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Tutte’s spring embedding theorem states that, for a three-
connected planar graph, if the outer face of the graph is 
fixed as the complement of some convex region in the plane, 
and all other vertices are placed at the mass center of their 
neighbors, then this results in a unique embedding, and 
this embedding is planar. It also follows fairly quickly that 
this embedding minimizes the sum of squared edge lengths, 
conditional on the embedding of the outer face. However, it 
is not at all clear how to embed this outer face. We consider 
the minimization problem of embedding this outer face, up 
to some normalization, so that the sum of squared edge 
lengths is minimized. In this work, we show the connection 
between this optimization problem and the Schur complement 
of the graph Laplacian with respect to the interior vertices. 
We prove a number of discrete trace theorems, and, using 
these new results, show the spectral equivalence of this Schur 
complement with the boundary Laplacian to the one-half 
power for a large class of graphs. Using this result, we give 
theoretical guarantees for this optimization problem, which 
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motivates an algorithm to embed the outer face of a spring 
embedding.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Graph drawing is an area at the intersection of mathematics, computer science, and 
more qualitative fields. Despite the extensive literature in the field, in many ways the 
concept of what constitutes the optimal drawing of a graph is heuristic at best, and 
subjective at worst. For a general review of the major areas of research in graph drawing, 
we refer the reader to [1,10]. When energy (i.e. Hall’s energy, the sum of squared distances 
between adjacent vertices) minimization is desired, the optimal embedding in the plane 
is given by the two-dimensional diffusion map induced by the eigenvectors of the two 
smallest non-zero eigenvalues of the graph Laplacian [12–14]. This general class of graph 
drawing techniques is referred to as spectral layouts. When drawing a planar graph, often 
a planar embedding (a drawing in which edges do not intersect) is desirable. However, 
spectral layouts of planar graphs are not guaranteed to be planar. When looking at 
triangulations of a given domain, it is commonplace for the near-boundary points of 
the spectral layout to “grow” out of the boundary, or lack any resemblance to a planar 
embedding. For instance, see the spectral layout of a random triangulation of a disk and 
rectangle in Fig. 1.

In his 1962 work titled “How to Draw a Graph,” Tutte found an elegant technique to 
produce planar embeddings of planar graphs that also minimize “energy” in some sense 
[20]. In particular, for a three-connected planar graph, he showed that if the outer face 
of the graph is fixed as the complement of some convex region in the plane, and every 
other point is located at the mass center of its neighbors, then the resulting embedding 
is planar. This embedding minimizes Hall’s energy, conditional on the embedding of the 
boundary face. This result is now known as Tutte’s spring embedding theorem, and this 
general class of graph drawing techniques is known as force-based layouts. While this re-
sult is well known (see [11], for example), it is not so obvious how to embed the outer face. 
This, of course, should vary from case to case, depending on the dynamics of the interior.

In this work, we examine how to embed the boundary face such that the embedding 
is convex and minimizes Hall’s energy over all such convex embeddings with some given 
normalization. While it is not clear how to exactly minimize energy over all convex em-
beddings in polynomial time, it also is not clear that this is a NP-hard optimization 
problem. Proving that this optimization problem is NP-hard appears to be extremely 
difficult, as the problem itself seems to lack any natural relation to a known NP-complete 
problem. In what follows, we analyze this problem and produce an algorithm with the-
oretical guarantees for a large class of three-connected planar graphs.

Our analysis begins by observing that the Schur complement of the graph Laplacian 
with respect to the interior vertices is the correct matrix to consider when choosing an 
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Fig. 1. Delaunay triangulations of 1250 points randomly generated on the disk (A) and rectangle (B), 
their non-planar spectral layouts (C) and (D), and planar layouts using a spring embedding of the Schur 
complement of the graph Laplacian with respect to the interior vertices (E) and (F).

optimal embedding of boundary vertices. See Fig. 2 for a visual example of a spring 
embedding using the two minimal non-trivial eigenvectors of the Schur complement. In 
order to theoretically understand the behavior of the Schur complement, we prove a dis-
crete trace theorem. Trace theorems are a class of results in theory of partial differential 
equations relating norms on the domain to norms on the boundary, which are used to 
provide a priori estimates on the Dirichlet integral of functions with given data on the 
boundary. We construct a discrete version of a trace theorem in the plane for “energy”-
only semi-norms. Using a discrete trace theorem, we show that this Schur complement 
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Fig. 2. A visual example of embeddings of the 2D finite element discretization graph 3elt, taken from the 
SuiteSparse Matrix Collection [5]. Figure (A) is the non-planar spectral layout of this 2D mesh, and Figure 
(B) is a planar spring embedding of the mesh, using the minimal non-trivial eigenvectors of the Schur 
complement to embed the boundary.

is spectrally equivalent to the boundary Laplacian to the one-half power. This spectral 
equivalence result produces theoretical guarantees for the energy minimizing spring em-
bedding problem, but is also of independent interest and applicability in the study of 
spectral properties of planar graphs. These theoretical guarantees give rise to a natural 
algorithm with provable guarantees. The performance of this algorithm is also illustrated 
through numerical experiments.

The remainder of the paper is as follows. In Section 2, we formally introduce Tutte’s 
spring embedding theorem, characterize the optimization problem under consideration, 
and illustrate the connection to the Schur complement. In Section 3, we consider trace 
theorems for Lipschitz domains from the theory of elliptic partial differential equations, 
prove discrete energy-only variants of these results for the plane, and show that the 
Schur complement with respect to the interior is spectrally equivalent to the boundary 
Laplacian to the one-half power. In Section 4, we use the results from the previous 
section to give theoretical guarantees regarding approximate solutions to the original 
optimization problem, and use these theoretical results to motivate an algorithm to 
embed the outer face of a spring embedding. We present numerical results to illustrate 
both the behavior of Schur complement-based embeddings compared to variations of 
natural spectral embeddings, and the practical performance of the algorithm introduced.

2. Spring embeddings and the Schur complement

In this section, we introduce the main definitions and notation of the paper, formally 
define the optimization problem under consideration, and show how the Schur comple-
ment is closely related to this optimization problem.
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2.1. Definitions and notation

Let G = (V, E), V = {1, ..., n}, E ⊂ {e ⊂ V | |e| = 2}, be a simple, connected, 
undirected graph. G is k-connected if it remains connected upon the removal of any k−1
vertices, and is planar if it can be drawn in the plane such that no edges intersect (save 
for adjacent edges at their mutual endpoint). A face of a planar embedding of a graph 
is a region of the plane bounded by edges (including the outer infinite region, referred 
to as the outer face). Let Gn be the set of all ordered pairs (G, Γ), where G is a simple, 
undirected, planar, three-connected graph of order n > 4, and Γ ⊂ V , nΓ := |Γ|, are 
the vertices of some face of G. Three-connectedness is an important property for planar 
graphs, which, by Steinitz’s theorem, guarantees that the graph is the skeleton of a convex 
polyhedron [19]. This characterization implies that for three-connected graphs (n > 4), 
the edges corresponding to each face in a planar embedding are uniquely determined by 
the graph. In particular, the set of faces is simply the set of induced cycles, so we may 
refer to faces of the graph without specifying an embedding. One important corollary 
of this result is that, for n > 4, the vertices of any face form an induced simple cycle. 
Let NG(i) be the neighborhood of vertex i, NG(S) be the union of the neighborhoods 
of the vertices in S, and dG(i, j) be the distance between vertices i and j in the graph 
G. When the associated graph is obvious, we may remove the subscript. Let d(i) be the 
degree of vertex i. Let G[S] be the graph induced by the vertices S, and dS(i, j) be the 
distance between vertices i and j in G[S]. If H is a subgraph of G, we write H ⊂ G. The 
Cartesian product G1�G2 between G1 = (V1, E1) and G2 = (V2, E2), is the graph with 
vertices (v1, v2) ∈ V1 × V2 and edges ((u1, u2), (v1, v2)) ∈ E if (u1, v1) ∈ E1 and u2 = v2, 
or u1 = v1 and (u2, v2) ∈ E2. The graph Laplacian LG ∈ Rn×n of G is the symmetric 
matrix defined by

〈LGx, x〉 =
∑

{i,j}∈E

(xi − xj)2,

and, in general, a matrix is the graph Laplacian of some weighted graph if it is symmetric 
diagonally dominant, has non-positive off-diagonal entries, and the vector 1 := (1, ..., 1)T

lies in its nullspace. The convex hull of a finite set of points X is denoted by conv(X), 
and a point x ∈ X is a vertex of conv(X) if x /∈ conv(X\x). Given a matrix A, we denote 
the ith row by Ai,·, the jth column by A·,j , and the entry in the ith row and jth column 
by Ai,j .

2.2. Spring embeddings

Here and in what follows, we refer to Γ as the “boundary” of the graph G, V \Γ as 
the “interior,” and generally assume nΓ := |Γ| to be relatively large (typically nΓ =
Θ(n1/2)). Of course, the concept of a “boundary” face is somewhat arbitrary, though, 
depending on the application from which the graph originated (i.e., a discretization of 



78 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73–107
some domain), one face is often already designated as the boundary face. If a face has not 
been designated, choosing the largest induced cycle is a reasonable choice. By embedding 
G in the plane and traversing the embedding, one can easily find all the induced cycles 
of G in linear time and space [3].

Without loss of generality, suppose that Γ = {n − nΓ + 1, ..., n}. A matrix X ∈ Rn×2

is said to be a planar embedding of G if the drawing of G using straight lines and with 
vertex i located at coordinates Xi,· for all i is a planar drawing. A matrix XΓ ∈ RnΓ×2

is said to be a convex embedding of Γ if the embedding is planar and every point is a 
vertex of the convex hull conv({[XΓ]i,·}nΓ

i=1). Tutte’s spring embedding theorem states 
that if XΓ is a convex embedding of Γ, then the system of equations

Xi,· =
{

1
d(i)
∑

j∈N(i) Xj,· i = 1, ..., n − nΓ

[XΓ]i−(n−nΓ),· i = n − nΓ + 1, ..., n

has a unique solution X, and this solution is a planar embedding of G [20].
We can write both the Laplacian and embedding of G in block-notation, differentiating 

between interior and boundary vertices as follows:

LG =
(

Lo + Do −Ao,Γ
−AT

o,Γ LΓ + DΓ

)
∈ Rn×n, X =

(
Xo

XΓ

)
∈ Rn×2,

where Lo, Do ∈ R(n−nΓ)×(n−nΓ), LΓ, DΓ ∈ RnΓ×nΓ , Ao,Γ ∈ R(n−nΓ)×nΓ , Xo ∈
R(n−nΓ)×2, XΓ ∈ RnΓ×2, and Lo and LΓ are the Laplacians of G[V \Γ] and G[Γ], respec-
tively. Using block notation, the system of equations for the Tutte spring embedding of 
some convex embedding XΓ is given by

Xo = (Do + D[Lo])−1[(D[Lo] − Lo)Xo + Ao,ΓXΓ],

where D[A] is the diagonal matrix with diagonal entries given by the diagonal of A. 
Therefore, the unique solution to this system is

Xo = (Lo + Do)−1Ao,ΓXΓ.

