
IMA Journal of Numerical Analysis (2020) Page 1 of 25
doi:10.1093/imanum/drn000

Residual-based a posteriori error estimates of mixed methods for a
three-field Biot’s consolidation model
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We present residual-based a posteriori error estimates of mixed finite element methods for the three-field
formulation of Biot’s consolidation model. The error estimator is an upper and lower bound of the space
time discretization error up to data oscillation. As a by-product, we also obtain new a posteriori error
estimate of mixed finite element methods for the heat equation.
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1. Introduction

The mathematical modeling of poro-elastic materials is aimed at describing the interactions between
the deformation and fluid flow in a fluid-saturated porous medium. In this paper we provide a poste-
riori error estimators for the fully discrete, time dependent Biot’s consolidation model for poroelastic
media. A pioneering model of poroelasticity in one-dimensional setting was given in Terzaghi (1943).
Nowadays, the popular formulations are in three-dimensions and they follow the model by Maurice
Biot in several works, e.g., Biot (1941, 1955). The system of partial differential equations describing
the Biot’s consolidation model has a great deal of applications in geomechanics, petroleum engineering,
and biomechanics.

The two-field formulation of Biot’s consolidation model is classical and has been investigated in
e.g., Ženı́šek (1984); Showalter (2000); Murad et al. (1996); Ern & Meunier (2009). Three-field formu-
lations, which include an unknown Darcy velocity, several conforming and non-conforming discretiza-
tions involving Stokes-stable finite-element spaces have been recently proposed as a viable approach
for discretization of the Biot’s model. Various three field formulations were considered in Phillips &
Wheeler (2007a,b) with and a priori error estimates are presented in such a work. Recenly, three-
field formulation using Stokes stable elements, based on displacement, pressure, and total pressure was
proposed and analysed in Oyarzúa & Ruiz-Baier (2016). A nonconforming discretization, which also
provides element-wise mass conservation, is found in Hu et al. (2017). Parameter robust analysis using
three field discontinuous Galerkin formulation is given in Hong & Kraus (2018), where a general theory
for the a priori error analysis was introduced. Other stable discretizations and solvers are presented in
e.g., Lee (2016); Lee et al. (2017); Rodrigo et al. (2018). Readers are referred to Lee (2016) for pa-
rameter robust error analysis for four- and five-field formulations. Finite volume and finite difference
discretizations have also been used in this field and we point to Gaspar et al. (2003, 2006); Nordbotten
(2016) for more results and references on such methods for Biot’s system. We note that our further
considerations are restricted to the finite element method and we will not discuss finite difference and
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finite volumen methods here.
There are a few works on a posteriori error control for the fully discretized time-dependent problem,

see, e.g., Eriksson & Johnson (1991, 1995); Picasso (1998); Verfürth (2003); Makridakis & Nochetto
(2003); Lakkis & Makridakis (2006); Ern & Vohralı́k (2015); Ern et al. (2019) for a posteriori error
estimates of the primal formulation of the heat equation. A posteriori error estimation of the mixed for-
mulation of the heat equation can be found in e.g., Cascón et al. (2006); Ern & Vohralı́k (2010); Larson
& Målqvist (2011); Memon et al. (2012); Kim et al. (2018). For the classical two-field formulation in
Biot’s consolidation model, residual, equilibrated, and functional error estimators are derived in Ern &
Meunier (2009); Riedlbeck et al. (2017); Kumar et al. (2018). In addition, equilibrated error estimators
are developed in Ahmed et al. (2019, 2020) for the four- and five-field formulations and the fixed stress
splitting scheme. Comparing to the equilibrated error indicators, residual error estimators are simpler
to implement and do not require solving auxiliary problems on local patches. Several space-time adap-
tive algorithms based on residual error estimators are proven to be convergent, see, e.g., Chen & Feng
(2004); Kreuzer et al. (2012); Gaspoz et al. (2019).

A main result in our paper is the construction of the reliable residual-based a posteriori error esti-
mator for the three field Biot’s system. To the best of our knowledge, there are no such error estimators
for the mixed formulations of the Biot’s model using more than two fields. Formulations using more
than two fields have conservation properties which makes them practically interesting, however, their
analysis is more challenging. In this paper, we derive residual a posteriori error estimates for the three-
field formulation and prove that the estimator is reliable, that is, it provides an upper bound of the
space-time error in the natural variational norm. Since the three-field formulation directly approximates
the flux www 2 H(div,W), special attention must be paid to energy estimates and the residual in the dual
space H(div,W)0, which is a major obstacle in the construction of such error estimators. The analysis
presented here with the help of regular decomposition and commuting quasi-interpolations, however,
successfully tackles such problems, see Theorems 3.1 and 3.2 for details.

Another main result of this paper is the lower bound in Theorem 5.1. As far as we know, existing
residual, equilibrated, and functional error estimators in Biot’s consolidation model are not shown to
be lower bounds of the space-time discretization error. This is partly due to the complexity of the
Biot’s model equations. Motivated by Verfürth ’s technique introduced in Verfürth (2003), we split the
residual and estimator into space and time parts. The temporal estimator can be controlled by the spatial
estimator and discretization error, while the spatial estimator is in turn controlled by the finite element
error and a small portion of the temporal estimator, where the “smallness” is due to a weight function in
time. The details are given later in Section 5.

Since the three-field formulation of Biot’s consolidation model (2.2) contains the mixed formulation
of the heat equation (2.3), we review existing a posteriori error estimates of mixed methods for the heat
equation. Using a duality argument, Cascón et al. (2006) first obtained L2(0,T ;H(div,W)0) a posteriori
estimates of the flux variable and L•(0,T ;L2(W)) estimates of the potential in mixed methods for the
heat equation. Using the idea of elliptic reconstruction proposed by Makridakis & Nochetto (2003), the
works Larson &Målqvist (2011); Memon et al. (2012) presented L2(0,T ;L2(W))- and L•(0,T ;L2(W))-
type a posteriori error estimates of the flux variable in mixed methods for the heat equation. However,
there is no proof that the estimators proposed in Cascón et al. (2006); Larson &Målqvist (2011); Memon
et al. (2012) provide lower bounds of the discretization error. On the other hand, Ern & Vohralı́k (2010)
presented an equilibrated estimator with a lower bound for the error in post-processed potential based
on the L2(0,T ;H1(W))\H1(0,T ;H�1(W))-norm. Their estimator does not control the error in the flux
variable. Comparing to the aforementioned error estimators, a posteriori analysis in this paper indeed
yields a new estimator for the mixed discretization of the heat equation that is both an upper and lower
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bound of the space time error in the natural norm, see Section 5 for details.
The rest of this paper is organized as follows. In Section 2, we present preliminaries and derive

energy estimate for the three field formulation of Biot’s consolidation model. Section 3 is devoted to a
posteriori error estimates of a semi-discrete scheme (3.1). In Section 4, we develop a posteriori error
estimator of the fully discrete scheme (4.1) and prove its reliability. In Section 5, we show that the error
estimators are lower bounds of the space-time error and present a posteriori estimates of mixed methods
for the heat equation. In Section 6, we present numerical experiments validating our theoretical results.
Section 7 is for concluding remarks.

2. Preliminaries and Energy estimates

Given a Rd-valued function uuu, the symmetric gradient eee and stress tensor sss are

eee(uuu) := 1
2
(—uuu+(—uuu)T ), sss(uuu) := 2µeee(uuu)+l (divuuu)III,

where µ > 0,l > 0 are Lamé coefficients, III is the d⇥d identity matrix. Let W be a Lipschiz domain in
Rd and T > 0 be the final time. The three-field formulation of the Biot’s consolidation model reads

�divsss(uuu)+a—p= fff in W ⇥ (0,T ], (2.1a)
∂t(b p+a divuuu)+divwww= g in W ⇥ (0,T ], (2.1b)

KKK�1www+—p= 000 in W ⇥ (0,T ], (2.1c)

subject to the initial condition uuu(0) = uuu0, p(0) = p0 in W . For the simplicity of presentation, we consider
homogeneous boundary conditions

uuu= 000 on G1⇥ (0,T ], sss(uuu)nnn= 0 on G2⇥ (0,T ],
p= 0 on G2⇥ (0,T ], (KKK—p) ·nnn= 0 on G1⇥ (0,T ],

where ∂W = G1[G2, G1\G2 = /0, and nnn denotes the outward unit normal to ∂W . Note that the Neumann
boundary condition for p on G1 imposes an essential boundary condition for www on G1. In addition, we
assume a , b are constants and KKK = KKK(xxx) is a time-independent and uniformly elliptic matrix-valued
function, i.e.,

C1|xxx |2 6 xxx TKKK(xxx)xxx 6C2|xxx |2 for all xxx 2 Rd and xxx 2 W ,

whereC1,C2 are positive constants. We introduce function spaces where we seek a weak solution to the
system given in (2.1):

VVV = {vvv 2 [H1(W)]d : vvv= 0 on G1}, Q= L2(W),

WWW = {www 2 [L2(W)]d : divwww 2 L2(W), www ·nnn= 0 on G1}.

