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We present residual-based a posteriori error estimates of mixed finite element methods for the three-field
formulation of Biot’s consolidation model. The error estimator is an upper and lower bound of the space
time discretization error up to data oscillation. As a by-product, we also obtain new a posteriori error
estimate of mixed finite element methods for the heat equation.
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1. Introduction

The mathematical modeling of poro-elastic materials is aimed at describing the interactions between
the deformation and fluid flow in a fluid-saturated porous medium. In this paper we provide a poste-
riori error estimators for the fully discrete, time dependent Biot’s consolidation model for poroelastic
media. A pioneering model of poroelasticity in one-dimensional setting was given in Terzaghi (1943).
Nowadays, the popular formulations are in three-dimensions and they follow the model by Maurice
Biot in several works, e.g., Biot (1941, 1955). The system of partial differential equations describing
the Biot’s consolidation model has a great deal of applications in geomechanics, petroleum engineering,
and biomechanics.

The two-field formulation of Biot’s consolidation model is classical and has been investigated in
e.g., Zeniek (1984); Showalter (2000); Murad et al. (1996); Ern & Meunier (2009). Three-field formu-
lations, which include an unknown Darcy velocity, several conforming and non-conforming discretiza-
tions involving Stokes-stable finite-element spaces have been recently proposed as a viable approach
for discretization of the Biot’s model. Various three field formulations were considered in Phillips &
Wheeler (2007a,b) with and a priori error estimates are presented in such a work. Recenly, three-
field formulation using Stokes stable elements, based on displacement, pressure, and total pressure was
proposed and analysed in Oyarzda & Ruiz-Baier (2016). A nonconforming discretization, which also
provides element-wise mass conservation, is found in Hu et al. (2017). Parameter robust analysis using
three field discontinuous Galerkin formulation is given in Hong & Kraus (2018), where a general theory
for the a priori error analysis was introduced. Other stable discretizations and solvers are presented in
e.g., Lee (2016); Lee et al. (2017); Rodrigo et al. (2018). Readers are referred to Lee (2016) for pa-
rameter robust error analysis for four- and five-field formulations. Finite volume and finite difference
discretizations have also been used in this field and we point to Gaspar et al. (2003, 2006); Nordbotten
(2016) for more results and references on such methods for Biot’s system. We note that our further
considerations are restricted to the finite element method and we will not discuss finite difference and
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finite volumen methods here.

There are a few works on a posteriori error control for the fully discretized time-dependent problem,
see, e.g., Eriksson & Johnson (1991, 1995); Picasso (1998); Verfiirth (2003); Makridakis & Nochetto
(2003); Lakkis & Makridakis (2006); Ern & Vohralik (2015); Ern et al. (2019) for a posteriori error
estimates of the primal formulation of the heat equation. A posteriori error estimation of the mixed for-
mulation of the heat equation can be found in e.g., Cascén et al. (2006); Ern & Vohralik (2010); Larson
& Mailgvist (2011); Memon et al. (2012); Kim et al. (2018). For the classical two-field formulation in
Biot’s consolidation model, residual, equilibrated, and functional error estimators are derived in Ern &
Meunier (2009); Riedlbeck et al. (2017); Kumar et al. (2018). In addition, equilibrated error estimators
are developed in Ahmed e al. (2019, 2020) for the four- and five-field formulations and the fixed stress
splitting scheme. Comparing to the equilibrated error indicators, residual error estimators are simpler
to implement and do not require solving auxiliary problems on local patches. Several space-time adap-
tive algorithms based on residual error estimators are proven to be convergent, see, e.g., Chen & Feng
(2004); Kreuzer et al. (2012); Gaspoz et al. (2019).

A main result in our paper is the construction of the reliable residual-based a posteriori error esti-
mator for the three field Biot’s system. To the best of our knowledge, there are no such error estimators
for the mixed formulations of the Biot’s model using more than two fields. Formulations using more
than two fields have conservation properties which makes them practically interesting, however, their
analysis is more challenging. In this paper, we derive residual a posteriori error estimates for the three-
field formulation and prove that the estimator is reliable, that is, it provides an upper bound of the
space-time error in the natural variational norm. Since the three-field formulation directly approximates
the flux w € H(div, Q), special attention must be paid to energy estimates and the residual in the dual
space H(div,Q)’, which is a major obstacle in the construction of such error estimators. The analysis
presented here with the help of regular decomposition and commuting quasi-interpolations, however,
successfully tackles such problems, see Theorems 3.1 and 3.2 for details.

Another main result of this paper is the lower bound in Theorem 5.1. As far as we know, existing
residual, equilibrated, and functional error estimators in Biot’s consolidation model are not shown to
be lower bounds of the space-time discretization error. This is partly due to the complexity of the
Biot’s model equations. Motivated by Verfiirth ’s technique introduced in Verfiirth (2003), we split the
residual and estimator into space and time parts. The temporal estimator can be controlled by the spatial
estimator and discretization error, while the spatial estimator is in turn controlled by the finite element
error and a small portion of the temporal estimator, where the “smallness” is due to a weight function in
time. The details are given later in Section 5.

Since the three-field formulation of Biot’s consolidation model (2.2) contains the mixed formulation
of the heat equation (2.3), we review existing a posteriori error estimates of mixed methods for the heat
equation. Using a duality argument, Cascén et al. (2006) first obtained L?(0, T; H(div, 2)’) a posteriori
estimates of the flux variable and L™(0,7;L?(£2)) estimates of the potential in mixed methods for the
heat equation. Using the idea of elliptic reconstruction proposed by Makridakis & Nochetto (2003), the
works Larson & Malqvist (2011); Memon et al. (2012) presented L>(0,T;L*(£2))- and L=(0,T; L*(Q))-
type a posteriori error estimates of the flux variable in mixed methods for the heat equation. However,
there is no proof that the estimators proposed in Cascén et al. (2006); Larson & Malqvist (2011); Memon
et al. (2012) provide lower bounds of the discretization error. On the other hand, Ern & Vohralik (2010)
presented an equilibrated estimator with a lower bound for the error in post-processed potential based
on the L2(0,T; H' (2))NH'(0,T;H~'(Q))-norm. Their estimator does not control the error in the flux
variable. Comparing to the aforementioned error estimators, a posteriori analysis in this paper indeed
yields a new estimator for the mixed discretization of the heat equation that is both an upper and lower
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bound of the space time error in the natural norm, see Section 5 for details.

The rest of this paper is organized as follows. In Section 2, we present preliminaries and derive
energy estimate for the three field formulation of Biot’s consolidation model. Section 3 is devoted to a
posteriori error estimates of a semi-discrete scheme (3.1). In Section 4, we develop a posteriori error
estimator of the fully discrete scheme (4.1) and prove its reliability. In Section 5, we show that the error
estimators are lower bounds of the space-time error and present a posteriori estimates of mixed methods
for the heat equation. In Section 6, we present numerical experiments validating our theoretical results.
Section 7 is for concluding remarks.