We note that this choice of Xo not only guarantees a planar embedding of G, but also 
minimizes Hall’s energy, namely,

arg min
Xo

h(X) = (Lo + Do)−1Ao,ΓXΓ,

where h(X) := Tr(XT LX) (see [14] for more on Hall’s energy).
While Tutte’s theorem is a very powerful result, guaranteeing that, given a convex 

embedding of any face, the energy minimizing embedding of the remaining vertices re-
sults in a planar embedding, it gives no direction as to how this outer face should be 
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embedded. In this work, we consider the problem of producing a planar embedding that 
is energy minimizing, subject to some normalization. We consider embeddings that sat-
isfy XT

Γ XΓ = I and XT
Γ 1 = 0, though other normalizations, such as XT X = I and 

XT 1 = 0, would be equally appropriate. The analysis that follows in this paper can be 
readily applied to this alternate normalization, but it does require the additional step of 
verifying a norm equivalence between V and Γ for the harmonic extension of low energy 
vectors, which can be produced relatively easily for the class of graphs considered in 
Section 3. Let X be the set of all convex, planar embeddings XΓ that satisfy XT

Γ XΓ = I

and XT
Γ 1 = 0. The main optimization problem under consideration is

min h(X) s.t. XΓ ∈ cl(X ), (2.1)

where cl(·) is the closure of a set. X is not a closed set, and so the minimizer of (2.1) may 
be a non-convex embedding. However, by the definition of closure, any such minimizer 
is arbitrarily close to a convex embedding. The normalizations XT

Γ 1 = 0 and XT
Γ XΓ = I

ensure that the solution does not degenerate into a single point or line. In what follows 
we are primarily concerned with approximately solving this optimization problem. It 
is unclear whether there exists an efficient algorithm to solve (2.1) or if the associated 
decision problem is NP-hard. If (2.1) is NP-hard, it seems extremely difficult to verify 
that this is indeed the case. This remains an open problem.

2.3. Schur complement of V \Γ

Given some choice of XΓ, by Tutte’s theorem the minimum value of h(X) is attained 
when Xo = (Lo + Do)−1Ao,ΓXΓ, and given by

h(X) = Tr
[(

[(Lo + Do)−1Ao,ΓXΓ]T XT
Γ
)

×
(

Lo + Do −Ao,Γ
−AT

o,Γ LΓ + DΓ

)(
(Lo + Do)−1Ao,ΓXΓ

XΓ

)]
= Tr

(
XT

Γ
[
LΓ + DΓ − AT

o,Γ(Lo + Do)−1Ao,Γ
]
XΓ
)

= Tr
(
XT

Γ SΓXΓ
)

,

where SΓ is the Schur complement of LG with respect to V \Γ,

SΓ = LΓ + DΓ − AT
o,Γ(Lo + Do)−1Ao,Γ.

For this reason, we can treat Xo as a function of XΓ and instead consider the optimization 
problem

min hΓ(XΓ) s.t. XΓ ∈ cl(X ), (2.2)

where
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hΓ(XΓ) := Tr
(
XT

Γ SΓXΓ
)
.

This immediately implies that, if the minimal two non-trivial eigenvectors of SΓ pro-
duce a convex embedding, then this is the exact solution of (2.2). However, a priori, 
there is no reason to think that this embedding would be planar or convex. In Section 4, 
we perform numerical experiments that suggest that this embedding is often planar, and 
“near” a convex embedding in some sense. However, even if the embedding is planar, 
converting a non-convex embedding to a convex one may increase the objective function 
by a large amount. In Section 3, we show that SΓ and L1/2

Γ are spectrally equivalent. 
This spectral equivalence leads to provable guarantees for an algorithm to approximately 
solve (2.2), as the minimal two eigenvectors of L1/2

Γ are planar and convex.
First, we present a number of basic properties of the Schur complement of a graph 

Laplacian in the following proposition. For more information on the Schur complement, 
we refer the reader to [2,6,22].

Proposition 2.1. Let G = (V, E), n = |V |, be a graph and LG ∈ Rn×n the associated 
graph Laplacian. Let LG and vectors v ∈ Rn be written in block form

L(G) =
(

L11 L12
L21 L22

)
, v =

(
v1
v2

)
,

where L22 ∈ Rm×m, v2 ∈ Rm, and L12 �= 0. Then

(1) S = L22 − L21L−1
11 L12 is a graph Laplacian,

(2)
∑m

i=1(eT
i L221m)eie

T
i − L21L−1

11 L12 is a graph Laplacian,
(3) 〈Sw, w〉 = inf{〈Lv, v〉|v2 = w}.

Proof. Let P =
(

−L−1
11 L12
I

)
∈ Rn×m. Then

P T LP =
(
−L21L−1

11 I
)(L11 L12

L21 L22

)(
−L−1

11 L12
I

)
= L22 − L21L−1

11 L12 = S.

Because L111n−m + L121m = 0, we have 1n−m = −L−1
11 L121m. Therefore P1m = 1n, 

and, as a result,

S1m = P T LP1m = P T L1n = P T 0 = 0.

In addition,

[
m∑

(eT
i L221m)eie

T
i − L21L−1

11 L12

]
1m =

[ m∑
(eT

i L221m)eie
T
i − L22

]
1m + S1m
i=1 i=1
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=
m∑

i=1
(eT

i L221m)ei − L221m

=
[ m∑

i=1
eie

T
i − Im

]
L221m = 0.

L11 is an M-matrix, so L−1
11 is a non-negative matrix. L21L−1

11 L12 is the product of three 
non-negative matrices, and so must also be non-negative. Therefore, the off-diagonal 
entries of S and 

∑m
i=1(eT

i L221)eie
T
i −L21L−1

11 L12 are non-positive, and so both are graph 
Laplacians.

Consider

〈Lv, v〉 = 〈L11v1, v1〉 + 2〈L12v2, v1〉 + 〈L22v2, v2〉,

with v2 fixed. Because L11 is symmetric positive definite, the minimum occurs when

∂

∂v1
〈Lv, v〉 = 2L11v1 + 2L12v2 = 0.

Setting v1 = −L−1
11 L12v2, the desired result follows. �

The Schur complement Laplacian SΓ is the sum of two Laplacians LΓ and DΓ −
AT

o,Γ(Lo + Do)−1Ao,Γ, where the first is the Laplacian of G[Γ], and the second is a 
Laplacian representing the dynamics of the interior.

In the next section we prove the spectral equivalence of SΓ and L1/2
Γ for a large class 

of graphs by first proving discrete energy-only trace theorems. Then, in Section 4, we 
use this spectral equivalence to prove theoretical properties of (2.2) and motivate an 
algorithm to approximately solve this optimization problem.

3. Trace theorems for planar graphs

The main result of this section takes classical trace theorems from the theory of partial 
differential equations and extends them to a class of planar graphs. However, for our 
purposes, we require a stronger form of trace theorem, one between energy semi-norms 
(i.e., no �2 term), which we refer to as “energy-only” trace theorems. These energy-
only trace theorems imply their classical variants with �2 terms almost immediately. 
We then use these new results to prove the spectral equivalence of SΓ and L1/2

Γ for the 
class of graphs under consideration. This class of graphs is rigorously defined below, but 
includes planar three-connected graphs that have some regular structure (such as graphs 
of finite element discretizations). In what follows, we prove spectral equivalence with 
explicit constants. While this does make the analysis slightly messier, it has the benefit 
of showing that equivalence holds for constants that are not too large, thereby verifying 
that the equivalence is a practical result which can be used in the analysis of algorithms. 
We begin by formally describing a classical trace theorem.
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Let Ω ⊂ Rd be a domain with boundary Γ = δΩ that, locally, is a graph of a Lipschitz 
function. H1(Ω) is the Sobolev space of square integrable functions with square integrable 
weak gradient, with norm

‖u‖2
1,Ω = ‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω), where ‖u‖2

L2(Ω) =
ˆ

Ω

u2 dx.

Let

‖ϕ‖2
1/2,Γ = ‖ϕ‖2

L2(Γ) +
¨

Γ×Γ

(ϕ(x) − ϕ(y))2

|x − y|d dx dy

for functions defined on Γ, and denote by H1/2(Γ) the Sobolev space of functions defined 
on the boundary Γ for which ‖ ·‖1/2,Γ is finite. The trace theorem for functions in H1(Ω)
is one of the most important and used trace theorems in the theory of partial differential 
equations. More general results for traces on boundaries of Lipschitz domains, which 
involve Lp norms and fractional derivatives, are due E. Gagliardo [7] (see also [4]). 
Gagliardo’s theorem, when applied to the case of H1(Ω) and H1/2(Γ), states that if 
Ω ⊂ Rd is a Lipschitz domain, then the norm equivalence

‖ϕ‖1/2,Γ � inf{‖u‖1,Ω
∣∣ u|Γ = ϕ}

holds (the right hand side is indeed a norm on H1/2(Γ)). These results are key tools 
in proving a priori estimates on the Dirichlet integral of functions with given data on 
the boundary of a domain Ω. Roughly speaking, a trace theorem gives a bound on the 
energy of a harmonic function via norm of the trace of the function on Γ = ∂Ω. In 
addition to the classical references given above, further details on trace theorems and 
their role in the analysis of PDEs (including the case of Lipschitz domains) can be found 
in [15,17]. There are several analogues of this theorem for finite element spaces (finite 
dimensional subspaces of H1(Ω)). For instance, in [16] it is shown that the finite element 
discretization of the Laplace-Beltrami operator on the boundary to the one-half power 
provides a norm which is equivalent to the H1/2(Γ)-norm. Here we prove energy-only 
analogues of the classical trace theorem for graphs (G, Γ) ∈ Gn, using energy semi-norms

|u|2G = 〈LGu, u〉 and |ϕ|2Γ =
∑

p,q∈Γ,
p<q

(ϕ(p) − ϕ(q))2

d2
G(p, q) .

