ahvh, vh⟩ +

n∑
k=1

⟨S−1
k vk, vk⟩

)
.

(3.10)

Taking the infimum with respect to all decompositions and using Lemma 3.2, we obtain the upper bound

∥v∥
2
A ≤ 2max(1, γM)⟨B−1v, v⟩.

For the lower bound in (3.1), let v = vh +
∑n

k=1 vk be the decomposition that satisfies (3.8). It then follows from (3.7)
and (3.8) that

⟨Ahvh, vh⟩ +

n∑
k=1

⟨S−1
k vk, vk⟩ ≤ ∥vh∥

2
A +

n∑
k=1

γ −1
⟨Akvk, vk⟩

≤ max(1, γ −1)

(
∥vh∥

2
A +

n∑
k=1

∥vk∥
2
A

)
≤ max(1, γ −1)Cstab∥v∥

2
A.

sing the previous estimate and Lemma 3.2, we obtain

⟨B−1v, v⟩ ≤ max(1, γ −1)Cstab∥v∥
2
A.

The proof is complete. □

4. Examples

In this section, we consider the typical example of a scalar elliptic equation. Let V = H1
0 (Ω) where Ω ⊂ Rd is a

ipschitz polytope. For a given f ∈ L2(Ω) and K ∈ [W 1
∞
(Ω)]d×d, the bilinear and linear forms in Eq. (2.1) are:

a(u, v) :=

∫
Ω

K∇u · ∇vdx, ⟨f , v⟩ :=

∫
Ω

f vdx.

n addition, we assume K is piecewise constant and uniformly elliptic, i.e.,

α|ξ |
2

≤ ξ TK (x)ξ ≤ α|ξ |
2, ∀ξ ∈ Rn, x ∈ Ω.

ence, (2.2a) and (2.2b) hold.
Let Th be a conforming and shape-regular simplicial partition of Ω aligned with discontinuities of K . Let Pp(D) denote

the set of polynomials of degree at most p on a domain D. The subspace Vh ⊂ V is

Vh =: {vh ∈ V : vh|T∈ Pp(T ) for all T ∈ Th},

where p ≥ 1 is an integer.
Let {xk}nk=1 denote the set of vertices in Th. For each xk, let φk denote the continuous piecewise linear function that

takes the value 1 at xk and 0 at other vertices. Furthermore, we denote Ωk := suppφk for 1 ≤ k ≤ n. Obviously we have

Ω =

n⋃
k=1

Ωk,

n∑
k=1

φk(x) = 1, (4.1)

∥∇φk∥L∞(Ω) ≂ h−1
k := (diamΩk)−1. (4.2)

4.1. A posteriori error estimates for Lagrange elements

Now, let Vk = H1
0 (Ωk) which is a subspace of V = H1

0 (Ω) by zero extension. The partition of unity (4.1) implies

V =

n∑
k=1

Vk.

e note that the framework also works for other local patches, as long as their union covers Ω .
For a fixed k, the set M(k) defined in Lemma 3.3 translates into

M(k) = {j : Ωk ∩ Ωj ̸= ∅}.

n this case, M = max #M(k) is an absolute constant by the shape-regularity of T .
1≤k≤n h
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Throughout the rest of this paper, we adopt the notation C1 ≲ C2 provided C1 ≤ C3C2 with C3 being a generic constant
ependent only on K and M . We say C1 ≂ C2 provided C1 ≲ C2 and C2 ≲ C1. Given an element T and a face e, let hT and
e denote the diameter of T and e, respectively. The shape-regularity of Th implies that hk ≂ hT ≂ he if xk ∈ T ∩ e and we

will use these notions interchangeably.
We set Sk := A−1

k and thus γ = γ = 1 in (3.7). The corresponding smoother S yields an error estimator. In order to
show the reliability and efficiency, we need to verify (3.8) in Lemma 3.3.

orollary 4.1. We have the following estimate

∥e∥2
A ≂

n∑
k=1

⟨Qkr, A−1
k Qkr⟩.

roof. To verify (3.8), we take vh = Πhv ∈ Vh, where Πh is a H1-stable interpolation which also enjoys standard
pproximation properties:

|Πhv|
2
H1(Ω) +

n∑
k=1

h−2
k ∥v − Πhv∥

2
L2(Ωk)

+ |v − Πhv|
2
H1(Ωk)

≲ |v|
2
H1(Ω). (4.3)

simple choice for Πh is the Clément interpolation [42]. We now set vk = φk(v − Πhv). Hence, v = vh +
∑n

k=1 vk is a
ecomposition. It follows from (4.2) and (4.3) that

∥vh∥
2
A +

n∑
k=1

∥vk∥
2
A ≂ |Πhv|

2
H1(Ω) +

n∑
k=1

|φk(v − Πhv)|2H1(Ωk)

≲ |Πhv|
2
H1(Ω) +

n∑
k=1

h−2
k ∥v − Πhv∥

2
L2(Ωk)

+ |v − Πhv|
2
H1(Ωk)

