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Abstract—The multilevel heuristic is an effective strategy for
speeding up graph analytics, and graph coarsening is an integral
step of multilevel methods. We perform a comprehensive study
of multilevel coarsening in this work. We primarily focus on the
graphics processing unit (GPU) parallelization of the Heavy Edge
Coarsening (HEC) method executed in an iterative setting. We
present optimizations for the two phases of coarsening, a fine-to-
coarse vertex mapping phase, and a coarse graph construction
phase. We also express several other coarsening algorithms using
the Kokkos framework and discuss their parallelization. We
demonstrate the efficacy of parallelized HEC on an NVIDIA
Turing GPU and a 32-core AMD Ryzen processor using multilevel
spectral graph partitioning as the primary case study.

Index Terms—coarsening, multilevel, graph construction, GPU,
partitioning

I. INTRODUCTION

The multilevel heuristic [1] is pervasive in large-scale graph
analysis. Its applications include graph partitioning [2]-[4],
clustering [S]-[7], drawing [8], [9], and representation learn-
ing [10], [11]. The family of algebraic multigrid methods [12],
[13] in linear algebra is closely related to multilevel methods
for graph analysis. Sparse matrices are essentially weighted
graphs. Informally, in a multilevel method, instead of solving
a problem on a large graph, we build a hierarchy of graphs
that are progressively smaller than the original graph and yet
preserve the structure of the original graph. We then solve
the problem on the smallest graph and project or interpolate
the solution to the original graph using the hierarchy. In
multigrid for linear systems, there is also a phase where the
residual is restricted from a fine graph/matrix to a coarser
graph/matrix. Graph coarsening refers to constructing the
hierarchy of graphs, and coarsening is the first step in a
multilevel method.

While coarsening can be problem-specific, the desirable
features of a coarsening strategy remain the same: (i) the
solution projected to the original graph must be close to a
solution obtained on the original graph, (ii) projecting the
solution from the coarsest graphs to the original graph must
be fast, and (iii) the cost of the multilevel method must be
significantly lower than solving the problem on the original
graph. The multilevel heuristic is therefore well suited for NP-
Complete problems, though it can also be useful to speed up
polynomial time algorithms. Ideally, the cost of coarsening
must be linear in the graph size, the number of coarsening
levels logarithmic, and the coarsening algorithm must not stall.
Coarsening algorithms based on maximal matchings in graphs

meet several of the above desirable characteristics and are thus
the preferred choice in many multilevel methods.

Coarsening has two parts: mapping, how to map the fine
vertices to coarse vertices, and the coarse graph construction.
The mapping is often done by computing a matching (vertex
pairs), but we will also explore methods where several fine
vertices are mapped to a single coarse vertex (aggregation,
clustering). The mapping can significantly affect performance
of multilevel methods as it determines the coarse graphs in the
hierarchy. The choice of coarse graph construction method
does not change the coarse graphs, but it affects overall
performance (run time).

We compare different coarsening methods, including the
widely used heavy edge matching (HEM) and the more general
heavy edge coarsening HEC [14], which allows a higher
coarsening ratio.

For fairly regular graphs such as meshes, many coarsening
methods work well. However, for graphs with highly skewed
distributions, coarsening can be quite challenging. One diffi-
culty is that the coarsening may be either too aggressive (too
many fine vertices merged to a single coarse vertex), or too
cautious, causing the coarsening process to stall.

We use graph bisection as our example application, but our
techniques are very general and apply to coarsening for a wide
variety of problems.

The following are the key contributions of this work:

o We present two related shared-memory parallelizations of
the Heavy Edge Coarsening (HEC) algorithm.

« We develop Kokkos-based parallel implementations of HEC
and four additional coarsening algorithms, shown to be ef-
fective in practice for graph partitioning, vertex embeddings,
and algebraic multigrid methods.

e We perform a comprehensive evaluation of coarse graph
construction strategies. A new graph construction optimiza-
tion for skewed-degree graphs may be applicable in other
contexts.

« We evaluate coarsening time-quality tradeoffs using multi-
level graph bisection as the primary case study.

« Results on a collection of 20 graphs and two architectures (a
32-core AMD CPU and an NVIDIA Turing GPU) indicate
that the parallel HEC algorithm consistently outperforms
other coarsening strategies on both the CPU and GPU,
parallel HEC on the GPU is 2.4x faster than the 32-
core CPU, and graph bisection using HEC and Fiduccia-



Algorithm 1 Multilevel Graph Coarsening.

Algorithm 2 Coarsening using Heavy Edge Matching (HEM).

Input: Undirected and connected G(V, E,W) = Gp. n =
|V|. Coarsening cutoff C.
Output: A set of coarse graphs {Gj, ...
1: 1+ 0,np < n
2: while n; > C do
3: 1—1+1
4: M;,n; < FINDCOARSEMAPPING(G;_1,n;_1)
5 G; + CONSTRUCTCOARSEGRAPH(G;_1, M;,n;)

7Gl}'

Mattheyses (FM) refinement results in 24% better edge cuts
on average compared to the mt-Metis partitioner.

II. BACKGROUND AND PRIOR WORK

We denote a graph as G(V, E, W), where V = {1,...,n}
is the set of vertices, and E the set of edges. m = |E|. We
assume the graph is undirected, has no self-loops or parallel
edges, and has positive edge weights. We assume a compressed
sparse row (CSR) storage format. Algorithm 1 gives a high-
level overview of graph coarsening in a multilevel method. We
can decouple each coarsening iteration into two steps, a fine-
to-coarse vertex mapping step (denoted FINDCOARSEMAP-
PING) and a graph construction step that uses the mapping
array M from FINDCOARSEMAPPING and the fine graph
G;_1 as input. The sequential time of all the algorithms in
this section is O(m + n).