The energy semi-norm | · |G is a discrete analogue of ‖∇u‖L2(Ω), and the boundary 

semi-norm | ·|Γ is a discrete analogue of the quantity 
˜

Γ×Γ
(ϕ(x)−ϕ(y))2

|x−y|2 dx dy. In addition, 
by connectivity, | · |G and | · |Γ are norms on the quotient space orthogonal to 1. We aim 
to prove that for any ϕ ∈ RnΓ ,
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Fig. 3. A visual example of Gk,� and G∗
k,� for k = 16, � = 3. The boundary Γ is given by the outer (or, by 

symmetry, inner) cycle.

1
c1

|ϕ|Γ ≤ min
u|Γ=ϕ

|u|G ≤ c2 |ϕ|Γ

for some constants c1, c2 that do not depend on nΓ, n. We begin by proving these results 
for a simple class of graphs, and then extend our analysis to more general graphs. Some 
of the proofs of the below results are rather technical, and are therefore reserved for the 
appendix.

3.1. Trace theorems for a simple class of graphs

Let Gk,� = Ck � P� be the Cartesian product of the k vertex cycle Ck and the �

vertex path P�, where 4� < k < 2c� for some constant c ∈ N. The lower bound 4� < k

is arbitrary in some sense, but is natural, given that the ratio of boundary length to in-
radius of a convex region is at least 2π. Vertex (i, j) in Gk,� corresponds to the product 
of i ∈ Ck and j ∈ P�, i = 1, ..., k, j = 1, ..., �. The boundary of Gk,� is defined to be 
Γ = {(i, 1)}k

i=1. Let u ∈ Rk×� and ϕ ∈ Rk be functions on Gk,� and Γ, respectively, 
with u[(i, j)] denoted by u(i, j) and ϕ[(i, 1)] denoted by ϕ(i). For the remainder of the 
section, we consider the natural periodic extension of the vertices (i, j) and the functions 
u(i, j) and ϕ(i) to the indices i ∈ Z. In particular, if i /∈ {1, ..., k}, then (i, j) := (i∗, j), 
ϕ(i) := ϕ(i∗), and u(i, j) := u(i∗, j), where i∗ ∈ {1, ..., k} and i∗ = i mod k. Let G∗

k,� be 
the graph resulting from adding to Gk,� all edges of the form {(i, j), (i − 1, j + 1)} and 
{(i, j), (i + 1, j + 1)}, i = 1, ..., k, j = 1, ..., � − 1. We provide a visual example of Gk,�

and G∗
k,� in Fig. 3. First, we prove a trace theorem for Gk,�.

We have broken the proof of the trace theorem into two lemmas. Lemma 3.1 shows that 
the discrete trace operator is bounded, and Lemma 3.2 shows that it has a continuous 
right inverse. Taken together, these lemmas imply our desired result.

Lemma 3.1. Let G = Gk,�, 4� < k < 2c�, c ∈ N, with boundary Γ = {(i, 1)}k
i=1. For any 

u ∈ Rk×�, the vector ϕ = u|Γ satisfies
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|ϕ|Γ ≤ max{
√

3c, 2π} |u|G.

Proof. We can decompose ϕ(p + h) − ϕ(h) into a sum of differences, given by

ϕ(p + h) − ϕ(p) =
s−1∑
i=1

u(p + h, i) − u(p + h, i + 1)

+
h∑

i=1
u(p + i, s) − u(p + i − 1, s)

+
s−1∑
i=1

u(p, s − i + 1) − u(p, s − i),

where s =
⌈

h
c

⌉
. By Cauchy-Schwarz,

k∑
p=1

⌊k
2
⌋∑

h=1

[
ϕ(p + h) − ϕ(p)

h

]2

≤ 3
k∑

p=1

⌊k
2
⌋∑

h=1

[
1
h

s−1∑
i=1

u(p + h, i) − u(p + h, i + 1)
]2

+3
k∑

p=1

⌊k
2
⌋∑

h=1

[
1
h

h∑
i=1

u(p + i, s) − u(p + i − 1, s)
]2

+3
k∑

p=1

⌊k
2
⌋∑

h=1

[
1
h

s−1∑
i=1

u(p, s − i + 1) − u(p, s − i)
]2

.

We bound the first and the second term separately. The third term is identical to the 
first. Using Hardy’s inequality [8, Theorem 326], we can bound the first term by

k∑
p=1

⌊k
2
⌋∑

h=1

[
1
h

s−1∑
i=1

u(p, i) − u(p, i + 1)
]2

=
k∑

p=1

�∑
s=1

[
1
s

s−1∑
i=1

u(p, i) − u(p, i + 1)
]2 ∑

h:�h/c�=s
1≤h≤�k/2�

s2

h2

≤ 4
k∑

p=1

�−1∑
s=1

(
u(p, s) − u(p, s + 1)

)2 ∑
h:�h/c�=s

1≤h≤�k/2�

s2

h2 .

We have

∑
h:�h/c�=s

1≤h≤�k/2�

s2

h2 ≤ s2
cs∑

i=c(s−1)+1

1
i2 ≤ s2(c − 1)

(c(s − 1) + 1)2 ≤ 4(c − 1)
(c + 1)2 ≤ 1

2

for s ≥ 2 (c ≥ 3, by definition), and for s = 1,
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2

∑
h:�h/c�=1

1≤h≤�k/2�

1
h2 ≤

∞∑
i=1

1
i2 = π2

6 .

Therefore, we can bound the first term by

k∑
p=1

⌊k
2
⌋∑

h=1

[
1
h

s−1∑
i=1

u(p, i) − u(p, i + 1)
]2

≤ 2π2

3

k∑
p=1

�−1∑
s=1

(
u(p, s) − u(p, s + 1)

)2
.

For the second term, we have

k∑
p=1

⌊k
2
⌋∑

h=1

[
1
h

h∑
i=1

u(p + i, s) − u(p + i − 1, s)
]2

≤
k∑

p=1

⌊k
2
⌋∑

h=1

1
h

h∑
i=1

(
u(p + i, s) − u(p + i − 1, s)

)

≤ c
k∑

p=1

�∑
s=1

(
u(p + 1, s) − u(p, s)

)2
.

Combining these bounds produces the desired result

|ϕ|Γ ≤ max{
√

3c, 2π} |u|G. �
In order to show that the discrete trace operator has a continuous right inverse, we 

need to produce a provably low-energy extension of an arbitrary function on Γ. Let

a = 1
k

k∑
p=1

ϕ(p) and a(i, j) = 1
2j − 1

j−1∑
h=1−j

ϕ(i + h).

We consider the extension

u(i, j) = j − 1
� − 1 a +

(
1 − j − 1

� − 1

)
a(i, j). (3.1)

In the appendix (Lemma A.1), we prove the following inverse result for the discrete trace 
operator.

Lemma 3.2. Let G = Gk,�, 4� < k < 2c�, c ∈ N, with boundary Γ = {(i, 1)}k
i=1. For any 

ϕ ∈ Rk, the vector u defined by (3.1) satisfies

|u|G ≤
√

2c + 233
9 |ϕ|Γ.

Combining Lemmas 3.1 and 3.2, we obtain our desired trace theorem.
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Theorem 3.3. Let G = Gk,�, 4� < k < 2c�, c ∈ N, with boundary Γ = {(i, 1)}k
i=1. For 

any ϕ ∈ Rk,

1
max{

√
3c, 2π}

|ϕ|Γ ≤ min
u|Γ=ϕ

|u|G ≤
√

2c + 233
9 |ϕ|Γ.

With a little more work, we can prove a similar result for a slightly more general class 
of graphs. Using Theorem 3.3, we can almost immediately prove a trace theorem for any 
graph H satisfying Gk,� ⊂ H ⊂ G∗

k,�. In fact, Lemma 3.1 carries over immediately. In 
order to prove a new version of Lemma 3.2, it suffices to bound the energy of u on the 
edges in G∗

k,� not contained in Gk,�. By Cauchy-Schwarz,

|u|2G∗ = |u|2G +
k∑

i=1

�−1∑
j=1

[
(u(i, j + 1) − u(i − 1, j))2 + (u(i, j + 1) − u(i + 1, j))2

]

≤ 3
k∑

i=1

�∑
j=1

(u(i + 1, j) − u(i, j))2 + 2
k∑

i=1

�−1∑
j=1

(u(i, j + 1) − u(i, j))2,

and therefore Corollary 3.4 follows immediately from the proofs of Lemmas 3.1 and 3.2.

Corollary 3.4. Let H satisfy Gk,� ⊂ H ⊂ G∗
k,�, 4� < k < 2c�, c ∈ N, with boundary 

Γ = {(i, 1)}k
i=1. For any ϕ ∈ Rk,

1
max{

√
3c, 2π}

|ϕ|Γ ≤ min
u|Γ=ϕ

|u|H ≤
√

4c + 475
9 |ϕ|Γ.

3.2. Trace theorems for general graphs

In order to extend Corollary 3.4 to more general graphs, we introduce a graph op-
eration which is similar to in concept an aggregation (a partition of V into connected 
subsets) in which the size of aggregates are bounded. In particular, we give the following 
definition.

Definition 3.5. The graph H, Gk,� ⊂ H ⊂ G∗
k,�, is said to be an M -aggregation of 

(G, Γ) ∈ Gn if there exists a partition A = a∗ ∪ {ai,j}j=1,...,�
i=1,...,k of V (G) satisfying

1. G[ai,j ] is connected and |ai,j | ≤ M for all i = 1, ..., k, j = 1, ..., �,
2. Γ ⊂

⋃k
i=1 ai,1, and Γ ∩ ai,1 �= ∅ for all i = 1, ..., k,

3. NG(a∗) ⊂ a∗ ∪
⋃k

i=1 ai,�,
4. the aggregation graph of A\a∗, given by (A\a∗, {(ai1,j1 , ai2,j2) | NG(ai1,j1) ∩ ai2,j2 �=

0}), is isomorphic to H.
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Fig. 4. An example of an M-aggregation. Figure (A) provides a visual representation of a graph G, with 
boundary vertices Γ enlarged. Figure (B) shows a partition A of G, in which each aggregate (enclosed 
by dotted lines) has order at most four. The set a∗ is denoted by a shaded region. Figure (C) shows the 
aggregation graph H of A\a∗. The graph H satisfies G6,2 ⊂ H ⊂ G∗

6,2, and is therefore a 4-aggregation of 
(G, Γ).