Let (·, ·) denote the L2(W) inner product for scalar-, vector-, or matrix-valued functions. Next, we
introduce several bilinear forms:

a(uuu,vvv) := (sss(uuu),eee(vvv)), b(vvv,q) := (a divvvv, p),

c(p,q) := (b p,q), d(zzz,q) := (divzzz,q), e(www,zzz) := (KKK�1www,zzz).
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The norms associated with the bilinear forms given above are

kvvvk2a := a(vvv,vvv), kqk2c := c(q,q),

kzzzk2e := e(zzz,zzz), kzzzk2WWW := kzzzk2e +kdivzzzk,

where k ·k denotes the L2(W) norm. For the spaces defined earlier we have the following correspondence
with the norms: VVV is equipped with the k ·ka-norm, Q is equipped with k ·kc-norm, andWWW is equipped
with the WWW -norm. Because we are dealing with a time-dependent problem, we need the spaces of
Hilbert-valued functions as follows: Given a Hilbert space H, we define

L•(0,T ;H) = {v : v(t) 2 H for t 2 T, esssup06t6Tkv(t)kH < •},

L2(0,T ;H) = {v : v(t) 2 H for t 2 T,
Z T

0
kv(t)k2Hdt < •},

H1(0,T ;H) = {v 2 L2(0,T ;H) : ∂t v 2 L2(0,T ;H)},

see, e.g., Evans (2010) for more details. The variational formulation of (2.1) then is to find uuu 2
H1(0,T ;VVV ), p 2 H1(0,T ;Q), and www 2 L2(0,T ;WWW ) such that uuu(0) = u0, p(0) = p0 and

a(uuu,vvv)�b(vvv, p) = ( fff ,vvv), (2.2a)
c(∂t p,q)+b(∂tuuu,q)+d(www,q) = (g,q), (2.2b)

e(www,zzz)�d(zzz, p) = 0 (2.2c)

for all vvv 2 VVV ,q 2 Q, and zzz 2WWW a.e. t 2 (0,T ]. It can be observed that (2.2) with uuu = vvv = 000 reduces to
the mixed formulation of the heat equation or time-dependent Darcy flow:

c(∂t p,q)+d(www,q) = (g,q), q 2 Q, (2.3a)
e(www,zzz)�d(zzz, p) = 0, zzz 2WWW . (2.3b)

In the rest of this section, we establish an energy estimate of (2.2) which is the main tool for deriving
a posteriori error estimates. The well-posedness of two-field formulation can be found in e.g., Ženı́šek
(1984); Showalter (2000). For the three-field formulation we have the following result.

THEOREM 2.1 Let u0 2VVV , p0 2 Q, fff 2 H1(0,T ;VVV 0), and g 2 L2(0,T ;Q). Then the variational formu-
lation (2.2) admits a unique weak solution

(uuu, p,www) 2 H1(0,T ;VVV )⇥H1(0,T ;Q)⇥L2(0,T ;WWW ).

We skip the proof of Theorem 2.1 as it directly follows from the energy estimates in Lemma 2.1 and
a standard argument using a Galerkin method in space, in the same fashion as for the linear parabolic
equation (see, e.g., Evans (2010)). For the purpose of a posteriori error estimation, we consider a more
general variational problem: Find ũuu 2 H1(0,T ;VVV ), p̃ 2 H1(0,T ;Q), w̃ww 2 L2(0,T ;WWW ), such that

a(ũuu,vvv)�b(vvv, p̃) = hFFF1,vvvi, vvv 2VVV , (2.4a)
c(∂t p̃,q)+b(∂t ũuu,q)+d(w̃ww,q) = hF2,qi, q 2 Q, (2.4b)

e(w̃ww,zzz)�d(zzz, p̃) = hFFF3,zzzi, zzz 2WWW , (2.4c)
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where FFF1 2H1(0,T ;VVV 0), F2 2 L2(0,T ;Q0), FFF3 2H1(0,T ;WWW 0) are time-dependent bounded linear func-
tionals living in dual spaces. At each time t 2 [0,T ], the dual norms are given by

kFFF1k0 = kFFF1kVVV 0 := sup
vvv2VVV ,kvvvka=1

hFFF1,vvvi,

kF2k0 = kF2kQ0 := sup
q2Q,kqkc=1

hFFF2,qi,

kFFF3k0 = kFFF3kWWW 0 := sup
zzz2WWW ,kzzzkWWW=1

hFFF3,zzzi.

Norms of ∂tFFF1 2 VVV 0 and ∂tFFF3 2WWW 0 are defined in a similar fashion. Given t 2 [0,T ] and an interval
I ✓ [0,T ], we make use of the norms

|||(ũuu, p̃, w̃ww)(t)|||2 := kũuu(t)k2a+k p̃(t)k2c +kw̃ww(t)k2e ,

k(ũuu, p̃, w̃ww)k2L2(I;X) :=
Z

I

�
kũuuk2a+k∂t ũuuk2a+k p̃k2c +k∂t p̃k2c +kw̃wwk2WWW +k∂t w̃wwk2WWW 0

�
ds.

The following energy estimate is crucial to a posteriori error estimation of numerical methods for (2.2).

LEMMA 2.1 There exists a constantCstab dependent only on µ , a, b , KKK, W such that for all t 2 (0,T ],

|||(ũuu, p̃, w̃ww)(t)|||2+k(ũuu, p̃, w̃ww)k2L2(0,t;X) 6Cstab
�
|||(ũuu, p̃, w̃ww)(0)|||2

+

✓Z t

0
kF2k0ds

◆2
+
Z t

0

�
kFFF1k20 +k∂tFFF1k20 +kF2k20 +kFFF3k20 +k∂tFFF3k20

�
ds
 
.

Proof. Setting vvv= ∂t ũuu, zzz= w̃ww, q= p̃ in (2.4) yields

1
2
d
dt
kũuuk2a+

1
2
d
dt
kp̃k2c +kw̃wwk2e = hFFF1,∂t ũuui+ hF2, p̃i+ hFFF3, w̃wwi. (2.5)

On the other hand, differentiating (2.4a) and (2.4c) with respect to time t gives

a(∂t ũuu,vvv)�b(vvv,∂t p̃) = h∂tFFF1,vvvi,
e(∂t w̃ww,zzz)�d(zzz,∂t p̃) = h∂tFFF3,zzzi.

Taking as test functions vvv = ∂t ũuu and zzz = w̃ww in the equations above and using (2.4b) with q = ∂t p̃ then
leads to

k∂t ũuuk2a+k∂t p̃k2c +
1
2
d
dt
kw̃wwk2e = h∂tFFF1,∂t ũuui+ hF2,∂t p̃i+ h∂tFFF3, w̃wwi. (2.6)

Using (2.5), (2.6), the Cauchy–Schwarz and Young’s inequalities, we obtain

1
2
d
dt
kũuuk2a+

1
2
d
dt
kp̃k2c +(1�d )kw̃wwk2e +

1
2
k∂t ũuuk2a

+
1
2
k∂t p̃k2c +

1
2
d
dt
kw̃wwk2e 6 G+kF2k0k p̃kc+dkdiv w̃wwk2,

where d > 0 and

G= kFFF1k20 +k∂tFFF1k20 +
1
2
kF2k20 +

d�1

2
kFFF3k20 +

d�1

2
k∂tFFF3k20 .
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Integrating the previous inequality yields

1
2
|||(ũuu, p̃, w̃ww)(t)|||2+

Z t

0

�1
2
k∂t ũuuk2a+

1
2
k∂t p̃k2c +(1�d )kw̃wwk2e

�
ds

6 1
2
|||(ũuu, p̃, w̃ww)(0)|||2+

Z t

0

�
G+kF2k0k p̃kc+dkdiv w̃wwk2

�
ds.

