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motivates an algorithm to embed the outer face of a spring
embedding.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Graph drawing is an area at the intersection of mathematics, computer science, and
more qualitative fields. Despite the extensive literature in the field, in many ways the
concept of what constitutes the optimal drawing of a graph is heuristic at best, and
subjective at worst. For a general review of the major areas of research in graph drawing,
we refer the reader to [1,10]. When energy (i.e. Hall’s energy, the sum of squared distances
between adjacent vertices) minimization is desired, the optimal embedding in the plane
is given by the two-dimensional diffusion map induced by the eigenvectors of the two
smallest non-zero eigenvalues of the graph Laplacian [12-14]. This general class of graph
drawing techniques is referred to as spectral layouts. When drawing a planar graph, often
a planar embedding (a drawing in which edges do not intersect) is desirable. However,
spectral layouts of planar graphs are not guaranteed to be planar. When looking at
triangulations of a given domain, it is commonplace for the near-boundary points of
the spectral layout to “grow” out of the boundary, or lack any resemblance to a planar
embedding. For instance, see the spectral layout of a random triangulation of a disk and
rectangle in Fig. 1.

In his 1962 work titled “How to Draw a Graph,” Tutte found an elegant technique to
produce planar embeddings of planar graphs that also minimize “energy” in some sense
[20]. In particular, for a three-connected planar graph, he showed that if the outer face
of the graph is fixed as the complement of some convex region in the plane, and every
other point is located at the mass center of its neighbors, then the resulting embedding
is planar. This embedding minimizes Hall’s energy, conditional on the embedding of the
boundary face. This result is now known as Tutte’s spring embedding theorem, and this
general class of graph drawing techniques is known as force-based layouts. While this re-
sult is well known (see [11], for example), it is not so obvious how to embed the outer face.
This, of course, should vary from case to case, depending on the dynamics of the interior.

In this work, we examine how to embed the boundary face such that the embedding
is convex and minimizes Hall’s energy over all such convex embeddings with some given
normalization. While it is not clear how to exactly minimize energy over all convex em-
beddings in polynomial time, it also is not clear that this is a NP-hard optimization
problem. Proving that this optimization problem is NP-hard appears to be extremely
difficult, as the problem itself seems to lack any natural relation to a known NP-complete
problem. In what follows, we analyze this problem and produce an algorithm with the-
oretical guarantees for a large class of three-connected planar graphs.

Our analysis begins by observing that the Schur complement of the graph Laplacian
with respect to the interior vertices is the correct matrix to consider when choosing an
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Fig. 1. Delaunay triangulations of 1250 points randomly generated on the disk (A) and rectangle (B),
their non-planar spectral layouts (C) and (D), and planar layouts using a spring embedding of the Schur
complement of the graph Laplacian with respect to the interior vertices (E) and (F).

optimal embedding of boundary vertices. See Fig. 2 for a visual example of a spring
embedding using the two minimal non-trivial eigenvectors of the Schur complement. In
order to theoretically understand the behavior of the Schur complement, we prove a dis-
crete trace theorem. Trace theorems are a class of results in theory of partial differential
equations relating norms on the domain to norms on the boundary, which are used to
provide a priori estimates on the Dirichlet integral of functions with given data on the
boundary. We construct a discrete version of a trace theorem in the plane for “energy”-
only semi-norms. Using a discrete trace theorem, we show that this Schur complement
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(A) Laplacian Embedding (B) Schur Complement Embedding

Fig. 2. A visual example of embeddings of the 2D finite element discretization graph 3elt, taken from the
SuiteSparse Matrix Collection [5]. Figure (A) is the non-planar spectral layout of this 2D mesh, and Figure
(B) is a planar spring embedding of the mesh, using the minimal non-trivial eigenvectors of the Schur
complement to embed the boundary.

is spectrally equivalent to the boundary Laplacian to the one-half power. This spectral
equivalence result produces theoretical guarantees for the energy minimizing spring em-
bedding problem, but is also of independent interest and applicability in the study of
spectral properties of planar graphs. These theoretical guarantees give rise to a natural
algorithm with provable guarantees. The performance of this algorithm is also illustrated
through numerical experiments.

The remainder of the paper is as follows. In Section 2, we formally introduce Tutte’s
spring embedding theorem, characterize the optimization problem under consideration,
and illustrate the connection to the Schur complement. In Section 3, we consider trace
theorems for Lipschitz domains from the theory of elliptic partial differential equations,
prove discrete energy-only variants of these results for the plane, and show that the
Schur complement with respect to the interior is spectrally equivalent to the boundary
Laplacian to the one-half power. In Section 4, we use the results from the previous
section to give theoretical guarantees regarding approximate solutions to the original
optimization problem, and use these theoretical results to motivate an algorithm to
embed the outer face of a spring embedding. We present numerical results to illustrate
both the behavior of Schur complement-based embeddings compared to variations of
natural spectral embeddings, and the practical performance of the algorithm introduced.

2. Spring embeddings and the Schur complement

In this section, we introduce the main definitions and notation of the paper, formally
define the optimization problem under consideration, and show how the Schur comple-
ment is closely related to this optimization problem.
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2.1. Definitions and notation

Let G = (V,E), V = {1,...,n}, E C {e C V]|e] = 2}, be a simple, connected,
undirected graph. G is k-connected if it remains connected upon the removal of any k—1
vertices, and is planar if it can be drawn in the plane such that no edges intersect (save
for adjacent edges at their mutual endpoint). A face of a planar embedding of a graph
is a region of the plane bounded by edges (including the outer infinite region, referred
to as the outer face). Let G, be the set of all ordered pairs (G,T"), where G is a simple,
undirected, planar, three-connected graph of order n > 4, and I' C V, np := ||, are
the vertices of some face of G. Three-connectedness is an important property for planar
graphs, which, by Steinitz’s theorem, guarantees that the graph is the skeleton of a convex
polyhedron [19]. This characterization implies that for three-connected graphs (n > 4),
the edges corresponding to each face in a planar embedding are uniquely determined by
the graph. In particular, the set of faces is simply the set of induced cycles, so we may
refer to faces of the graph without specifying an embedding. One important corollary
of this result is that, for n > 4, the vertices of any face form an induced simple cycle.
Let N¢ (i) be the neighborhood of vertex i, Ng(S) be the union of the neighborhoods
of the vertices in S, and dg(i,j) be the distance between vertices ¢ and j in the graph
G. When the associated graph is obvious, we may remove the subscript. Let d(7) be the
degree of vertex i. Let G[S] be the graph induced by the vertices S, and dg(,j) be the
distance between vertices 7 and j in G[S]. If H is a subgraph of G, we write H C G. The
Cartesian product G10G2 between G = (V1, E1) and Gy = (Va, Es), is the graph with
vertices (v1,v9) € Vi X V4 and edges ((u1,uz), (v1,v2)) € E if (u1,v1) € Eq and ug = ve,
or u; = v; and (ug,vy) € Fy. The graph Laplacian Lg € R™*™ of G is the symmetric
matrix defined by

(Lom,a) = Y (zi—x,)7,

{i,j}€E

and, in general, a matrix is the graph Laplacian of some weighted graph if it is symmetric
diagonally dominant, has non-positive off-diagonal entries, and the vector 1 := (1, ...,1)7
lies in its nullspace. The convex hull of a finite set of points X is denoted by conv(X),
and a point x € X is a vertex of conv(X) if z ¢ conv(X\z). Given a matrix A, we denote
the ¢th row by A; ., the jth column by A. ;, and the entry in the ith row and jth column
by A; ;.

2.2. Spring embeddings

Here and in what follows, we refer to I' as the “boundary” of the graph G, V\I" as
the “interior,” and generally assume np := |I'| to be relatively large (typically np =
O(n'/?)). Of course, the concept of a “boundary” face is somewhat arbitrary, though,
depending on the application from which the graph originated (i.e., a discretization of



78 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73-107

some domain), one face is often already designated as the boundary face. If a face has not
been designated, choosing the largest induced cycle is a reasonable choice. By embedding
G in the plane and traversing the embedding, one can easily find all the induced cycles
of G in linear time and space [3].

