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a b s t r a c t

We consider finite element discretizations for convection–diffusion problems under low
regularity assumptions. The derivation and analysis use the primal–dual weak Galerkin
(PDWG) finite element framework. The Euler–Lagrange formulation resulting from the
PDWG scheme yields a system of equations involving not only the equation for the
primal variable but also its adjoint for the dual variable. We show that the proposed
PDWG method is stable and convergent. We also derive a priori error estimates for the
primal variable in the Hϵ-norm for ϵ ∈ [0, 1

2 ). A series of numerical tests that validate
the theory is presented as well.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the model convection–diffusion problem for an unknown function u satisfying

−∇ · (a∇u − bu) =f , in Ω,

u =g1, on ΓD,

(−a∇u + bu) · n =g2, on ΓN .

(1.1)

ere, Ω ⊂ Rd(d = 2, 3) is an open bounded domain whose boundary ∂Ω is a Lipschitz polyhedron (polygon for d = 2)
ith ΓD∪ΓN = ∂Ω . Further, n is the unit outward normal vector to ΓN . Assume the Dirichlet boundary value satisfies the

ow regularity of g1 ∈ L2(ΓD) as opposed to the usual H
1
2 regularity. We further assume that the diffusion tensor and the

convection vector b are smooth enough, namely, a = {aij}d×d ∈
[
W 1,∞(Ω)

]d×d, b ∈ [W 1,∞(Ω)]d. In addition, we assume
that a(x) is symmetric and positive definite; i.e., there exists a constant α > 0, such that

ξ Taξ ≥ αξ T ξ, ∀ξ ∈ Rd.
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Some of the results presented below hold also for piece-wise smooth diffusion and convection coefficients and we indicate
this where appropriate.

As is often observed, (see e.g. [1,2] and the references therein) the standard Galerkin finite element approximation
for the convection–diffusion may exhibit nonphysical oscillations, especially in convection dominating regime when the
eigenvalues of a are small compared to the size of b and prohibitively small mesh sizes are required for providing
ccurate approximation. A variety of numerical stabilization techniques have been developed to resolve this challenge in
he past several decades such as fitted mesh methods [2,3], fitted operator methods [2], methods using approximations
f the fluxes [4,5], discontinuous Galerkin methods and mixed finite element methods. Such methods usually provide
pwind-type schemes and are applicable to the problems of complicated domains or layer structures. Among the various
pwind schemes, the streamline upwind Petrov–Galerkin method proposed by Hughes and Brooks is an efficient numerical
ethod [6,7] in improving the stability of the standard Galerkin method through the use of an additional stabilization term

n the upwind direction. It is known, however, that upwind methods introduce a great deal of artificial diffusion which is
ot desirable, especially in spatial dimensions d ≥ 2 [6,7]. Bakhvalov [8] proposed the optimization of numerical meshes,
here the meshes were generated from projections of an equidistant partition of layer functions. Another effective idea
f piecewise-equidistant meshes was proposed by Shishkin [9]. An efficient adaptive method has been proposed [10,11]
o address a variety of difficulties including layers [12]. The discontinuous Galerkin (DG) method [13–17] is an effective
echnique for solving conservation laws for elliptic problems. Furthermore, DG schemes include a upwinding which is
quivalent to the stabilization for the convection–diffusion problems [2,18–25]. Recently, Burman and He [26] developed
primal–dual mixed finite element method for indefinite advection–diffusion equations with optimal a priori error
stimates in the energy and the L2 norm for the primal variable when the Pecket number is low. In [27], Burman, Nechita
nd Oksanen devised a stabilized finite element method for a kind of inverse problems subject to the convection–diffusion
quation in the diffusion-dominated regime. Some error estimates in local H1 or L2 norms were derived for their numerical
pproximations.
Our goal is to derive and analyze a finite element discretization for the convection–diffusion problem (1.1) using the

rimal–dual weak Galerkin (PDWG). The PDWG framework provides mechanisms to enhance the stability of a numerical
cheme by combining solutions of the primal and the dual (adjoint) equation. Such technique was successfully used for
he constructing approximations to the elliptic Cauchy problems [28,29], elliptic equations in non-divergence form [30],
nd Fokker–Planck equations [31]. A similar idea has been explored by Burman [26,27,32–38] in other finite element
ontexts. Our choice of using the PDWG framework is mainly motivated by the fact that the PDWG techniques are natural
or deriving error estimates under low regularity assumptions. They also allow for general polyhedral (not necessarily
implicial) finite elements. Methods for convection–diffusion equations on such general meshes have been also developed
n the context of Virtual Finite Element methods (VEM) [39–41], DG methods and Hybrydized DG methods (HDG) [42–46].
hile in many cases variants of the HDG, VEM and WG methods are shown to be equivalent [47–49], for low regularity

olutions such equivalences are of little help in deriving error estimates. Our PDWG scheme is a novel approach allowing
or a priori error estimates for the primal variable in Hϵ-norm for 0 ≤ ϵ < 1