2. Preliminaries and Energy estimates

Given a R?-valued function u, the symmetric gradient € and stress tensor G are
1
e(u) = 5(Vu+ (Vu)'), o (u):=2ue(u)+A(divu)l,

where 1 > 0,4 > 0 are Lamé coefficients, I is the d X d identity matrix. Let  be a Lipschiz domain in
R? and T > 0 be the final time. The three-field formulation of the Biot’s consolidation model reads

—dive(u)+aVp = fin Q x (0,T], (2.1a)
(Bp+odivu) +divw = gin 2 x (0,T], (2.1b)
K 'w+Vp=0inQ x (0,T], (2.1¢c)

subject to the initial condition #(0) = ug, p(0) = pp in Q. For the simplicity of presentation, we consider
homogeneous boundary conditions

u=0onIjx(0,7], o(u)n=0onI;x (0,T],

p=0onI; x(0,T], (KVp)-n=0onIj x (0,T],
where dQ = I UI3, I1 NI = 0, and n denotes the outward unit normal to d£2. Note that the Neumann
boundary condition for p on I] imposes an essential boundary condition for w on I7. In addition, we

assume @, f are constants and K = K(x) is a time-independent and uniformly elliptic matrix-valued
function, i.e.,

CilEP? <E"K(x)E < Cy|E)* forall E e RY and x € Q,

where C1,C; are positive constants. We introduce function spaces where we seek a weak solution to the
system given in (2.1):

V={ve[H'(Q):v=00nT;i}, Q=I1*Q),
W= {wec[l>(Q)] :divwc L*(2), w-n=0o0onTj}.

Let (-,-) denote the L?(L) inner product for scalar-, vector-, or matrix-valued functions. Next, we
introduce several bilinear forms:

a(u,v) :=(o(u),e(v)), b(v,q):=(adivv,p),
c(p.q) = (Bp,q), d(z,q):=(divz,q), e(w,z):=(K 'w,2).
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The norms associated with the bilinear forms given above are
Ivl[g = a(v,v), gl := c(q.q),

22 :=e(z,2),  lalliy = ll2llz + || div],

where ||-|| denotes the L?(£2) norm. For the spaces defined earlier we have the following correspondence
with the norms: V is equipped with the || - || ,-norm, Q is equipped with || - ||.-norm, and W is equipped
with the W-norm. Because we are dealing with a time-dependent problem, we need the spaces of
Hilbert-valued functions as follows: Given a Hilbert space H, we define

L*(0,T;H) ={v:v(t) € Hfort € T, esssupyc,<r|[v(t)||z <o},
T
L*(0,T;H) = {v:v(r) cHfort €T, / [v(2)||7dt < o},
0
H'(0,T;:H) = {ve L*(0,T:H) : dv € L*(0,T;H)},

see, e.g., Evans (2010) for more details. The variational formulation of (2.1) then is to find u €
H'(0,T;V), pc H'(0,T;Q), and w € L*(0,T;W) such that u(0) = ug, p(0) = po and

(u V) b(V,p) = (f,V), (2.2a)
c(9p,q) +b(du,q)+d(w,q) = (8,9), (2.2b)
e(w,z) —d(z,p) =0 (2.2¢)

forallveV,ge Q,andz € W ae.r € (0,T]. It can be observed that (2.2) with u = v = 0 reduces to
the mixed formulation of the heat equation or time-dependent Darcy flow:

c(9p,q)+dw,q) =(g,9), q€0, (2.3a)
e(w,2)—d(z,p) =0, zeW. (2.3b)

In the rest of this section, we establish an energy estimate of (2.2) which is the main tool for deriving
a posteriori error estimates. The well-posedness of two-field formulation can be found in e.g., ZeniSek
(1984); Showalter (2000). For the three-field formulation we have the following result.

THEOREM 2.1 Letug €V, po € Q, f € H'(0,T;V'), and g € L*(0,T; Q). Then the variational formu-
lation (2.2) admits a unique weak solution

(u,p,w) € H'(0,T;V) x H'(0,T;0) x L*(0,T;W).

We skip the proof of Theorem 2.1 as it directly follows from the energy estimates in Lemma 2.1 and
a standard argument using a Galerkin method in space, in the same fashion as for the linear parabolic
equation (see, e.g., Evans (2010)). For the purpose of a posteriori error estimation, we consider a more
general variational problem: Find it € H' (0,T;V),p e H! (0,T;0),we LZ(O, T;W), such that

a(@,v) —b(v,p) = (F1,v), veV, (2.42)
c(atﬁ7q> +b(alﬁaQ) d( W 7q) <F27Q>? q € Q7 (24b)
e(w,z) —d(z,p) = (F3,2), z€W, (2.4¢)
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where F1 € H'(0,T;V'), F, € L*(0,T;Q"), F3 € H'(0,T;W') are time-dependent bounded linear func-
tionals living in dual spaces. At each time z € [0, T], the dual norms are given by

IFilli = IFillyr == sup (F1,v),
veV |v]l.=1

|R2|l, = [|F2llgr := sup  (F2,q),
q€0,lqllc=1

|F3lly=[|F3llw == sup (F3,z).
zeW [|zllw=1

Norms of 6,F; € V' and 9,F3 € W’ are defined in a similar fashion. Given ¢ € [0,T] and an interval
I C [0,T], we make use of the norms

i@, 5, W) 11 == (1) 2+ 1512+ W ()],

1 58) By = [ (112 + 19813+ 1512 + 100512+ 115y + 19515, ).

The following energy estimate is crucial to a posteriori error estimation of numerical methods for (2.2).
LEMMA 2.1 There exists a constant Cy,p, dependent only on u, a, B, K, € such that for all 7 € (0,71,

0 )OI + 155 00, < Con {11359 O
1 2 1
([ 1mbas) + [ QFAR + 10 -+ IRIE + Fal7 +[F1E)as).