The heavy edge matching (HEM) algorithm for weighted
graphs (Algorithm 2) is a widely used coarsening approach,
proposed in the context of graph partitioning [4]. The coars-
ening ratio, which is the ratio of the vertex count in the
fine graph to the count in the coarse graph, is at most
two for any matching-based coarsening strategy. Heavy edge
coarsening (HEC) is a related coarsening method designed in
the context of a multilevel method for computing the Fiedler
vector [14]. The pseudocode is given in Algorithm 3. Like
HEM, vertices are visited in random order. For each vertex,
its heaviest neighbor is identified. If this neighbor has already
been mapped, the vertex being considered joins this aggregate.
Since HEC is not based on matchings, the coarsening ratio can
be arbitrarily high.

mt-Metis [15] is a multilevel graph partitioner for multicore
systems, based on the Metis graph partitioner [4]. In [16],
LaSalle et al. describe several performance optimizations for
graphs with skewed vertex degree distributions. They also
present a new coarsening method to mitigate stalling seen in
HEM-based coarsening. This method uses two-hop matches,
which are contractions of vertices that are not directly con-
nected, but connected via an intermediary vertex. Among two-
hop matches, they specify three sub-classes: leaves, twins, and
relatives. After HEM is executed, if the ratio of unmatched
vertices to total vertices is greater than some threshold, then
leaf, twin, and relative matches are performed. We design GPU
algorithms for leaf, twin, and relative matching in this work,
while the original work is only focused on CPUs. Stall-free
execution is also emphasized in Mongoose [17].

Input: G(V,E, W), n=|V]|.

Output: A mapping array M [1..n], where M{u] is the coarse
graph vertex identifier of vertex w € V. Number of coarse
vertices 7.

1: P[1..n] + GENPERM(n)

22 M[1.n] + 0, n.+1

3: for i <~ 1 to n do

4: u < PJi]

5: if M[u] =0 then

6: w <0

7: for each v adjacent to u do
8: if M[v] =0 and W (u,v) > w then
9: w <+ W(u,v)

10: T <

11: if w > 0 then

12: Mlz] < ne

13: Mu] + n.

14: Ne < ne + 1

Algorithm 3 Heavy Edge Coarsening (HEC) algorithm.

Input: Connected G(V,E,W). n = |V|.
Output: M][1..n], n..

1: P[1..n] + GENPERM(n)

2: M[1.n] + 0, n.+ 1

3: for i < 1 to n do

4 u < PJi]

5 if M[u] =0 then

6: w <0

7 for each v adjacent to u do

8 if W(u,v) > w then

9: w <+ W(u,v)

10: T v

11: if M[z] = 0 then > z always exists because G is
assumed to be connected.

12: Mz] < n,

13: Ne — Ne + 1

14: Mlu] < M|x]

We also evaluate two coarsening techniques based on maxi-
mal independent sets. Bell et al. [18] design a distance-2 maxi-
mal independent set (MIS)-based coarsening technique termed
MIS?2 for GPUs. The coarse aggregates chosen are a subset of
the fine graph vertices such that no two aggregates are within
a distance of two of each other. The remaining vertices can
be mapped to these coarse aggregates. A related coarsening
strategy was recently proposed in the context of a multilevel
representation learning technique called GOSH [11]. GOSH
is based on MIS (see Algorithm 7 in an extended version of
this submission [19]), but with a small change to prevent two
high-degree vertices from mapping to each other. In Fig. 1, we
show the graphs produced after one level of coarsening using
different methods.



Assume
W(u,v)=u+vinG
and P[i] =i

Fig. 1: Coarse graphs produced after one level of coarsening using different methods.

The coarsening methods discussed so far can be termed
strict aggregation schemes [20], as they only permit many-
to-one mappings of coarse to fine vertices. Weighted aggre-
gation schemes, such as the coarsening strategy in ACE [8]
(Algorithm 8 of [19]), allow many-to-many mappings. In pre-
liminary experiments, we found that ACE coarsening quickly
makes the coarse graphs dense, and changes to preserve
sparsity are left for future work.

Given the mapping vector and a fine graph, there are two
main approaches to construct the coarse graph: one based
on sorting and the other on hashing. In a global sort-based
approach, edge triples (M [u], M [v], W (u,v)) are sorted and
deduplicated to update weights, whereas in a hashing-based
approach, a hash table is built with (M[u], M[v]) as the
key. We explore vertex-based sorting and hashing methods,
where the edge triples are first binned according to the start
vertex Mu]. An alternate viewpoint of construction arises
from linear algebra. Let P denote an n. X n binary matrix such
that P(Mu],u) = 1 for all w € V, and 0 otherwise. Then, it
turns out that the coarse graph adjacency matrix A, = PAPT,
which requires two products of sparse matrices. We thus
explore using sparse matrix-matrix multiplication (SpGEMM)
implementations for construction.

We use the Kokkos [21] library extensively in this work.
Kokkos offers performance-portability, with performant im-
plementations of key routines for both GPUs and multicore
systems. The support for parallel primitives such as reductions,
mappings, scans, as well as loop parallelization and hierarchi-
cal parallelism simplifies programming. Kokkos Kernels [22]
is a library of sparse/dense linear algebra and graph kernels
implemented using Kokkos. We use the SpGEMM kernel [23]
and functionality such as team-level sorting from Kokkos
Kernels.

III. PARALLELIZATION

A. Coarsening Algorithms

1) HEC parallelization: The coarsening algorithms dis-
cussed in the previous section share many similarities, and so
the parallelization strategies for each of them are also similar.
First, we note that all of them are inherently sequential due

Fig. 2: Tlustrating the HEC algorithm. Left: a classification of edges into
create, inherit, and skip edges. Right: a directed graph corresponding to the
heavy neighbor array H.

to the assumed ordering. This is already known with prior
work on HEM-like parallelization [24]. A parallel algorithm
would be in the spirit of the sequential algorithm, but will not
generally result in the same output as the sequential algorithm.

We will primarily focus on HEC because the algorithm
often performs well and is distinct from the rest. Unlike HEM,
where a vertex looks for the heaviest unmatched neighbor, the
heaviest neighbor of a vertex can be predetermined in HEC
before entering the matching phase. It is useful to think about
a simplified setting where we consider only (up to) n edges,
(u,v = H][u]). Since the heavy neighbors can be mutual, the
size of this edge set is between n/2 and n.