2 when the solution does not have regularity
igher than H1.
Compared with other existing finite element methods, our analysis of error estimates is based on the H2−ϵ(Ω) (0 ≤ ϵ <

1
2 ) regularity assumption for the solution of the dual problem with homogeneous boundary data, so that the corresponding
error estimate for the primal (main) variable requires merely the Hτ (Ω) regularity for some τ < 1 when C0-WG elements
re employed. This low regularity assumption on u is important because the weak solution to the model problem (1.1)
s characterized by (2.1) may have only Hs regularity with 0 < s < 1 when the Dirichlet data is only in L2(ΓD). To our
nowledge, regularity results for discontinuous boundary data are rather difficult to establish albeit the solutions can be
pproximated. In such cases, the solution of the continuous problem may not be in a classical Sobolev spaces. For detailed
heoretical results we refer to a monograph by J. Chabrowski [50], work by M. Costabel [51], and further remark that such
esults are discussed by N. Wiener [52,53] as early as the beginning of the last century.

The paper is organized as follows. Section 2 is devoted to a discussion/review of the weak differential operators as well
s their discretizations. In Section 3, the primal–dual weak Galerkin algorithm for the convection–diffusion problem (1.1)
s proposed. Section 4 presents some technical results, including the critical inf–sup condition, which plays an important
ole in deriving the error analysis in Section 6. The error equations for the PDWG scheme are derived in Section 5. In
Section 6, the error estimates in an optimal order are derived for the primal–dual WG finite element method in some
discrete Sobolev norms. Finally in Section 7, a series of numerical results is reported to demonstrate the effectiveness and
accuracy of the numerical method developed in the previous sections.

2. Preliminaries and notation

Throughout the paper, we follow the standard notation for Sobolev spaces and norms. For any open bounded domain
D ⊂ Rd with Lipschitz continuous boundary, we use ∥ · ∥s,D and |·|s,D to denote the norm and seminorm in the Sobolev
space Hs(D) for any s ≥ 0, respectively. The norms in Hs(D) for s < 0 are defined by duality with the norms in H |s|(D) [54].
The inner product in Hs(D) is denoted by (·, ·)s,D. The space H0(D) coincides with L2(D), for which the norm and the inner
product are denoted by ∥ · ∥D and (·, ·)D, respectively. When D = Ω , or when the domain of integration is clear from the
context, we drop the subscript D in the norm and the inner product notation. For convenience, throughout the paper, we
2
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use ‘‘≲’’ to denote ‘‘less than or equal to’’ up to a generic constant which is independent of important parameters such as
the mesh size and physical parameters.

The weak formulation of the convection–diffusion model problem (1.1) is: find u ∈ L2(Ω) satisfying

(u,∇ · (a∇w) + b · ∇w) = −(f , w) + ⟨g2, w⟩ΓN + ⟨g1, a∇w · n⟩ΓD , ∀w ∈ W , (2.1)

here W = {w ∈ H2−ϵ(Ω) : w|ΓD= 0, a∇w · n|ΓN = 0} for some fixed ϵ ∈ [0, 1
2 ).

The dual problem corresponding to this primal formulation is: for a given ψ ∈ H−ϵ(Ω), find λ ∈ W such that

(v,∇ · (a∇λ) + b · ∇λ) = (ψ, v), ∀v ∈ Hϵ(Ω). (2.2)

n the following we assume that the solution to the dual problem is H2−ϵ(Ω)-regular and satisfies the following regularity
stimate

∥λ∥2−ϵ ≲ ∥ψ∥−ϵ . (2.3)

his regularity assumption also implies that when ψ ≡ 0, then the dual problem (2.2) has a unique solution λ ≡ 0.
Notice that the primal and the dual equation are unrelated to each other in the continuous model. However, combining

he discrete primal equation with the discrete dual equation through some stabilization terms in the context of weak
alerkin finite element methods gives rise to an efficient numerical scheme.