(2.7)

Recall that kp̃kL•(0,t;Q) :=max06s6t kp̃(s)kc. In particular, (2.7) implies that

1
2
kp̃(s)k2c 6

1
2
|||(ũuu, p̃, w̃ww)(0)|||2

+
Z t

0

�
G+dkdiv w̃wwk2

�
ds+k p̃kL•(0,t;Q)

Z t

0
kF2k0ds

for all 06 s6 t. Hence a combination of the previous estimate with

kp̃kL•(0,t;Q)

Z t

0
kF2k0ds6

1
4
k p̃k2L•(0,t;Q) +

✓Z t

0
kF2k0ds

◆2

shows that
1
4
kp̃k2L•(0,t;Q) 6

1
2
|||(ũuu, p̃, w̃ww)(0)|||2

+
Z t

0

�
G+dkdiv w̃wwk2

�
ds+

✓Z t

0
kF2k0ds

◆2
.

(2.8)

Using (2.7) and (2.8) and a Young’s inequality, we obtain

1
2
|||(ũuu, p̃, w̃ww)(t)|||2+

Z t

0

�1
2
k∂t ũuuk2a+

1
2
k∂t p̃k2c +(1�d )kw̃wwk2e

�
ds

6 |||(ũuu, p̃, w̃ww)(0)|||2+2
Z t

0

�
G+dkdiv w̃wwk2

�
ds+2

✓Z t

0
kF2k0ds

◆2
,

(2.9)

LetC be a generic constant dependent only on a, b , µ , W . It follows from (2.4b) with q= div w̃ww that

kdiv w̃wwk2 6C
�
kF2k20 +k∂t p̃k2c +k∂t ũuuk2a

�
. (2.10)

Taking the derivative with respect to time on both sides of (2.4c) shows that

k∂t w̃wwkWWW 0 6C
�
k∂tFFF3k0+k∂t p̃kc

�
. (2.11)

The inf-sup condition for d(·, ·) together with (2.4c) and (2.4a) then imply the following inequality:

kp̃kc+kũuuka 6C
�
kFFF1k0+kFFF3k0+kw̃wwke

�
. (2.12)

Choosing a sufficiently small d > 0 and combining (2.9) and (2.10)–(2.12) completes the proof of the
lemma. ⇤
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3. Error estimator for the semi-discrete problem

Let Th be a conforming simplicial triangulation of W that is aligned with G1 and G2. The mesh Th is
shape-regular in the sense that

max
K2Th

rK
rK

:= eCshape < •,

where rK , rK are radii of circumscribed and inscribed spheres of K. Let VVVh ⇢ VVV , WWWh ⇢WWW , Qh ⇢ Q
be suitable finite element spaces based on Th. In particular, we choose VVVh⇥Qh to be a stable mixed
element pair for the Stokes equation, and WWWh ⇥Qh to be a stable mixed element pair for the mixed
formulation of Poisson’s equation. It has been shown in e.g., Hong & Kraus (2018); Rodrigo et al.
(2018) that this choice leads to stable space discretization. For example, VVVh⇥Qh can be chosen to be
the (P1+ face bubble functions)⇥P0 element (see Girault & Raviart (1986)) and WWWh⇥Qh can be the
lowest order Raviart–Thomas (see Raviart & Thomas (1977)) or Brezzi–Douglas–Marini element (see
Brezzi et al. (1985)). Let F (Th) denote the collection of faces in Th and nnnF be a unit normal to F for
any face F 2F (Th). LetPk(K) denote the space of polynomials of degree no greater than k on K, and

VVVh,l = {vvv 2VVV : vvv|K 2 [P1(K)]d for all K 2Th},
BBBh = {vvv 2VVV : vvv|K 2 span{fFnnnF}F⇢∂K,F2F (Th) for all K 2Th}.

Here, fF is the face bubble function supported on union of elements having F 2F (Th) as a face, i.e.,
fF = ’z j2F l j where l j is the barycentric coordinate corresponding to the vertex z j in the face F . The
triple VVVh⇥Qh⇥WWWh can be chosen as VVV 0

h⇥Q0
h⇥WWW 0

h, where

VVV 0
h =VVVh,l �BBBh,

Q0
h = {q 2 L2(W) : q|K 2P0(K) for all K 2Th},

WWW 0
h = {zzz 2WWW : zzz|K 2 [P0(K)]d +P0(K)xxx for all K 2Th}.

Here xxx= (x1,x2, . . . ,xd)T is the linear position vector. In general, we assume the inclusionWWW 0
h ✓WWWh.

The semi-discrete version of (2.2) is to find uuuh 2H1(0,T ;VVVh), ph 2H1(0,T ;Qh), andwwwh 2 L2(0,T ;WWWh)
such that uuuh(0) = u0h, ph(0) = p0h and

a(uuuh,vvv)�b(vvv, ph) = ( fff ,vvv), vvv 2VVVh, (3.1a)
c(∂t ph,q)+b(∂tuuuh,q)+d(wwwh,q) = (g,q), q 2 Qh, (3.1b)

e(wwwh,zzz)�d(zzz, ph) = 0, zzz 2WWWh. (3.1c)

Here u0h 2VVVh, p0h 2 Qh are some finite element approximation to u0 and p0. In this section, we derive a
posteriori error estimation for the semi-discrete method (3.1). To this end, let

eu = uuu�uuuh, ep = p� ph, ew = www�wwwh. (3.2)

It follows from (2.2) that the errors satisfy

a(eu,vvv)�b(vvv,ep) = hrrr1,vvvi, vvv 2VVV , (3.3a)
c(∂t ep,q)+b(∂t eu,q)+d(ew,q) = hr2,qi, q 2 Q, (3.3b)

e(ew,zzz)�d(zzz,ep) = hrrr3,zzzi, zzz 2WWW , (3.3c)
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where the residuals rrr1(t) 2VVV 0, r2(t) 2 Q0, rrr3(t) 2WWW 0 are defined by

hrrr1,vvvi := ( fff ,vvv)�a(uuuh,vvv)+b(vvv, ph),
hr2,qi := (g,q)� c(∂t ph,q)�b(∂tuuuh,q)�d(wwwh,q),
hrrr3,zzzi :=�e(wwwh,zzz)+d(zzz, ph).

With the help of Lemma 2.1, we immediately obtain the following corollary.

COROLLARY 3.1 For the errors defined in (3.2) and t 2 (0,T ], we have

������(eu,ep,ew)(t)
������2+k(eu,ep,ew)k2L2(0,t;X) 6Cstab

�������(eu,ep,ew)(0)
������2

+

✓Z t

0
kr2k0ds

◆2
+
Z t

0

�
krrr1k20 +k∂t rrr1k20 +kr2k20 +krrr3k20 +k∂t rrr3k20

�
ds
 
.

For a Rd-valued function vvv= (vi)16i6d and a scalar-valued function v, let

curlvvv= (∂x2v3�∂x3v2,∂x3v1�∂x1v3,∂x1v2�∂x2v1)
T when d = 3,

curlv= (∂x2v,�∂x1v)
T , rotvvv= ∂x1v2�∂x2v1 when d = 2.

Let NNN0
h denote the lowest order Nédélec edge element space (see Nédélec (1980))

NNN0
h = {vvv 2 [L2(W)]3 : curlvvv 2 [L2(W)]3, vvv⇥nnn= 0 on G1,
vvv|K 2 [P0(K)]3+[P0(K)]3⇥ xxx for all K 2Th},

and Vh denote the scalar linear element space

Vh = {v 2 H1(W) : v|K 2P1(K) for all K 2Th, v= 0 on G1}.