One viewpoint of the sequential algorithm is the following.
We visit the heavy edge set in some random order, specified
by P, and classify each edge in the set as either a create edge
(where a new coarse vertex is created because u and v are still
unmapped), an inherit edge (where v is already set and so u
inherits the coarse identifier of v), or a skip edge (where u is
already is set, and so we just ignore this edge). These edges
are interspersed, making it difficult for any parallelization
to obtain the ordering achieved by the sequential algorithm.
Further, a create edge can lead to multiple inherit and skip
edges, and an inherit edge can prevent possible new create
edges. Thus, it does not appear that we can go out of order.
In Fig. 2 (left), we show the labeling of edges upon execution
of the sequential HEC algorithm on the graph in Fig. 1.

Our first parallelization of HEC, shown in Algorithm 4, tries
to faithfully replicate the sequential algorithm, but with the
ordering relaxed. While relaxing the ordering seems like a



big assumption, it is necessary in case of GPUs, where there
can be tens of thousands of threads in flight at any point. In
case of multicore platforms, though, a dynamic scheduling of
threads with a small chunk size will be close in spirit to HEC.
We avoid locks in Algorithm 4 at the expense of multiple
passes. Threads concurrently inspect edges in the heavy edge
set and mark both the endpoints (using C' for temporary
storage) using atomic compare-and-swap instructions. For a
create edge (both u and v are still unmapped), only one
thread will be able to satisfy both the conditionals and reach
line 15 of the algorithm. Skip edges are handled in line 13
with the atomic compare-and-swap on Clu], and inherit edges
are processed in line 19. An inherit edge may fail, in which
case the thread releases ownership of u. One detail not shown
in the algorithm is the case of mutual heavy neighbors and
duplicate heavy edges (i.e., u’s heavy neighbor is v and v’s
heavy neighbor is u). There is an additional check using vertex
identifiers prior to line 13 to prevent deadlocks. The drawbacks
of this algorithm are the possible multiple passes (line 29),
contention for atomics (particularly line 14, because many
vertices can share the same heavy neighbor), and irregular
memory references (indirection because of P and H). In
practice, the vast majority of vertices are processed in the
first two passes. Contention for C' is low because of the
distribution of edge weights. The irregular memory accesses
are also unavoidable. The fast atomics on GPUs also help the
implementation of this algorithm. Crucially, one advantage of
HEC over HEM is that the edge processing loop (lines 3-
8) is relatively simple and does not involve much indirection
or fine-grained synchronization. Overall, this algorithm allows
for interspersed create, inherit, and skip edges, mirroring the
sequential algorithm.

We also devise an alternate parallelization of HEC where we
further decouple creating coarse vertices from inherit and the
skip edges. To explain the algorithm (Algorithm 5), consider
the graph in Fig. 1, and the directed graph induced by the
corresponding heavy edge set, shown in Fig. 2 (right). All
vertices in this graph have an out-degree of 1 and there
are n edges, making this graph a pseudoforest. We mark
vertices of non-zero in-degree in this directed graph as coarse
vertices. Additionally, we collapse mutual heavy edges in a
separate loop (see lines 5-8). Separating the coarse vertex
creation step simplifies bookkeeping, and we no longer need
the C' array. The algorithm also requires very little fine-grained
synchronization. We refer to this approach as HEC3. We
also considered another approach that is an intermediate step
between Algorithm 4 (HEC) and HEC3. This approach, termed
HEC?2 (see Algorithm 9 of [19]), uses two arrays X and Y to
prevent races and consistently assign coarse vertex identifiers.
The 2-cycle detection loop of HEC3 is also missing.

2) HEM, Two-hop matching, and GOSH parallelization:
We next consider HEM parallelization, which is closely mod-
eled after Algorithm 4. The main distinction between our
parallelization of HEM and Algorithm 4 is that the heaviest
neighbor is chosen from unmatched vertices. One way to
accomplish this is to recompute H for unassigned vertices

Algorithm 4 Lock-free Parallelization of HEC.
Input: Undirected and connected G(V, E,W). n = |V|.
Output: M][1..n], n..

1: P[l..n] + PARGENPERM(n)

> parallel sort-based

2: H[1l.n] <0

3: for u < 1 to n in parallel do
4: w0

5: for each v adjacent to u do
6: if W(u,v) > w then

7: w — W (u,v)

8: Hlu] + v

9: C[l.n] + 0, M[1.n] <0, Q + P, n.+ 1
10: for i < 1 to |Q| in parallel do

11: u < Qli], v < H[u]

12: if Clu] = 0 then

13: if AtomicCAS(C/[u],0,v) = 0 then
14: if AtomicCAS(C/[v],0,u) = 0 then
15: m < Atomiclncr(n.)

16: Mlu] < m, M[v] < m

17: else

18: if M[v] # 0 then

19: Mu)] + M|[v)

20: else

21: Clu] + 0

22: R[1..|Q|] + 0
23: for i < 1 to |@| in parallel do

24: u <+ Q1]
25: if M[u] =0 then
26: Atomically add u to R

27: if |R| > 0 then
28: @ + NONZEROENTRIES(R)
29: go to line 10

after each pass. The pseudocode is given in Algorithm 10
of [19]. In addition to HEM, we will compare to approximation
algorithms for weighted maximal matching such as Suitor [25]
in future work.

We next design parallel algorithms for two-hop matching
in the optimized version [16] of mt-Metis [15]. Two-hop
matching is selectively performed, and we use the thresholds
used by mt-Metis. Algorithms 11, 12, and 13 in [19] list the
pseudocodes for finding leaves, twins, and relatives, respec-
tively. The three approaches are all different, but we can use
ideas from HEC and HEM parallelization. Twins are found
only if the coarsening threshold is not met after finding leaves,
and relatives are found only if the threshold is not met after
finding twins.