Proof. Setting v = d,it, z=w, ¢ = p in (2.4) yields

ld

1d . _ - - _
> NP1+ ]2 = (F 1, 04) + (Fs, )+ (F3, ). @5)

~112 -

On the other hand, differentiating (2.4a) and (2.4c) with respect to time ¢ gives
a(&l‘iLV) - b(V, atﬁ) = <atF17v>7
6(8,»?7,2) *d(Z, atﬁ) = <81F3,Z>~

Taking as test functions v = d,it and z = w in the equations above and using (2.4b) with ¢ = J,p then
leads to

_ < ld, _ < -
19:l[g + 110:BIIZ + 5 — I Wlle = (F1,0,01) + (F2, 9, p) + (9, F3,W). (2.6)
2dt
Using (2.5), (2.6), the Cauchy—Schwarz and Young’s inequalities, we obtain
1d
2 dt

1d

- _ [T
S Bl + (1= 8)w]2 + 3 2.7

]| +
l ~112 1 d ~ 112 ~ . ~ 112
+5l19pllc+ 5 Wlle < G+ I[IB|/|plle + 8| divwl|~,
2 2 dt
where 6 > 0 and

1 5!
G=|Fi|; +0F1|} + §\|F2||?+ TIIFsllf2 + T\I&Fsll,-
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Integrating the previous inequality yields

g)ds

1
12, 5, w)(0)]” +/O (G+IBllBlle + 8| diviw]|?)ds.

Recall that || p|| 1= (0,1.0) := Mmaxo<s<; [|P(5)]|c- In particular, (2.7) implies that

L st [ (iaal e Liaslte 1 5
SN s @I+ [ (192 + 510512+ (1 - 8)]w
1
<=
2

SIPWIE < 3@, p.#)0)I

t t
+ [ (G+8l1aivwlP)ds+ |pllimoso) [ IFallds

for all 0 < s < t. Hence a combination of the previous estimate with

shows that

t 1 t 2
IPliasr | 1Flds < 3171 s+ ) 1721 )

1. 1,,. _ .
218100y < 51 5. 9) )P

t 1 2 (28)
+/0 (G+5||diVW|2)ds+</0 ||F2||,ds> .

Using (2.7) and (2.8) and a Young’s inequality, we obtain

Lo V) | _
@A) O+ [ (1012+ 312,512 +(1 - 8)[w]2)ds

2.9)

. . 2 (

<@ O +2 [ G-+ 8laivwl)as+2( [ Irlas)

Let C be a generic constant dependent only on a, 3, i, Q. It follows from (2.4b) with ¢ = divw that
Idivw|> < C(IR[I7 +llaplIz + llaull7).

(2.10)
Taking the derivative with respect to time on both sides of (2.4c) shows that

19w llw < C(llaFs3ll+ ll:pllc)-

2.11)
The inf-sup condition for d(-,-) together with (2.4c) and (2.4a) then imply the following inequality:

1Blle + ll@lla < C(IF [l +[|1F 3l + [1W]le)-

(2.12)
Choosing a sufficiently small 6 > 0 and combining (2.9) and (2.10)—(2.12) completes the proof of the
lemma.

O

2.7
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3. Error estimator for the semi-discrete problem

Let .9}, be a conforming simplicial triangulation of Q that is aligned with I7 and I3. The mesh .7, is
shape-regular in the sense that
r ~
lr(neil%, P% = Cshape < ©°,

where rg, pg are radii of circumscribed and inscribed spheres of K. LetV, CV, W, CW, 0, C O
be suitable finite element spaces based on .7},. In particular, we choose V;, x Q), to be a stable mixed
element pair for the Stokes equation, and W, x O, to be a stable mixed element pair for the mixed
formulation of Poisson’s equation. It has been shown in e.g., Hong & Kraus (2018); Rodrigo et al.
(2018) that this choice leads to stable space discretization. For example, Vj, x Qj, can be chosen to be
the (P, + face bubble functions) x Py element (see Girault & Raviart (1986)) and W, x Q), can be the
lowest order Raviart—-Thomas (see Raviart & Thomas (1977)) or Brezzi—-Douglas—Marini element (see
Brezzi et al. (1985)). Let % (.7,) denote the collection of faces in .7, and np be a unit normal to F for
any face F € % (9},). Let Z,(K) denote the space of polynomials of degree no greater than £ on K, and

Vi ={veV:vge[2(K) forallK € F;},
By, ={v eV vl €span{@rnr}rcok rez (7, forall K € 7,}.

Here, ¢ is the face bubble function supported on union of elements having F € .% (.7,) as a face, i.e.,
or = sze rAj where A; is the barycentric coordinate corresponding to the vertex z; in the face F. The

triple V, X Qj, x W}, can be chosen as V2 X Q2 x W9, where

V)=V, &By,
0 = {q € L*(Q) : qlx € Po(K) forall K € Ty},
W) ={zeW:zlxe[P2(K)+ Py(K)xforall K € F,}.
Here x = (x1,X2,...,x4) is the linear position vector. In general, we assume the inclusion W2 CW,.

The semi-discrete version of (2.2) is to find u, € H'(0,T:;V},), p» € H'(0,T;Q},), and wy, € L*(0,T; W)
such that u;,(0) = Y, p,(0) = p and

a(up,v) —b(v,pp) = (f,v), veVy, (3.1a)
c(9pn,q) +b(drun,q) +d(wn,q) = (8,9), g€ On, (3.1b)
e(wn,2) —d(z,pn) =0, zeW,. (3.1¢)

Here u?, eV, p?l € Qy, are some finite element approximation to ug and pg. In this section, we derive a
posteriori error estimation for the semi-discrete method (3.1). To this end, let

ey=U—Uy, €p=D—Pp, €y=W-—W, (3.2)
It follows from (2.2) that the errors satisfy

a(eu,v) _b(vaep) = <r17V>a vE V7 (3.3a)
c(dep,q) +b(den,q) +d(ew,q) = (r,q), q€Q, (3.3b)
e(ew,z) —d(z,ep) = (r3,2), z€W, (3.3¢)
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where the residuals r1(t) € V', r2(t) € Q', r3(t) € W’ are defined by

(r1,v) .= (f,v) —a(up,v) +b(v,pp),
<r27q> = (gaq) - ((9[]7]1,6]) _b(atuth) _d(Wh,q),
(r3,2) := —e(wn,z) +d(z, pn).

With the help of Lemma 2.1, we immediately obtain the following corollary.

COROLLARY 3.1 For the errors defined in (3.2) and ¢ € (0,T], we have
| Ceureprew)O)]]]* + | (eureprew) 220y < Coan{[[| (eurepnen) (O)]|

t 2 1
+( / |r2||,ds) 4 [ (bl 1m0 + Dl 4+ s+ vrs ).

For a R?-valued function v = (vi)1<i<a and a scalar-valued function v, let

curlv = (0,3 — dy3V2, Oy Vi — Ox, V3, Oy, V2 — 8X2v1)r when d = 3,

curlv = (0, v, =0k, V)T, rotv = dy,v» — dy,vi whend = 2.
Let N2 denote the lowest order Nédélec edge element space (see Nédélec (1980))
NY={ve[l2(Q)]:curlve [L2(2)]}, vxn=0onTj,
vk € [Z0(K)]P + [2(K)]? x x forall K € F}},
and V}, denote the scalar linear element space

Vi={veH'(Q):v|g € Z|(K)forallK € F;, v=0o0nIj}.