We provide a visual example in Fig. 4, and, later, in Subsection 3.4, we show that 
this operation applies to a fairly large class of graphs. For now, we focus using the above 
definition to prove trace theorems for graphs that have an M -aggregation H, for some 
Gk,� ⊂ H ⊂ G∗

k,�.
However, the M -aggregation procedure is not the only operation for which we can 

control the behavior of the energy and boundary semi-norms. For instance, the behavior 
of our semi-norms under the deletion of some number of edges can be bounded easily if 
there exists a set of paths of constant length, with one path between each pair of vertices 
which are no longer adjacent, such that no edge is in more than a constant number 
of these paths. In addition, the behavior of these semi-norms under the disaggregation 
of large degree vertices is also relatively well-behaved, see [9] for details. We give the 
following result regarding graphs (G, Γ) for which some H, Gk,� ⊂ H ⊂ G∗

k,�, is an M -
aggregation of (G, Γ), but note that a large number of minor refinements are possible, 
such as the two briefly mentioned in this paragraph.

Theorem 3.6. If H, Gk,� ⊂ H ⊂ G∗
k,�, 4� < k < 2c�, c ∈ N, is an M -aggregation of 

(G, Γ) ∈ Gn, then for any ϕ ∈ RnΓ ,

1
6M

√
M + 3 max{

√
3c, 2π}

|ϕ|Γ ≤ min
u|Γ=ϕ

|u|G ≤ 28M2√
3c + 20 |ϕ|Γ.

The proof of this result is rather technical, and can be found in the appendix (Theo-
rem A.2). The same proof of Theorem 3.6 also immediately implies a similar result. Let 
L̃ ∈ RnΓ×nΓ be the Laplacian of the complete graph on Γ with weights w(i, j) = d−2

Γ (i, j). 
The same proof implies the following.

Corollary 3.7. If H, Gk,� ⊂ H ⊂ G∗
k,�, 4� < k < 2c�, c ∈ N, is an M -aggregation of 

(G, Γ) ∈ Gn, then for any ϕ ∈ RnΓ ,
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1
6M

√
M + 3 max{

√
3c, 2π}

〈L̃ϕ, ϕ〉1/2 ≤ min
u|Γ=ϕ

|u|G ≤ 28M2√
3c + 20 〈L̃ϕ, ϕ〉1/2.

3.3. Spectral equivalence of SΓ and L1/2
Γ

By Corollary 3.7, and the property 〈ϕ, SΓϕ〉 = minu|Γ=ϕ |u|2G (see Proposition 2.1), 
in order to prove spectral equivalence between SΓ and L1/2

Γ , it suffices to show that L1/2
Γ

and L̃ are spectrally equivalent. This can be done relatively easily, and leads to a proof 
of the main result of the section.

Theorem 3.8. If H, Gk,� ⊂ H ⊂ G∗
k,�, 4� < k < 2c�, c ∈ N, is an M -aggregation of 

(G, Γ) ∈ Gn, then for any ϕ ∈ RnΓ ,

〈L1/2
Γ ϕ, ϕ〉

36M2(M + 3) max{3c, 4π2}
(

2
3π +

√
2

27

) ≤ 〈SΓϕ, ϕ〉 ≤ 784M4(3c + 20)(
1

2π −
√

2
12

) 〈L1/2
Γ ϕ, ϕ〉.

Proof. Let φ(i, j) = min{i − j mod nΓ, j − i mod nΓ}. G[Γ] is a cycle, so L̃(i, j) =
−φ(i, j)−2 for i �= j. The spectral decomposition of LΓ is well known, namely,

LΓ =

⌊nΓ
2
⌋∑

k=1

λk(LΓ)
[

xkxT
k

‖xk‖2 + ykyT
k

‖yk‖2

]
,

where λk(LΓ) = 2 − 2 cos 2πk
nΓ

and xk(j) = sin 2πkj
nΓ

, yk(j) = cos 2πkj
nΓ

, j = 1, ..., nΓ. If 
nΓ is odd, then λ(nΓ−1)/2 has multiplicity two, but if nΓ is even, then λnΓ/2 has only 
multiplicity one, as xnΓ/2 = 0. If k �= nΓ/2, we have

‖xk‖2 =
nΓ∑

j=1
sin2 2πkj

nΓ
= nΓ

2 − 1
2

nΓ∑
j=1

cos 4πkj

nΓ

= nΓ

2 − 1
4

[
sin(2πk(2 + 1

nΓ
))

sin 2πk
nΓ

− 1
]

= nΓ

2 ,

and so ‖yk‖2 = nΓ
2 as well. If k = nΓ/2, then ‖yk‖2 = nΓ. If nΓ is odd,

L
1/2
Γ (i, j) = 2

√
2

nΓ

nΓ−1
2∑

k=1

[
1 − cos 2kπ

nΓ

]1/2[
sin
[

2πki

nΓ

]
sin
[

2πkj

nΓ

]
− cos

[
2πki

nΓ

]
cos
[

2πkj

nΓ

]]

= 4
nΓ

nΓ−1
2∑

k=1

sin
[

π

2
2k

nΓ

]
cos
[
φ(i, j)π 2k

nΓ

]

= 2
nΓ

nΓ∑
sin
[

π

2
2k

nΓ

]
cos
[
φ(i, j)π 2k

nΓ

]
,

k=0
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and if nΓ is even,

L
1/2
Γ (i, j) = 2

nΓ
(−1)i+j + 4

nΓ

nΓ
2 −1∑
k=1

sin
[

π

2
2k

nΓ

]
cos
[
φ(i, j)π 2k

nΓ

]

= 2
nΓ

nΓ∑
k=0

sin
[

π

2
2k

nΓ

]
cos
[
φ(i, j)π 2k

nΓ

]
.

L
1/2
Γ (i, j) is simply the trapezoid rule applied to the integral of sin( π

2 x) cos(φ(i, j)πx) on 
the interval [0, 2]. Therefore,

∣∣∣∣L1/2
Γ (i, j) + 2

π(4φ(i, j)2 − 1)

∣∣∣∣ =
∣∣∣∣L1/2

Γ (i, j) −
2ˆ

0

sin
(π

2 x
)

cos (φ(i, j)πx) dx

∣∣∣∣ ≤ 2
3n2

Γ
,

where we have used the fact that if f ∈ C2([a, b]), then

∣∣∣∣
bˆ

a

f(x)dx − f(a) + f(b)
2 (b − a)

∣∣∣∣ ≤ (b − a)3

12 max
ξ∈[a,b]

|f ′′(ξ)|.

Noting that nΓ ≥ 3, it quickly follows that

(
1

2π
−

√
2

12

)
〈L̃ϕ, ϕ〉 ≤ 〈L1/2

Γ ϕ, ϕ〉 ≤
(

2
3π

+
√

2
27

)
〈L̃ϕ, ϕ〉.

Combining this result with Corollary 3.7, and noting that 〈ϕ, SΓϕ〉 = |û|2G, where û is 
the harmonic extension of ϕ, we obtain the desired result

〈L1/2
Γ ϕ, ϕ〉

36M2(M + 3) max{3c, 4π2}
(

2
3π +

√
2

27

) ≤ 〈SΓϕ, ϕ〉 ≤ 584M4(3c + 14)(
1

2π −
√

2
12

) 〈L1/2
Γ ϕ, ϕ〉. �

3.4. An illustrative example

While the concept of a graph (G, Γ) having some H, Gk,� ⊂ H ⊂ G∗
k,�, as an M -

aggregation seems somewhat abstract, this simple formulation in itself is quite powerful. 
As an example, we illustrate that this implies a trace theorem (and, therefore, spectral 
equivalence) for all three-connected planar graphs with bounded face degree (number 
of edges in the associated induced cycle) and for which there exists a planar spring 
embedding with a convex hull that is not too thin (a bounded distance to Hausdorff 
distance ratio for the boundary with respect to some point in the convex hull) and 
satisfies bounded edge length and small angle conditions. Let Gf≤c

n be the elements of 
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(G, Γ) ∈ Gn for which every face other than the outer face Γ has at most c edges. We 
prove the following theorem1 in the appendix (Theorem A.3).

Theorem 3.9. If there exists a planar spring embedding X of (G, Γ) ∈ Gf≤c1
n for which

(1) K = conv ({[XΓ]i,·}nΓ
i=1) satisfies

sup
u∈K

inf
v∈∂K

sup
w∈∂K

‖u − v‖
‖u − w‖ ≥ c2 > 0,

(2) X satisfies

max
{i1,i2}∈E
{j1,j2}∈E

‖Xi1,· − Xi2,·‖
‖Xj1,· − Xj2,·‖

≤ c3 and min
i∈V

j1,j2∈N(i)

∠Xj1,· Xi,· Xj2,· ≥ c4 > 0,

then there exists an H, Gk,� ⊂ H ⊂ G∗
k,�, � ≤ k < 2c�, c ∈ N, such that H is an 

M -aggregation of (G, Γ) where c and M are constants that depend on c1, c2, c3, and c4.

4. Approximately energy minimizing embeddings

In this section, we make use of the analysis of Section 3 to give theoretical guarantees 
regarding approximate solutions to (2.2), which inspires the construction of a natural 
algorithm to approximately solve this optimization problem. In addition, we give nu-
merical results for our algorithm. Though in the previous section we took great care to 
produce results with explicit constants for the purpose of illustrating practical usefulness, 
in what follows we simply suppose that we have the spectral equivalence

1
c1

〈L1/2
Γ x, x〉 ≤ 〈SΓx, x〉 ≤ c2 〈L1/2

Γ x, x〉, (4.1)

for all x ∈ RnΓ and some constants c1 and c2 which are not too large and can be explicitly 
chosen based on the results of Section 3.

4.1. Theoretical guarantees

Again, we note that if the minimal two non-trivial eigenvectors of SΓ produce a convex 
embedding, then this is the exact solution of (2.2). However, if this is not the case, then, 
by spectral equivalence, we can still make a number of statements.