GOSH coarsening and MIS2 coarsening are related since
they are both based on extensions to MIS algorithms. GOSH
prevents contractions of two high-degree vertices by design,
but if we ignore this detail, then it can be viewed as an
MIS algorithm. The MIS is comprised of “u” vertices (see
Algorithm 7 in [19]). Another distinction in GOSH is that
it uses an ordering of vertices sorted by decreasing degree.



Algorithm 5 An alternate parallelization of HEC’s 2nd phase.

Algorithm 6 Parallel Coarse Graph Construction.

Input: G(V,E,W). n=|V|. H[1..n].
Output: M][1..n], n..

1: (P and H are computed as in Alg. 4.)

2: M[1..n],O[1l..n] < 0

3: for i < 1 to n in parallel do

4: O[P[i]] « @ > O is the inverse of P
5. for u < 1 to n in parallel do

6: v+ O[H[u]]

7: if O[H[v]] = u then

8: M{u] + min (u,v)

9: for u < 1 to n in parallel do

10: v O[H]u]]

11: if M[v] = 0 then > Check to reduce atomic calls
12: AtomicCAS(M [v], 0,v) > AtomicCAS avoids

unnecessary random writes
13: for u <— 1 to n in parallel do

14: v <+ O[H[u]]
15: if M[u] =0 then
16: Mlu] < M|v)

17: for u < 1 to n in parallel do

18: p +— Mlu)

19: while M(p] # p do

20: p < M[M]|p]]

21: Mlu] < p

22: M, n. < FINDUNIQANDRELABEL(M, n)

We implement the MIS(2) algorithm by Bell et al. [18] using
Kokkos (pseudocode given in Algorithm 14 of [19]). Our first
parallelization of GOSH is based on the MIS(2) parallelization
(pseudocode in Algorithm 15 of [19]). One drawback of
GOSH is that edge weights are not considered in the mapping
process. To rectify this issue, we combine ideas from HEC and
HEM parallelizations to develop a new coarsening approach,
given in Algorithm 16 of [19]. This alternate approach has
less indirection, lower fine-grained synchronization, and skips
high-degree vertex adjacencies in several loops.

B. Graph Construction

Algorithm 6 gives the template for vertex-centric graph
construction that is common to all the coarsening schemes.
The output is a weighted coarse graph, and we assume that
both the input and output graphs are required to be in the
compressed sparse row (CSR) format. We further assume that
the input graph is read-only and the array M uses coarse vertex
identifiers from 1 to n.. The algorithm has six steps. In the first
step, we estimate an upper bound on the coarse vertex degree,
given by C'[M[u]] (line 5). We omit counting self-loops.
Before deduplication, we use an optimization that is specific
for undirected graphs. We note that an edge (z,y) is stored
twice in the CSR format, once in =’s adjacency array and again
in y’s array. However, while deduplicating, we can use just
one end. For graphs with skewed distributions, it is preferable

Input: G(V,E, W), n=|V|, m = |E|, M, nc.
Output: G(V,, E.,W,).
1: C'[l.n;] 0, C[l.nc] <0
2: for u <— 1 to n in parallel do
3 for each v adjacent to u do
4 if M[u] # M|v] then
5: AtomicIner(C’'[M [u]])
6: for u < 1 to n in parallel do
7 for each v adjacent to u do
8 if M[u] # M|v] then
9: if (C'[M[u]] < C'M[v]) or (C'"M[u] =
C'[M|v] and u < v) then
10: AtomicIner(C[M[u]])
11: R <+ PARPREFIXSUMS(C)
122 m' < R[n.], C[l..n] < 0
13: F[l.m/] + 0, X[1.m/] + 0
14: for v <— 1 to n in parallel do

15: for each v adjacent to u do

16: if M[u] # M[v] then

17: if (C'[M[u]] < C'[Mu]) or (C'M[u] =
C’'[Mv] and u < v) then

18: | + FINDLOC(R, C, u)

19: F[l] + M[v], X[I] + W(u,v)

20: for u < 1 to n. in parallel do
21: F, X, C[u] + DEDUPWITHWTS(F, X, R, C, u)
22: E.,W,,m, + GRAPHCONSWITHTRANS(F, X, R,C")

to pick the end with lower degree. Since the vertex degree
in the coarse graph is not known yet, we use the estimates
given by C’ to decide which end to store the adjacency. Ties
are broken using vertex identifiers. We note that this opti-
mization has been explored for linear algebra-based triangle
counting [26], where there is work associated with every edge
and it helps to use the low-degree end. Further, observe that
sorting vertices by degree is not required. The second step of
the algorithm populates the array C' to track this count (line
10). In the third and fourth steps, we write the adjacencies
and corresponding weights to two intermediate arrays F' and
X, also organized in CSR format. Per-vertex deduplication
now happens in the fifth step using the DEDUPWITHWTS
routine. We use two approaches: a bitonic/radix (GPU/CPU
respectively) sort-based approach with coarse vertex identifiers
as keys and weights as values, followed by striding through
the sorted array for in-place deduplication; a hashing-based
approach where we use per-vertex hash tables to insert vertex-
weight pairs and increment weights. A segmented global sort
is also an alternative to separate per-vertex sorts. The sort is
better when the duplication factor is close to 1 and for low-
degree vertices, whereas hashing is preferable in case of high
duplication. A hybrid approach, deciding whether to sort or
hash on a per-vertex basis is also possible, and deduplicating
coarse adjacencies of each fine vertex is also an additional



optimization. We will explore these two optimizations in future
work. The final step of graph construction is to enumerate
the (v,u) edges and store them in the CSR structures for
the coarse graph. Since the degree-based deduplication op-
timization is primarily targeting graphs with skewed degree
distributions, we use the ratio of maximum degree to average
vertex degree to estimate the skew, and selectively invoke this
optimization.

An alternate strategy to coarse graph construction is to
compute the PAPT product by calling the SpPGEMM imple-
mentations in Kokkos Kernels [22], [23] twice. The algorithm
uses a symbolic step to compute the actual number of non-
zeros in the coarse graph and computes the CSR graph in a
numerical step. A local sparse hashmap accumulator is used
to avoid any duplicates. In addition to the SpGEMM-based
approach, we also use a global sort-based construction method
as the baseline, but found the method not to be competitive
with approaches discussed here.