Without loss of generality, suppose that I' = {n —nr + 1,...,n}. A matrix X € R"*?
is said to be a planar embedding of G if the drawing of G using straight lines and with
vertex i located at coordinates X; . for all i is a planar drawing. A matrix Xp € R"r*x?2
is said to be a convex embedding of I' if the embedding is planar and every point is a
vertex of the convex hull conv({[Xr];.};T;). Tutte’s spring embedding theorem states
that if Xt is a convex embedding of I", then the system of equations

X, — {d(lz) Yjen@Xi-  i=Lonn—nr

[Xrlic(n—np),, G=n-—-nr+1,..n

has a unique solution X, and this solution is a planar embedding of G [20].
We can write both the Laplacian and embedding of G in block-notation, differentiating
between interior and boundary vertices as follows:

Lo + Do _Ao r X
Lo = ’ Rnxn X = o ]RnXQ
¢ ( —Alr Lr+ Dr € ’ xr) € ’

where L,,D, € RM=no)x(n=—nr) [, D ¢ Rorxnr A, e RO-nmoxne x ¢
R(=nr)x2 " X1 € R**2 and L, and Ly are the Laplacians of G[V\I'] and G[I'], respec-
tively. Using block notation, the system of equations for the Tutte spring embedding of
some convex embedding Xt is given by

Xo = (Do + D[Lo])) M [(DILo] — Lo)Xo + Aor Xr],

where D[A] is the diagonal matrix with diagonal entries given by the diagonal of A.
Therefore, the unique solution to this system is

X, = (Lo+ Do) *Apr Xr.

We note that this choice of X, not only guarantees a planar embedding of G, but also
minimizes Hall’s energy, namely,

argn}q{in h(X) = (Lo + Do) " Ao r Xr,

where h(X) := Tr(XTLX) (see [14] for more on Hall’s energy).

While Tutte’s theorem is a very powerful result, guaranteeing that, given a convex
embedding of any face, the energy minimizing embedding of the remaining vertices re-
sults in a planar embedding, it gives no direction as to how this outer face should be



J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73-107 79

embedded. In this work, we consider the problem of producing a planar embedding that
is energy minimizing, subject to some normalization. We consider embeddings that sat-
isfy Xt Xr = I and X1 = 0, though other normalizations, such as X7X = I and
XT1 = 0, would be equally appropriate. The analysis that follows in this paper can be
readily applied to this alternate normalization, but it does require the additional step of
verifying a norm equivalence between V and I' for the harmonic extension of low energy
vectors, which can be produced relatively easily for the class of graphs considered in
Section 3. Let X be the set of all convex, planar embeddings Xt that satisfy X{£ Xt = T
and X1 = 0. The main optimization problem under consideration is

min h(X) s.t. Xr € cl(X), (2.1)

where cl(-) is the closure of a set. X is not a closed set, and so the minimizer of (2.1) may
be a non-convex embedding. However, by the definition of closure, any such minimizer
is arbitrarily close to a convex embedding. The normalizations XIT 1 =0 and XIT Xr=1
ensure that the solution does not degenerate into a single point or line. In what follows
we are primarily concerned with approximately solving this optimization problem. It
is unclear whether there exists an efficient algorithm to solve (2.1) or if the associated
decision problem is NP-hard. If (2.1) is NP-hard, it seems extremely difficult to verify
that this is indeed the case. This remains an open problem.

2.8. Schur complement of V\T

Given some choice of Xr, by Tutte’s theorem the minimum value of h(X) is attained
when X, = (L, + D,) "' 4,1 Xr, and given by

h(X)=Tr|([(Lo+ Do) "AorXr]t X{)

% Lo + Do _AO,F (Lo + Do)ile,FXF
_AZ,I" Lr + Dr Xr

= Tr(X{ [Lr + Dr — Al (Lo + Do) ' Ao r] Xr) = Tr (X[ SrXr),
where Sr is the Schur complement of Lg with respect to V\T,
Sp = Lr + Dr — Al (Lo + Do) " Ao .

For this reason, we can treat X, as a function of Xt and instead consider the optimization
problem

min Ap(Xr) st Xp € cl(X), (2.2)

where
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hr(Xr) := Tr(X{ SrXr).

This immediately implies that, if the minimal two non-trivial eigenvectors of Sr pro-
duce a convex embedding, then this is the exact solution of (2.2). However, a priori,
there is no reason to think that this embedding would be planar or convex. In Section 4,
we perform numerical experiments that suggest that this embedding is often planar, and
“near” a convex embedding in some sense. However, even if the embedding is planar,
converting a non-convex embedding to a convex one may increase the objective function
by a large amount. In Section 3, we show that Sr and Lllﬂ/ % are spectrally equivalent.
This spectral equivalence leads to provable guarantees for an algorithm to approximately
solve (2.2), as the minimal two eigenvectors of Lllq/ % are planar and convex.

First, we present a number of basic properties of the Schur complement of a graph
Laplacian in the following proposition. For more information on the Schur complement,
we refer the reader to [2,6,22].

Proposition 2.1. Let G = (V, E), n = |V|, be a graph and Lg € R™ ™ the associated
graph Laplacian. Let Lg and vectors v € R™ be written in block form

_ (L1 Li2 _ (U
L&) = (LQI L22> » V= (W) ’
where Loy € R™*™ vy € R™, and L1 # 0. Then
(1) S= Loy — L21L1_11L12 is a graph Laplacian,

(2) Y (€F Lool,,)eel — LglLﬁlng is a graph Laplacian,
(3) (Sw,w) = inf{(Lv,v)|ve = w}.

1
Proof. Let P = (_Ll} L12> € R™*™_ Then

- Ly L ~L7'L -
PTLP _ (—L21L111 I) (Léi L;;) ( 1]1_ 12) = L22 — L21L111L12 =S.

Because L111,,_y, + L121,, = 0, we have 1,,_,, = —Lﬁlnglm. Therefore P1,, = 1,
and, as a result,

s1,, = PT'LP1,, = PTL1, = PT0O=0.

In addition,

=1 i=1

Z(ezTnglm)eiezT — L21L;11L12] ]-m = [Z(S;TLQQ]-m)BiGZT — L22 ]-m + S].m
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m

= Z(eiTLmlm)ei — Lao1,,
=1

m
|:Z€Z'€;r — Im:| nglm = 0.
i=1

L1y is an M-matrix, so L1_11 is a non-negative matrix. L21L1_11L12 is the product of three
non-negative matrices, and so must also be non-negative. Therefore, the off-diagonal
entries of S and Z?;l(ezTngl)eieiT 7L21L1_11L12 are non-positive, and so both are graph
Laplacians.

Consider

(Lv,v) = (L11v1,v1) + 2(L12v2,v1) + (L2202, v2),

with vy fixed. Because L7 is symmetric positive definite, the minimum occurs when

0
a—vl<LU,’U> = 2L11v1 + 2L13v5 = 0.

Setting v; = 7L1711L12'U2, the desired result follows. 0O

The Schur complement Laplacian St is the sum of two Laplacians Ly and Dr —
AiF(LO + D,)"'A,r, where the first is the Laplacian of G[I'], and the second is a
Laplacian representing the dynamics of the interior.

In the next section we prove the spectral equivalence of Sp and Lllﬂ/ % for a large class
of graphs by first proving discrete energy-only trace theorems. Then, in Section 4, we
use this spectral equivalence to prove theoretical properties of (2.2) and motivate an
algorithm to approximately solve this optimization problem.

3. Trace theorems for planar graphs

The main result of this section takes classical trace theorems from the theory of partial
differential equations and extends them to a class of planar graphs. However, for our
purposes, we require a stronger form of trace theorem, one between energy semi-norms
(i.e., no £? term), which we refer to as “energy-only” trace theorems. These energy-
only trace theorems imply their classical variants with £2 terms almost immediately.
We then use these new results to prove the spectral equivalence of Sr and L%/ % for the
class of graphs under consideration. This class of graphs is rigorously defined below, but
includes planar three-connected graphs that have some regular structure (such as graphs
of finite element discretizations). In what follows, we prove spectral equivalence with
explicit constants. While this does make the analysis slightly messier, it has the benefit
of showing that equivalence holds for constants that are not too large, thereby verifying
that the equivalence is a practical result which can be used in the analysis of algorithms.
We begin by formally describing a classical trace theorem.
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Let Q € R? be a domain with boundary I' = 6€ that, locally, is a graph of a Lipschitz
function. H' (1) is the Sobolev space of square integrable functions with square integrable
weak gradient, with norm

| A A e A
Q

Let

1012 ax = 012, 0 + // )dxdy

for functions defined on T, and denote by H'/?(T") the Sobolev space of functions defined
on the boundary T' for which |- ||; /o, is finite. The trace theorem for functions in H' ()
is one of the most important and used trace theorems in the theory of partial differential
equations. More general results for traces on boundaries of Lipschitz domains, which
involve LP norms and fractional derivatives, are due E. Gagliardo [7] (see also [4]).
Gagliardo’s theorem, when applied to the case of H*(Q) and H/?(T), states that if
Q C R? is a Lipschitz domain, then the norm equivalence