1 The below theorem is shown for � ≤ k to avoid certain trivial cases involving small n. The same theorem 
holds for n sufficiently large and 4� < k, but it should also be noted that the entire analysis of this section 
also holds for � ≤ k, albeit with worse constants.
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The convex embedding XC given by

[XC ]j,· = 2
nΓ

(
cos 2πj

nΓ
, sin 2πj

nΓ

)
, j = 1, ..., nΓ,

is the embedding of the two minimal non-trivial eigenvectors of L1/2
Γ , and therefore,

hΓ(XC) ≤ 4c2 sin π

nΓ
≤ c1c2 min

XΓ∈cl(X )
hΓ(XΓ), (4.2)

thereby producing a c1c2 approximation guarantee for (2.2).
In addition, we can guarantee that the optimal embedding is largely contained in the 

subspace corresponding to the k minimal eigenvalues of L1/2
Γ when k is a reasonably large 

constant. In particular, if X∗
Γ minimizes (2.2), and Πi is the �2-orthogonal projection onto 

the direct sum of the eigenvectors corresponding to the i minimal non-trivial eigenvalues 
(counted with multiplicity) of L1/2

Γ , then

hΓ(X∗
Γ) ≥ Tr

(
[(I − Π2i)X∗

Γ]T SΓ(I − Π2i)X∗
Γ
)

≥ 1
c1

Tr
(

[(I − Π2i)X∗
Γ]T L

1/2
Γ (I − Π2i)X∗

Γ
)

≥ 2
c1

sin
(

π(i + 1)
nΓ

)
Tr
(

[(I − Π2i)X∗
Γ]T (I − Π2�)X∗

Γ
)
,

and hΓ(X∗
Γ) ≤ hΓ(XC), which, by using the property 2x

π ≤ sin x ≤ x for all x ∈
[
0, π

2
]
, 

implies that

Tr
(

[(I − Π2i)X∗
Γ]T (I − Π2i)X∗

Γ
)

≤ 2c1c2 sin (π/nΓ)
sin (π(i + 1)/nΓ) ≤ πc1c2

i + 1 .

4.2. Algorithmic considerations

The theoretical analysis of Subsection 4.1 inspires a number of natural techniques 
to approximately solve (2.2), such as exhaustively searching the direct sum of some 
constant number of low energy eigenspaces of SΓ. However, numerically, it appears that 
when the pair (G, Γ) satisfies certain conditions, such as the conditions of Theorem 3.9, 
the minimal non-trivial eigenvector pair often produces a convex embedding, and when 
it does not, the removal of some small number of boundary vertices produces a convex 
embedding. If the embedding is almost convex (i.e., convex after the removal of some 
small number of vertices), a convex embedding can be produced by simply moving these 
vertices so that they are on the boundary and between their two neighbors.

Given an approximate solution to (2.2), one natural approach simply consists of it-
eratively applying a smoothing matrix, such as dI − SΓ, d > ρ(SΓ), or the inverse S−1

Γ
defined on the subspace {x | 〈x, 1〉 = 0}, until the matrix XΓ is no longer a convex em-
bedding. In fact, applying this procedure to XC immediately produces a technique that 
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Algorithm 1 Embed the boundary Γ.
X = minimaleigenvectors(G, Γ)
If isplanar(X) = 0,

X ←
{

2
nΓ

(
cos 2πj

nΓ
, sin 2πj

nΓ

)}nΓ

i=1
Else

If isconvex(X) = 1,
Xalg = X
end Algorithm

Else
X ← makeconvex(X)

X ← X −
1nΓ 1

T
nΓ

X

nΓ

solve [XT X]Q = QΛ, Q orthogonal, Λ diagonal
X ← XQΛ−1/2

If hΓ(X) > hΓ

({
2

nΓ

(
cos 2πj

nΓ
, sin 2πj

nΓ

)}nΓ

i=1

)
X ←

{
2

nΓ

(
cos 2πj

nΓ
, sin 2πj

nΓ

)}nΓ

i=1
gap = 1
While gap > 0,

X̂ ← smooth(X)
If isplanar(X̂) = 0,

gap ← −1
Else

If isconvex(X̂) = 0,
X̂ ← makeconvex(X̂)

X̂ ← X̂ −
1nΓ 1

T
nΓ

X̂

nΓ

solve [X̂T X̂]Q = QΛ, Q orthogonal, Λ diagonal
X̂ ← X̂QΛ−1/2

gap ← hΓ(X) − hΓ(X̂)
If gap > 0

X ← X̂
Xalg = X

approximates the optimal solution within a factor of at least c1c2, and possibly better 
given smoothing. In order to have the theoretical guarantees that result from using XC , 
and benefit from the possibly nearly-convex Schur complement low energy embedding, 
we introduce Algorithm 1.

Algorithm 1 takes a graph (G, Γ) ∈ Gn as input, and first computes the minimal two 
non-trivial eigenvectors of the Schur complement, denoted by X. If X is planar and 
convex, the algorithm terminates and outputs X, as it has found the exact solution to 
(2.2). If X is non-planar, then this embedding is replaced by XC , the minimal two non-
trivial eigenvectors of the boundary Laplacian to the one-half power. If X is planar, but 
non-convex, then some procedure is applied to transform X into a convex embedding. 
The embedding is then shifted so that the origin is the center of mass, and a change of 
basis is applied so that XT X = I. However, if hΓ(X) > hΓ(XC), then clearly XC is a 
better initial approximation, and we still replace X by XC . We then perform some form 
of smoothing to our embedding X, resulting in a new embedding X̂. If X̂ is non-planar, 
the algorithm terminates and outputs X. If X̂ is planar, we again apply some procedure 
to transform X̂ into a convex embedding, if it is not already convex. Now that we have 
a convex embedding X̂, we shift X̂ and apply a change of basis, so that X̂T 1 = 0 and 
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X̂T X̂ = I. If hΓ(X̂) < hΓ(X), then we replace X by X̂ and repeat this smoothing 
procedure, producing a new X̂, until the algorithm terminates. If hΓ(X̂) ≥ hΓ(X), then 
we terminate the algorithm and output X.

It is immediately clear from the statement of the algorithm that the following result 
holds.

Proposition 4.1. The embedding Xalg of Algorithm 1 satisfies hΓ(Xalg) ≤ c1c2 ×
minXΓ∈X hΓ(XΓ).

We now discuss some of the finer details of Algorithm 1. Determining whether an 
embedding is planar can be done in near-linear time using the sweep line algorithm [18]. 
If the embedding is planar, testing if it is also convex can be done in linear time. One such 
procedure consists of shifting the embedding so the origin is the mass center, checking 
if the angles each vertex makes with the x-axis are properly ordered, and then verifying 
that each vertex xi is not in conv({o, xi−1, xi+1}). Also, in practice, it is advisable to 
replace conditions of the form hΓ(X) − hΓ(X̂) > 0 in Algorithm 1 by the condition 
hΓ(X) − hΓ(X̂) > tol for some small value of tol, in order to ensure that the algorithm 
terminates after some finite number of steps.

There are a number of different choices for smoothing procedures and techniques to 
make a planar embedding convex. For the numerical experiments that follow, we simply 
consider the smoothing operation X ← S−1

Γ X, and make a planar embedding convex by 
replacing the embedding by its convex hull, and place vertices equally spaced along each 
line. For example, if x1 and x5 are vertices of the convex hull, but x2, x3, x4 are not, 
then we set x2 = 3/4x1 + 1/4x5, x3 = 1/2x1 + 1/2x5, and x4 = 1/4x1 + 3/4x5. Given 
the choices of smoothing and making an embedding convex that we have outlined, the 
version of Algorithm 1 that we are testing has complexity near-linear in n. The main 
cost of this procedure is the computations that involve SΓ.

All variants of Algorithm 1 require the repeated application of SΓ or S−1
Γ to a vector in 

order to compute the minimal eigenvectors of SΓ (possibly also to perform smoothing). 
The Schur complement SΓ is a dense matrix and requires the inversion of a n ×n matrix, 
but can be represented as the composition of functions of sparse matrices. In practice, 
SΓ should never be formed explicitly. Rather, the operation of applying SΓ to a vector x
should occur in two steps. First, the sparse Laplacian system (Lo +Do)y = Ao,Γx should 
be solved for y, and then the product Sx is given by SΓx = (LΓ + DΓ)x − AT

o,Γy. Each 
application of SΓ is therefore an O(n log n) procedure (using an O(n log n) Laplacian 
solver). The application of the inverse S−1

Γ defined on the subspace {x | 〈x, 1〉 = 0} also 
requires the solution of a Laplacian system. As noted in [21], the action of S−1

Γ on a 
vector x ∈ {x | 〈x, 1〉 = 0} is given by

S−1
Γ x = (0 I )

(
Lo + Do −Ao,Γ
−AT

o,Γ LΓ + DΓ

)−1(0
x

)
,



94 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73–107
as verified by the computation

SΓ
[
S−1

Γ x
]

= SΓ (0 I )
[(

I 0
−AT

o,Γ(Lo + Do)−1 I

)(
Lo + Do −Ao,Γ

0 SΓ

)]−1(0
x

)

= SΓ (0 I )
(

Lo + Do −Ao,Γ
0 SΓ

)−1(
I 0

AT
o,Γ(Lo + Do)−1 I

)(
0
x

)

= SΓ (0 I )
(

Lo + Do −Ao,Γ
0 SΓ

)−1(0
x

)
= x.

Given that the application of S−1
Γ has the same complexity as an application SΓ, the 

inverse power method is naturally preferred over the shifted power method for smoothing.

4.3. Numerical results

We perform a number of simple experiments, which illustrate the benefits of using 
the Schur complement to produce an embedding. In particular, we consider the same 
two types of triangulations as in Fig. 1, random triangulations of the unit disk and the 
3-by-1 rectangle. For each of these two convex bodies, we sample n points uniformly at 
random and compute a Delaunay triangulation. For each triangulation, we compute the 
minimal two non-trivial eigenvectors of the graph Laplacian LG, and the minimal two 
non-trivial eigenvectors of the Schur complement SΓ of the Laplacian LG with respect to 
the interior vertices V \Γ. The properly normalized and shifted versions of the Laplacian 
and Schur complement embeddings are denoted by Xl and Xs, respectively. We then 
check whether each of these embeddings of the boundary is planar. If the embedding is 
not planar, we note how many edge crossings the embedding has. If the embedding is 
planar, we also determine if it is convex, and compute the number of boundary vertices 
which are not vertices of the convex hull. If the embedding is planar, but not convex, then 
we simply replace it by the embedding corresponding to the convex hull of the original 
layout (as mentioned in Subsection 4.2). This convex-adjusted layout of the Laplacian 
and Schur complement embedding (shifted and properly scaled) is denoted by Xlc and 
Xsc, respectively. The embedding defined by minimal two non-trivial eigenvectors of 
the boundary Laplacian LΓ, denoted by XC , is the typical circular embedding of a 
cycle (defined in Subsection 4.1). Of course the value hΓ(Xs) is a lower bound for the 
minimum of (2.2), and this estimate is exact if Xs is a planar and convex embedding. 
The embedding resulting from Algorithm 1 is denoted by Xalg. For each triangulation, 
we compute the ratio of hΓ(Xs) to hΓ(Xl), hΓ(Xsc), hΓ(Xalg), hΓ(Xlc), and hΓ(XC), 
conditional on each of these layouts being planar. We perform this procedure one hundred 
times each for both convex bodies and a range of values of n. We report the results in 
Table 1.