C. Multilevel Graph Partitioning

With parallel multilevel graph coarsening, we have a key
building block of multilevel graph partitioning. The objective
of graph partitioning is to partition the set of vertices into k
parts such that the number of edges that are cut (i.e., edges
going across partitions) is minimized and the partitions are
balanced (with n/k vertices each). The high-level template for
multilevel partitioning is outlined in Algorithm 17 (of [19]),
and partitioning methods differ in the algorithms used for
initial partitioning and multilevel refinement. We experiment
with two refinement methods in this work: one using the eigen-
vector corresponding to the second-smallest eigenvalue of the
graph Laplacian matrix (referred to as spectral partitioning),
and the other using Fiduccia-Mattheyses (FM) refinement [27].
In case of spectral partitioning, we use the power iteration
technique to compute the eigenvector, and the main routine
in the power iteration is a sparse matrix-vector multiplication
(SpMV). We use the SpMV implementation from Kokkos Ker-
nels. Our FM implementation is currently sequential, running
on the CPU. We use the greedy graph growing algorithm for
initial partitioning with FM, and the eigenvector associated
with the coarse graph in case of the spectral method. In both
cases, the interpolation step is straightforward and uses the
mapping vectors. We only present results for graph bisection
in this work and also do not allow for imbalance in partitions
when reporting edge cut. Spectral partitioning is closely related
to spectral drawing (where two eigenvectors are used as coor-
dinates for vertices) and spectral clustering (where the balance
constraint is relaxed). In future work, we plan to use our new
coarse mapping and/or graph construction methods in place of
the coarsening routines in well-known multilevel methods for
graph clustering, embedding, and other applications.

IV. EMPIRICAL EVALUATION

We choose a diverse set of graphs to evaluate the coarsening
strategies on. The graphs are listed in Table I. We intentionally
include just one graph from each application domain, and

TABLE I: A collection of undirected graphs used for performance evalu-
ation. The graphs are based on sparse matrices from the SuiteSparse matrix
collection [29], and networks from OGB [28]. We preprocess the graphs to
extract the largest connected component and relabel vertex identifiers. The
number of edges (m), number of vertices (n), and the ratio of max vertex
degree (A) to average degree after preprocessing are given. Based on this
ratio, we partition graphs into two groups: regular and skewed-degree. Within
each group, the graphs are ordered by size (2m + n).

Graph Domain m n A/(2m/n)

HV15R cfd 162 357 569 2017169 3.1
rgg24 syn 132557200 16777215 2.5
nlpkkt160 opt 110 586 256 8345600 1.0
europeOsm road 54 054 660 50912018 6.1
CubeCoup fem 62520692 2164760 1.2
delaunay24 syn 50331601 16777216 4.3
Flan1565 fem 57920625 1564794 1.1
MLGeer sim 54687985 1504002 1.0
cagel5 bio 47022 346 5154859 2.5
channel050 sim 42681372 4802000 1.0
ic04 WWW 149 054 854 7320539 6296.9
Orkut soc 117185083 3072441 436.7
vasStokes4M vlsi 97708521 4344906 25.3
kmerUla bio 66 393 629 64 678 340 17.0
kron21 syn 91 040839 1543901 1813.7
products ecom 61806 303 2385902 337.4
hollywood(09 soc 56 306 653 1069126 108.9
mycielskianl7  syn 50122871 98303 48.2
citation cit 30344439 2915301 480.4
ppa bio 21231776 576039 44.0

synthetic graphs constructed using different algorithms. The
number of vertices, edges, and average vertex degree span a
wide range. Using the ratio of maximum degree to average
degree as a measure of degree skew, we split the graphs into
two groups (regular and irregular) of ten each. We include
three graphs from the Open Graph Benchmark [28] that
are used for graph-based learning tasks, and the rest of the
graphs are based on SuiteSparse [29] matrices. We preprocess
the graphs to make them undirected and extract the largest
connected component. Since we evaluate a large collection
of algorithms, each with different memory requirements, we
are constrained by available main memory on GPUs. We
require at least 48m bytes for most programs (details in [19]).
The graphs considered are initially unweighted but become
weighted after one level of coarsening.

We use the NVIDIA GeForce RTX 2080 Ti GPU based on
the Turing architecture in our evaluations. This GPU has 68
streaming multiprocessors (SM), each with 64 INT32 cores.
Each SM supports concurrent execution of 32 warps (or a
total of 1024 threads). The 11 GB GDDR6 memory offers
a theoretical peak bandwidth of 616 GB/s. Turing supports
the Independent Thread Scheduling feature introduced in the
previous Volta architecture. This GPU is on a system with a
32-core AMD Ryzen Threadripper 3970x processor (based on
the “Castle Peak” Zen2 architecture). This processor supports
64 hardware threads and has 256 GB quad-channel DDR4-
3200 memory for a peak memory bandwidth of 102.4 GB/s.
The operating system is Ubuntu Linux 20.04 LTS. Unless
otherwise mentioned, all results indicated as CPU are for 32-
core execution. We build our programs with GCC 9.3.0. We



use CUDA 10.1 and the GPU driver version is 450.51.05.
We use Kokkos 3.1.01 and Kokkos Kernels 3.1.01. On the
CPU, we see a bandwidth of 77 GB/s with the STREAM
Copy benchmark, and on the GPU, the CUDA bandwidth test
reports 532 GB/s as the device-to-device bandwidth.