lollyjzr = inf{[lulliq | ulr = ¢}

holds (the right hand side is indeed a norm on H'/?(T)). These results are key tools
in proving a priori estimates on the Dirichlet integral of functions with given data on
the boundary of a domain Q. Roughly speaking, a trace theorem gives a bound on the
energy of a harmonic function via norm of the trace of the function on I' = 9Q. In
addition to the classical references given above, further details on trace theorems and
their role in the analysis of PDEs (including the case of Lipschitz domains) can be found
n [15,17]. There are several analogues of this theorem for finite element spaces (finite
dimensional subspaces of H'(£2)). For instance, in [16] it is shown that the finite element
discretization of the Laplace-Beltrami operator on the boundary to the one-half power
provides a norm which is equivalent to the H'/?(I')-norm. Here we prove energy-only
analogues of the classical trace theorem for graphs (G,T") € G,,, using energy semi-norms

lul2 = (Lgu,u) and lp2 = Z ((l((;]))
p.g€T, de(p

The energy semi-norm | - |¢ is a discrete analogue of ||Vul|z2( ), and the boundary

semi-norm |-|p is a discrete analogue of the quantity f frxr W dx dy. In addition,

by connectivity, |+ |g and |+ |r are norms on the quotient space orthogonal to 1. We aim
to prove that for any ¢ € R™",
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(A) Gie,3 = C160Ps

Fig. 3. A visual example of Gy ¢ and GI:,Z for k = 16, £ = 3. The boundary I' is given by the outer (or, by
symmetry, inner) cycle.

1 )
— lelr < min |ulg < ez lplr
C1 ulr=¢

for some constants c1, co that do not depend on nr,n. We begin by proving these results
for a simple class of graphs, and then extend our analysis to more general graphs. Some
of the proofs of the below results are rather technical, and are therefore reserved for the
appendix.

3.1. Trace theorems for a simple class of graphs

Let G = C; 0P, be the Cartesian product of the k vertex cycle Cj and the ¢
vertex path P, where 4/ < k < 2¢f for some constant ¢ € N. The lower bound 4¢ < k
is arbitrary in some sense, but is natural, given that the ratio of boundary length to in-
radius of a convex region is at least 27. Vertex (i, j) in Gy ¢ corresponds to the product
ofi€ Cpand j € Pp,i=1,..,k, j =1,...,4. The boundary of Gy, is defined to be
I = {(i,1)}r_,. Let u € R¥** and ¢ € R* be functions on G, and T, respectively,
with u[(4, j)] denoted by w(%,j) and ¢[(i,1)] denoted by (7). For the remainder of the
section, we consider the natural periodic extension of the vertices (7, j) and the functions
u(i,7) and (i) to the indices ¢ € Z. In particular, if ¢ ¢ {1,...,k}, then (i,j) := (i*, ),
o(i) == p(i*), and u(i, j) = u(i*, j), where * € {1,...,k} and i* =4 mod k. Let G} , be
the graph resulting from adding to Gy ¢ all edges of the form {(i,5),(i — 1,5+ 1)} and
{(4,7),G+1,j+ 1}, i =1,..,k, j =1,...,0 — 1. We provide a visual example of G}, ¢
and Gy, , in Fig. 3. First, we prove a trace theorem for Gy g.

We have broken the proof of the trace theorem into two lemmas. Lemma 3.1 shows that
the discrete trace operator is bounded, and Lemma 3.2 shows that it has a continuous
right inverse. Taken together, these lemmas imply our desired result.

Lemma 3.1. Let G = Gy, 4 < k < 2¢l, ¢ € N, with boundary T = {(i,1)}F_,. For any
u € R¥* the vector p = ulr satisfies
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lplr < max{V3c, 27} |u|g.

Proof. We can decompose ¢(p + h) — ¢(h) into a sum of differences, given by
s—1
o(p+h) —o(p) = ulp+h,i) —ulp+h,i+1)
i=1
h
+Zu(p+i,s) —ulp+i—1,s)

+> ulp,s—i+1) —u(p,s — i),

i=1

h

where s = { ] By Cauchy-Schwarz,

N -2
1

EZu(p+i,s)—u(p+i—1,s)
p=1h=1L'" i=1 i
5] et E
u(p,s —i+1) —u(p,s —1)
p=1h=1L"" i=1 i

We bound the first and the second term separately. The third term is identical to the
first. Using Hardy’s inequality [8, Theorem 326], we can bound the first term by

k L%J 1 s—1 2 k 1 s—1 2 82
I EDIETIEH IS 9 S5 SR RIS D o«
p=1h=1 i=1 p=1s=1 § =1 h:[h/c]=s

1<h<|k/2]
k £—1 5 52
<4 Y (ulps) —ulps+1)) D o5
p=1s=1 h:[h/c]=s
1<h<|k/2]
We have
2 cs 2
s 9 1 s?(c—1) 4(c—1) 1
D, w<Y X B S GoDIrSriSa
h:[h/c]=s i=c(s—1)+1
1<h<|k/2]

for s > 2 (¢ > 3, by definition), and for s = 1,
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1 <1 g2
Z h2 = Z 26
hi[h/c]=1 i=1
1<h<|k/2]

Therefore, we can bound the first term by

3
k2] = 2,2 kel
Z [E U’ _u(p72+1 STZ b, —U(p,S—Fl))
p=1h=1 =1 p=1s=1
For the second term, we have
r 5] L& 2y |5 L )
2 thupﬂ 8) —ulp+i—1, 3)] <D 5> (ulptis) —ulp+i—1.s)
p=1h=1 i=1 p=1h=1 i=1
k
<ed > (ulp+1,5) —ulp,s))
p=1s=1

Combining these bounds produces the desired result
lolr < max{V3c, 27} |ulg. O

In order to show that the discrete trace operator has a continuous right inverse, we
need to produce a provably low-energy extension of an arbitrary function on I'. Let

k j—1
1 .
EZ and a(i, ) 2]—1 Z o(i + h).
p=1 h=1-—j
We consider the extension
N 1 j—1 .
wiod) = y=ja+ (1= 97 ) i) (3.

In the appendix (Lemma A.1), we prove the following inverse result for the discrete trace
operator.

Lemma 3.2. Let G = Gy, 4 < k < 2¢l, ¢ € N, with boundary T = {(i,1)}F_,. For any
© € R¥, the vector u defined by (3.1) satisfies

233
|u|G S 2c + T |§0|F

Combining Lemmas 3.1 and 3.2, we obtain our desired trace theorem.
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Theorem 3.3. Let G = Gy, 4 < k < 2¢, ¢ € N, with boundary I' = {(i,1)}F_,. For
any ¢ € R¥,

2] mln u c+ — %)
{ 2 } F = G > I

With a little more work, we can prove a similar result for a slightly more general class
of graphs. Using Theorem 3.3, we can almost immediately prove a trace theorem for any
graph H satistying Gy ¢ C H C Gy ,. In fact, Lemma 3.1 carries over immediately. In
order to prove a new version of Lemma 3.2, it suffices to bound the energy of u on the
edges in G} , not contained in Gy ¢. By Cauchy-Schwarz,

koo—1
e =+ 300 | ulid 1) = i = L)+ (ulid 1) = uli +1,9)°
i=1 j=1
E ¢ k01
_322 (i+1,5) —u(i,j) 2+QZZ (3,7 +1) —u(i, 5))?
i=1 j=1 =1 j=1

and therefore Corollary 3.4 follows immediately from the proofs of Lemmas 3.1 and 3.2.

Corollary 34. Let H satisfy Gy C H C Gy, 4 < k < 2¢l, ¢ € N, with boundary
= {(i, 1)}, For any ¢ € R”,

475
lelr < mln lulg < y/4c+ —— \<P|F
=p

max{\/_ 27}

3.2. Trace theorems for general graphs

In order to extend Corollary 3.4 to more general graphs, we introduce a graph op-
eration which is similar to in concept an aggregation (a partition of V' into connected
subsets) in which the size of aggregates are bounded. In particular, we give the following
definition.