These numerical results illustrate a number of phenomena. For instance, when consid-
ering the disk both the Laplacian embedding Xl and Schur complement Xs are always 
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Table 1
Numerical results for experiments on Delaunay triangulations of n points randomly generated in a disk or 
rectangle. One hundred experiments were performed for each convex body and choice of n. The row “% 
planar” gives the percent of the samples for which the boundary embedding was planar. The row “crossings 
per edge” reports the average number of edge crossings per edge, where the average is taken over all non-
planar embeddings. In some cases all one hundred experiments result in planar embeddings, in which case 
this entry does not contain a value. The row “# not convex” reports the average fraction of vertices which 
are not vertices of the resulting convex hull. This average is taken over all planar embeddings. The row 
“energy ratio” reports the average ratio between the value of the objective function hΓ(·) for the embedding 
under consideration and hΓ(Xs). This, again, is an average over all planar embeddings.

Unit Circle 3 × 1 Rectangle
n = 1250 2500 5000 10000 20000 1250 2500 5000 10000 20000
% Xs 100 100 100 100 100 100 100 98 98 97
planar Xl 100 100 100 100 100 67 67 65 71 67

crossings Xs n/a n/a n/a n/a n/a n/a n/a 0.042 0.062 0.063
per edge Xl n/a n/a n/a n/a n/a 0.143 0.119 0.129 0.132 0.129

# not Xs 0.403 0.478 0.533 0.592 0.645 0.589 0.636 0.689 0.743 0.784
convex Xl 0.001 0 0 0 0 0.397 0.418 0.428 0.443 0.448

Xl 1.026 1.024 1.02 1.017 1.015 1.938 2.143 2.291 2.555 2.861
energy Xsc 1.004 1.004 1.004 1.004 1.003 1.127 1.164 1.208 1.285 1.356
ratio Xalg 1.004 1.004 1.004 1.004 1.003 1.124 1.158 1.204 1.278 1.339

Xlc 1.026 1.0238 1.02 1.017 1.015 1.936 2.163 2.301 2.553 2.861
XC 1.023 1.023 1.02 1.017 1.016 1.374 1.458 1.529 1.676 1.772

planar, usually close to convex, and their convex versions (Xlc and Xsc) both perform 
reasonably well compared to the lower bound hΓ(Xs) for Problem (2.2). The embed-
ding Xalg from Algorithm 1 produced small improvements over the results of the Schur 
complement, but this improvement was negligible when average ratio was rounded to 
the thousands place. As expected, the LΓ-based embedding XC performs well in this 
instance, as the original embedding of the boundary in the triangulation is already a 
circle. Most likely, any graph which possesses a very high level of macroscopic symme-
try shares similar characteristics. However, when we consider the rectangle, the convex 
version of the Schur complement embedding has a significantly better performance than 
the Laplacian-based embedding. In fact, for a large percentage of the simulations the 
Laplacian based-embedding Xl was non-planar, and possessed a relatively large number 
of average crossings per edge. We give a visual representation of the typical difference 
in the Laplacian vs Schur complement embeddings of the boundary in Fig. 5. In ad-
dition, in this instance, the smoothing procedure of Algorithm 1 leads to small, but 
noticeable improvements. Of course, the generic embedding XC performs poorly in 
this case, as the embedding does not take into account any of the dynamics of the 
interior.

The Schur complement embedding clearly outperforms the Laplacian embedding, 
especially for triangulations of the rectangle. From this, we can safely conclude that 
Laplacian embedding is not a reliable method to embed graphs, and note that, while 
spectral equivalence does not imply that the minimal two non-trivial eigenvectors pro-
duce a planar, near-convex embedding, practice illustrates that for well behaved graphs 
with some level of structure, this is a likely result.
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Fig. 5. An example of the Laplacian embedding Xl vs the (unsmoothed) Schur complement embedding Xs

of the boundary of the Delaunay triangulation of 1250 points randomly generated in a 3 × 1 rectangle. The 
Laplacian embedding is non-planar, and far from convex. The Schur complement embedding is planar and 
almost a convex embedding.
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Appendix A. Technical trace theorem proofs

Lemma A.1. Let G = Gk,�, 4� < k < 2c�, c ∈ N, with boundary Γ = {(i, 1)}k
i=1. For any 

ϕ ∈ Rk, the vector u defined by (3.1) satisfies

|u|G ≤
√

2c + 233
9 |ϕ|Γ.

Proof. We can decompose |u|2G into two parts, namely,

|u|2G =
k∑

i=1

�∑
j=1

(u(i + 1, j) − u(i, j))2 +
k∑

i=1

�−1∑
j=1

(u(i, j + 1) − u(i, j))2.

We bound each sum separately, beginning with the first. We have

u(i + 1, j) − u(i, j) =
(

1 − j − 1
� − 1

)
(a(i + 1, j) − a(i, j))

=
(

1 − j − 1
)

ϕ(i + j) − ϕ(i + 1 − j)
.

� − 1 2j − 1
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Squaring both sides and noting that 4� < k, we have

k∑
i=1

�∑
j=1

(u(i + 1, j) − u(i, j))2 ≤
k∑

i=1

�∑
j=1

[
ϕ(i + j) − ϕ(i + 1 − j)

2j − 1

]2

≤
k∑

p=1

2�−1∑
h=1

[
ϕ(p + h) − ϕ(p)

h

]2

≤ |ϕ|2Γ.

We now consider the second sum. Each term can be decomposed as

u(i, j + 1) − u(i, j) = a − a(i, j)
� − 1 +

(
1 − j

� − 1

)
[a(i, j + 1) − a(i, j)],

which leads to the upper bound

k∑
i=1

�−1∑
j=1

(u(i, j + 1) − u(i, j))2 ≤ 2
k∑

i=1

�−1∑
j=1

[
a − a(i, j)

� − 1

]2

+ 2
k∑

i=1

�−1∑
j=1

(a(i, j + 1) − a(i, j))2.

We estimate these two terms in the previous equation separately, beginning with the 
first. The difference a − a(i, j) can be written as

a − a(i, j) = 1
k

k∑
p=1

ϕ(p) − 1
2j − 1

j−1∑
h=1−j

ϕ(i + h)

= 1
k(2j − 1)

k∑
p=1

j−1∑
h=1−j

ϕ(p) − ϕ(i + h).

Squaring both sides,

(a − a(i, j))2 = 1
k2(2j − 1)2

⎛⎝ k∑
p=1

j−1∑
h=1−j

ϕ(p) − ϕ(i + h)

⎞⎠2

≤ 1
k(2j − 1)

k∑
p=1

j−1∑
h=1−j

(ϕ(p) − ϕ(i + h))2.

Summing over all i and j gives

k∑
i=1

�−1∑
j=1

[
(a − a(i, j))

� − 1

]2

≤ 1
(� − 1)2

k∑
i=1

�−1∑
j=1

1
k(2j − 1)

k∑
p=1

j−1∑
h=1−j

(ϕ(p) − ϕ(i + h))2

= k

4(� − 1)2

�−1∑ 1
2j − 1

j−1∑ k∑ (ϕ(p) − ϕ(i + h))2

k2/4

j=1 h=1−j i,p=1
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≤ k

4(� − 1) |ϕ|2Γ ≤ c|ϕ|2Γ.

This completes the analysis of the first term. For the second term, we have

a(i, j + 1) − a(i, j) = 1
2j + 1

⎡⎣ϕ(i + j) + ϕ(i − j) − 2
2j − 1

j−1∑
h=1−j

ϕ(i + h)

⎤⎦ .

Next, we note that∣∣∣∣∣ϕ(i + j) − ϕ(i)
2j − 1 − 2

2j − 1

j−1∑
h=1

ϕ(i + h)

∣∣∣∣∣ =

∣∣∣∣∣ϕ(i + j) − ϕ(i)
2j − 1 + 2

j−1∑
h=1

ϕ(i + j) − ϕ(i + h)
2j − 1

∣∣∣∣∣
≤ 2

j−1∑
h=0

|ϕ(i + j) − ϕ(i + h)|
2j − 1 ,

and, similarly,∣∣∣∣∣ϕ(i − j) − ϕ(i)
2j − 1 − 2

2j − 1

j−1∑
h=1

ϕ(i − h)

∣∣∣∣∣ =

∣∣∣∣∣ϕ(i − j) − ϕ(i)
2j − 1 + 2

j−1∑
h=1

ϕ(i − j) − ϕ(i − h)
2j − 1

∣∣∣∣∣
≤ 2

j−1∑
h=0

|ϕ(i − j) − ϕ(i − h)|
2j − 1 .

Hence,

l−1∑
j=1

(a(i, j + 1) − a(i, j))2 ≤
l−1∑
j=1

8
(2j + 1)2

⎡⎣(j−1∑
h=0

|ϕ(i + j) − ϕ(i + h)|
2j − 1

)2

+
(

j−1∑
h=0

|ϕ(i − j) − ϕ(i − h)|
2j − 1

)2⎤⎦ .

Once we sum over all i, the sum of the first and second term are identical, and therefore

k∑
i=1

l−1∑
j=1

(a(i, j + 1) − a(i, j))2 ≤ 16
k∑

i=1

l−1∑
j=1

(
j−1∑
h=0

|ϕ(i + j) − ϕ(i + h)|
(2j − 1)(2j + 1)

)2

.

We have

j−1∑
h=0

|ϕ(i + j) − ϕ(i + h)|
(2j − 1)(2j + 1) ≤ 1

3j

i+j−1∑
p=i

|ϕ(i + j) − ϕ(p)|
j

≤ 1
3j

i+j−1∑ |ϕ(i + j) − ϕ(p)|
i + j − p

,

p=i
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which implies that

16
k∑

i=1

l−1∑
j=1

(
j−1∑
h=0

|ϕ(i + j) − ϕ(i + h)|
(2j − 1)(2j + 1)

)2

≤ 16
9

k∑
i=1

l−1∑
j=1

⎛⎝1
j

i+j−1∑
p=i

|ϕ(i + j) − ϕ(p)|
i + j − p

⎞⎠2

≤ 16
9

k+�−1∑
q=1

q−1∑
m=1

(
1

q − m

q−1∑
p=m

|ϕ(q) − ϕ(p)|
q − p

)2

.