For most experiments, we perform 10 runs and report the
median. We also compute the mean and standard deviation of
edge cut, execution time, and other metrics. All coarsening
methods use a coarse vertex cutoff of 50. However, if the
vertex count drops from greater than 50 to less than 10 in an
iteration, we discard the coarsest graph. When using the power
iteration to compute the eigenvector for partitioning, we use
the difference of the 2-norm of the iterates as the stopping
criterion. We stop when the difference is lower than 10710,

A. HEC and Graph Construction Performance

We first evaluate performance of HEC (Algorithm 4) on the
GPU and CPU systems, while varying the graph construction
strategy. In Table II, we report the total time spent in multilevel
coarsening when using sort-based deduplication in the graph
construction, and also the fraction of overall time spent in
graph construction. Note that the reported times include initial
CPU-GPU data transfer times for the graph structure. For
irregular graphs, graph construction makes up a higher fraction
of total time than regular graphs. The sort-based graph con-
struction method consistently outperforms alternatives, with
the speedups more pronounced for irregular graphs. The
performance impact of the degree-based deduplication strategy
is not shown in this table, but it is quite effective for irregular
graphs. For instance, the graph construction time on kron21
is 25.7x higher without this optimization.

Comparing the three variants of HEC, we observe that
HEC is 1.13x faster than HEC3 (Algorithm 5) and 1.21x
faster than HEC2. These are with geometric means of running
time ratios. kron21 is the only instance for which HEC2 and
HEC3 are faster than HEC. Additionally, HEC3 runs out of
memory on europeOsm. One reason why HEC is faster is
that it requires fewer coarsening levels compared to HEC3
(1.26x more levels on average) and HEC2 (1.56 x). Further,
most of the vertices are processed in just two passes in
Algorithm 4 (99.4% for first level of coarsening across all
graphs, and 96.7% for the second level of coarsening), and the
performance of atomic compare-and-swap does not appear to
be a bottleneck. The advantage of HEC2 and HEC3 over HEC
is that the coarse vertex count is more predictable.

Next, we look at CPU performance (32-core execution
times) for HEC with different graph construction strategies
in Table III. europeOsm and kmerUla are the sparsest graphs
in each category, and the percentage time in the mapping step
is much higher than the average. Hasing-based construction is
consistently the fastest. For regular graphs, the sort-based ap-
proach is faster than the SpGEMM-based graph construction.
For regular graphs, the time spent in the mapping step is on
average higher than for irregular graphs.

In Fig. 3 (left), we report GPU HEC performance normal-
ized to graph size. There do not appear to be any outliers and

TABLE II: Performance of HEC-based coarsening on the GPU. We report
total coarsening time using HEC (¢.), percentage of coarsening time spent in
graph construction when using the default sort-based coarsening (denoted %
GrCo), and the ratio of the graph construction time with alternate methods
(hashing-based and SpGEMM-based) to sort-based graph construction.

Graph LGrCo-alt / tGrCo-sort

te 8) % GrCo Hashing SpGEMM
HVISR 1.00 51 1.14 2.91
rgg24 0.97 41 1.25 2.13
nlpkkt160 0.91 53 1.52 2.09
europeOsm 1.11 34 1.49 2.46
CubeCoup 0.45 51 1.53 1.84
delaunay24 0.54 36 1.45 2.40
Flan1565 0.42 51 1.52 1.87
MLGeer 0.38 49 1.28 1.71
cagel5 0.49 58 1.66 3.08
channel050 0.35 45 1.79 2.03
GeoMean T 46 1.45 2.21
ic04 0.90 45 1.26 6.43
Orkut 1.76 78 1.36 3.71
vasStokes4M 0.61 44 1.61 4.22
kmerUla 1.47 35 1.68 3.38
kron21 1.76 85 1.17 3.44
products 0.48 56 1.77 6.39
hollywood09 0.56 67 1.86 4.14
mycielskianl7  0.73 80 1.88 1.87
citation 0.30 58 2.22 7.88
ppa 0.19 57 3.04 6.09
GeoMean T 58 1.72 4.41

TABLE III: Performance of HEC-based coarsening on the multicore
system. We report total coarsening time using HEC (¢.), percentage of
coarsening time spent in graph construction when using the default sort-based
coarsening (denoted % GrCo), and the ratio of the graph construction time
with alternate methods (hashing-based, SpPGEMM-based) to sort-based.

Graph tGrCo-alt /tGrCn—snrt

te (s) % GrCo Hashing SpGEMM
HV15R 1.69 69 0.63 0.68
rgg24 2.01 44 0.70 1.52
nlpkkt160 1.64 60 0.68 1.25
europeOsm 3.40 24 0.97 2.93
CubeCoup 0.73 63 0.66 0.95
delaunay24 1.41 36 0.85 2.06
Flan1565 0.66 65 0.66 0.95
MLGeer 0.59 63 0.65 0.97
cagel5 1.00 65 0.68 1.16
channel050 0.67 52 0.68 1.45
GeoMean T 52 0.71 1.28
ic04 2.44 72 0.50 0.50
Orkut 2.89 84 0.80 0.78
vasStokes4M 1.32 66 0.64 0.89
kmerUla 4.78 28 0.97 2.80
kron21 3.46 90 0.96 0.42
products 1.04 74 0.69 1.17
hollywood09 1.11 81 0.85 0.67
mycielskian17 0.86 82 0.90 0.51
citation 0.70 70 0.71 1.37
ppa 0.40 75 0.80 0.97
GeoMean 1 69 0.77 0.86

the performance rates for the graphs fall within a relatively
narrow band. It is not possible to say if one group of graphs
outperforms the other. In general, performance seems to be
better for larger graphs, which is expected behavior on GPUs.
In Fig. 3 (middle), we report speedup achieved by the GPU
runs over 32-core CPU runs, both using the default (sorting)
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Fig. 3: Performance of HEC-based coarsening. Left: GPU performance rate (running time normalized to graph size), Center: Speedup using GPU, Right:

Weak scaling for synthetic graphs (rgg, kron, delaunay).

deduplication. Data transfer times are excluded here. The
geometric mean is 2.4x. In Fig. 3 (right), we show weak
scaling results for three synthetic graph families: rgg, delaunay,
and kron. Performance is generally higher for larger graphs.
The regular rgg and delaunay graphs show higher performance
than the kron family due to better load balance in adjacency
processing steps.