Definition 3.5. The graph H, Gy C H C Gy ,, is said to be an M-aggregation of
(G,T) € G, if there exists a partition A = a, U {a; ; }Z;lé of V(G) satisfying

Gla; ;] is connected and |a; ;| < M forall i =1,....k, j =1,....¢,

rc Ule a1, and T'Na;q # 0 foralli =1,..,k,

Ng(as) C a, U Ule @i 0,

the aggregation graph of A\a., given by (A\as, {(ai, j, i, 5,) | Na(ai, j,) Naiy 5, #
0}), is isomorphic to H.

Ll
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(A) graph (G,T) (B) partition A (¢) Gs2 C
HCGgp

Fig. 4. An example of an M-aggregation. Figure (A) provides a visual representation of a graph G, with
boundary vertices I' enlarged. Figure (B) shows a partition A of G, in which each aggregate (enclosed
by dotted lines) has order at most four. The set a. is denoted by a shaded region. Figure (C) shows the
aggregation graph H of A\a.. The graph H satisfies G6,2 C H C Gj 5, and is therefore a 4-aggregation of
(G,T).

We provide a visual example in Fig. 4, and, later, in Subsection 3.4, we show that
this operation applies to a fairly large class of graphs. For now, we focus using the above
definition to prove trace theorems for graphs that have an M-aggregation H, for some
le CHC GI:,Z'

However, the M-aggregation procedure is not the only operation for which we can
control the behavior of the energy and boundary semi-norms. For instance, the behavior
of our semi-norms under the deletion of some number of edges can be bounded easily if
there exists a set of paths of constant length, with one path between each pair of vertices
which are no longer adjacent, such that no edge is in more than a constant number
of these paths. In addition, the behavior of these semi-norms under the disaggregation
of large degree vertices is also relatively well-behaved, see [9] for details. We give the
following result regarding graphs (G, T) for which some H, Gy C H C G} ,, is an M-
aggregation of (G,T'), but note that a large number of minor refinements are possible,
such as the two briefly mentioned in this paragraph.

Theorem 3.6. If H, Gy, C H C G}, 4 < k < 2¢l, ¢ € N, is an M-aggregation of
(G,T) € G,, then for any ¢ € R,

1
6M+/M + 3max{\/3c, 21}

lplr < Ilnin lule < 28M3v/3c + 20 |p]r.
ujr=¢

The proof of this result is rather technical, and can be found in the appendix (Theo-
rem A.2). The same proof of Theorem 3.6 also immediately implies a similar result. Let
L € R"r*"r be the Laplacian of the complete graph on I' with weights w(i, j) = dp?(i, ).
The same proof implies the following.

Corollary 3.7. If H, Gy C H C Gp 4, 4 < k < 2¢l, ¢ € N, is an M-aggregation of
(G,T) € G, then for any ¢ € R"T,



88 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73-107

1
12 < mln ule < 28M>V/3c+ 20 (L , /2,
6T T3 max(v/3e, 27r}< Ly, o) i e Vv (Lo, )

3.8. Spectral equivalence of Sr and LI{/Q

By Corollary 3.7, and the property (¢, Sre) = min,|.—, |ul (see Proposition 2.1),
in order to prove spectral equivalence between St and Lllﬂ/ 2, it suffices to show that Lé/ 2
and L are spectrally equivalent. This can be done relatively easily, and leads to a proof

of the main result of the section.

Theorem 3.8. If H, Gy C H C G, 4 < k < 2¢cl, ¢c € N, is an M-aggregation of
(G,T) € G, then for any ¢ € R"T,

11/ A
AM 2

Lo o) v < (rgp) s DI iz, g,

36M2(M +3) max(3e, 472) (& + ) (% %)

Proof. Let ¢(i,j) = min{i — j mod np, j —¢ mod nr}. G[I'] is a cycle, so z(i,j) =
—¢(i,5)~2 for i # j. The spectral decomposition of Ly is well known, namely,

5]
Rk
LF - AIC(I’].—‘)|: k kz + ykyk2:|a
= lzell® Nkl
where A\p(Lr) = 2 — 2cos 27;’“ and z(j) = sin QZ—fj, yr(j4) = cos m, j=1,...,np. If

nr is odd, then A¢,._1)/2 has multiplicity two, but if nr is even, then Anp/2 has only
multiplicity one, as ./ = 0. If & # nr/2, we have

5 o 27kj np 1 4rkj
lxk]l = E sin =——=) cos
— nr 2 24 nr
j= j=
_nr 1 sin(27k(2 + %)) _qlom
2 4 sin % 2’

and so [Jyx||* = % as well. If k = np/2, then [jyx||* = np. If np is odd,

np—1

22 & 2%k ]M? 2rki 2k 2rki 2rkj
L1/2(2 Jj)= i Z [1 — cos ﬂ} {Sin [ 7Tkn}sin [ ﬂ-k‘]} — cos [ 7Tkn}cos { ﬂk]”
n nr nr nr nr nr

Il
3 |
®
=]
| — |
S
3R
=
_
(@}
]
w0
| — |
©
—~
\‘@
<
~—
3
IS
Pyl
_

S
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and if nr is even,

L1
< 2k
Lllﬂ/2(l,]) = E( )i+ 4 - Z sin {—E] cos [(b(h])”n—J
k=1
nr 9 5
= — ZSIH |:——k:| CcOs |:¢(27])7r_k:|
nr =0 nr r

Ll/ (i,7) is simply the trapezoid rule applied to the integral of sin(§x) cos(¢(i, j)mx) on
the interval [0, 2]. Therefore,

2

2
br ””w(@(@j)?l)‘

2
2
1/2 /sm cos (p(i, j)mzx) dx
0

where we have used the fact that if f € C?([a,b]), then

’/f )d — M( a)' < I2a>3 o |f1(©)]

Noting that nr > 3, it quickly follows that

(% — g)(i%w < (Li%p,0) < <32 + %3)@%@-

Combining this result with Corollary 3.7, and noting that (p, Sr¢) = |i|%, where @ is
the harmonic extension of ¢, we obtain the desired result

L2 584 M4 (3¢ + 14
< r Sﬁa‘P> = < <SF%<,0> < % <L111/2<p <,0> 0
00120+ 3) (e 477} (3 + ) (- %)

3.4. An illustrative example

While the concept of a graph (G,I') having some H, Gy, C H C Gy ,, as an M-
aggregation seems somewhat abstract, this simple formulation in itself is quite powerful.
As an example, we illustrate that this implies a trace theorem (and, therefore, spectral
equivalence) for all three-connected planar graphs with bounded face degree (number
of edges in the associated induced cycle) and for which there exists a planar spring
embedding with a convex hull that is not too thin (a bounded distance to Hausdorff
distance ratio for the boundary with respect to some point in the convex hull) and
satisfies bounded edge length and small angle conditions. Let G/=¢ be the elements of
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(G,T) € G, for which every face other than the outer face T' has at most ¢ edges. We
prove the following theorem! in the appendix (Theorem A.3).

Theorem 3.9. If there exists a planar spring embedding X of (G,T) € GI=¢ for which

(1) K = conv({[Xrli,}iL,) satisfies

- l[u— ol
sup inf sup T———0 > ¢y >0,
uek vEK weok |[u— w|
(2) X satisfies
X — X,
AT M <ecy oand  omin ZXjG X X, > e >0,
fiviz}e b || X, . = X, .| eV
{j1.52}€E J1,J2€N (i)

then there exists an H, Gy C H C Gy, ¢ < k < 2cl, ¢ € N, such that H is an
M -aggregation of (G,T') where ¢ and M are constants that depend on ¢y, ca, cs, and cq.

4. Approximately energy minimizing embeddings

In this section, we make use of the analysis of Section 3 to give theoretical guarantees
regarding approximate solutions to (2.2), which inspires the construction of a natural
algorithm to approximately solve this optimization problem. In addition, we give nu-
merical results for our algorithm. Though in the previous section we took great care to
produce results with explicit constants for the purpose of illustrating practical usefulness,
in what follows we simply suppose that we have the spectral equivalence

1
— (L;/2x,x) < (Srz,z) < co (L%/%",x), (4.1)
&]
for all z € R™" and some constants ¢; and ce which are not too large and can be explicitly
chosen based on the results of Section 3.

4.1. Theoretical guarantees

Again, we note that if the minimal two non-trivial eigenvectors of Sp produce a convex
embedding, then this is the exact solution of (2.2). However, if this is not the case, then,
by spectral equivalence, we can still make a number of statements.