For each K 2Th, let hK = |K| 1d denote the size of K, k ·kK denote the L2-norm on K, and k ·k∂K denote
the L2-norm on ∂K. To estimate the norms of rrr3,∂t rrr3 2WWW 0, we need the following theorem, which
is a combination of the H1-regular decomposition (see e.g., Hiptmair (2002); Pasciak & Zhao (2002);
Demlow & Hirani (2014)) and bounded quasi-interpolation operators which commute with the exterior
differentiation (see Schöberl (2008); Demlow & Hirani (2014)).

THEOREM 3.1 Let W ⇢ Rd with d = 3 (resp. d = 2). There exist quasi-interpolations Ph : [L2(W)]3 !
WWW 0

h (resp. Ph : [L2(W)]2 !WWW 0
h), and Jh : [L2(W)]3 ! NNN0

h (resp. Jh : L2(W) ! Vh) such that Ph curl =
curlJh. In addition, for any zzz 2WWW , there exist jjj 2VVV (resp. jjj 2 H1(W), jjj|G1 = 0) and fff 2VVV , such that

zzz= curljjj +fff , Phzzz= curlJhjjj +Phfff ,

and
Â

K2Th

�
h�2
K kjjj � Jhjjjk2K +h�2

K kfff �Phfffk2K

+h�1
K kjjj � Jhjjjk2∂K +h�1

K kfff �Phfffk2∂K
�
6Cregkzzzk2WWW ,

(3.4)

whereCreg depends only on KKK, W , G1, eCshape.
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Theorem 3.1 or its variants are widely used in the a posteriori error estimation of stationary problems
based on H(div) or H(curl), see, e.g., Cascon et al. (2007); Schöberl (2008); Huang & Xu (2012);
Demlow & Hirani (2014); Chen & Wu (2017); Li (2019,b); Holst et al. (2020).

Now we are in a position to derive a posteriori error estimator of the system given in (3.1). For
each face F , let nnnF be a unit normal to F where nnnF is chosen to be outward pointing when F is a
boundary face. For each interior F 2F (Th) shared by K1,K2 2 Th and a piecewise H1-function c , let
[c]|F := (c|K1 �c|K2)|F denote the jump across F , where nnnF is pointing from K1 to K2. For any F ⇢ ∂W
that is a boundary face in Th, we set [c]|F := 0 if F ⇢ G1, and [c]|F := c|F if F ⇢ G2. Regarding the
mesh Th, we use the following error indicators

E 1
Th
(uuuh, ph, fff ) := Â

K2Th

�
h2Kk fff +divsss(uuuh)�a—phk2K

+ Â
F2F (Th),F⇢∂K

hKk[sss(uuuh)�a phIII]nnnFk2F
 
,

E 2
Th
(∂tuuuh,∂t ph,wwwh,g) := Â

K2Th

kg�b∂t ph�div∂tuuuh�divwwwhk2K .

Another error estimator is

E 3
Th
(ph,wwwh) := Â

K2Th

�
h2KkKKK�1wwwh+—phk2K +h2Kkcurl(KKK�1wwwh)k2K

+ Â
F2F (Th),F⇢∂K

hKk[(KKK�1wwwh)⇥nnnF ]k2F +hKk[ph]k2F
 
when d = 3,

and when d = 2 (for a two dimensional problem)

E 3
Th
(ph,wwwh) := Â

K2Th

�
h2KkKKK�1wwwh+—phk2K +h2Kk rot(KKK�1wwwh)k2K

+ Â
F2F (Th),F⇢∂K

hKk[(KKK�1wwwh) · tttF ]k2F +hKk[ph]k2F
 
,

where tttF is a unit tangent vector to F . The next theorem presents a posteriori error estimates of the
semi-discrete method (3.1).

THEOREM 3.2 When d = 2 or 3, there exists a constant Crel dependent only on µ , a , b , KKK, W , G1 and
the shape regularity of Th, such that

������(eu,ep,ew)(t)
������2+k(eu,ep,ew)k2L2(0,t;X) 6Crel

�������(eu,ep,ew)(0)
������2

+

✓Z t

0
E 2
Th
(∂tuuuh,∂t ph,wwwh,g)

1
2 ds
◆2

+
Z t

0

�
E 1
Th
(uuuh, ph, fff )+E 1

Th
(∂tuuuh,∂t ph,∂t fff )

+E 2
Th
(∂tuuuh,∂t ph,wwwh,g)+E 3

Th
(ph,wwwh)+E 3

Th
(∂t ph,∂twwwh)

�
ds
 
.

Proof. We focus on the case d = 3 since the proof when d = 2 is similar. In the proof, we use C to
denote generic constant dependent only on µ, a, b , KKK, eCshape, and W , G1. In view of Corollary 3.1, it
remains to estimate the norm of each residual. Let Ih : VVV ! VVVh denote the Clément interpolation (see
Clément (1975); Verfürth (2013)). Thanks to (3.1a), it holds that for each vvv 2VVV ,

hrrr1,vvvi= ( fff ,vvv� Ihvvv)�a(uuuh,vvv� Ihvvv)+b(vvv� Ihvvv, ph). (3.5)
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Element-wise integration by parts leads to

hrrr1,vvvi= ( fff ,vvv� Ihvvv)+ Â
K2Th

⇢
�
Z

K
sss(uuuh) : eee(vvv� Ihvvv)+

Z

K
div(a(vvv� Ihvvv))ph

�

= Â
K2Th

Z

K
( fff +divsss(uuuh)�a—ph) · (vvv� Ihvvv)

+ Â
F2F (Th)

Z

F

�
[�sss(uuuh)+a phIII]nnnF

�
· (vvv� Ihvvv).

Combining the previous equation with the Cauchy–Schwarz inequality and shape-regularity of Th, we
obtain

hrrr1,vvvi6CE 1
Th
(uuuh, ph, fff )

1
2
�

Â
K2Th

h�2
K kvvv� Ihvvvk2K +h�1

K kvvv� Ihvvvk2∂K
� 1
2 . (3.6)

It then follows from (3.6), the well-known approximation result

Â
K2Th

h�2
K kvvv� Ihvvvk2K +h�1

K kvvv� Ihvvvk2∂K 6C|vvv|2H1(W),

and the Korn’s inequality (cf. Kondratiev & Oleinik (1989))

|vvv|H1(W) 6Ckvvvka, 8vvv 2VVV , (3.7)

that
krrr1k0 6CE 1

Th
(uuuh, ph, fff )

1
2 . (3.8)

Similarly (3.5) implies that for each vvv 2VVV ,

h∂t rrr1,vvvi= (∂t fff ,vvv� Ihvvv)�a(∂tuuuh,vvv� Ihvvv)+b(vvv� Ihvvv,∂t ph).

Then the next estimate
k∂t rrr1k20 6CE 1

Th
(∂tuuuh,∂t ph,∂t fff ). (3.9)

can be proved in the same way as (3.8). The norm of rrr2 is trivially estimated by

kr2k0 6Ckg�b∂t ph�div∂tuuuh�divwwwhk. (3.10)

To estimate krrr3k0, we use (3.1c) to obtain

hrrr3,zzzi=�e(wwwh,zzz�Phzzz)+d(zzz�Phzzz, ph). (3.11)

Due to Theorem 3.1, there exists jjj 2VVV and fff 2VVV such that

zzz�Phzzz= curl(jjj � Jhjjj)+fff �Phfff , (3.12)

where jjj and fff satisfy (3.4). Using (3.11), (3.12), and element-wise integration by parts, we arrive at

hrrr3,zzzi=�(KKK�1wwwh,curl(jjj � Jhjjj))� (KKK�1wwwh,fff �Phfff)+(div(fff �Phfff), ph)

= Â
K2Th

⇢
�
Z

K
curl(KKK�1wwwh) · (jjj � Jhjjj)�

Z

K
(KKK�1wwwh+—ph) · (fff �Phfff)

�

+ Â
F2F (Th)

⇢Z

F
�[(KKK�1wwwh)⇥nnnF ] · (jjj � Jhjjj)+

Z

F
[ph](fff �Phfff) ·nnnF

�
.
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It then follows from the previous equation, the Cauchy–Schwarz inequality, and (3.4) that

hrrr3,zzzi6CE 3
Th
(ph,wwwh)

1
2 kzzzkWWW . (3.13)

Similarly, it holds that
k∂t rrr3k0 6CE 3

Th
(∂t ph,∂twwwh)

1
2 . (3.14)

Combining (3.8)–(3.10), (3.13), (3.14) completes the proof. ⇤

4. Fully discrete method

Let 0 = t0 < t1 < · · · < tN�1 < tN = T and tn = tn� tn�1 for n = 1,2, . . . ,N. Let T n
h be a conforming

simplicial triangulation of W aligned with G1 and G2. Let VVVn
h, Q

n
h,WWW

n
h be finite element subspaces of VVV ,

Q, WWW described in Section 3 based on grid T n
h , respectively. We assume that {T n

h }Nn=0 is uniformly
shape-regular w.r.t. n, that is,

max
06n6N

max
K2T n

h

rK
rK

:=Cshape < •.