Foreach K € .7, let hg = |K\$ denote the size of K, || - || x denote the L?-norm on K, and || - || x denote
the L?-norm on dK. To estimate the norms of r3,dr; € W', we need the following theorem, which
is a combination of the H'-regular decomposition (see e.g., Hiptmair (2002); Pasciak & Zhao (2002);
Demlow & Hirani (2014)) and bounded quasi-interpolation operators which commute with the exterior
differentiation (see Schoberl (2008); Demlow & Hirani (2014)).

THEOREM 3.1 Let Q C R? with d = 3 (resp. d = 2). There exist quasi-interpolations IT, : [L*(Q)]® —
W (resp. Iy, : [L2(R2)]* — W), and Jj, : [L*(Q)]* — NV (resp. Jj, : L*(2) — V;,) such that IT, curl =
curlJj,. In addition, for any z € W, there exist @ € V (resp. @ € H' (), @|r; = 0) and ¢ € V, such that

z=curlo+¢, Il z=-curld,@+I1,¢,
and

Y (hPlle — 5@k +hi* ¢ — b l|%
KeF, 34

+h 1 —In@l5x + i 1@ — ITi@1I35) < Cregllzlliv,

where Ces depends only on K, Q, I, éshape.
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Theorem 3.1 or its variants are widely used in the a posteriori error estimation of stationary problems
based on H(div) or H(curl), see, e.g., Cascon et al. (2007); Schéberl (2008); Huang & Xu (2012);
Demlow & Hirani (2014); Chen & Wu (2017); Li (2019,b); Holst ef al. (2020).

Now we are in a position to derive a posteriori error estimator of the system given in (3.1). For
each face F, let np be a unit normal to F where ng is chosen to be outward pointing when F is a
boundary face. For each interior F € .%(.7},) shared by K1, K> € .7, and a piecewise H'-function ¥, let
(x]|F := (x|k, — X |k, )|F denote the jump across F', where nf is pointing from K to K». For any F C d2
that is a boundary face in .7, we set [x]|r := 0 if F C I3, and [x]|r := x|r if F C I5. Regarding the
mesh .7}, we use the following error indicators

517 (o f) ==Y, {hx|f+dive(uy) — aVp|lx
Ke),

+ Z hi|| [0 (un) — aphl]nFHI%"}v
FeZF(9,),FCIK

(5’%1(8,u;,,8;ph,wh,g) = Z Hg—ﬁ&tph—divatuh—divwhH%(.
Ke g,

Another error estimator is

&5 (pnwi) ==Y, {hxlIK ™'y +Vpullx + k|| curl (K~'wy) | &
KeT,

+ Y k(K wa) < ng]|E+hk[l[pal |7} when d =3,
FeZ(9,),FCIK

and when d = 2 (for a two dimensional problem)

&5 (Prwn) =Y { gl K~ Wi+ Vpulg + hi || rot(K ™ wy,) ||z
ke,

+ Y hic\[[(K ™ wn) -t ||F + k|| [palll7 }
FeF () FCIK

where ¢y is a unit tangent vector to F. The next theorem presents a posteriori error estimates of the
semi-discrete method (3.1).

THEOREM 3.2 When d =2 or 3, there exists a constant Cp; dependent only on i, a, 3, K, , I7 and
the shape regularity of .7}, such that

| eureps ) O + [l (eurep en)1720,x) < Crer{ [l (eureps en) (O

1 . 2 1
+ </0 gi%,(atuhyazph»whagﬁds) +/0 ((gl%l(ufhphvf)+(g).l7h(8luhaatphvatf)
+ &5 (O, 0 p, Wi, 8) + 5, (P, W) + &5 (9rpn, drwy,) ) ds .

Proof.  We focus on the case d = 3 since the proof when d = 2 is similar. In the proof, we use C to
denote generic constant dependent only on i, &, B, K, Cspape, and £, I7. In view of Corollary 3.1, it
remains to estimate the norm of each residual. Let I;, : V — V, denote the Clément interpolation (see
Clément (1975); Verfiirth (2013)). Thanks to (3.1a), it holds that for eachv € V,

(ri,v) = (f,v—1v) —a(up,v—1,v) +b(v—1v,py). (3.5)
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Element-wise integration by parts leads to

v = =i+ ¥ - [ ow):ev—iw)+ [ av(atv—

Ke.g,
KEZ%/K(fMiVG("”)av”h)'("lh")
+ ) /([—G(uh)+06ph1}np)-(v—I,,v).
Fez ()"

Combining the previous equation with the Cauchy—Schwarz inequality and shape-regularity of .7}, we
obtain

1 _ _ 1
(r1,v) <CEY (un, pu, £)2 (Y, W2 lv—Inwlg +hg' v —Ill5x) > (3.6)
Ke,

It then follows from (3.6), the well-known approximation result

-2 2 - 2 2
Z hg|lv =Tk +h1<l v =TIy 5x < C‘V|H1(.Q)’
Keg,

and the Korn’s inequality (cf. Kondratiev & Oleinik (1989))

Vlgo) <Clvlla, WEV, (3.7)
that ]
||r1||/<cgfl7h(uhaph7f)§~ (38)

Similarly (3.5) implies that for eachv €V,
(0rr1,v) = (O f,v—Iv) —a(Gsup,v —Iv) +b(v— v, pp).

Then the next estimate
Hat"IH/2 <C517}’(8tuh,3,ph,8,f). (3.9)

can be proved in the same way as (3.8). The norm of r; is trivially estimated by
2]l < Cllg = B pn — div dyuy, — divwp]|. (3.10)

To estimate ||73]|,, we use (3.1c) to obtain

<r37z> = _E(Wh,z—HhZ)"‘d(Z—HhZ,ph)- (311)
Due to Theorem 3.1, there exists @ € V and ¢ € V such that
z—Iz=curl(¢ —J,@)+ ¢ — I1,¢, 3.12)

where @ and ¢ satisfy (3.4). Using (3.11), (3.12), and element-wise integration by parts, we arrive at
(r3,2) = —(K~'wy,curl(@ — 7,0)) — (K~ 'wy,, ¢ — IT,$) + (div(9 — IT,9), p)

=Y {/KCUﬂ(K_IWh)'(q’th’)/K(K_IWHVPh)'(‘PHh‘P)}

Ke,

f X {10 ) ns] (9-50)+ [ [0~ 10) e .
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It then follows from the previous equation, the Cauchy—Schwarz inequality, and (3.4) that