B. Evaluating Coarsening Algorithms

We use sort-based deduplication as the default graph con-
struction method on both CPUs and GPUs in subsequent
experiments. Table IV compares GPU performance of various
coarse mapping methods. The first part of the table reports
ratios of total coarsening time using an alternate matching
strategy to the previously-discussed GPU performance num-
bers for HEC. Values greater than 1 indicate that HEC is
faster than the respective method. Looking at geometric means
of slowdowns for regular graphs, we see the next fastest
methods are MIS2, mtMetis’s two-hop matching, HEM, and
GOSH. mtMetis can be faster than matching because it can
coarsen more aggressively. For irregular graphs, the ordering
is GOSH, MIS2, mt-Metis, and HEM. In three instances of
irregular graphs, HEM runs out of memory. The second part
of the table gives the number of coarsening levels, with lower
values indicating more aggressive coarsening. If coarsening
happens very rapidly, the output may not be useful (e.g., MIS2
and HEC for mycielskian17). mtMetis coarsening outperforms
HEM in all cases, with very high impact on the number of
levels in many cases. We further compare HEC and mtMetis
coarsening using the average coarsening ratio. mtMetis runs
out of memory for two instances, and HEC coarsens the
irregular graphs at a considerably higher rate. For irregular
graphs, while GOSH requires more levels than MIS2, it
is slightly faster overall. This is because MIS2 coarsening
performs more work at each level, while GOSH (similar to
MIS) is less aggressive in coarsening. We also find that the
algorithm based on GOSH and HEC is 1.46x faster than
GOSH (across all graphs) and also results in 1.18x lower

levels than GOSH. This new strategy could be useful for
weighted graphs.

C. Graph Partitioning Results

We now evaluate performance of different coarsening meth-
ods for graph bisection. Table V summarizes the results.
We first report the time for partitioning and percentage of
time spent in coarsening, when using HEC coarsening. From
the geometric means, we see that the refinement stage takes
longer on irregular graphs than on regular graphs. For ppa and
mycielskian17, the time in refinement is more than 10x the
time in coarsening. This could either mean that the coarsening
is very aggressive or that the underlying matrix is a challenging
instance with close eigenvalues. While we can address the
former case (aggressive coarsening), the latter is a limitation
of the spectral method. We next compare edge cuts by looking
at ratios to the cut when using HEC. Ideally, all the ratios
must be close to 1. However, we see that this is not the
case for several graphs (e.g., vasStokes4M, kmerUla, ppa).
This indicates misconvergence or that the method is not
spending adequate time in refinement. Since we use the same
stopping criterion for all methods, we suspect misconvergence.
For regular graphs, HEC coarsening outperforms all other
strategies. The next best approach is mt-Metis, followed by
MIS2, and then HEM and GOSH (full results in [19]). It is
surprising that MIS2 is quite effective, given that it coarsens
aggressively. For irregular graphs, even a few vertex swaps can
have considerable impact on edge cut, especially for bisection.
We note that the coarsening rate of HEM is quite slow for
some of the larger graphs (ic04, Orkut, kron21), and the 11 GB
memory on the GPU becomes a bottleneck. While two-hop
matching works for the ic04 web crawl, it fails (OOM) for the
social network Orkut and kron21, the synthetic graph with high
degree skew. There are possibly large near-clique structures in
both these graphs preventing faster two-hop matching.

We now devise an alternative multilevel partitioner, using
the FM refinement instead of the spectral method. FM is in-
herently sequential and we are unaware of FM parallelizations



TABLE IV: Comparison of coarsening methods on the GPU. We report the ratio of coarsening time using one of the four alternatives to the coarsening
time using HEC (see Table II). We use sort-based graph construction. We also report number of levels (I) for each method and average coarsening ratio

(cr = (no/ nl)rl) for HEC and mt-Metis coarsening. Runs where the GPU memory was insufficient are indicated as OOM (Out of Memory).

1—1

Graph tc,al} /te-HEC Number of .levels l er = (no/ny) .
HEM mtMetis GOSH MIS2 HEC HEM mtMetis GOSH MIS2 HEC mtMetis
HVI15R 2.04 2.05 1.11 1.72 8 17 17 13 3 5.19 1.96
rgg24 1.67 1.65 1.22 0.91 12 30 24 21 6 3.21 1.75
nlpkkt160 1.89 1.90 1.45 1.31 10 21 21 14 4 4.27 1.86
europeOsm 2.04 1.72 26.50 0.96 14 201 29 20 10 3.09 1.66
CubeCoup 1.58 1.59 2.63 1.20 9 18 18 27 4 4.27 1.91
delaunay24 1.88 1.64 1.08 0.94 12 103 25 20 7 3.19 1.71
Flan1565 1.59 1.59 1.30 1.19 9 18 18 13 4 4.08 1.88
MLGeer 1.58 1.57 OOM 1.14 9 18 18 OOM 5 3.84 1.85
cagel5 1.97 1.97 1.16 1.03 9 19 19 12 4 4.88 1.96
channel050 1.66 1.67 OOM 0.89 10 20 20 OOM 4 4.01 1.84
GeoMean 1 1.78 1.73 1.97 1.11 3.95 1.84
ic04 OOM 6.35 2.25 2.02 8 OOM 24 9 6 6.33 1.69
Orkut OOM OOM 1.40 1.96 6 OOM OOM 11 3 7.98 OOM
vasStokes4M 2.04 2.03 3.28 1.38 8 22 21 16 4 5.32 1.80
kmerUla 1.93 1.67 0.99 1.38 9 201 29 16 8 4.90 1.68
kron21 OOM OOM 0.88 2.42 3 OOM OOM 7 3 12.98 OOM
products 2.95 2.33 1.88 3.52 7 201 22 11 4 6.56 1.67
hollywood(09 2.14 2.12 1.41 1.47 6 24 19 8 3 8.91 1.77
mycielskian17 1.63 1.80 1.31 0.28 3 16 14 8 1 9.04 1.84
citation 3.24 2.24 1.88 3.52 7 201 23 11 4 6.59 1.67
ppa 4.63 2.58 1.91 2.12 6 201 18 12 3 6.69 1.74
GeoMean 1 2.50 2.40 1.60 1.70 7.24 1.73

TABLE V: Performance of spectral bisection on GPU with different coars-
ening methods. We report the total partitioning time using HEC coarsening,
the percentage of time spent in coarsening, and the edge cut (median of ten
runs). We also report an edge cut ratio (cut,y /cutypc) when using an alternate
coarsening scheme.