L The below theorem is shown for £ < k to avoid certain trivial cases involving small n. The same theorem
holds for n sufficiently large and 4¢ < k, but it should also be noted that the entire analysis of this section
also holds for ¢ < k, albeit with worse constants.
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The convex embedding X¢ given by

2 219 219
Xclj. = — (cosﬂ,sinﬂ), j=1,..,nr,
nr nr nr

is the embedding of the two minimal non-trivial eigenvectors of Lllﬂ/ 2, and therefore,

. .
hr(Xe) < 4degsin E < cicy xfélif(lpo hr(Xr), (4.2)

thereby producing a ¢jce approximation guarantee for (2.2).
In addition, we can guarantee that the optimal embedding is largely contained in the

%/ % when k is a reasonably large

subspace corresponding to the £ minimal eigenvalues of L
constant. In particular, if X} minimizes (2.2), and II; is the £2-orthogonal projection onto
the direct sum of the eigenvectors corresponding to the ¢ minimal non-trivial eigenvalues

counted with multiplicity) o , then
( d with multiplicity) of LL/?, th

he(X7) > Tr([( - o) X7]7 Sp(I — Tz X7)

> CTe(((7 - T X7 LY/(T — Ty,) X7)
> 2 g (“(“)) Te([(1 — Tg) X717 (I = Tlar) X;),
C1 nr

and hr(X}) < hr(X¢), which, by using the property 22 < sinz < z for all z € [0, 3],
implies that

1T . 2¢1cosin (w/nr) mC1Co
Tr([(F = o) Xp] ™ (1 = i) Xr) < sin(7(i+1)/nr) — i+1°

4.2. Algorithmic considerations

The theoretical analysis of Subsection 4.1 inspires a number of natural techniques
to approximately solve (2.2), such as exhaustively searching the direct sum of some
constant number of low energy eigenspaces of Sp. However, numerically, it appears that
when the pair (G,I") satisfies certain conditions, such as the conditions of Theorem 3.9,
the minimal non-trivial eigenvector pair often produces a convex embedding, and when
it does not, the removal of some small number of boundary vertices produces a convex
embedding. If the embedding is almost convex (i.e., convex after the removal of some
small number of vertices), a convex embedding can be produced by simply moving these
vertices so that they are on the boundary and between their two neighbors.

Given an approximate solution to (2.2), one natural approach simply consists of it-
eratively applying a smoothing matrix, such as dI — Sr, d > p(Sr), or the inverse 51?1
defined on the subspace {z | (x,1) = 0}, until the matrix Xr is no longer a convex em-
bedding. In fact, applying this procedure to X immediately produces a technique that
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Algorithm 1 Embed the boundary T'.

X = minimaleigenvectors(G, I")
If isplanar(X) = 0,

. . nr
X + i(coszij,sin 27”)}
np nr

np
Else

If isconvex(X) =1,
Xarg = X
end Algorithm

Else
X <+ makeconvex(X)

1,.17 X

X+ X — —Fn;'r
solve [XT X]Q = QA, Q orthogonal, A diagonal
X +— XQA /2

- - nr
If hp(X) > hr ({n%(cos’%,sin 2%>} )
i=1
n

. . r
X « {2 cos 27I gip 273
nr

i=1

nr nr

i=1

gap =1
‘While gap > 0,
X « smooth(X)
If isplanar(j(\) =0,
gap < —1
Else .
If isconvex(X) = 0,
X « makeconvex(X)
— —~ 1,.17 X
X+ X -

nr
solve [S(\Tj(\]Q = QA, Q orthogonal, A diagonal
X XQa—vz
gap < hp(X) — hp(X)
If gap > 0
X« X
Xaig =X

approximates the optimal solution within a factor of at least cjco, and possibly better
given smoothing. In order to have the theoretical guarantees that result from using X¢,
and benefit from the possibly nearly-convex Schur complement low energy embedding,
we introduce Algorithm 1.

Algorithm 1 takes a graph (G,T) € G,, as input, and first computes the minimal two
non-trivial eigenvectors of the Schur complement, denoted by X. If X is planar and
convex, the algorithm terminates and outputs X, as it has found the exact solution to
(2.2). If X is non-planar, then this embedding is replaced by X¢, the minimal two non-
trivial eigenvectors of the boundary Laplacian to the one-half power. If X is planar, but
non-convex, then some procedure is applied to transform X into a convex embedding.
The embedding is then shifted so that the origin is the center of mass, and a change of
basis is applied so that X7 X = I. However, if hp(X) > hp(X¢), then clearly X¢ is a
better initial approximation, and we still replace X by Xc. We then perform some form
of smoothing to our embedding X, resulting in a new embedding X.If X is non-planar,
the algorithm terminates and outputs X. If X is planar, we again apply some procedure
to transform X into a convex embedding, if it is not already convex. Now that we have
a convex embedding X , we shift X and apply a change of basis, so that XT1 =0 and
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XTX = I If hr‘()?) < hr(X), then we replace X by X and repeat this smoothing
procedure, producing a new X, until the algorithm terminates. If hp(X) > hp(X), then
we terminate the algorithm and output X.

It is immediately clear from the statement of the algorithm that the following result
holds.

Proposition 4.1. The embedding Xaiq of Algorithm 1 satisfies hr(Xag) < cica X
minXpEX hl"(Xl")

We now discuss some of the finer details of Algorithm 1. Determining whether an
embedding is planar can be done in near-linear time using the sweep line algorithm [18].
If the embedding is planar, testing if it is also convex can be done in linear time. One such
procedure consists of shifting the embedding so the origin is the mass center, checking
if the angles each vertex makes with the x-axis are properly ordered, and then verifying
that each vertex z; is not in conv({o,x;_1,2;+1}). Also, in practice, it is advisable to
replace conditions of the form hr(X) — hr(X ) > 0 in Algorithm 1 by the condition
hr(X) — hr ()A() > tol for some small value of tol, in order to ensure that the algorithm
terminates after some finite number of steps.

There are a number of different choices for smoothing procedures and techniques to
make a planar embedding convex. For the numerical experiments that follow, we simply
consider the smoothing operation X <+ S !X, and make a planar embedding convex by
replacing the embedding by its convex hull, and place vertices equally spaced along each
line. For example, if 1 and x5 are vertices of the convex hull, but zs,z3, x4 are not,
then we set o = 3/4x1 + 1/4xs5, x5 = 1/2x1 + 1/2x5, and x4 = 1/421 + 3/4x5. Given
the choices of smoothing and making an embedding convex that we have outlined, the
version of Algorithm 1 that we are testing has complexity near-linear in n. The main
cost of this procedure is the computations that involve Sr.

All variants of Algorithm 1 require the repeated application of St or Sp. ! to a vector in
order to compute the minimal eigenvectors of St (possibly also to perform smoothing).
The Schur complement St is a dense matrix and requires the inversion of a n X n matrix,
but can be represented as the composition of functions of sparse matrices. In practice,
St should never be formed explicitly. Rather, the operation of applying St to a vector x
should occur in two steps. First, the sparse Laplacian system (L, + D,)y = A, rx should
be solved for y, and then the product Sz is given by Srz = (Lt + Dr)z — Azry. Each
application of Sr is therefore an O(nlogn) procedure (using an O(nlogn) Laplacian
solver). The application of the inverse Sy defined on the subspace {z | (x,1) = 0} also
requires the solution of a Laplacian system. As noted in [21], the action of S;l on a
vector € {x | (x,1) = 0} is given by

- Lo+D, —A,r \ /0
1. o o o,
s (=3 )" (0)
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as verified by the computation

Sr [Spta] =S (0 I)K—Agr(Lf+Do)1 ?) (LOEDO —gl;,,rﬂl <2>
S (0 4 o D)

-1
L,+D, —A, 0
=Sr (0 I)( 0 SF’F) <x> =z

Given that the application of ST ! has the same complexity as an application Sr, the
inverse power method is naturally preferred over the shifted power method for smoothing.