(r3,2) < CE3 (puwn) 2]l (3.13)
Similarly, it holds that

18rr3s < CE3, (i, wn)?. (3.14)
Combining (3.8)—(3.10), (3.13), (3.14) completes the proof. Il

4. Fully discrete method

Let0=ry<h<---<ty.1<ty=Tand 1,=1,—1,_| forn= 1,2,...,N. Let )" be a conforming
simplicial triangulation of £ aligned with I and I3. Let V}, O7, W}, be finite element subspaces of V,
Q, W described in Section 3 based on grid .7}, respectively. We assume that {9 " }—o is uniformly
shape-regular w.r.t. n, that is,

k|
max max — := Cgpape < 0.
0<n<NKe g Pk

Given a sequence {x }n o» We define the backward difference as

n—1
L

and the continuous linear interpolant y* on [0,7] as
t—1th1 th,—t ,_
A1) = —"—=x"+"—x""" 1€ tur.ta].
Ty Ty

Notice that d,x° = &x" over [t,—1,t,]. Let ul), p, w) be suitable approximation to u(0), p(0), w(0),
and f" = f(t,), §" = g(t,). The fully discrete scheme for (2.2) is to find u} € V}, p}l € O}, wj € W},
withn=1,2,...,N, such that

a(up,v) —b(v,py) = (f",v), veV], (4.1a)
c(0ipp,q) +b(Sup, q) +d(wWh,q) = (8",9), g€ 0, (4.1b)
e(wy,z)—d(z,pp) =0, zeWj. 4.1¢)

Here, (4.1) is derived using the implicit Euler discretization in time. To apply Lemma 2.1, let uj(t),
pp(t), wi(t) be the continuous linear interpolants of u}., p}, w) defined above, respectively. Let

E,=u—uj, E,=p—p;, E,=w—wj. 4.2)
Rewriting (2.2) gives the following the error equation
a(E,,v) —b(v,E,) = (R1,v), veV,

C((?tEpv )+b(at qu)+d( ) < 7q>7 quy (43)
e(EWaZ)_d(Za ) <R37Z>’ zeW,

where residuals R (t) € V', Ry(t) € O, R3(t) € W' for each t € [0,T] are

(R1,v) := (f,v) —a(uy,v) +b(v,pj),
<R27 > ( ) c(6thaQ)_b((stquq)_d(wqu)v 4.4
(R3,z) := —e(wj,2) +d(z, pp)-
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Similarly to the error analysis of the semi-discrete problem, it suffices to analyze the dual norm
of the residuals, defined in (4.4). However, the mesh used in the fully discrete scheme is allowed to
change at different time levels and we introduce several useful operations in the following. Given two
triangulations .7, and .7, of Q, let .7}, VV .7}, denote the minimal common refinement, i.e., 7, V 7, is
the coarsest conforming triangulation that is a refinement of both .%,, and .7,,. Similarly, let 7, A 7},
denote the maximal common coarsening, i.e., 7, A .7, is the finest conforming triangulation that is a
coarsening of both .7, and .7,,. The operations A and V on triangulations are widely used in adaptivity
literature, see, e.g., Cascon et al. (2008); Diening et al. (2016).

To handle simultaneously (u}, p},w}) and (uZ*l , pZ*],wZ*l), we assume that for 1 <n < N and
consecutive meshes .7, and Zl”_l, the maximal common coarsening .7, A ﬂh"_l and the minimal
common refinement .7, V 9,1”’1 exist. As is well known, this assumption is true when {.7"}_ are
newest vertex bisection refinement of the same macrotriangulation, cf. Lakkis & Makridakis (2006);
Cascon et al. (2008). In addition, there is a uniform bound on the ratio of the sizes of elements in
Ke gV ,%l”_l and of elements K’ € TN Z,"_l contained in K, that is,

hg
sup sup sup e = Cratio < ©°. 4.5)
IsnSNg'ck ke gpv g ke gpng—t K

Similar assumptions are made in a posteriori error estimation of the heat equation, see, e.g., Verfiirth
(2003). Let f}, € V) and g € Q) be approximations to f" and g", respectively. Within the interval
[ta—1,1,], we split the residuals into

Ri=f—-f,+8+T1, (4.6a)
Ra=g—g1+S5+1T5, (4.6b)
R; =S85+ T4, (4.6¢)

where the spatial residuals ST € V', 85 € 0/, §5 € W’ are defined as

<Srll’v> = <f2av> —a("Z,V) —ﬁ-b(pr),
<Sg7q> = <g23q> - C(alpZaQ) 7b(5lu27Q) 7d(W’;nq)a
< g?z> = —e(wZ,z) +d(Z,pZ),

and the temporal residuals T (t) € V', T4(t) € Q', T4(t) € W' fort € [t,_1,1,] are

< ’i’vv> ::a(“z_u157v)_b(",l72_p;)v
<T2naq> = d(WZ*WZﬂI),
(T3,2) := e(wj, —wj,,2) —d(z, pj, — pj)-

By (4.4), the temporal derivatives of R; and R3 over [t,_1,,] are

(R1,v) = (Of — 8. f7 V) + (5,87, v), (4.72)
(3R, v) = (5,8",). (4.7b)

Next, we use the following fully discrete spatial error indicators which can be viewed as fully discrete
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counterparts of the error estimators introduced in Section 3. We set,

. 1 . 1

éaln = 57};1 (uZ7pZafZ)7 éaan . Oﬁzzl”\/(?h"*l ((StuZ; 5tp;1la SIfZ)v
. 2

&= (g}?h" ((StuZa 6tPZ7 WngZ)v

n._ 3 noyon n o.__ @3 n n
&3 = 52{?(Ph’wh)a &3y = gzlnv%n—l(atphﬁtwh)

Throughout the rest of the presentation, we shall write A < B provided A < CB, where C is a constant
depending only on u, a, B, K, Q, I, Cshape> Cratio- Since the spatial residuals are time-independent,
their norms can be estimated as in the proof of Theorem 3.2. We have the following result.

LEMMA 4.1 For 1 < n <N, it holds that

IS317 < &7 (4.8)
188117 < &7 (4.8b)
185017 < & (4.8¢)
185017 < &4, (4.8d)
18:85017 < &34 (4.8¢)

Proof. For v € V, let v, be the Clément interpolant on .7,". It follows from (4.1a) and element-wise
integration by parts that

(S1v) = (Stv—v)= Y /(f’;,+div0'(uh)f(prh)~(v—vh)
ke K (4.9)

- X /([G("h)*aphl]nF)-(V—vh).