Given a sequence {cn}Nn=0, we define the backward difference as

dtcn =
cn�cn�1

tn
,

and the continuous linear interpolant ct on [0,T ] as

ct(t) =
t� tn�1

tn
cn+

tn� t
tn

cn�1, t 2 [tn�1, tn].

Notice that ∂tct = dtcn over [tn�1, tn]. Let uuu0h, p
0
h, www

0
h be suitable approximation to uuu(0), p(0), www(0),

and fff n = fff (tn), gn = g(tn). The fully discrete scheme for (2.2) is to find uuunh 2 VVVn
h, p

n
h 2 Qn

h, www
n
h 2WWWn

h
with n= 1,2, . . . ,N, such that

a(uuunh,v)�b(vvv, pnh) = ( fff n,vvv), vvv 2VVVn
h, (4.1a)

c(dt pnh,q)+b(dtuuunh,q)+d(wwwn
h,q) = (gn,q), q 2 Qn

h, (4.1b)
e(wwwn

h,zzz)�d(zzz, pnh) = 0, zzz 2WWWn
h. (4.1c)

Here, (4.1) is derived using the implicit Euler discretization in time. To apply Lemma 2.1, let uuut
h(t),

pt
h(t), www

t
h(t) be the continuous linear interpolants of uuu

n
h, p

n
h, www

n
h defined above, respectively. Let

Eu = uuu�uuut
h, Ep = p� pt

h, Ew = www�wwwt
h. (4.2)

Rewriting (2.2) gives the following the error equation

a(Eu,vvv)�b(vvv,Ep) = hRRR1,vvvi, vvv 2VVV ,
c(∂tEp,q)+b(∂tEu,q)+d(Ew,q) = hR2,qi, q 2 Q,

e(Ew,zzz)�d(zzz,Ep) = hRRR3,zzzi, zzz 2WWW ,

(4.3)

where residuals RRR1(t) 2VVV 0, RRR2(t) 2 Q0, RRR3(t) 2WWW 0 for each t 2 [0,T ] are

hRRR1,vvvi := ( fff ,vvv)�a(uuut
h,vvv)+b(vvv, pt

h),

hR2,qi := (g,q)� c(dt pnh,q)�b(dtuuunh,q)�d(wwwt
h,q),

hRRR3,zzzi :=�e(wwwt
h,zzz)+d(zzz, pt

h).

(4.4)
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Similarly to the error analysis of the semi-discrete problem, it suffices to analyze the dual norm
of the residuals, defined in (4.4). However, the mesh used in the fully discrete scheme is allowed to
change at different time levels and we introduce several useful operations in the following. Given two
triangulationsTh1 andTh2 of W , letTh1_Th2 denote the minimal common refinement, i.e.,Th1_Th2 is
the coarsest conforming triangulation that is a refinement of both Th1 and Th2 . Similarly, let Th1 ^Th2
denote the maximal common coarsening, i.e., Th1 ^Th2 is the finest conforming triangulation that is a
coarsening of both Th1 and Th2 . The operations ^ and _ on triangulations are widely used in adaptivity
literature, see, e.g., Cascon et al. (2008); Diening et al. (2016).

To handle simultaneously (uuunh, p
n
h,www

n
h) and (uuun�1

h , pn�1
h ,wwwn�1

h ), we assume that for 1 6 n 6 N and
consecutive meshes T n

h and T n�1
h , the maximal common coarsening T n

h ^T n�1
h and the minimal

common refinement T n
h _T n�1

h exist. As is well known, this assumption is true when {T n
h }Nn=0 are

newest vertex bisection refinement of the same macrotriangulation, cf. Lakkis & Makridakis (2006);
Cascon et al. (2008). In addition, there is a uniform bound on the ratio of the sizes of elements in
K 2T n

h _T n�1
h and of elements K0 2T n

h ^T n�1
h contained in K, that is,

sup
16n6N

sup
K0⇢K,K02T n

h _T n�1
h

sup
K2T n

h ^T n�1
h

hK
hK0

:=Cratio < •. (4.5)

Similar assumptions are made in a posteriori error estimation of the heat equation, see, e.g., Verfürth
(2003). Let fff nh 2 VVVn

h and gnh 2 Qn
h be approximations to fff n and gn, respectively. Within the interval

[tn�1, tn], we split the residuals into

RRR1 = fff � fff nh+SSSn1+TTTn
1, (4.6a)

R2 = g�gnh+Sn2+Tn
2 , (4.6b)

RRR3 = SSSn3+TTTn
3, (4.6c)

where the spatial residuals SSSn1 2VVV 0, SSSn2 2 Q0, SSSn3 2WWW 0 are defined as

hSSSn1,vvvi := h fff nh,vvvi�a(uuunh,vvv)+b(vvv, pnh),
hSn2,qi := hgnh,qi� c(dt pnh,q)�b(dtuuunh,q)�d(wwwn

h,q),
hSSSn3,zzzi :=�e(wwwn

h,zzz)+d(zzz, pnh),

and the temporal residuals TTTn
1(t) 2VVV 0, TTTn

2(t) 2 Q0, TTTn
3(t) 2WWW 0 for t 2 [tn�1, tn] are

hTTTn
1,vvvi := a(uuunh�uuut

h,vvv)�b(vvv, pnh� pt
h),

hTn
2 ,qi := d(wwwn

h�wwwt
h,q),

hTTTn
3,zzzi := e(wwwn

h�wwwt
h,zzz)�d(zzz, pnh� pt

h).

By (4.4), the temporal derivatives of RRR1 and RRR3 over [tn�1, tn] are

h∂tRRR1,vvvi= h∂t fff �dt fff nh,vvvi+ hdtSSSn1,vvvi, (4.7a)
h∂tRRR3,vvvi= hdtSSSn3,vvvi. (4.7b)

Next, we use the following fully discrete spatial error indicators which can be viewed as fully discrete
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counterparts of the error estimators introduced in Section 3. We set,

E n
1 := E 1

T n
h
(uuunh, p

n
h, fff

n
h), E n

1,t := E 1
T n
h _T n�1

h
(dtuuunh,dt pnh,dt fff

n
h),

E n
2 := E 2

T n
h
(dtuuunh,dt pnh,wwwn

h,g
n
h),

E n
3 := E 3

T n
h
(pnh,www

n
h), E n

3,t := E 3
T n
h _T n�1

h
(dt pnh,dtwwwn

h).

Throughout the rest of the presentation, we shall write A . B provided A 6CB, where C is a constant
depending only on µ , a , b , KKK, W , G1, Cshape, Cratio. Since the spatial residuals are time-independent,
their norms can be estimated as in the proof of Theorem 3.2. We have the following result.

LEMMA 4.1 For 16 n6 N, it holds that

kSSSn1k20 . E n
1 , (4.8a)

kdtSSSn1k20 . E n
1,t , (4.8b)

kSSSn2k20 . E n
2 , (4.8c)

kSSSn3k20 . E n
3 , (4.8d)

kdtSSSn3k20 . E n
3,t . (4.8e)

Proof. For vvv 2 VVV , let vvvh be the Clément interpolant on T n
h . It follows from (4.1a) and element-wise

integration by parts that

hSSSn1,vvvi= hSSSn1,vvv� vvvhi= Â
K2Th

Z

K
( fff nh+divsss(uuuh)�a—ph) · (vvv� vvvh)

� Â
F2F (Th)

Z

F

�
[sss(uuuh)�a phIII]nnnF

�
· (vvv� vvvh).