4.3. Numerical results

We perform a number of simple experiments, which illustrate the benefits of using
the Schur complement to produce an embedding. In particular, we consider the same
two types of triangulations as in Fig. 1, random triangulations of the unit disk and the
3-by-1 rectangle. For each of these two convex bodies, we sample n points uniformly at
random and compute a Delaunay triangulation. For each triangulation, we compute the
minimal two non-trivial eigenvectors of the graph Laplacian L, and the minimal two
non-trivial eigenvectors of the Schur complement St of the Laplacian Lg with respect to
the interior vertices V\I'. The properly normalized and shifted versions of the Laplacian
and Schur complement embeddings are denoted by X; and X, respectively. We then
check whether each of these embeddings of the boundary is planar. If the embedding is
not planar, we note how many edge crossings the embedding has. If the embedding is
planar, we also determine if it is convex, and compute the number of boundary vertices
which are not vertices of the convex hull. If the embedding is planar, but not convex, then
we simply replace it by the embedding corresponding to the convex hull of the original
layout (as mentioned in Subsection 4.2). This convex-adjusted layout of the Laplacian
and Schur complement embedding (shifted and properly scaled) is denoted by X;. and
Xe, respectively. The embedding defined by minimal two non-trivial eigenvectors of
the boundary Laplacian Lr, denoted by X¢, is the typical circular embedding of a
cycle (defined in Subsection 4.1). Of course the value hr(X;) is a lower bound for the
minimum of (2.2), and this estimate is exact if X, is a planar and convex embedding.
The embedding resulting from Algorithm 1 is denoted by Xg4. For each triangulation,
we compute the ratio of hr(X;) to hr(X;), hr(Xse), hr(Xag), hr(Xic), and hr(Xc),
conditional on each of these layouts being planar. We perform this procedure one hundred
times each for both convex bodies and a range of values of n. We report the results in
Table 1.

These numerical results illustrate a number of phenomena. For instance, when consid-
ering the disk both the Laplacian embedding X; and Schur complement X, are always
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Table 1

Numerical results for experiments on Delaunay triangulations of n points randomly generated in a disk or
rectangle. One hundred experiments were performed for each convex body and choice of n. The row “%
planar” gives the percent of the samples for which the boundary embedding was planar. The row “crossings
per edge” reports the average number of edge crossings per edge, where the average is taken over all non-
planar embeddings. In some cases all one hundred experiments result in planar embeddings, in which case
this entry does not contain a value. The row “# not convex” reports the average fraction of vertices which
are not vertices of the resulting convex hull. This average is taken over all planar embeddings. The row
“energy ratio” reports the average ratio between the value of the objective function hr(-) for the embedding
under consideration and hr(X;). This, again, is an average over all planar embeddings.

Unit Circle 3 X 1 Rectangle

n = 1250 2500 5000 10000 20000 1250 2500 5000 10000 20000
% Xs 100 100 100 100 100 100 100 98 98 97
planar X 100 100 100 100 100 67 67 65 71 67
crossings X n/a n/a n/a n/a n/a n/a n/a 0.042  0.062 0.063
per edge X, n/a n/a n/a n/a n/a 0.143 0.119 0.129 0.132 0.129
# not X 0.403 0.478 0.533  0.592 0.645 0.589 0.636 0.689  0.743 0.784
convex X 0.001 O 0 0 0 0.397 0.418 0.428 0.443 0.448

X 1.026 1.024 1.02 1.017 1.015 1.938 2.143 2.291 2.555 2.861

energy  Xsc 1.004 1.004 1.004 1.004 1.003 1.127 1.164 1.208 1.285 1.356
ratio Xaig 1.004 1.004 1.004 1.004 1.003 1.124  1.158 1.204  1.278 1.339
Xie 1.026 1.0238 1.02 1.017 1.015 1.936  2.163 2.301 2.553 2.861
Xc 1.023 1.023 1.02 1.017 1.016 1.374  1.458 1.529 1.676 1.772

planar, usually close to convex, and their convex versions (X;. and X,.) both perform
reasonably well compared to the lower bound hr(Xs) for Problem (2.2). The embed-
ding X4 from Algorithm 1 produced small improvements over the results of the Schur
complement, but this improvement was negligible when average ratio was rounded to
the thousands place. As expected, the Lp-based embedding X performs well in this
instance, as the original embedding of the boundary in the triangulation is already a
circle. Most likely, any graph which possesses a very high level of macroscopic symme-
try shares similar characteristics. However, when we consider the rectangle, the convex
version of the Schur complement embedding has a significantly better performance than
the Laplacian-based embedding. In fact, for a large percentage of the simulations the
Laplacian based-embedding X; was non-planar, and possessed a relatively large number
of average crossings per edge. We give a visual representation of the typical difference
in the Laplacian vs Schur complement embeddings of the boundary in Fig. 5. In ad-
dition, in this instance, the smoothing procedure of Algorithm 1 leads to small, but
noticeable improvements. Of course, the generic embedding Xo performs poorly in
this case, as the embedding does not take into account any of the dynamics of the
interior.

The Schur complement embedding clearly outperforms the Laplacian embedding,
especially for triangulations of the rectangle. From this, we can safely conclude that
Laplacian embedding is not a reliable method to embed graphs, and note that, while
spectral equivalence does not imply that the minimal two non-trivial eigenvectors pro-
duce a planar, near-convex embedding, practice illustrates that for well behaved graphs
with some level of structure, this is a likely result.
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S ==

(A) Laplacian Embedding (B) Schur Complement Embedding

Fig. 5. An example of the Laplacian embedding X; vs the (unsmoothed) Schur complement embedding X
of the boundary of the Delaunay triangulation of 1250 points randomly generated in a 3 X 1 rectangle. The
Laplacian embedding is non-planar, and far from convex. The Schur complement embedding is planar and
almost a convex embedding.
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Appendix A. Technical trace theorem proofs

Lemma A.1. Let G = Gy, 4 < k < 2¢l, ¢ € N, with boundary T = {(i,1)}_,. For any
© € R¥, the vector u defined by (3.1) satisfies

233
|U|G S 2c + T |(p|p

Proof. We can decompose |u|é into two parts, namely,

k 4 k (-1
ulg = (u(i+1,5) —u(i, ) + D> (i, j+1) — uli, §))*.
i=1 j=1 i=1 j=1

We bound each sum separately, beginning with the first. We have

u(i+1,5) —u(i,j) = (1 - E) (a(i+1,7) — a(i,j))

_ J=1\ e(i+j)—ei+1-7j)
_<1_€—1> 2j — 1
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Squaring both sides and noting that 4¢ < k, we have

k¢ 0 L,
ZZ(U(Z'JFLJ')* (i,5)) 2§ZZ[ plit]) 23_(1+1_3)}
k 20-1 9
<Y 3 [P <
p=1 h=1

We now consider the second sum. Each term can be decomposed as

ativi 1) = ulid) = “FH D (1 7 ) el + 1) - ati )

which leads to the upper bound
E -1 =T o

(i, j +1) — u(i, ))* <2 [ ] +2 i,7+1)—alt
223223 (.4 +1) - u(i, j)) ;Z E_l gg i (i, )2

We estimate these two terms in the previous equation separately, beginning with the
first. The difference a — a(i,j) can be written as

1 =
a—a(i,j) = =7 Z 1
p=1 h=1—j
LS
= o(p) — (i +h).
k(25 —1) o Sarnl
Squaring both sides,
2
k-1
(0= ali.0))? = gz | 0 D #lo) = li+h)
‘] p=1h=1—j
ko j—1
e (i+m)
J p:l h::lfj
Summing over all ¢ and j gives
E -1 1 k-1 ko j—1
>y e }s@_wzzk 52 3 (el —eli+ )
i=1 j=1 i=1 j=1 p=1 h=1—j




98 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73-107

k
< ——|ol2 <yl
= 4(£ _ 1) ‘§0|F = C|90|F
This completes the analysis of the first term. For the second term, we have
J—1

1
1) — - h)
a(i,j+1) —a(i,j) = 51 e(i+J) + (i —j) 27—1;1_21_]@”

Next, we note that

j—1 . . . J—1 . . .
PN 4 ¢ p(i+4) — (i) p(i+j)—pli+h)
py| = | LT Z A
wli+7) - 2;—1 2;—1}121“’“r 5 -1 ;,2::1 25 —1

+h
<2Z‘¢ £3)pli ]

and, similarly,

(i —Jj) — (i) +2z<ﬂ —h)

]—1

eli—3) = Qf(_i)l T i)

lp(i — j) — (i — h)|
<22 57— 1 .