Fez ()’ F

Using (4.9) and the same analysis of estimating ||r{]|, in Theorem 3.2, we obtain

1
185[l; = sup (8%, v) S (é7)2.

veV,|vlla=1

For any v € V, let ¥, be the Clément interpolant of v on .7, A Zl"_l. Using (4.5), (4.1a), and integrating
by parts over .7V 9,1”’1, and following again the same analysis of estimating ||r;||, in Theorem 3.2,
we obtain a similar estimate:

16:Si[l; = sup  (&S{,v)= sup (&S],v—W)

veV,|v[l.=1 veV,|v|la=1
- - - 1
= sup (8 fp,v—vp) —a(&uy,v—n) +b(v—y,6p) S (67)2
veV,|v|la=1
The remaining estimates can be proved in the same way. O

Let ||f — fill: = lf — filly and ||0.f — & fills = |0:f — 8 fillyr. We present the first main result
of this paper in the following theorem.
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THEOREM 4.1 For 1 <i < n, let fh be the L2-projection of f' onto Vh, gh the L’-projection of g’
onto Qh. There exists a constant Cqre) dependent only on i, «, 8, K, Q, Cshapes Cratio such that for

n=1,2,...,N, the error defined in (4.2) satisfies

| (B Eps B 1) [[|* + 1 (Euts Eps B 2,0

< Cara{ || (Bu Ep. Ew) )| +(Zr, fime + () + Eua)”

+ Z Tl tlme + Tl 5pdce + éadata}

where

~ i
L .
Bime = 1AW =W D, o= [ g ghlar
i—1
i—112 i i—1112 i i—112
G = 0ty = 2+ 12h = 2+ )= i,

Elace =E+E  +E+E+E,

space
. li . . .
Sia= [ (IF=F1IF+10F =8 £ + g =8I
i—1
Proof. Applying Lemma 2.1 to (4.3) yields

1B Ep Ew) @) |+ 1B Ep E) 20,0

2
nooef
< Cstab(|||(EqupaEw)(O)H’z+ (Z[ ||R2||’dt>
i=1"ti-1
noot
+Z/ IR [17 + [|9R [IF + IR 17 + [|R317 + (| 9 Rs 7 ) .

For any v € V, the continuity of a(-,-) and b(-,-) implies that

T3 = sup (T4v) < luj, — uflla+ 1Py~ Pille-

vevV |v|.=1

A combination of (4.6a), (4.8a) and (4.10) then shows that when 7 € [f;_, 1],

IRl < (1f = £hll+ 1oty — i la + 1123 = Plle + (61)2.
Fort € [t;_1,1], it is readily checked that
. ti—t . -
ot — willo = =l — w;”" s
Ti
. ti—t . i1
1Ph = pille = =Pk =Pl "Il
]

Integrating (4.11) over [t;_1,#;] and using (4.12), we obtain

1 1 . . . . , .
[ IR s [7 15~ gl — - g

i1 i1

(4.10)

@11

4.12)

4.13)
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On the other hand, using (4.7a) and (4.8b), we obtain for 7 € [f;_1,],

1R [l S 119 — S Fills + (&1,)3. (4.14)

Similarly, using (4.6), (4.7b), Lemma 4.1, and (4.12), one can estimate R3, d,R3, R» and obtain the
following bounds

ti . . . . .
/t IRs7de < il|lwj, —w), g + zillph — ply 12 + T3,
Jh—1
! | (4.15)
[ IaRs Far S 7.
ti—1

and . .
1 1 . . ;o . . l
| IRlr s [ g ghlar+ i diviwl, ! —wi) | +5(£5)%,
‘. P o | (4.16)
2flidt S 88 Tl div(w), "~ —w), Tid).
| IRl S [ e =gl P+ diviw ! —wh) P+
i—1 i—1
Combining (4.13)—(4.16) completes the proof. [l
REMARK 4.1 The first two terms in égata can be further estimated by
i 2 i (12
If=£ill < X hllf = Fillk,
KeZ
lof=afilis X hklof -8 filk
Kegingi™!
5. Lower bound
In this section, we show that 7,6 . and 7,64, are lower bounds of the space-time discretization error

of the fully discrete scheme (4.1). First we present a lemma comparing the spatial residual with the
spatial error indicators. Since the spatial error estimators and residuals are time-independent, the proof
follows from the well-known Verfiirth bubble function technique for a posteriori error estimates for
stationary Stokes and Poisson’s equations, see, e.g., Verfiirth (1991); Alonso (1996); Demlow & Hirani
(2014). Throughout the rest, C is a generic constant that depends only on A, u, &, B, K, , I, Csnape,
Ciaio- Hence the constant in some lower bounds may not be locking free.

LEMMA 5.1 Let 4, u, K be piecewise constants over .7,". For 1 < n < N, it holds that

&' < CIISTIT, (5.1a)
&t < Cll8 Stz (5.1b)
& S |IS5117, (5.1¢)
& S IS57 (5.1d)
& S 1168517 (5.1e)

Proof. To prove (5.1a), it suffices to find v € V, such that

& <CStv), vl <cer.
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For each K € .7, let Rg = (f}, +dive(u,) — aVp,)|k and let ¢ denote the volume bubble function
supported on K so that the maximum is 1.. For each F € .#(.%,), let Jr = —[0(u,) — appl]|pnp, and
recall that ¢ is the face bubble function supported on union of neighboring elements of F. The desired
v is then defined as
v=n ) hx R Pk + P Y hreor,
Keg, FeZ (%)

where hp is the diameter of F, and ¥;,7 are undetermined constants. Using the Cauchy—Schwarz
inequality and finite overlapping of supports of {¢x } and {¢r}, one case easily show that ||v||2 < C&T".
On the other hand, (4.9) implies

siv= Y [Reve ¥ [ieew
kez,’K Fez ()" F

(8'1,v) > C&" then follows from Young’s inequality and suitablly chosen 7, », see, e.g., Lemma 5.1 in
Verfiirth (2003) for details. Other lower bounds can be shown in an analogous fashion. O

REMARK 5.1 Based on the || - ||,-norm, it seems that the dependence on A in lower bounds (5.1a) and
(5.1b) cannot be avoided. To obtain an error estimator that is a robust lower bound, one can apply the
analysis here to the four- or five-field formulation Lee (2016); Ahmed et al. (2019) in Biot’s consolida-
tion model.

We present the second main result in the following theorem. Similar technique in the proof was used
in Verfiirth (2003) for proving the lower bound in a posteriori error estimation for the primal formulation
of the heat equation.