. Discrete weak differential operators

Denote by L := ∇ ·(a∇) the diffusion part of the differential operator in (1.1). The operator L and the gradient operator
re the two principle differential operators used in the weak formulation (2.1) for the convection–diffusion equation (1.1).
his section briefly introduces a weak version of L and the gradient operator; see [55] for details.
Let Th be a finite element partition of the domain Ω into polygons in 2D or polyhedra in 3D which is shape regular if

nd only if the following trace and inverse inequalities hold for any T ∈ Th, φ ∈ H1−θ (T ) and ψ–a polynomial on T ∈ Th:

∥φ∥
2
∂T ≲ h−1

T ∥φ∥
2
T + h1−2θ

T ∥φ∥
2
1−θ,T , ∥ψ∥

2
∂T ≲ h−1

T ∥ψ∥
2
T . (3.1)

e refer the reader to [55] for details and discussion of sufficient conditions on the partition so that these inequalities
old.
Further, we denote by Eh the set of all edges or flat faces in Th and by E0

h the set of all interior edges or flat faces. We
enote by hT the meshsize of T ∈ Th and by h = maxT∈Th hT the meshsize of Th.
Let T ∈ Th be a polygonal or polyhedral region with boundary ∂T . With every element T we associate a product space
(T ) defined as

W(T ) := L2(T ) × L2(∂T ) × L2(∂T ).

he element of this space is denoted by {v0, vb, vn}. Such definition is quite general, and just to give an example, if
∈ C1(T ) we can define v0 to be just v, vb to be the trace of v on ∂T ; vn = a∇v · n to be the trace of the flux on

T . Here n is the outward normal vector on ∂T . In the most general case, the members of such triplet do not have to be
elated at all.

Given v ∈ W(T ) (note v is a triplet of functions), we now define the functionals (distributions) [∇wv](ψ) and [Lwv](φ)
or all ψ ∈ [H1(T )]d, φ ∈ H2(T ) as follows:

[∇wv](ψ)T := −(v0,∇ · ψ)T + ⟨vb,ψ · n⟩∂T ,

[Lwv](φ)T := (v0,Lφ)T − ⟨vb, a∇φ · n⟩∂T + ⟨vn, φ⟩∂T .

ote that ∇wv and Lwv are the distributional versions of ∇ and ∇ · (a∇), respectively.
We now define the discrete versions of these functionals. Let us denote by Pr (T ) the space of polynomials on T of

egree (≤ r). The discretizations of [∇wv] and [Lwv] for v ∈ W(T ) are defined as the projections on [Pr (T )]d of the Riesz
epresentation of [∇w](·), and [Lw](·). Namely, for all ψ ∈ [Pr (T )]d, w ∈ Pr (T ), we set

(∇w,r,Tv,ψ)T = [∇wv](ψ) = −(v0,∇ · ψ)T + ⟨vb,ψ · n⟩∂T , (3.2)

(L v,w) = [L v](w) = (v ,Lw) − ⟨v , a∇w · n⟩ + ⟨v ,w⟩ . (3.3)
w,r,T T w,r,T 0 T b ∂T n ∂T

3
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Integration by parts gives the equivalent representations of these projections:

(∇w,r,Tv,ψ)T = (∇v0,ψ)T − ⟨v0 − vb,ψ · n⟩∂T , (3.4)

(Lw,r,Tv,w)T = (Lv0, w)T + ⟨v0 − vb, a∇w · n⟩∂T − ⟨a∇v0 · n − vn, w⟩∂T . (3.5)

4. Primal–dual weak Galerkin formulation

We now consider the following local and global piece-wise polynomial spaces (with and without boundary values).
For a given integer k ≥ 1 and s ≥ 0 we define:

Wk(T ) = Pk(T ) × Pk(∂T ) × Pk−1(∂T ),
Wh =

{
{σ0, σb, σn} : {σ0, σb, σn}|T∈ Wk(T ),∀T ∈ Th

}
,

W 0
h = {v ∈ Wh : vb = 0 on ΓD, vn = 0 on ΓN},

Mh = {w : w|T∈ Ps(T ),∀T ∈ Th}.