(4.9)

Using (4.9) and the same analysis of estimating krrr1k0 in Theorem 3.2, we obtain

kSSSn1k0 = sup
vvv2VVV ,kvvvka=1

hSSSn1,vvvi. (E n
1 )

1
2 .

For any vvv2VVV , let ṽvvh be the Clément interpolant of vvv onT n
h ^T n�1

h . Using (4.5), (4.1a), and integrating
by parts over T n

h _T n�1
h , and following again the same analysis of estimating krrr1k0 in Theorem 3.2,

we obtain a similar estimate:

kdtSSSn1k0 = sup
vvv2VVV ,kvvvka=1

hdtSSSn1,vvvi= sup
vvv2VVV ,kvvvka=1

hdtSSSn1,vvv� ṽvvhi

= sup
vvv2VVV ,kvvvka=1

(dt fff nh,vvv� ṽvvh)�a(dtuuunh,vvv� ṽvvh)+b(vvv� ṽvvh,dt pnh). (E n
1,t)

1
2 .

The remaining estimates can be proved in the same way. ⇤
Let k fff � fff ihk0 = k fff � fff ihkVVV 0 and k∂t fff � dt fff ihk0 = k∂t fff � dt fff ihkVVV 0 . We present the first main result

of this paper in the following theorem.
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THEOREM 4.1 For 1 6 i 6 n, let fff ih be the L2-projection of fff i onto VVV i
h, g

i
h the L2-projection of gi

onto Qi
h. There exists a constant Cdrel dependent only on µ , a , b , KKK, W , Cshape,Cratio such that for

n= 1,2, . . . ,N, the error defined in (4.2) satisfies
������(Eu,Ep,Ew)(tn)

������2+k(Eu,Ep,Ew)k2L2(0,tn;X)

6Cdrel
�������(Eu,Ep,Ew)(0)

������2+
� n

Â
i=1

ti eE i
time+ ti(E i

2)
1
2 + eE i

data
�2

+
n

Â
i=1

tiE i
time+ tiE i

space+E i
data},

where

eE i
time = kdiv(wwwi

h�wwwi�1
h )k, eE i

data =
Z ti

ti�1
kg�gihkdt,

E i
time = kuuuih�uuui�1

h k2a+kpih� pi�1
h k2c +kwwwi

h�wwwi�1
h k2WWW ,

E i
space = E i

1+E i
1,t +E i

2+E i
3+E i

3,t ,

E i
data =

Z ti

ti�1

�
k fff � fff ihk20 +k∂t fff �dt fff ihk20 +kg�gihk2

�
dt.

Proof. Applying Lemma 2.1 to (4.3) yields
������(Eu,Ep,Ew)(tn)

������2+k(Eu,Ep,Ew)k2L2(0,tn;X)

6Cstab
�������(Eu,Ep,Ew)(0)

������2+
 

n

Â
i=1

Z ti

ti�1
kR2k0dt

!2

+
n

Â
i=1

Z ti

ti�1
kRRR1k20 +k∂tRRR1k20 +kR2k20 +kRRR3k20 +k∂tRRR3k20

�
dt.

For any vvv 2VVV , the continuity of a(·, ·) and b(·, ·) implies that

kTTT i
1k0 = sup

vvv2VVV ,kvvvka=1
hTTT i

1,vvvi. kuuuih�uuut
hka+kpih� pt

hkc. (4.10)

A combination of (4.6a), (4.8a) and (4.10) then shows that when t 2 [ti�1, ti],

kRRR1k0 . k fff � fff ihk0+kuuuih�uuut
hka+kpih� pt

hkc+(E i
1)

1
2 . (4.11)

For t 2 [ti�1, ti], it is readily checked that

kuuuih�uuut
hka =

ti� t
ti

kuuuih�uuui�1
h ka,

kpih� pt
hkc =

ti� t
ti

kpih� pi�1
h kc.

(4.12)

Integrating (4.11) over [ti�1, ti] and using (4.12), we obtain
Z ti

ti�1
kRRR1k20 dt .

Z ti

ti�1
k fff � fff ihk20 dt+ tikuuuih�uuui�1

h k2a+ tikpih� pi�1
h k2c + tiE i

1. (4.13)
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On the other hand, using (4.7a) and (4.8b), we obtain for t 2 [ti�1, ti],

k∂tRRR1k0 . k∂t fff �dt fff ihk0+(E i
1,t)

1
2 . (4.14)

Similarly, using (4.6), (4.7b), Lemma 4.1, and (4.12), one can estimate RRR3, ∂tRRR3, R2 and obtain the
following bounds

Z ti

ti�1
kRRR3k20 dt . tikwwwi

h�wwwi�1
h k2WWW + tikpih� pi�1

h k2c + tiE i
3,

Z ti

ti�1
k∂tRRR3k20 dt . tiE i

3,t ,
(4.15)

and Z ti

ti�1
kR2k0dt .

Z ti

ti�1

��g�gihkdt+ tikdiv(wwwi�1
h �wwwi

h)k+ ti(E i
2)

1
2 ,

Z ti

ti�1
kR2k20 dt .

Z ti

ti�1

��g�gihk2dt+ tikdiv(wwwi�1
h �wwwi

h)k2+ tiE i
2.

(4.16)

Combining (4.13)–(4.16) completes the proof. ⇤
REMARK 4.1 The first two terms in E i

data can be further estimated by

k fff � fff ihk0 . Â
K2T i

h

h2Kk fff � fff ihk2K ,

k∂t fff �dt fff ihk0 . Â
K2T i

h^T
i�1
h

h2Kk∂t fff �dt fff ihk2K .

5. Lower bound

In this section, we show that tnE n
time and tnE n

space are lower bounds of the space-time discretization error
of the fully discrete scheme (4.1). First we present a lemma comparing the spatial residual with the
spatial error indicators. Since the spatial error estimators and residuals are time-independent, the proof
follows from the well-known Verfürth bubble function technique for a posteriori error estimates for
stationary Stokes and Poisson’s equations, see, e.g., Verfürth (1991); Alonso (1996); Demlow & Hirani
(2014). Throughout the rest, C is a generic constant that depends only on l , µ , a, b , KKK, W , G1, Cshape,
Cratio. Hence the constant in some lower bounds may not be locking free.

LEMMA 5.1 Let l , µ , KKK be piecewise constants over T n
h . For 16 n6 N, it holds that

E n
1 6CkSSSn1k20 , (5.1a)

E n
1,t 6CkdtSSSn1k20 , (5.1b)

E n
2 . kSn2k20 , (5.1c)

E n
3 . kSSSn3k20 , (5.1d)

E n
3,t . kdtSSSn3k20 . (5.1e)

Proof. To prove (5.1a), it suffices to find vvv 2VVV , such that

E n
1 6ChSSSn1,vvvi, kvvvk2a 6CE n

1 .
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For each K 2 Th, let RK = ( fff nh+ divsss(uuuh)�a—ph)|K and let fK denote the volume bubble function
supported on K so that the maximum is 1.. For each F 2F (Th), let JF = �[sss(uuuh)�a phIII]|FnnnF , and
recall that fF is the face bubble function supported on union of neighboring elements of F . The desired
vvv is then defined as

vvv= g1 Â
K2Th

h2KRKfK + g2 Â
F2F (Th)

hFJFfF ,

where hF is the diameter of F, and g1,g2 are undetermined constants. Using the Cauchy–Schwarz
inequality and finite overlapping of supports of {fK} and {fF}, one case easily show that kvvvk2a 6CE n

1 .
On the other hand, (4.9) implies

hSSSn1,vvvi= Â
K2Th

Z

K
RK · vvv+ Â

F2F (Th)

Z

F
JF · vvv.

hSSSn1,vvvi>CE n
1 then follows from Young’s inequality and suitablly chosen g1, g2, see, e.g., Lemma 5.1 in

Verfürth (2003) for details. Other lower bounds can be shown in an analogous fashion. ⇤
REMARK 5.1 Based on the k ·ka-norm, it seems that the dependence on l in lower bounds (5.1a) and
(5.1b) cannot be avoided. To obtain an error estimator that is a robust lower bound, one can apply the
analysis here to the four- or five-field formulation Lee (2016); Ahmed et al. (2019) in Biot’s consolida-
tion model.