THEOREM 5.1 Let A, u, K be piecewise constants on Il Forn=12,...,N,
e + Taipace < CUI(Eu Ep. B2, 1)
T
b [ 5= 105 = A5 + s~ b)) e
n—1

Proof. First by (2.2) and definitions of residuals in (4.4), we have

IRl S Eulla+ [ Ep e, (5.2a)
1Rzl < [|tEpllc + [| 0k div Ey || + || div Ey |, (5.2b)
R3], < HEWHeJFHEpHm (5.2¢)
19:R (| S 10 Eulla+ (|G Ep e, (5.2d)
10iR3 |1 S N0 Evllwr + 19 Ep - (5.2e)

Consider the bilinear form
B(WaPQZa q) = E(W,Z) - d(zvp) + d(wa Q)
of the mixed formulation of the elliptic equation. Due to the inf-sup condition of B, there exist z € W
and g € Q with ||zllw = 1,[|¢|| = 1 such that
1wh —willw + | o, = pille < BWj — Wi, Pl — P32,9)
=(Ty,q)+(T5,2), 1€ [ta_i,tn).
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Using the previous estimate, the triangle and Cauchy—Schwarz inequalities, we obtain

[wh —whllw + 1P — Pille
S (R2,q) + (R3,2) — (8 — & q) — ($3,9) — (83,2) (5.3)
SR+ (IRl + 118 — gill + 1821l + (185 -
Setting v = (u) —u;)/||u}, — uj||, in the definition of T}, we have for t € [t,_1,1,],
(|, — uplla = (T, v) +b(v, pj — py)
<R1’v>_<f_f2av>_< rll7v>+b(vapz_p;) (54)
R+ WLf = fall + 18T+ [k = Phlle-
A combination of (5.3), (5.4), (4.12) and Lemma 4.1 shows that

<

In
bime S [ (If = £3F+ lg— I + 1R
n—1

(5.5)
+ R+ |Rs|[?)dr + 5, (6] + &+ &).

It remains to estimate &', &5, and &3'. Let

0) = (a+1) (”"‘)a,

n

where o > 0 is a constant that will be specified later. It follows from Lemma 5.1 and the triangle
inequality that

n
(81 + 60+ E1) = / O(0) (&0 + & + &) dr

In—1

In
SQ/I o) (IISTI7 + 15117 + 1185117 dr

n—1

. (5.6)
<cla+1) [ (IRF+1f = £+ Rl

In—1
2 2 " 2 2 2
n n n n
+llg—gnlli + ||R3||/)dt+Q/t OO I + 175117+ 1 T507)de,
n—1
where the generic constant C is independent of &. For ant v € V with ||v||, = 1, direct calculation shows
that

[ etoiwza= [ otat —ui.v)biv.pi—ppPas

In—1 n

In o 2
= {a(u}—uy "' ,v) = b(v,p — Py ")} ¢(t)<t” t) dr

1
<= 2+ 175 = I2) 5 | 571 =)

< CréinF(a),

ime
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where F (o) =1 — 2(0(;‘:21) + g—g. Hence
In n
[T owITiiRar = sup [T 6TV < CribieF (). 57)
In—1 veV |v|la=1"-1

Similarly, we have

In
[ 00T+ IT37)dr < CrimeF (00, 538)

In—1

Combining (5.6), (5.7) and (5.8), we obtain

tn
w(& +67 + &) SQ(OHI)/t (IR +1f = £3ll7 + IR=17 59
n—1 .
+lg = ghll* + |1Rs 7 ) dt + CTu e F ().

Note that F(a) — 0 as o — oo. It then follows from (5.5) and (5.9) with sufficiently large o that
tn
TnSlime < Q/t (I = £3l7 + llg = &hl1> + IR |17 + [ R217 + [R5 17) . (5.10)
n—1

Clearly, the bounds (5.9) and (5.10) imply that
T (& + &+ 67)

n . (5.11)
<C [ (I = £l + 18 = g+ IR+ | Ral}? + | Ro ) .
n—1

Finally, using Lemma 5.1 and (4.7a), (4.7b), we have

St &1, < (ISP +18:84)7) 5
< Q(Hatf— 5thH/2 + || iRy H/2 + H‘?IR3||/2)

on [t,—1,t,]. Combining (5.10), (5.11), (5.12), and (5.2) then completes the proof. O
In practice, one can use & . and &, to adjust the time step size and &, to refine and coarsen the

spatial mesh. Due to the complexity of space-time adaptivity, we shall not present a concrete adaptive
algorithm for the Biot’s system. Such algorithms can be found in e.g., Ern & Meunier (2009); Riedlbeck
et al. (2017); Ahmed et al. (2019). For the heat equation, readers are referred to e.g., Chen & Feng
(2004); Kreuzer et al. (2012); Verfiirth (2013); Gaspoz et al. (2019) for space-time adaptive algorithms
as well as convergence analysis of adaptive methods. We point out that, once a space-time error indicator
is available, a corresponding adaptive strategy follows and is largely independent of the equations.

We now also present a new error estimator for mixed methods for time dependent Darcy flow de-
scribed by (2.3). The fully discrete scheme (4.1) with u;, = v = 0 reduces to

c(&ppq) +dwy,q) = (&".9), q€ Qps (5.13a)
e(wy,z) —d(z,pp) =0, z€ W], (5.13b)

which obviously is a discretization of the heat equation or time-dependent Darcy flow (2.3). Therefore,
the a posteriori analysis for (4.1) directly applies to (5.13). Here W} x O is the Raviart-Thomas and
Brezzi-Douglas—Marini mixed element space. Given an interval I C [0, T], we define the norm

1.2 s, = [ a1+ 119:a12+ Izl + 112215 )ds.
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Going through the proof of Theorems 4.1 and 5.1, R; disappears when deriving the upper and lower
bounds for the error of (5.13). Therefore we obtain the following a posteriori error estimates.

COROLLARY 5.1 Forn=1,2,... N, the error of (5.13) satisfies
2 2 2
1Ep (@) lIc+ 1w (@)l + 1(Ep Ew) I 72(0,4,v)

L N BT
5 Ninit + ( Z Ti@@[lime + 17i(n;pace) 2+ éa(iata)
i=1
n . . 1 12
+Z (Tintlime""fin;pace""/t ”g_gth dt)’
i=1 i~1

where
Minit = [[(0) = Ph 12 + [[w(0) — wilZ,
Miime = 1Pk — iy 112+ [lw), —wy [,
ﬁépace = Hg;z _185117;1 _diVW;z”za
. . 5 S 3 . .
népace = népace + (g)yhl (piww;z) + gyhivy’ifl (51]7;1’ 5,W;,)

In addition, when K is a piecewise constant on .7, it holds that,

1 .
2 2
e+ Tullpce S NEpsE) B,y [ 18— ghlldr

i1

6. Numerical examples

To support the theoretical results and show the behavior of the fully discrete error indicators, we present
a two-dimensional numerical example. The domain 2 = (0,1) x (0, 1) is the unit square in R?, and we
consider the three field Biot’s problem (2.1) given in § 2. The rest of the setup is as follows.