Here, the integer s is usually taken to be either k − 1 or k − 2. For any λ ∈ Wh, w ∈ Wh, and u ∈ Mh, we introduce the
following bilinear forms

s(λ,w) =

∑
T∈Th

sT (λ,w), (4.1)

b(u, w) =

∑
T∈Th

(u,Lww + b · ∇ww)T , (4.2)

where

sT (λ,w) =h−3
T ⟨(|a|T + |b · n|)(λ0 − λb), w0 − wb⟩∂T

+ h−1
T ⟨a∇λ0 · n − λn, a∇w0 · n − wn⟩∂T

+ γ (Lλ0 + b · ∇λ0,Lw0 + b · ∇w0)T .

(4.3)

Here, γ ≥ 0 is a parameter independent of the meshsize h and the coefficients of the PDE; and |a|2T = supx∈T

(∑d
i,j=1 a

2
ij(x)

)
.

With this setup and notation, the primal–dual weak Galerkin finite element method for the convection–diffusion model
problem (1.1) is as follows:

Algorithm 4.1 (Primal–Dual Weak Galerkin). Find (uh; λh) ∈ Mh × W 0
h satisfying

s(λh, w) + b(uh, w) = −(f , w0) + ⟨g2, wb⟩ΓN + ⟨g1, wn⟩ΓD , ∀w ∈ W 0
h , (4.4)

b(v, λh) = 0, ∀v ∈ Mh. (4.5)

For any w ∈ H1(Ω), denote by Qhw the L2 projection onto the weak finite element space Wh such that on each element
T ,

Qhw = {Q0w,Qbw,Qn(a∇w · n)}.

Here and in what follows of this paper, on each element T , Q0 denotes the L2 projection operator onto Pk(T ); on each
edge or face e ⊂ ∂T , Qb and Qn stand for the L2 projection operators onto Pk(e) and Pk−1(e), respectively. We denote by
Qk−1

h and Qs
h the L2 projection operators onto the space of piecewise vector-valued polynomials of degree ≤ (k − 1) and

the space Mh, respectively.

Lemma 4.1. The L2 projection operators Qh, Qk−1
h and Qs

h satisfy the following commuting relations:

∇w(Qhw) = Qk−1
h (∇w), ∀w ∈ H1(T ); (4.6)

Lw(Qhw) = Qs
h(Lw), ∀w ∈ H1(T ), a∇w ∈ H(div; T ). (4.7)

Proof. The detailed proof of (4.6) can be found in [55].
As to (4.7), for any φ ∈ Ps(T ) and w ∈ H1(T ) such that a∇w ∈ H(div; T ), from (3.3) and integration by parts, we have

(Lw(Qhw), φ)T = (Q0w,Lφ)T − ⟨Qbw, a∇φ · n⟩∂T + ⟨Qn(a∇w · n), φ⟩∂T

= (w,Lφ)T − ⟨w, a∇φ · n⟩∂T + ⟨a∇w · n, φ⟩∂T

= (Lw, φ)T = (Qs
h(Lw), φ)T ,

which completes the proof of (4.7). □
4
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5. Existence and uniqueness

The stabilizer s(·, ·) induces a semi-norm in the finite element space Wh as follows:

|||w||| = s(w,w)
1
2 , ∀w ∈ Wh. (5.1)

In what follows of this paper, for the convenience of analysis, we assume that the convection vector b and the diffusion
tensor a are piecewise constants with respect to the partition Th. The analysis, however, can be generalized to the case
that the convection b and diffusion a are piecewise smooth functions.

Before we prove the existence and uniqueness (which follow from Lemma 5.2) we need the following result which is
found in [55].

Lemma 5.1. Let Th be a shape regular partition of Ω . For 0 ≤ t ≤ min(2, k), the following estimates hold true:∑
T∈Th

h2t
T ∥u − Q0u∥2

t,T ≲ h2(m+1)
∥u∥2

m+1, m ∈ [t − 1, k], k ≥ 1, (5.2)

∑
T∈Th

h2t
T ∥u − Q(k−1)

h u∥2
t,T ≲ h2m

∥u∥2
m, m ∈ [t, k], k ≥ 1, (5.3)

∑
T∈Th

h2t
T ∥u − Q(k−2)

h u∥2
t,T ≲ h2m

∥u∥2
m, m ∈ [t, k − 1], k ≥ 2. (5.4)

We are ready to prove that the discrete problem is solvable. We have the following result.