We present the second main result in the following theorem. Similar technique in the proof was used
in Verfürth (2003) for proving the lower bound in a posteriori error estimation for the primal formulation
of the heat equation.

THEOREM 5.1 Let l , µ , KKK be piecewise constants on T n
h . For n= 1,2, . . . ,N,

tnE n
time+ tnE n

space 6C
�
k(Eu,Ep,Ew)k2L2(tn�1,tn;X)

+
Z tn

tn�1

�
k fff � fff nhk20 +k∂t fff �dt fff nhk20 +kg�gnhk2

�
dt
 
.

Proof. First by (2.2) and definitions of residuals in (4.4), we have

kRRR1k0 . kEuka+kEpkc, (5.2a)
kR2k0 . k∂tEpkc+k∂t divEuk+kdivEwk, (5.2b)
kRRR3k0 . kEwke+kEpkc, (5.2c)

k∂tRRR1k0 . k∂tEuka+k∂tEpkc, (5.2d)
k∂tRRR3k0 . k∂tEwkWWW 0 +k∂tEpkc. (5.2e)

Consider the bilinear form

B(www, p;zzz,q) = e(www,zzz)�d(zzz, p)+d(www,q)

of the mixed formulation of the elliptic equation. Due to the inf-sup condition of B, there exist zzz 2WWW
and q 2 Q with kzzzkWWW = 1,kqkc = 1 such that

kwwwn
h�wwwt

hkWWW +kpnh� pt
hkc . B(wwwn

h�wwwt
h, p

n
h� pt

h;zzz,q)
= hTn

2 ,qi+ hTTTn
3,zzzi, t 2 [tn�1, tn].
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Using the previous estimate, the triangle and Cauchy–Schwarz inequalities, we obtain

kwwwn
h�wwwt

hkWWW +kpnh� pt
hkc

. hR2,qi+ hRRR3,zzzi�hg�gnh,qi�hSn2,qi�hSSSn3,zzzi

. kR2k0+kRRR3k0+kg�gnhk+kSSSn2k0+kSSSn3k0.
(5.3)

Setting vvv= (uuunh�uuut
h)/kuuunh�uuut

hka in the definition of TTTn
1, we have for t 2 [tn�1, tn],

kuuunh�uuut
hka = hTTTn

1,vvvi+b(vvv, pnh� pt
h)

= hRRR1,vvvi�h fff � fff nh,vvvi�hSSSn1,vvvi+b(vvv, pnh� pt
h)

6 kRRR1k0+k fff � fff nhk0+kSSSn1k0+kpnh� pt
hkc.

(5.4)

A combination of (5.3), (5.4), (4.12) and Lemma 4.1 shows that

tnE n
time .

Z tn

tn�1

�
k fff � fff nhk20 +kg�gnhk2+kRRR1k20

+kR2k20 +kRRR3k20
�
dt+ tn

�
E n
1 +E n

2 +E n
3
�
.

(5.5)

It remains to estimate E n
1 , E

n
2 , and E n

3 . Let

f(t) = (a +1)
✓
t� tn�1

tn

◆a
,

where a > 0 is a constant that will be specified later. It follows from Lemma 5.1 and the triangle
inequality that

tn
�
E n
1 +E n

2 +E n
3
�
=
Z tn

tn�1
f(t)

�
E n
1 +E n

2 +E n
3
�
dt

6C
Z tn

tn�1
f(t)

�
kSSSn1k20 +kSSSn2k20 +kSSSn3k20

�
dt

6C(a +1)
Z tn

tn�1

�
kRRR1k20 +k fff � fff nhk20 +kR2k20

+kg�gnhk20 +kRRR3k20
�
dt+C

Z tn

tn�1
f(t)

�
kTTTn

1k20 +kTn
2 k20 +kTTTn

3k20
�
dt,

(5.6)

where the generic constantC is independent of a. For ant vvv 2VVV with kvvvka = 1, direct calculation shows
that Z tn

tn�1
f(t)hTTTn

1,vvvi2dt =
Z tn

tn�1
f(t){a(uuunh�uuut

h,vvv)�b(vvv, pnh� pt
h)}2dt

= {a(uuunh�uuun�1
h ,vvv)�b(vvv, pnh� pn�1

h )}2
Z tn

tn�1
f(t)

✓
tn� t

tn

◆2
dt

6C
�
kuuunh�uuun�1

h k2a+kpnh� pn�1
h k2c

�
tn
Z 1

0
sa(1� s)2ds

6CtnE n
timeF(a),
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where F(a) = 1� 2(a+1)
a+2 + a+1

a+3 . Hence
Z tn

tn�1
f(t)kTTTn

1k20 dt = sup
vvv2VVV ,kvvvka=1

Z tn

tn�1
f(t)hTTTn

1,vvvi2dt 6CtnE n
timeF(a). (5.7)

Similarly, we have Z tn

tn�1
f(t)

�
kTn

2 k20 +kTTTn
3k20
�
dt 6CtnE n

timeF(a). (5.8)

Combining (5.6), (5.7) and (5.8), we obtain

tn
�
E n
1 +E n

2 +E n
3
�
6C(a +1)

Z tn

tn�1

�
kRRR1k20 +k fff � fff nhk20 +kR2k20

+kg�gnhk2+kRRR3k20
�
dt+CtnE n

timeF(a).

(5.9)

Note that F(a)! 0 as a ! •. It then follows from (5.5) and (5.9) with sufficiently large a that

tnE n
time 6C

Z tn

tn�1

�
k fff � fff nhk20 +kg�gnhk2+kRRR1k20 +kR2k20 +kRRR3k20

�
dt. (5.10)

Clearly, the bounds (5.9) and (5.10) imply that

tn
�
E n
1 +E n

2 +E n
3
�

6C
Z tn

tn�1

�
k fff � fff nhk20 +kg�gnhk2+kRRR1k20 +kR2k20 +kRRR3k20

�
dt.

(5.11)

Finally, using Lemma 5.1 and (4.7a), (4.7b), we have

E n
1,t +E n

3,t 6C
�
kdtSSSn1k20 +kdtSSSn3k20

�

6C
�
k∂t fff �dt fff nhk20 +k∂tRRR1k20 +k∂tRRR3k20

� (5.12)

on [tn�1, tn]. Combining (5.10), (5.11), (5.12), and (5.2) then completes the proof. ⇤
In practice, one can use E n

time and E
n
data to adjust the time step size and E n

space to refine and coarsen the
spatial mesh. Due to the complexity of space-time adaptivity, we shall not present a concrete adaptive
algorithm for the Biot’s system. Such algorithms can be found in e.g., Ern &Meunier (2009); Riedlbeck
et al. (2017); Ahmed et al. (2019). For the heat equation, readers are referred to e.g., Chen & Feng
(2004); Kreuzer et al. (2012); Verfürth (2013); Gaspoz et al. (2019) for space-time adaptive algorithms
as well as convergence analysis of adaptive methods. We point out that, once a space-time error indicator
is available, a corresponding adaptive strategy follows and is largely independent of the equations.

We now also present a new error estimator for mixed methods for time dependent Darcy flow de-
scribed by (2.3). The fully discrete scheme (4.1) with uuuh = vvv= 000 reduces to

c(dt pnh,q)+d(wwwn
h,q) = (gn,q), q 2 Qn

h, (5.13a)
e(wwwn

h,z)�d(zzz, pnh) = 0, zzz 2WWWn
h, (5.13b)

which obviously is a discretization of the heat equation or time-dependent Darcy flow (2.3). Therefore,
the a posteriori analysis for (4.1) directly applies to (5.13). HereWWWn

h⇥Qn
h is the Raviart–Thomas and

Brezzi–Douglas–Marini mixed element space. Given an interval I ✓ [0,T ], we define the norm

k(q,zzz)k2L2(I;Y ) :=
Z

I

�
kqk2c +k∂tqk2c +kzzzk2WWW +k∂t zzzk2WWW 0

�
ds.
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Going through the proof of Theorems 4.1 and 5.1, RRR1 disappears when deriving the upper and lower
bounds for the error of (5.13). Therefore we obtain the following a posteriori error estimates.