e We set the Lamé parameters as A = y = 0.4.
ef=1l,a=1,andK=1€ R2%2 the 2 x 2 identity matrix.
e The analytic solution to the problem is
u(t,x) = cost s¥n(7rx1)s?n(7rx2) , w=—Vp=msint sm(nxl)cgs(ﬂ?xz) ,
sin(7x) sin(7mxz) cos(mxy) sin(7xz)
p(t,x) = sint cos(7x; ) cos(7x;)

e As boundary conditions we take homogeneous Dirichlet condition for # and homogeneous Neu-
mann condition for p. Correspondingly, I = 0 in Section 2.

e We use a sequence of uniform triangular grids .7, with mesh sizes i = 2% k=1:J,J=6o0r
J =17. In Figure 1 we have shown the coarsest mesh and a finer mesh.

e The spatial discretization for (2.1) is based on the lowest order finite space triple ng X ng X ng
on grid .7, in Section 3.
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FIG. 1. Coarsest mesh used in the experiments is with mesh size 1 = 2~! (left). On the right we have shown a finer mesh with
meshsize h =274,

e We start the simulations at # = 0 and reach the final time 7' = 1 after N = T'/7 time steps with
uniform time step size 7. We present two sets of tests: (1) a test where h = hy = 27K k=1:7
and T = 7, = 0.4k, change simultaneously; and (2) a test with fixed T =5 x 107> and varying
h=h=2"%k=1:6.

e We set pg =0, w2 =0, and choose u2 such that (4.1a) is satisfied at t = 0, i.e. the equation (4.1a)
holds for n = 0.

e In computing the a priori error, we have omitted the term containing the error term ||d; (w —w}) ”%V’
from the space-time norm ||(-,-,-)||;2(;.x) and the modified norm is still denoted as || (-, -, )[|;21.x)
by abuse of notation. This is motivated by the fact that such term only enters the computation of
the a priori error and its computation is rather involved. However, the ratio between the true error
and our indicator might be exaggerated by dropping that term.

We first present a simple test illustrating the efficiency of the indicator numerically by decreasing i
and the time step 7 simultaneously. Let (u;, pzk , ka) be the continuous temporal linear interpolant of the
solution from (4.1) with .7}, = .7}, and time step size T = T, = 0.4/. In the first test, we compute the a
priori error Ey = || (u—uj, . p— pj, ;W —wj )[|12(0 7.x) in Theorem 4.1 with 5-point Gaussian quadrature
on each time interval [t,_1,#,] and 25-point Gaussian quadrature on every element in .7, . The global
error Ey is compared with following a posteriori error indicator

N N 1/2
_ n n
& = Z Tké‘)time + Z TkéZpace
n=1 n=1

on the stationary mesh .7, . Here we do not include the data oscillation &7, in & because it is generally
small and dominated by other terms. The results are shown in Table 1. As is seen from these results
the convergence of the method is of order (/4 + t). Moreover, the ratio between the a priori error and the
value of the a posteriori error indicator approaches 2.5.

The next set of tests is for a fixed relatively small time step T and aimed at comparing various

characteristics of the indicators for different mesh sizes. For a fixed time #,, n =1 : N on a grid of size
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h=27* E &k EEy Ex_1/Ex Si-1/
k=1 0.947 2.375 2.51 N/A N/A
k=2 0.499 1.250 2.51 1.906 1.900
k=3 0.253 0.633 2.50 1.974 1.976
k=4 0.127 0.317 2.50 1.992 1.994
k=5 0.064 0.159 2.50 1.998 1.998
k=6 0.032 0.079 2.50 2.000 2.000
k=17 0.016 0.039 2.50 2.000 2.000

Table 1. A priori and a posteriori errors for simultaneously decreasing 4 and T with T = 0.4A.

i = 2% we denote the “true” error at f = 1,, as
ep = (llu(ta) — uj |2 + 19rue(ta) — Saa |3 + | p (1) — Py 12
1
2 2\
+19p(tn) = S PRI+ Iw(tn) — Whllw) 2,

which is again computed using 25-point Gaussian quadrature element-wise. We compare e} with the
following instantaneous error estimator at #,
1/2
8]? = (éi?me + gslz)ace) .
1 1
(VN 2\ 2 __ (VN 2\ 2

Note that Ex ~ (Ya_; t[e}]?)? and & = (L0, t[gf]?) 2.

In Figure 2 we show the plot of g forn = 1: N with N = 20,000 for different mesh size & as well
as the ratios between the indicators on two consecutive meshes, namely, (8,1’ / 8,2’_1). Similar behavior is

observed in Figure 3, where we have plotted the error reduction as predicted by the fully discrete error
indicators.

Error indicators value as a function of time Ratio between error indicators as a function of time

>*odo

FIG. 2. Plot of {&]} |, k=1:6 (left) and (g, /€]') for k =2: 6 (right)

In Figure 4 we plotted the ratio between the error indicators and the norm of the error as a function
of time for varying mesh sizes. As is seen from this plot, this ratio remains bounded. Notice that the
theory developed earlier shows reliability and efficiency when we integrate the indicators and the error
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Error norm as a function of time Ratio of error norms as a function of time

FIG. 3. Plot of {e!}Y |, k=1:6 (left) and (e}_, /e?) for k =2: 6 (right)

norm over the interval [0, T]. Such results (after integrations) are found in Table 6 where we illustrate the
conclusions of Theorem 4.1. As seen from this table, and expected from the theoretical results presented

(error indicator)/(norm of the true error) as a function of time

FIG. 4. Ratio between the values of the error indicators and the norm of the error as functions of time.

earlier, the ratio between the indicators shows reduction by 2. Moreover we see that the proposed fully
discrete error indicators provide two sided bounds for the error up to reasonable multiplicative constant.

7. Conclusion

In this paper, we obtain a two-sided residual a posteriori error estimator for the three-field mixed method
in Biot’s consolidation model. It is expected that our a posteriori error analysis generalizes to mixed
methods for the five-field formulation based on weakly symmetric stress tensor (see Lee (2016)), al-
though to present such a generalization might require an elaborate analysis. Combining our analysis
with a posteriori error estimation of mixed methods for elasticity using strong symmetric stress (see
e.g., Carstensen et al. (2019); Chen et al. (2018); Li (2019a)), we hope to obtain a two-sided residual
estimator for the four-field formulation.
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[ (h=2% | k=1 k=2 k=3 k=4 k=5 k=6
&1/ N/A 1.910 1.976 1.994 1.997 2.003
Ei_1/Ex N/A 1.910 1.980 1.995 1.999 2.000
&/ Ex 2.63 2.63 2.63 2.62 2.62 2.62

Table 2. Robustness and efficiency of the error indicators for T = 5 x 107> and varying mesh sizes.
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