Letting r = q − m, s = q − p, and using Hardy’s inequality [8, Theorem 326], we obtain

16
9

k+�−1∑
q=1

q−1∑
m=1

(
1

q − m

q−1∑
p=m

|ϕ(q) − ϕ(p)|
q − p

)2

= 16
9

k+�−1∑
q=1

q−1∑
r=1

(
1
r

r∑
s=1

|ϕ(q) − ϕ(q − s)|
s

)2

≤ 64
9

k+�−1∑
q=1

q−1∑
r=1

[
ϕ(q) − ϕ(q − r)

r

]2

= 32
9

k+�−1∑
q1,q2=1
q1 �=q2

[
ϕ(q1) − ϕ(q2)

q1 − q2

]2

≤ 32
9

k+�−1∑
q1,q2=1
q1 �=q2

[
ϕ(q1) − ϕ(q2)

dG ((q1, 1), (q2, 1))

]2

,

where, if q > k, we associate (q, 1) with (q∗, 1), where q∗ = q mod k and 1 ≤ q∗ ≤ k. 
The previous sum consists of some amount of over-counting, with some terms (ϕ(q1) −
ϕ(q2))2 appearing eight times. However, the chosen indexing of the cycle Ck is arbitrary. 
Therefore, we can average over all k different choices of ordering that preserve direction. 
In particular,

k∑
i=1

l−1∑
j=1

(a(i, j + 1) − a(i, j))2 ≤ 32
9k

k−1∑
t=0

k+�−1∑
q1,q2=1
q1 �=q2

[
ϕ(q1 + t) − ϕ(q2 + t)

dG ((q1, 1), (q2, 1))

]2

.

For each choice of t, there are � − 1 indices which are over-counted by both summations. 
Let us consider a specific term corresponding to the indices q1 and q2. If neither of these 
are over-counted indices, the term will appear twice. If exactly one is an over-counted 
index, the term will appear four times. Finally, if both are over-counted indices, the 
term will appear eight times. Summing over all choices of t any term appears at most 
2(k − �) + 8� times, which leads to the upper bound

k∑ l−1∑
(a(i, j + 1) − a(i, j))2 ≤ 32

9
2(k − �) + 8�

k
|ϕ|2Γ <

112
9 |ϕ|2Γ.
i=1 j=1
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Combining all our estimates, we obtain the desired result

|u|G ≤
√

2c + 233
9 |ϕ|Γ. �

Theorem A.2. If H, Gk,� ⊂ H ⊂ G∗
k,�, 4� < k < 2c�, c ∈ N, is an M -aggregation of 

(G, Γ) ∈ Gn, then for any ϕ ∈ RnΓ ,

1
6M

√
M + 3 max{

√
3c, 2π}

|ϕ|Γ ≤ min
u|Γ=ϕ

|u|G ≤ 28M2√
3c + 20 |ϕ|Γ.

Proof. We first prove that there is an extension u of ϕ which satisfies |u|G ≤ c1|ϕ|Γ for 
some c1. To do so, we define auxiliary functions û and ϕ̂ on (G∗

2k,�, Γ2k,�). Let

ϕ̂(p) =
{

maxq∈Γ∩a(p+1)/2,1 ϕ(q) if p is odd,

minq∈Γ∩ap/2,1 ϕ(q) if p is even,

and û be extension (3.1) of ϕ̂. The idea is to upper bound the semi-norm for u by û, for 
û by ϕ̂ (using Corollary 3.4), and for ϕ̂ by ϕ. On each aggregate ai,j , let u take values 
between û(2i − 1, j) and û(2i, j), and let u equal a on a∗. We can decompose |u|2G into

|u|2G =
k∑

i=1

�∑
j=1

∑
p,q∈ai,j ,

p∼q

(u(p) − u(q))2 +
k∑

i=1

�∑
j=1

∑
p∈ai,j ,

q∈ai+1,j ,
p∼q

(u(p) − u(q))2

+
k∑

i=1

�−1∑
j=1

∑
p∈ai,j ,

q∈ai−1,j+1,
p∼q

(u(p) − u(q))2 +
k∑

i=1

�−1∑
j=1

∑
p∈ai,j ,

q∈ai+1,j+1,
p∼q

(u(p) − u(q))2

+
k∑

i=1

�−1∑
j=1

∑
p∈ai,j ,

q∈ai,j+1,
p∼q

(u(p) − u(q))2,

and bound each term of |u|2G separately, beginning with the first. The maximum energy 
semi-norm of an m vertex graph that takes values in the range [a, b] is bounded above 
by (m/2)2(b − a)2. Therefore,

∑
p,q∈ai,j ,

p∼q

(u(p) − u(q))2 ≤ M2

4 (û(2i − 1, j) − û(2i, j))2
.

For the second term,



J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73–107 101
∑
p∈ai,j ,

q∈ai+1,j ,
p∼q

(u(p) − u(q))2 ≤ M2 max
i1∈{2i−1,2i},

i2∈{2i+1,2i+2}

(û(i1, j) − û(i2, j))2

≤ 3M2[(û(2i − 1, j) − û(2i, j))2 + (û(2i, j) − û(2i + 1, j))2

+(û(2i + 1, j) − û(2i + 2, j))2].
The exact same type of bound holds for the third and fourth terms. For the fifth term,∑

p∈ai,j ,
q∈ai,j+1,

p∼q

(u(p) − u(q))2 ≤ M2 max
i1∈{2i−1,2i},
i2∈{2i−1,2i}

(û(i1, j) − û(i2, j + 1))2,

and, unlike terms two, three, and four, this maximum appears in |û|2G∗
2k,�

. Combining 
these three bounds, we obtain

|u|G ≤
√

73M

2 |û|G∗
2k,�

.

Next, we lower bound |ϕ|Γ by a constant times |ϕ̂|Γ2k,�
. By definition, in Γ ∩ai,1 there is a 

vertex which takes value ϕ̂(2i −1) and a vertex which takes value ϕ̂(2i). This implies that 
every term in |ϕ̂|Γ2k,�

is a term in |ϕ|Γ, with possibly different denominator. Distances 
between vertices on Γ can be decreased by at most a factor of 2M on Γ2k,�. In addition, 
it may be the case that an aggregate contains only one vertex of Γ, which results in 
ϕ̂(2i − 1) = ϕ̂(2i). Therefore, a given term in |ϕ|2Γ could appear four times in |ϕ̂|2Γ2k,�

. 
Combining these two facts, we immediately obtain the bound

|ϕ̂|Γ2k,�
≤ 4M |ϕ|Γ,

which gives the estimate

|u|G ≤
√

73M

2 |û|G∗
2k,�

≤
√

73M

2

√
8c + 475

9 |ϕ̂|Γ2k,�
≤ 28M2√

3c + 20 |ϕ|Γ,

where we have slightly increased the constants in the last inequality, for the sake of 
presentation. This completes the first half of the proof.

All that remains is to show that for any u, |ϕ|Γ ≤ c2|u|G for some c2. To do so, we 
define auxiliary functions ũ and ϕ̃ on (G2k,2�, Γ2k,2�). Let

ũ(i, j) =
{

maxp∈a�i/2�,�j/2� u(p) if i = j mod 2,

minp∈a�i/2�,�j/2� u(p) if i �= j mod 2.

Here, the idea is to lower bound the semi-norm for u by ũ, for ũ by ϕ̃ (using Corollary 3.4), 
and for ϕ̃ by ϕ. We can decompose |ũ|2G into
2k,2�
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|ũ|2G2k,2�
= 4

k∑
i=1

�∑
j=1

(ũ(2i − 1, 2j − 1) − ũ(2i, 2j − 1))2

+
k∑

i=1

�∑
j=1

(ũ(2i, 2j − 1) − ũ(2i + 1, 2j − 1))2 + (ũ(2i, 2j) − ũ(2i + 1, 2j))2

+
k∑

i=1

�−1∑
j=1

(ũ(2i − 1, 2j) − ũ(2i − 1, 2j + 1))2 + (ũ(2i, 2j) − ũ(2i, 2j + 1))2,

and bound each term separately, beginning with the first. The minimum squared energy 
semi-norm of an m vertex graph that takes value a at some vertex and value b at some 
vertex is bounded below by (b − a)2/m. Therefore,

(ũ(2i − 1, 2j − 1) − ũ(2i, 2j − 1))2 ≤ M
∑

p,q∈ai,j ,
p∼q

(u(p) − u(q))2.

For the second term, we first note that

min
i1∈{2i−1,2i},

i2∈{2i+1,2i+2}

(ũ(i1, 2j) − ũ(i2, 2j))2 ≤
∑

p∈ai,j ,
q∈ai+1,j ,

p∼q

(u(p) − u(q))2.

One can quickly verify by application of Cauchy-Schwarz that

(ũ(2i − 1, 2j) − ũ(2i + 2, 2j))2 + (ũ(2i, 2j) − ũ(2i + 1, 2j))2

is bounded above by

3(ũ(2i − 1, 2j) − ũ(2i, 2j))2 + 3(ũ(2i + 1, 2j) − ũ(2i + 2, 2j))2

+ 4 min
i1∈{2i−1,2i},

i2∈{2i+1,2i+2}

(ũ(i1, 2j) − ũ(i2, 2j))2.

The technique for the third term is identical to that of the second term. Therefore,

|ũ|G2k,2�
≤ 2

√
M + 3 |u|G.

Next, we upper bound |ϕ|Γ by a constant multiple of |ϕ̃|Γ2k,2�
. We can write |ϕ|2Γ as

|ϕ|2Γ =
k∑

i=1

∑
p,q∈Γ∩ai,1

(ϕ(p) − ϕ(q))2

d2
G(p, q) +

k−1∑
i1=1

k∑
i2=i1+1

∑
p∈Γ∩ai1,1,
q∈Γ∩ai2,1

(ϕ(p) − ϕ(q))2

d2
G(p, q) ,

and bound each term separately. The first term is bounded by
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∑
p,q∈Γ∩ai,1

(ϕ(p) − ϕ(q))2

d2
G(p, q) ≤ M2

4 (ϕ̃(2i − 1) − ϕ̃(2i))2.

For the second term, we first note that dG(p, q) ≥ 3dΓ2k,2�
((m1, 1), (m2, 1)) for p ∈

Γ ∩ ai1,1, q ∈ Γ ∩ ai2,1, m1 ∈ {2i1 − 1, 2i1}, m2 ∈ {2i2 − 1, 2i2}, which allows us to bound 
the second term by

∑
p∈Γ∩ai1,1,
q∈Γ∩ai2,1

(ϕ(p) − ϕ(q))2

d2
G(p, q) ≤ 9M2 max

m1∈{2i1−1,2i1},
m2∈{2i2−1,2i2}

(ϕ̃(m1) − ϕ̃(m2))2

d2
Γ2k,2�

(m1, m2) .