≲ |v|
2
H1(Ω) ≲ ∥v∥

2
A.

ence, (3.8) are verified. Finally, we conclude Corollary 4.1 from Theorem 3.1 and Lemma 3.3. □

For ϕ ∈ Vk, we have

⟨Qkr, ϕ⟩ =

∫
Ωk

f ϕdx − a(uh, ϕ).

ence, computing ηk := A−1
k Qkr ∈ Vk amounts to solving the variational problem:

a(ηk, ϕ) =

∫
Ωk

f ϕdx − a(uh, ϕ), ∀ϕ ∈ Vk. (4.4)

aking ϕ = ηk in (4.4) implies that

∥ηk∥
2
A = ⟨Qkr, A−1

k Qkr⟩.

t then follows from the previous identity and Corollary 4.1 that

∥e∥2
A ≂

n∑
k=1

∥ηk∥
2
A. (4.5)

.2. Computable error estimator

Unfortunately, ∥ηk∥A is not available in practice because (4.4) is local but still not fully computable. To implement the
stimator in Corollary 4.1, we consider the approximate problem: Find η̃k ∈ Ṽk such that

a(̃ηk, ϕ) =

∫
Ωk

f ϕdx − a(uh, ϕ), ∀ϕ ∈ Ṽk, (4.6)

here Ṽk ⊂ Vk is a subspace of piecewise polynomials. Roughly speaking, the approximate estimator
(∑n

k=1 ∥̃ηk∥
2
A

) 1
2

is expected to be an accurate upper and lower bound of ∥e∥A provided the degree of piecewise polynomials in Ṽk is
sufficiently high.

Taking ϕ = η̃k in (4.6) and (4.4), we obtain

∥̃η ∥
2

= a(η , η̃ ) ≤ ∥η ∥ ∥̃η ∥ .
k A k k k A k A
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ombining the previous estimate with (4.5) provides the following computable lower bound for the error
n∑

k=1

∥̃ηk∥
2
A ≤

n∑
k=1

∥ηk∥
2
A ≲ ∥e∥2

A. (4.7)

To derive a computable upper bound for ∥e∥A, let us first write the action of the residual on Vk = H1
0 (Ωk). We denote

the set of all (d− 1)-dimensional faces in the triangulation Th by Eh. Clearly, Eh = Eo
h ∪ E∂

h where E∂
h denotes the set of all

boundary faces and Eo the interior faces. We further denote Th|Ωk by Tk and Eh|Ω̊k
by Ek, respectively. Note that Ek does

ot include the faces on ∂Ωk. For each T ∈ Th, let

rT := (f + div K∇uh)|T .

urther, for each e ∈ Eo
h , let T1, T2 ∈ Th be the two elements sharing e, n1 (resp. n2) the outward unit normal to ∂K1

resp. ∂K2), and

re := K∇uh|T1 ·n1 + K∇uh|T2 ·n2.

t then follows from (4.4) and integration by parts that

a(ηk, ϕ) =

∑
T∈Tk

∫
T
rTϕdx +

∑
e∈Ek

∫
e
reϕds, ∀ϕ ∈ Vk. (4.8)

ow, let us introduce the computable quantity

ζk :=

⎛⎝∑
T∈Tk

h2
T∥rT∥

2
L2(T ) +

∑
e∈Ek

he∥re∥2
L2(e)

⎞⎠ 1
2

,

hich is the standard explicit residual error estimator. We take ϕ = ηk and use (4.8) and the Cauchy–Schwarz inequality
to obtain that

∥ηk∥
2
A = a(ηk, ηk) =

∑
T∈Tk

∫
T
rTηkdx +

∑
e∈Ek

∫
e
reηkds

≤

∑
T∈Tk

∥ηk∥L2(T )∥rT∥L2(T ) +

∑
e∈Ek

∥ηk∥L2(e)∥re∥L2(e)

≤ ζk

⎛⎝∑
T∈Tk

h−2
T ∥ηk∥

2
L2(T ) +

∑
e∈Ek

h−1
e ∥ηk∥

2
L2(e)

⎞⎠ 1
2

.

inally, combining the previous inequality with the trace inequality and the Poincaré inequality ∥ηk∥L2(Ωk) ≲ hk∥∇ηk∥L2(Ωk)
yields

∥ηk∥
2
A ≲ ζk

(
h−2
k ∥ηk∥

2
L2(Ωk)

+ ∥∇ηk∥
2
L2(Ωk)

) 1
2
≲ ζk∥ηk∥A.

ence, using (4.5) and the previous inequality, we obtain the following computable upper bound for the error

∥e∥2
A ≂

n∑
k=1

∥ηk∥
2
A ≲

n∑
k=1

ζ 2
k . (4.9)

So far the finite element error ∥e∥A is estimated from below and above by two different estimators. To show that either∑n
k=1 ∥̃ηk∥