Lemma 5.2. Assume the convection tensor b and diffusion tensor a are uniformly piecewise constants with respect to the
finite element partition Th. The following inf–sup condition holds true:

sup
λ∈W0

h

b(v, λ)
|||λ|||

≥ β0hϵ∥v∥ϵ, ∀v ∈ Mh, (5.5)

here β0 > 0 is a constant independent of the meshsize h.

roof. For any ψ ∈ H−ϵ(Ω), let w ∈ H2−ϵ(Ω) be the solution to the dual problem (2.2) satisfying the regularity
stimate (2.3). By letting ρ = Qhw ∈ W 0

h , from the trace inequality (3.1) with θ = 0, and the estimate (5.2), we arrive at∑
T∈Th

h−3
T

∫
∂T
(|a|T + |b · n|)(ρ0 − ρb)2ds

≲
∑
T∈Th

h−3
T

∫
∂T

|Q0w − Qbw|
2ds

≲
∑
T∈Th

h−3
T

∫
∂T

|Q0w − w|
2ds

≲
∑
T∈Th

h−4
T

∫
T
|Q0w − w|

2dT + h−2
T

∫
T
|∇Q0w − ∇w|

2dT

≲h−2ϵ
∥w∥

2
2−ϵ .

(5.6)

Analogously, we have from the trace inequality (3.1) with θ = ϵ that∑
T∈Th

h−1
T

∫
∂T

|a∇ρ0 · n − ρn|
2ds

≲
∑
T∈Th

h−1
T

∫
∂T

|a∇Q0w · n − Qn(a∇w · n)|2ds

≲
∑
T∈Th

h−1
T

∫
∂T

|a∇Q0w · n − a∇w · n|
2ds

≲
∑
T∈Th

h−2
T ∥a∇Q0w · n − a∇w · n∥

2
T + h−2ϵ

T ∥a∇Q0w · n − a∇w · n∥
2
1−ϵ,T

−2ϵ 2

(5.7)
≲h ∥w∥2−ϵ .

5
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The inverse inequality then gives∑
T∈Th

γ (Lρ0 + b · ∇ρ0,Lρ0 + b · ∇ρ0)T ≲γ
∑
T∈Th

h−2ϵ
T ∥ρ0∥

2
2−ϵ,T

≲γ
∑
T∈Th

h−2ϵ
T ∥Q0w∥

2
2−ϵ,T

≲γ h−2ϵ
∥w∥

2
2−ϵ .

(5.8)

By combining the estimates (5.6)–(5.8), the H2−ϵ-regularity estimate (2.3), and the definition of |||ρ|||, we arrive at

|||ρ||| ≲ h−ϵ
∥ψ∥−ϵ . (5.9)

Now, by letting ρ = Qhw ∈ W 0
h , and then using Lemma 4.1 we obtain

b(v, ρ) =

∑
T∈Th

(v,Lw(Qhw) + b · ∇w(Qhw))T

=

∑
T∈Th

(v,Qs
h(Lw))T + (bv,Qk−1

h (∇w))T

=

∑
T∈Th

(v,Lw)T + (bv,∇w)T

=

∑
T∈Th

(v,Lw + b · ∇w)T

=(v, ψ).

(5.10)

Using (5.10) and (5.9) gives

sup
λ∈W0

h

b(v, λ)
|||λ|||

≥ sup
ρ=Qhw∈W0

h

b(v, ρ)
|||ρ|||

= sup
ψ∈H−ϵ (Ω)

(v, ψ)
|||ρ(ψ)|||

≥ β0 sup
ψ∈H−ϵ (Ω)

(v, ψ)
h−ϵ∥ψ∥−ϵ

= β0hϵ∥v∥ϵ

for a constant β0 independent of the meshsize h. This completes the proof of the lemma. □

Remark 5.1. If the stabilizer sT (λ,w) defined in (4.3) is chosen depending on the regularity as follows

sT (λ,w) =h−3+2ϵ
T ⟨(|a|T + |b · n|)(λ0 − λb), w0 − wb⟩∂T

+ h−1+2ϵ
T ⟨a∇λ0 · n − λn, a∇w0 · n − wn⟩∂T

+ γ h2ϵ
T (Lλ0 + b · ∇λ0,Lw0 + b · ∇w0)T ,

then the inf–sup condition (5.5) is independent of h.