This immediately implies that

|ϕ|Γ ≤ 3M |ϕ̃|Γ2k,2�
,

and, therefore,

|ϕ|Γ ≤ 3M |ϕ̃|Γ2k,2�
≤ 3M max{

√
3c, 2π}|ũ|G2k,2�

≤ 6M
√

M + 3 max{
√

3c, 2π} |u|G.

This completes the proof. �
Theorem A.3. If there exists a planar spring embedding X of (G, Γ) ∈ Gf≤c1

n for which

(1) K = conv ({[XΓ]i,·}nΓ
i=1) satisfies

sup
u∈K

inf
v∈∂K

sup
w∈∂K

‖u − v‖
‖u − w‖ ≥ c2 > 0,

(2) X satisfies

max
{i1,i2}∈E
{j1,j2}∈E

‖Xi1,· − Xi2,·‖
‖Xj1,· − Xj2,·‖

≤ c3 and min
i∈V

j1,j2∈N(i)

∠Xj1,· Xi,· Xj2,· ≥ c4 > 0,

then there exists an H, Gk,� ⊂ H ⊂ G∗
k,�, � ≤ k < 2c�, c ∈ N, such that H is an 

M -aggregation of (G, Γ) where c and M are constants that depend on c1, c2, c3, and c4.

Proof. This proof consists of three main parts. First, we will prove some basic properties 
regarding the embedding X. Second, we will partition K into subregions, and prove a 
number of properties regarding these subregions. Third, we will use these subregions to 
define a partition of the vertex set of G, and prove that this partition is an M -aggregation.

The majority of the estimates that follow are not tight, and due to the long nature of 
this proof, simplicity is always preferred over improved constants. This proof relies on a 
sufficiently large dimension n, so that functions of c1, c2, c3, and c4 are sufficiently small 
in comparison. If at any point during the course of the proof this assumption does not 
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hold, then we may conclude that at least one of these constants depends on n, and may 
take M = n, thus completing the proof.

We begin by proving a number of preliminary estimates, obtained by simple geometry. 
The conditions of the theorem do not depend on the scale or relative location of the 
embedding X, so, without loss of generality, we may suppose that the choice of u which 
maximizes (1) is the origin o, and that the minimum edge length

min
(i1,i2)∈E

‖Xi1,· − Xi2,·‖ = 1.

We now state a number of basic facts.

Fact 1: The maximum edge length is at most c3.

Fact 2: The diameter of every inner face is at most 1
2c1c3.

Fact 3: The area of each interior face is at least a1 := 1
2 sin c4.

Fact 4: The area of each interior face is at most a2 := 1
4c1c2

3 cot π
c1

.

Fact 5: G has at least 2
c1

n faces and at most 2n faces.

Fact 6: The area of K is at least 2
c1

a1n and at most 2a2n.

Fact 1 follows from condition (2). Fact 2 is based on the upper bounds c1 on edge 
lengths and c3 on number of edges in an inner face. The lower bound in Fact 3 is the 
area of a triangle with two sides of length one and internal angle c4, a triangle which 
is contained, by assumption, in every inner face. The upper bound in Fact 4 is the area 
of a regular c1-gon with side lengths c3. Fact 5 follows from Euler’s formula and three-
connectedness. Fact 6 is simply an application of Fact 5 and the upper and lower bounds 
on the area of an inner face.

Using Fact 6, we can upper bound the distance and lower bound the Hausdorff distance 
(denoted by dH(·, ·)) between o and ∂K by

d(o, ∂K) ≤
√

2a2n

π
and dH(o, ∂K) ≥

√
2a1n

πc1
.

Combining these inequalities with condition (1), we obtain the estimates

c2

√
2a1n

πc1
≤ d(o, ∂K) ≤

√
2a2n

π
and

√
2a1n

πc1
≤ dH(o, ∂K) ≤ 1

c2

√
2a2n

π
.

Let us write points x ∈ R2 in polar coordinates x = (r, θ). Define ∂Kθ to be the 
unique x ∈ ∂K satisfying x = (r, θ), and ∂Kθ1,θ2 to be the shortest curve between ∂Kθ1

and ∂Kθ2 lying entirely in ∂K. The boundary ∂K is contained in the annulus
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∂K ⊂
{

x

∣∣∣∣∣ c2

√
2a1n

πc1
≤ ‖x‖ ≤ 1

c2

√
2a2n

π

}
,

and, therefore, by the convexity of K, the angle ∠ o ∂Kθ1 ∂Kθ2 is bounded away from 0
and π, say

0 < c5 ≤ ∠ o ∂Kθ1 ∂Kθ2 ≤ π − c5 < π

for all |θ1 − θ2| ≤ π/4 and some constant c5 that is independent of n. The condition on 
the distance between θ1 and θ2 is arbitrary, but avoids having two points on opposite 
sides of o.

We are now prepared to define a partition of K. Let k, � ∈ N equal

k =
⌊

c2

c1c3

√
πa1n

2c1

⌋
and � =

⌊
c2 sin c5

2c1c3

√
a1n

2πc1

⌋
and define

Ki,1 = conv
(

∂K 2π(i−1)
k , 2πi

k
, 2�−1

2� ∂K 2π(i−1)
k

, 2�−1
2� ∂K 2πi

k

)
,

for i = 1, ..., k,

Ki,j = conv
(

2�−j+1
2� ∂K 2π(i−1)

k
, 2�−j+1

2� ∂K 2πi
k

, 2�−j
2� ∂K 2π(i−1)

k
, 2�−j

2� ∂K 2πi
k

)
,

for i = 1, ..., k, j = 2, ..., �, and

Ka = conv
({

1
2∂K 2πi

k

}k

i=1

)
.

Suppose that k, � ≥ 3 (if k or � is less than three, then as previously mentioned, 
c1, c2, c3, c4 depend on n, and we are done). The triangles

� o
[

2�−j+1
2� ∂K 2π(i−1)

k

] [
2�−j+1

2� ∂K 2πi
k

]
and � o

[
2�−j

2� ∂K 2π(i−1)
k

] [
2�−j

2� ∂K 2πi
k

]
are similar, and therefore the quadrilaterals Ki,j, j �= 1, are trapezoids with angles in 

the range [c5, π − c5]. By the lower bound d(o, ∂K) ≥ c2

√
2a1n
πc1

and the formula for a 
chord of a circle, we can immediately conclude that the length of the sides is at least

d
(

2�−j+1
2� ∂K 2πi

k
, 2�−j

2� ∂K 2πi
k

)
≥

c2

√
2a1n
πc1

2�

and

d
(

2�−j
2� ∂K 2π(i−1) , 2�−j

2� ∂K 2πi
k

)
≥ 2c2

√
2a1n sin π ≥ c2

√
2a1n π

.

k πc1 k πc1 k



106 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73–107
Let

xi,j =
[

2�−j+1/2
2� ∂K 2π(i−1)

k

] [
2�−j+1/2

2� ∂K 2πi
k

]
∩
{(

r,
2π(i − 1/2)

k

) ∣∣∣ r > 0
}

,

i = 1, ..., k, j = 1, ..., �, serve as a “center” of sorts for each Ki,j . By the same chord 
argument used above,

d
(

conv
(

{xi,j}�
j=1

)
, conv

(
∂K 2π(i−1)

k
, 1

2∂K 2π(i−1)
k

))
≥ c2

√
2a1n

πc1

π

2k

and

d
(

conv
(

{xi,j}�
j=1

)
, conv

(
∂K 2πi

k
, 1

2∂K 2πi
k

))
≥ c2

√
2a1n

πc1

π

2k
.

In addition, by the formula for the height of a trapezoid and the lower bound on the 
angles of the trapezoids, we have

d

([
2�−j+ 1

2
2� ∂K 2π(i−1)

k

][
2�−j+ 1

2
2� ∂K 2πi

k

]
,
[

2�−j
2� ∂K 2π(i−1)

k

][
2�−j

2� ∂K 2πi
k

])
≥

c2

√
2a1n
πc1

4�
sin c5.

We note that, by the definitions of k and �, both of the above lower bounds is at least 
c1c3.

We are now prepared to define our aggregation. We will perform an iterative proce-
dure, in which we grow the aggregates ai,j until we have a partition with our desired 
properties. First, each ai,j will be a subset of the set of vertices contained in a face 
that intersects Ki,j . This condition, combined with Fact 4, proves that M is a constant 
depending on c1, c2, c3, c4. That c is a constant already follows from the definitions of 
k and �. In addition, this condition, paired with the upper bound 1

2c1c3 on the diam-
eter of an inner face and the bounds for the trapezoids, guarantees that non-adjacent 
aggregates (with respect to G∗

k,�) are not connected. This condition also guarantees that 
Γ ⊂ ∪k

i=1ai,1. All that remains is to show that G[ai,j] is connected and adjacent aggre-
gates (with respect to Gk,�) are connected to each other in our resulting aggregation.

First, let us add to each ai,j all vertices which lie on a face containing the point xi,j

(if the embedding of a vertex or edge does not intersect the point xi,j, then there is 
only one such face). By construction, so far G[ai,j] is connected for all i, j. To connect 
adjacent aggregates ai,j and ai,j+1 consider all the faces which intersect the line segment 
xi,jxi,j+1. Because this set of faces connects ai,j to ai,j+1, there exists a shortest path 
P := p1 ... pt, p1 ∈ ai,j , pt ∈ ai,j+1, between ai,j and ai,j+1 which only uses vertices 
in the aforementioned faces. Let s be the smallest index such that Xps,· ∈ Ki,j+1. Add 
to ai,j the vertices p1, ..., ps−1 and to ai,j+1 the vertices ps, ..., pt, for every i = 1, ..., k, 
j = 1, ..., � − 1. In parallel, also perform a similar procedure for all pairs of aggregates 
ai,j and ai+1,j by using the union of the line segments
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xi,j

[
2�−j+1/2

2� ∂K 2πi
k

]
and

[
2�−j+1/2

2� ∂K 2πi
k

]
xi+1,j

to connect xi,j and xi+1,j . At this point, each G[ai,j] is still connected, and adjacent 
aggregates are connected. However, not all vertices are in an aggregate yet. To complete 
the proof, perform a parallel breadth-first search for each ai,j simultaneously and add 
the vertices of each depth of this search to each ai,j iteratively, while adhering to the 
condition that ai,j is a subset of the set of vertices contained in a face that intersects 
Ki,j . Once the breadth-first search is complete, add all remaining vertices to a∗. This 
completes the proof. �
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