Hence,

2

A S ol +7) — i+ h
Y (ali.j+ 1)~ ai. ) szﬂ (;wué)j_galun)

Once we sum over all 4, the sum of the first and second term are identical, and therefore

2

Eol—1 k 1-1 /j—1 i i+ h
ZZ( (i,7+1) —a(i,j)) <1GZZ<Z|§02]+_J1 21(_|_+1)>|>

i=1 j=1 i=1 j=1 \h=0
We have
i i+j—1 .
leo i+j)—pli+th) 1 lp(i +7) — ()]
— 2-D@@+1) T3 = J
i+7—1 .
1 i lo(i +) — (v
35 p— 1+5—0p
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which implies that

Eo1—1 ) 2 -1 i1, .. 2
= Joo( zﬂ (Hh)\ 16 1 lp(i +5) — ()]
16 - < — - -

IN
o5
Ea
+
~
L
2
|
/N
—
_
]
-
S
< |2
[
SRS
S
~—
[ V]

Letting r = ¢ — m, s = ¢ — p, and using Hardy’s inequality [8, Theorem 326], we obtain

_6k+g ]_q1< 1 S |Lp(q)—w(p)|>2:gk§:1ql (l r |<,0<Q)_<P(Q—S)|>2
9 qg—m p ) q=1 " °

—_

IN

32 "N T o) —pl@) 17
=T 2 {dc«ql, ><q2,1>>]

e
where, if ¢ > k, we associate (¢,1) with (¢*,1), where ¢* = ¢ mod k and 1 < ¢* < k.
The previous sum consists of some amount of over-counting, with some terms (¢(q1) —
<p(q2))2 appearing eight times. However, the chosen indexing of the cycle Cf is arbitrary.
Therefore, we can average over all k different choices of ordering that preserve direction.
In particular,

ko1-1 k-1 k+0—1 2
D) ali 2 < 32 ol +1) — (e +1)
;;(a(zd +1) —a(i,5))" < op 2 q1%::1 [ do (@D (0. D)

q17q2

For each choice of ¢, there are £ — 1 indices which are over-counted by both summations.
Let us consider a specific term corresponding to the indices ¢; and gs. If neither of these
are over-counted indices, the term will appear twice. If exactly one is an over-counted
index, the term will appear four times. Finally, if both are over-counted indices, the
term will appear eight times. Summing over all choices of ¢ any term appears at most
2(k — €) + 8¢ times, which leads to the upper bound

k 1-1
. . 322(k—0)+ 8¢ 112
33 fali g+ 1) —ali)? < PHEZD T e 2p

i=1 j=1



100 J.C. Urschel, L.T. Zikatanov / Linear Algebra and its Applications 609 (2021) 73-107

Combining all our estimates, we obtain the desired result

233
lule < 4/2¢+ <5 lolr. O

Theorem A.2. If H, Gy C H C G, 4 < k < 2¢l, ¢ € N, is an M-aggregation of
(G,T) € Gy, then for any ¢ € R"T,

1
6M /M + 3max{\/3c, 27}

lplr < Ilnin lule < 28M3V/3¢ + 20 |¢|r.
ujr=¢

Proof. We first prove that there is an extension u of ¢ which satisfies |u|g < ¢1]o|r for
some c1. To do so, we define auxiliary functions u and @ on (G;,M7 Tak.¢). Let

@(p) — manEFﬁa(p+l)/2)l go(q) if p is Odd7
MiNgerna,,,, ©(q) if piseven,
and u be extension (3.1) of @. The idea is to upper bound the semi-norm for u by u, for

u by @ (using Corollary 3.4), and for @ by ¢. On each aggregate a; ;, let u take values
between @(2i — 1, j) and 4(2i, ), and let u equal a on a.. We can decompose |u|% into

k 4 k L
e =>">" > wp)—uw@)?+> > Y (up) - ulg)?

i=1 j=1p,q9€a;,j, =1 j=1 p€a;j,
p~q q€Qi+1,5,
p~q
k (-1 k -1
X3 D W) —u@)?+D Y Y (up) —u(g)?
1=15=1 peEa; j, =1 j=1 peEa; j,
qEa;—1,j41, qEAi41,5+41,
PG P
k -1

3T > (ulp) - ulg)?,

1=1 j=1 p€ai;,

qEa; j+1,

pig

and bound each term of |u% separately, beginning with the first. The maximum energy

semi-norm of an m vertex graph that takes values in the range [a,b] is bounded above
by (m/2)?(b — a)?. Therefore,

Y (ulp) —ulg)® < — (@(2i — 1,5) — @(2i,5)) .

P,q€ai,j,
p~q

M2
4

For the second term,
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> () - u(@) <M max (i) - i)’
1 -4 El
qgiﬁi;’ in€{2i+1,2i+2}
p~q

< 3MP[(u(2i — 1,5) —u(2i,5))* + (@(24,§) — (2 + 1, 5))
+(U(2i + 1, 7) — a(2i + 2, 5))?].

The exact same type of bound holds for the third and fourth terms. For the fifth term,

Z (u(p) — u(q))2 < M2i 6{121;3)1( - (u(iy, §) — u(iz, j + 1))27
1€{2i-1,2i},
qzéceza;il in€{2i—1,2i}
p~q

and, unlike terms two, three, and four, this maximum appears in |t é% .- Combining

these three bounds, we obtain

VT3M
2

|u

|u|G = Giker

Next, we lower bound |¢[r by a constant times |@|r,, ,. By definition, in I'Na; ; there is a
vertex which takes value $(2i—1) and a vertex which takes value $(2¢). This implies that
every term in [P|p,, , is a term in |¢|r, with possibly different denominator. Distances
between vertices on I' can be decreased by at most a factor of 2M on I'y;, ». In addition,
it may be the case that an aggregate contains only one vertex of I', which results in
$(2i — 1) = §(2i). Therefore, a given term in [p[2 could appear four times in |§[Z,, .
Combining these two facts, we immediately obtain the bound

|$|F2k,£ < 4M|90|F7

which gives the estimate

VT3M | VT3M 475
ule < ——luley, , < — 8¢+~ 1@lrar, < 28M?*V/3¢+ 20 |¢lr,

where we have slightly increased the constants in the last inequality, for the sake of
presentation. This completes the first half of the proof.

All that remains is to show that for any u, |¢|r < c2|ule for some ¢3. To do so, we
define auxiliary functions u and @ on (Gak,2¢, ['ax,2¢). Let

u(i,j) = {maxpeaﬁ/zw,w/m u(p) ifi=j mod 2,
Millpear; oy ;0 WP) ifi#j mod2.

Here, the idea is to lower bound the semi-norm for u by w, for @ by ¢ (using Corollary 3.4),
and for @ by ¢. We can decompose [ulg, _, into
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~ ~ . . ~ . . 2
[l =4 (w(2i — 1,25 — 1) — (21,25 — 1))

M~

@
Il
—

<
Il

=1

(20,25 — 1) — (20 + 1,25 — 1)) + (@(2i,25) — w(2i + 1,25))?

+
o
10~

«
Il
-

~
|
—

+ (W20 — 1,25) — u(2i — 1,25 + 1)) + (@(24,25) — (24,25 + 1)),

M -
K.
I
N

i=1

and bound each term separately, beginning with the first. The minimum squared energy
semi-norm of an m vertex graph that takes value a at some vertex and value b at some
vertex is bounded below by (b — a)?/m. Therefore,

(@20 — 1,25 — 1) = (26,25 = 1))* <M > (ulp) — u(g))>.

P,qE€ai,j,
p~q

For the second term, we first note that

o (@i, 2)) - U(in,20)° < Y (ulp) — u(q))*.

i€{2i+1,2i4+2} qéiajf]
p~q’

One can quickly verify by application of Cauchy-Schwarz that
(20 — 1,29) — u(2i + 2,25))* + (@(24,25) — u(2i + 1,25))°
is bounded above by

3(w(2i — 1,25) — u(26,25))* + 3(w(2i + 1, 25) — u(2i + 2,25))?

+4 min U(iv, 27) — ulia, 25))%.
i €{2i—1,2i}, (u(ir, 27) — u(iz, 2))
ix€{2i+1,2i+2}

The technique for the third term is identical to that of the second term. Therefore,
|E|G2k‘2e <2vVM +3 |U|G
Next, we upper bound |¢|r by a constant multiple of |@|r,, ,,. We can write |¢|} as
k k=1 &
((p) — ©(a))? ((p) — ©(a))?
elf=>" > 4% (p, q) +> D > Zpq)
i=1 p,q€TNa; 1 G\ i1=143=i1+1 p€lna;, 1, G\
gelNaiy 1

and bound each term separately. The first term is bounded by
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3 (elp) = (@)* _ MTZ@(% — 1) — F(2i))%.

p,q€lNa; 1

For the second term, we first note that da(p,q) > 3dr,, ,, ((m1,1),(mg,1)) for p €
I'Nai 1,9 €T Naiy 1, mp € {261 — 1,241}, mo € {2i3 — 1, 2i2}, which allows us to bound
the second term by

> () —¢(@)* _ g2 (@(m1) — $(mo))?
d%}'(p7 Q) N mle{gnila_xlgil}v d12" (m17 m2) .
Zeerr?wa“’l’ ma€{2is—1,2is} 22t
Aig,1

This immediately implies that
lple < 3M|PIr,, .0
and, therefore,
lolr < 3M|@|r,y ., < 3M max{V3e, 27 }|i|c,, ,, < 6MVM + 3max{V3c, 27} |ulg.
This completes the proof. O

Theorem A.3. If there exists a planar spring embedding X of (G,T') € GI=¢ for which
(1) K = conv({[Xr)i,.}iE,) satisfies

[ — o

sup inf sup — > ¢ >0
ueK vEOK yeoK ||’LL—1UH ? ’

(2) X satisfies

X . — X5, . .
max M <c¢3 and min ZX; . X;.X;,.>c1>0,
{inin}eE || Xj, . — X, .. eV
{j1.j2}€E J1,J2€N ()

then there exists an H, Gy C H C Gy, ¢ < k < 2¢cl, ¢ € N, such that H is an
M -aggregation of (G,T') where ¢ and M are constants that depend on ¢, ca, cs, and cy.