Graph Cuty)¢ / Cutygc

Time (s) %Coa Edge cat HEM mtMetis
HVISR 1.81 55 874166 0.99  0.99
rgg24 1.40 69 27062 1.30 0.98
nlpkkt160 3.24 28 555014 1.16 1.12
europeOsm 1.49 74 685 3.32 2.32
CubeCoup 0.89 51 348824 1.02 1.04
delaunay24 0.93 58 9650 2.07  0.99
Flan1565 0.63 66 35514 1.01 1.30
MLGeer 0.52 73 52993 0.99 0.99
cagel5 6.06 8 1263238 1.03 1.01
channel050 0.72 49 49882 1.03 0.98
GeoMean T 46 1.27 1.12
ic04 1.09 83 471776 OOM  1.66
Orkut 15.52 11 16874701 OOM OOM
vasStokes4M 1.86 33 269564 1.07 0.85
kmerUla 9.75 15 560981 0.78  0.78
kron21 6.68 26 44684970 OOM OOM
products 0.65 74 4427711 1.65 0.96
hollywood09 2.74 20 7825700 1.07 1.01
mycielskian17 7.72 9 22001064 1.09 1.08
citation 0.52 59 2629260 1.64 0.88
ppa 247 8 2950901 1.08 0.77
GeoMean 1 24 1.16 0.97

for massively multithreaded architectures. We use parallel
HEC coarsening on the GPU and CPU. In Table VI, we
first report edge cut on the GPU. Comparing these cuts to
the results in Table V, we see that FM outperforms spectral
on 19 of the 20 instances. For regular graphs, the geometric
mean of edge cut ratios is 1.29, and for irregular graphs,

it is 4.57. This appears to suggest that the spectral method,
even with different coarsening strategies, is not a good fit for
irregular graphs in terms of cut performance. The irregular
graph results are skewed by performance on ic04, Orkut, and
kron21. The performance of the FM refinement with parallel
HEC coarsening on CPU is slightly better than the GPU
version. mt-Metis is better than Metis for all the irregular
graphs, but produces a significantly better cut than FM+GPU-
HEC for only one instance (vasStokes4M). For the regular
graphs, Metis is competitive with mt-Metis. The coarsening
optimizations of mt-Metis help for europeOsm. mt-Metis is
2.17x faster than the fully parallel GPU partitioner for regular
graphs, and also produces slightly better cuts. For irregular
graphs, the advantage of mt-Metis is not that significant
over the GPU spectral partitioner (1.12x), but the edge cut
improvement is much more pronounced than regular graphs.
This does not factor in memory use of mt-Metis, and we note
that mt-Metis coarsening failed on the GPU for two irregular
instances. We conclude by highlighting the significant edge cut
improvement achieved by FM+GPU-HEC over the state-of-
the-art mt-Metis shared-memory partitioning technique: 16%
for regular graphs and 35% for irregular graphs.

V. CONCLUSIONS AND FUTURE WORK

To summarize, we design and evaluate seven new algo-
rithms: three HEC parallelizations, HEM, mtMetis two-hop
matching (new for the GPU), and two GOSH parallelizations.
Additionally, we implement the MIS2 coarsening algorithm
from [18]. All of them work on both GPUs and multicore
CPUs. For graph construction, we have three approaches:
vertex-centric deduplication using either sorting or hashing,
and SpGEMM-based construction. We also implemented the



TABLE VI: Comparing performance of multilevel graph bisection using
FM refinement. Only the coarsening phase is parallelized. We also report
edge cuts obtained with mt-Metis v0.7.2 (indicated as mtMts) and Metis
v5.1.0 (denoted as Mts). Finally, we report the ratio of the running time for
GPU spectral partitioning with HEC coarsening (SpGPU) to mt-Metis 32-core
execution time (tspec+GPU-HEC / tmt-Metis)-

Graph FM+GPU-HEC Cutyye / CUtEM+GPU-HEC GPU vs.
Edge cut FM+CPU SpGPU Mts mtMts mtMts
HV15R 768220 0.91 1.14 1.13 1.02 298
rgg24 17 358 0.99 1.56 1.52 1.5 1.49
nlpkkt160 514 680 1 1.08 1.07 1.02 3.09
europeOsm 217 0.96 3.16 3.06 1.06 0.47
CubeCoup 333488 1 1.05 1.02 1.15 3.54
delaunay24 9018 0.98 1.07 114 116 1.17
Flan1565 35937 1 099 099 136 3.18
MLGeer 52024 1 1.02 1.02 138 3.25
cagel5 721506 0.92 1.75 1.92 1.03 3.81
channel050 48 836 0.99 1.02 1.02 139 224
Geomean 1 0.97 1.29 1.29 119 2.17
ic04 46 046 1 10.25 10.55 2.31  0.65
Orkut 614 080 1 2748 228 1.62 1.87
vasStokes4M 224704 0.97 1.2 1.22 0.86 1.94
kmerUla 238539 0.98 235 233 1.09 1.07
kron21 2463150 1 18.14 14.85 9.42 043
products 1115524 0.97 3.97 124 113 0.32
hollywood09 1966 982 1 3.98 394 119 124
mycielskian17 11970808 1 1.84 1.84 1.7 8.39
citation 567094 1 4.64 1.08 1.01 0.29
ppa 1439662 1 2.05 1.05 0.99 3.09
Geomean T 0.99 4.57 252 1.54 1.12

ACE coarsening strategy and a graph construction strategy
using heaps for deduplication on the CPU, but do not in-
clude results here. Our key contributions are summarized
at the end of Section I. We identify several future work
directions: designing algorithms that exploit the HEC con-
nection to pseudoforests, evaluating b-matching and the b-
Suitor algorithm [30] for coarsening, fully parallel partitioning
with FM-based refinement, and use with multi-GPU spectral
partititoners [31].
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