2
A

) 1
2 or

(∑n
k=1 ζ 2

k

) 1
2 is a two-sided bound of ∥e∥A, we use the bubble function technique due Verfürth, which

eems to be indispensable tool in deriving such estimates. To keep the presentation self-contained as much as possible, we
ive the details of deriving the two-sided estimates below and we note that such arguments are standard, see, e.g., [43].
or each T ∈ Th and e ∈ Eh, the volume and face bubble functions are defined as

φT :=

∏
xk∈T

φk, φe :=

∏
xk∈e

φk,

respectively. Let Ωe denote the union of elements sharing e as a face. We note that ∥φT∥L∞(T ) ≂ 1, ∥φe∥L∞(Ωe) ≂ 1, and
suppφ ⊆ T , suppφ ⊆ Ω . Given an integer m ≥ 0, it is well-known (see [43]) that for v ∈ P (T ) and w ∈ P (e), we
T e e m m
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o

w
o

w

5

o
d

have the following estimates:

∥φTv∥T ≲ ∥v∥T ≲ ∥φ
1
2
T v∥T , (4.10a)

∥φew∥e ≲ ∥w∥e ≲ ∥φ
1
2
e w∥e, (4.10b)

∥Eew∥Ωe ≂ h
1
2
e ∥w∥e, (4.10c)

where Eew ∈ Pm(Ωe) is an extension of w, such that (Eew)|e= w.
To show that

∑n
k=1 ∥̃ηk∥

2
A is an upper bound for ∥e∥2

A, we take Ṽk in (4.6) as

Ṽk :=

∑
T∈Tk

φTPp−1(Ωk) +

∑
e∈Ek

φePp−1(Ωk),

which is clearly a subspace of Vk. Similarly to (4.8), one can rewrite (4.6) as

a(̃ηk, ϕ) =

∑
T∈Tk

∫
T
rTϕdx +

∑
e∈Ek

∫
e
reϕds, ∀ϕ ∈ Ṽk. (4.11)

Let QT denote the L2-projection onto Pp−1(T ). Using (4.10a), (4.11) with ϕ = φTQT rT ∈ Ṽk, the Cauchy–Schwarz and
inverse inequalities, we have

∥QT rT∥2
T ≲

∫
T
rTϕdx +

∫
T
(QT rT − rT )ϕdx

= a(̃ηk, ϕ) +

∫
T
(QT rT − rT )ϕdx

≲ h−1
T ∥̃ηk∥A∥ϕ∥T + ∥QT rT − rT∥T∥ϕ∥T

≲
(
h−1
T ∥̃ηk∥A + ∥QT rT − rT∥T

)
∥QT rT∥T .

(4.12)

It then follows from (4.12), (4.10a), and (id − QT )(divK∇uh) = 0 that

∥rT∥T ≤ ∥QT rT∥T + ∥rT − QT rT∥T

≲ h−1
T ∥̃ηk∥A + ∥f − QT f ∥T .

(4.13)

On the other hand, taking ϕ = φeEere ∈ Ṽk in (4.11) and using (4.10b), (4.10c), we have

∥re∥2
e ≲

∫
e
reϕds = a(̃ηk, ϕ) −

∑
T∈Tk,T⊂Ωe

∫
T
rTϕdx

≲ h−1
e ∥̃ηk∥A∥ϕ∥Ωe +

∑
T∈Tk,T⊂Ωe

∥rT∥T∥ϕ∥T

≲
(
h

−
1
2

e ∥̃ηk∥A +

∑
T∈Tk,T⊂Ωe

h
1
2
T ∥rT∥T

)
∥re∥e.

(4.14)

Hence, combining (4.9), (4.13), (4.14) and using the shape regularity of Th, we obtain the computable upper bound based
n η̃k:

∥e∥2
A ≲

n∑
k=1

∥ζk∥
2
A ≲

n∑
k=1

∥̃ηk∥
2
A + oscTh (f )

2,

here oscTh (f ) :=
(∑

T∈Th
h2
T∥f −QT f ∥2

T

) 1
2 is called the data oscillation in the literature. Compared with ∥e∥A, the quantity

scTh (f ) is a higher order term provided f is piecewise smooth.
Similarly, using (4.8) with ϕ = φTQT rT , ϕ = φeEere, and (4.5) we obtain

n∑
k=1

∥ζk∥
2
A ≲

n∑
k=1

∥ηk∥
2
A + oscTh (f )

2 ≲ ∥e∥2
A + oscTh (f )

2,

hich is a lower bound based on ζk.

. Concluding remarks

For SPD problems, we have shown how preconditioning can be used to derive a posteriori error estimates. Extensions
f this abstract theoretical framework and its application to derive estimators for indefinite, nonconforming, and
iscontinuous Galerkin methods are ongoing. A close inspection of the arguments shows that not only preconditioning can
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p

ive a unified way to derive a posteriori error estimators. This is a two-way street: the a posteriori error estimators may
rovide efficient smoothers for multilevel methods. For example, the operator S we have introduced in our framework is

a clear analogue of smoothing (relaxation) operator. We hope that some of the error indicators and estimators may give
efficient smoothers in case of non-symmetric and or indefinite problems which are, in general, hard to precondition.
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