COROLLARY 5.1 For n= 1,2, . . . ,N, the error of (5.13) satisfies

kEp(tn)k2c +kEw(tn)k2e +k(Ep,Ew)k2L2(0,tn;Y )

. hinit+
� n

Â
i=1

ti eE i
time+ ti(h̃ i

space)
1
2 + eE i

data
�2

+
n

Â
i=1

�
tih i

time+ tih i
space+

Z ti

ti�1
kg�gihk2dt

�
,

where

hinit = kp(0)� p0hk2c +kwww(0)�www0
hk2e ,

h i
time = kpih� pi�1

h k2c +kwwwi
h�wwwi�1

h k2WWW ,

h̃ i
space = kgih�bdt pih�divwwwi

hk2,
h i
space = h̃ i

space+E 3
T i
h
(pih,www

i
h)+E 3

T i
h_T

i�1
h

(dt pih,dtwwwi
h).

In addition, when KKK is a piecewise constant on T n
h it holds that,

tnhn
time+ tnhn

space . k(Ep,Ew)k2L2(tn�1,tn;Y )
+
Z ti

ti�1
kg�gihk2dt.

6. Numerical examples

To support the theoretical results and show the behavior of the fully discrete error indicators, we present
a two-dimensional numerical example. The domain W = (0,1)⇥ (0,1) is the unit square in R2, and we
consider the three field Biot’s problem (2.1) given in § 2. The rest of the setup is as follows.

• We set the Lamé parameters as l = µ = 0.4.

• b = 1, a = 1, and K = I 2 R2⇥2, the 2⇥2 identity matrix.

• The analytic solution to the problem is

uuu(t,xxx) = cos t
✓
sin(px1)sin(px2)
sin(px1)sin(px2)

◆
, www=�—p= p sin t

✓
sin(px1)cos(px2)
cos(px1)sin(px2)

◆
,

p(t,xxx) = sin t cos(px1)cos(px2)

• As boundary conditions we take homogeneous Dirichlet condition for uuu and homogeneous Neu-
mann condition for p. Correspondingly, G2 = /0 in Section 2.

• We use a sequence of uniform triangular grids Thk with mesh sizes hk = 2�k, k = 1 : J, J = 6 or
J = 7. In Figure 1 we have shown the coarsest mesh and a finer mesh.

• The spatial discretization for (2.1) is based on the lowest order finite space tripleVVV 0
hk ⇥Q0

hk
⇥WWW 0

hk
on grid Thk in Section 3.
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FIG. 1. Coarsest mesh used in the experiments is with mesh size h = 2�1 (left). On the right we have shown a finer mesh with
meshsize h= 2�4.

• We start the simulations at t = 0 and reach the final time T = 1 after N = T/t time steps with
uniform time step size t . We present two sets of tests: (1) a test where h = hk = 2�k, k = 1 : 7
and t = tk = 0.4hk change simultaneously; and (2) a test with fixed t = 5⇥ 10�5 and varying
h= hk = 2�k, k = 1 : 6.

• We set p0h = 0, www0
h = 000, and choose uuu0h such that (4.1a) is satisfied at t = 0, i.e. the equation (4.1a)

holds for n= 0.

• In computing the a priori error, we have omitted the term containing the error term k∂t(www�wwwt
h)k2WWW 0

from the space-time norm k(·, ·, ·)kL2(I;X) and the modified norm is still denoted as k(·, ·, ·)kL2(I;X)
by abuse of notation. This is motivated by the fact that such term only enters the computation of
the a priori error and its computation is rather involved. However, the ratio between the true error
and our indicator might be exaggerated by dropping that term.

We first present a simple test illustrating the efficiency of the indicator numerically by decreasing h
and the time step t simultaneously. Let (uuut

h, p
t
hk
,wwwt

hk
) be the continuous temporal linear interpolant of the

solution from (4.1) with Th =Thk and time step size t = tk = 0.4hk. In the first test, we compute the a
priori error Ek = k(uuu�uuut

hk
, p� pt

hk
,www�wwwt

hk
)kL2(0,T ;X) in Theorem 4.1 with 5-point Gaussian quadrature

on each time interval [tn�1, tn] and 25-point Gaussian quadrature on every element in Thk . The global
error Ek is compared with following a posteriori error indicator

Ek =

 
N

Â
n=1

tkE n
time+

N

Â
n=1

tkE n
space

!1/2

on the stationary meshThk . Here we do not include the data oscillation E
n
data in Ek because it is generally

small and dominated by other terms. The results are shown in Table 1. As is seen from these results
the convergence of the method is of order (h+t). Moreover, the ratio between the a priori error and the
value of the a posteriori error indicator approaches 2.5.

The next set of tests is for a fixed relatively small time step t and aimed at comparing various
characteristics of the indicators for different mesh sizes. For a fixed time tn, n = 1 : N on a grid of size
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h= 2�k Ek Ek Ek/Ek Ek�1/Ek Ek�1/Ek
k = 1 0.947 2.375 2.51 N/A N/A
k = 2 0.499 1.250 2.51 1.906 1.900
k = 3 0.253 0.633 2.50 1.974 1.976
k = 4 0.127 0.317 2.50 1.992 1.994
k = 5 0.064 0.159 2.50 1.998 1.998
k = 6 0.032 0.079 2.50 2.000 2.000
k = 7 0.016 0.039 2.50 2.000 2.000

Table 1. A priori and a posteriori errors for simultaneously decreasing h and t with t = 0.4h.

hk = 2�k we denote the “true” error at t = tn as

enk =
�
kuuu(tn)�uuunhk2a+k∂tuuu(tn)�dtuuunhk2a+kp(tn)� pnhk2c

+k∂t p(tn)�dt pnhk2c +kwww(tn)�wwwn
hk2WWW

� 1
2 ,

which is again computed using 25-point Gaussian quadrature element-wise. We compare enk with the
following instantaneous error estimator at tn

enk =
�
E n
time+E n

space
�1/2

.

Note that Ek ⇡
�

ÂN
n=1 t[enk ]2

� 1
2 and Ek =

�
ÂN
n=1 t[enk ]2

� 1
2 .

In Figure 2 we show the plot of enk for n= 1 : N with N = 20,000 for different mesh size hk as well
as the ratios between the indicators on two consecutive meshes, namely,

�
enk /enk�1

�
. Similar behavior is

observed in Figure 3, where we have plotted the error reduction as predicted by the fully discrete error
indicators.
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FIG. 2. Plot of {enk }Nn=1, k = 1 : 6 (left) and
�
enk�1/enk

�
for k = 2 : 6 (right)

In Figure 4 we plotted the ratio between the error indicators and the norm of the error as a function
of time for varying mesh sizes. As is seen from this plot, this ratio remains bounded. Notice that the
theory developed earlier shows reliability and efficiency when we integrate the indicators and the error
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FIG. 3. Plot of {enk}Nn=1, k = 1 : 6 (left) and
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for k = 2 : 6 (right)

norm over the interval [0,T ]. Such results (after integrations) are found in Table 6 where we illustrate the
conclusions of Theorem 4.1. As seen from this table, and expected from the theoretical results presented
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FIG. 4. Ratio between the values of the error indicators and the norm of the error as functions of time.

earlier, the ratio between the indicators shows reduction by 2. Moreover we see that the proposed fully
discrete error indicators provide two sided bounds for the error up to reasonable multiplicative constant.

7. Conclusion

In this paper, we obtain a two-sided residual a posteriori error estimator for the three-field mixed method
in Biot’s consolidation model. It is expected that our a posteriori error analysis generalizes to mixed
methods for the five-field formulation based on weakly symmetric stress tensor (see Lee (2016)), al-
though to present such a generalization might require an elaborate analysis. Combining our analysis
with a posteriori error estimation of mixed methods for elasticity using strong symmetric stress (see
e.g., Carstensen et al. (2019); Chen et al. (2018); Li (2019a)), we hope to obtain a two-sided residual
estimator for the four-field formulation.
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(h= 2�k) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Ek�1/Ek N/A 1.910 1.976 1.994 1.997 2.003
Ek�1/Ek N/A 1.910 1.980 1.995 1.999 2.000
Ek/Ek 2.63 2.63 2.63 2.62 2.62 2.62

Table 2. Robustness and efficiency of the error indicators for t = 5⇥10�5 and varying mesh sizes.
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