Proof. This proof consists of three main parts. First, we will prove some basic properties
regarding the embedding X. Second, we will partition K into subregions, and prove a
number of properties regarding these subregions. Third, we will use these subregions to
define a partition of the vertex set of G, and prove that this partition is an M-aggregation.

The majority of the estimates that follow are not tight, and due to the long nature of
this proof, simplicity is always preferred over improved constants. This proof relies on a
sufficiently large dimension n, so that functions of ¢1, c2, c3, and ¢4 are sufficiently small
in comparison. If at any point during the course of the proof this assumption does not
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hold, then we may conclude that at least one of these constants depends on n, and may
take M = n, thus completing the proof.

We begin by proving a number of preliminary estimates, obtained by simple geometry.
The conditions of the theorem do not depend on the scale or relative location of the
embedding X, so, without loss of generality, we may suppose that the choice of u which
maximizes (1) is the origin o, and that the minimum edge length

min HX“ - Xi%.” =1.

(i17i2)€E

We now state a number of basic facts.
Fact 1: The maximum edge length is at most cs.
Fact 2: The diameter of every inner face is at most %6103.

Fact 3: The area of each interior face is at least a; := %sin Cq.

1

Fact 4: The area of each interior face is at most as := chcg cot ﬁ

Fact 5: G has at least %n faces and at most 2n faces.
Fact 6: The area of K is at least %aln and at most 2aan.

Fact 1 follows from condition (2). Fact 2 is based on the upper bounds ¢; on edge
lengths and c¢3 on number of edges in an inner face. The lower bound in Fact 3 is the
area of a triangle with two sides of length one and internal angle ¢4, a triangle which
is contained, by assumption, in every inner face. The upper bound in Fact 4 is the area
of a regular c;-gon with side lengths c3. Fact 5 follows from Euler’s formula and three-
connectedness. Fact 6 is simply an application of Fact 5 and the upper and lower bounds
on the area of an inner face.

Using Fact 6, we can upper bound the distance and lower bound the Hausdorff distance
(denoted by d*(,-)) between o and K by

2 2
d(0,0K) < /=22 and  d"(0,0K) > | 2.
m T

Combining these inequalities with condition (1), we obtain the estimates

2 2 2 1 /2
coq/ an < d(0,0K) <4/ a2n and 1/_(1111 < dH(o, 0K) < — agn'
TC1 ™ mCy Co ™

Let us write points 2 € R? in polar coordinates & = (r,6). Define Ky to be the

unique z € 9K satisfying = = (r,6), and 0Ky, g, to be the shortest curve between 0Ky,
and 0Ky, lying entirely in 0K. The boundary 0K is contained in the annulus
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DK { 2a1n 2] < 1 2a2n}

and, therefore, by the convexity of K, the angle Z0 0Ky, 0Ky, is bounded away from 0

and 7, say
0<cs <Z0o0Kp, 0Ky, <m—c5<m

for all |#; — 02| < 7/4 and some constant c5 that is independent of n. The condition on
the distance between 61 and 6, is arbitrary, but avoids having two points on opposite
sides of o.

We are now prepared to define a partition of K. Let k,¢ € N equal

Co Tain cosines [ ain
k= |— and (= |=—2=
cic3 2cy 2ci1c3 2mey

and define

Ki,l = conv (8K27r(i—1) 2 s 26_ 8K27r(1 D, 18K%>
% ’

k

fori=1,...,k,

Ki’j = conv (%;—%HaKh(tl) y ZE;JE+16K2£i y 22;] 8K27r<;-;1> 5 Zg—;JaK%i

#)

fori=1,...,k 7=2,...,¢, and

K, = conv ({ 8Kzg-}f:1> .

Suppose that k,¢ > 3 (if k or £ is less than three, then as previously mentioned,

<

[N

¢1, ca, €3, ¢4 depend on n, and we are done). The triangles

Do [M oK iy | [25H00Kon]  and Ao [Z0K e | [2H0K ]
k 3

are similar, and therefore the quadrilaterals Kj; ;, j # 1, are trapezoids with angles in

the range [c5, ™ — ¢5]. By the lower bound d(o0,0K) > ca4/ 2“1” and the formula for a
chord of a circle, we can immediately conclude that the length of the sides is at least

o 2a1n
. TC1
d (250K o, B OK s ) > —V

- 20

and

2a1n s 2ain
2t ]aK%(? 1) (9 ﬂ > 2¢o L sin & > co L
’ k TC, k e k
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Let

— 2m(e —1/2
viy = (2L OK s ] 220K ] 0 {(W/)>

k

7’>0},

i=1,..,k j=1,.. 4 serve as a “center” of sorts for each K; ;. By the same chord
argument used above,

2ain
wer 2k

Y

C2

d (conv ({xi-j}ﬁﬂ) , conv (8K27r(i71) , %8K21r(i—1) ))
k k

and

20in ™
d (conv ({xm}ﬁ:l) , conv (aKzgi ; %81(@)) > co 77011 %

k

In addition, by the formula for the height of a trapezoid and the lower bound on the
angles of the trapezoids, we have

[2a1n
02 e
d({% i+3 20K s 1)} [% ”28}{2”1} [2‘3 2 0K niy n} [” %’)Kg]) > ———sincs.

44

We note that, by the definitions of k£ and ¢, both of the above lower bounds is at least
C1C3.

We are now prepared to define our aggregation. We will perform an iterative proce-
dure, in which we grow the aggregates a;; until we have a partition with our desired
properties. First, each a;; will be a subset of the set of vertices contained in a face
that intersects Kj; ;. This condition, combined with Fact 4, proves that M is a constant
depending on ¢y, co, c3,cq. That ¢ is a constant already follows from the definitions of
k and ¢. In addition, this condition, paired with the upper bound % 5¢1c3 on the diam-
eter of an inner face and the bounds for the trapezoids, guarantees that non-adjacent
aggregates (with respect to Gy, ;) are not connected. This condition also guarantees that
' C UF_ja;1. All that remains is to show that Gla, ;] is connected and adjacent aggre-
gates (with respect to Gy ¢) are connected to each other in our resulting aggregation.

First, let us add to each a; ; all vertices which lie on a face containing the point z; ;
(if the embedding of a vertex or edge does not intersect the point z; ;, then there is
only one such face). By construction, so far G[a; ;] is connected for all ¢, j. To connect
adjacent aggregates a; ; and a; j41 consider all the faces which intersect the line segment
T;,Tij+1- Because this set of faces connects a; ; to a; 11, there exists a shortest path
P :=pi..pt, p1 € a;j, pt € a;;+1, between a;; and a; j41 which only uses vertices
in the aforementioned faces. Let s be the smallest index such that X, . € K; j41. Add
to a;; the vertices pq,...,ps—1 and to a; ;11 the vertices ps,...,p¢, for every i = 1,..., K,
j=1,...,¢ — 1. In parallel, also perform a similar procedure for all pairs of aggregates
a;; and a;y; ; by using the union of the line segments
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20—j5+1/2 20—j+1/2
X5 [‘7276/6.[(2;1} and éie/c')K%] Ti41,5

to connect z; ; and x;41,;. At this point, each G[a; ;] is still connected, and adjacent
aggregates are connected. However, not all vertices are in an aggregate yet. To complete
the proof, perform a parallel breadth-first search for each a; ; simultaneously and add
the vertices of each depth of this search to each a; ; iteratively, while adhering to the
condition that a; ; is a subset of the set of vertices contained in a face that intersects
K; ;. Once the breadth-first search is complete, add all remaining vertices to a,. This
completes the proof. O
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