The following theorem is concerned with the main result on solution existence and uniqueness for the primal–dual
eak Galerkin schemes (4.4)–(4.5).

heorem 5.3. Assume that the diffusion tensor a = a(x) and the convection vector b are piecewise constants with respect to
he finite element partition Th. Under the H2−ϵ(0 ≤ ϵ < 1

2 )-regularity assumption (2.3), the primal–dual weak Galerkin finite
lement algorithm (4.4)–(4.5) has one and only one solution for any k ≥ 2 and s = k − 2 or s = k − 1 when γ > 0. For the
ase of γ = 0 (i.e., no residual stability), the numerical scheme (4.4)–(4.5) has one and only one solution for any k ≥ 2 and
= k − 1.

roof. It suffices to show that zero is the only solution to the problems (4.4)–(4.5) with homogeneous data f = 0, g1 = 0
nd g2 = 0. To this end, assume f = 0, g1 = 0 and g2 = 0 in (4.4)–(4.5). By letting v = uh and w = λh, the difference of
4.4) and (4.5) gives s(λh, λh) = 0, which implies λ0 = λb and a∇λ0 · n = λn on each ∂T . This, together with the fact that

∈ W 0, leads to λ = 0 on Γ and a∇λ · n = 0 on Γ .
h h 0 D 0 N

6
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Next, it follows from (4.5), (3.4), (3.5) and integration by parts that for all v ∈ Mh

0 =b(v, λh)

=

∑
T∈Th

(v,Lwλh + b · ∇wλh)T

=

∑
T∈Th

(Lλ0, v)T + ⟨λ0 − λb, a∇v · n⟩∂T − ⟨a∇λ0 · n − λn, v⟩∂T

+ (∇λ0, bv) − ⟨λ0 − λb, bv · n⟩∂T

=

∑
T∈Th

(Lλ0 + b · ∇λ0, v)T + ⟨λ0 − λb, (a∇v − bv) · n⟩∂T

− ⟨a∇λ0 · n − λn, v⟩∂T

=

∑
T∈Th

(Lλ0 + b · ∇λ0, v)T ,

(5.11)

here we have used λ0 = λb and a∇λ0 · n = λn on each ∂T . This implies Lλ0 + b · ∇λ0 = 0 on each T ∈ Th by taking
v = Lλ0+b·∇λ0 if s = k−1. For the case of s = k−2, from γ > 0 and the fact that s(λh, λh) = 0 we have Lλ0+b·∇λ0 = 0
on each element T ∈ Th. Since λ0 = 0 on ΓD and a∇λ0 · n = 0 on ΓN , we then have λ0 ≡ 0 in Ω . It follows that λh ≡ 0,
as λb = λ0 and λn = a∇λ0 · n on each ∂T .

To show that uh ≡ 0, we use λh ≡ 0 and Eq. (4.4) to obtain

b(uh, w) = 0, ∀w ∈ W 0
h . (5.12)

From Lemma 5.2, we have

sup
w∈W0

h

b(uh, w)
|||w|||

≥ β0hϵ∥uh∥ϵ,

which, combined with (5.12), gives uh ≡ 0 in Ω . This completes the proof of the theorem. □

. Error equations

Let u and (uh, λh) ∈ Mh ×W 0
h be the solution of (1.1) and its discretization schemes (4.4)–(4.5), respectively. Note that

h approximates the trivial function λ = 0 as the Lagrange multiplier.

emma 6.1. Assume that the diffusion tensor a = a(x) and the convection vector b are piecewise constant functions in Ω
ith respect to the finite element partition Th. For any σ ∈ Wh and v ∈ Mh, the following identity holds true:

(Lwσ + b · ∇wσ , v)T = (Lσ0 + b · ∇σ0, v)T + RT (σ , v), (6.1)

here

RT (σ , v) = ⟨σ0 − σb, (a∇v − bv) · n⟩∂T − ⟨a∇σ0 · n − σn, v⟩∂T . (6.2)

roof. From (3.4) and (3.5), we have

(Lwσ + b · ∇wσ , v)T
=(∇wσ , bv)T + (Lwσ , v)T
=(∇σ0, bv) − ⟨σ0 − σb, bv · n⟩∂T + (Lσ0, v)T

+ ⟨σ0 − σb, a∇v · n⟩∂T − ⟨a∇σ0 · n − σn, v⟩∂T

=(Lσ0 + b · ∇σ0, v)T + RT (σ , v),

here RT (σ , v) is given by (6.2). □

By error functions we mean the difference between the numerical solution arising from (4.4)–(4.5) and the L2 projection
f the exact solution of (1.1); i.e.,

eh = uh − Qs
hu, (6.3)

εh = λh − Qhλ = λh. (6.4)

emma 6.2. Let u and (uh; λh) ∈ Mh × W 0
h be the solutions arising from (1.1) and (4.4)–(4.5), respectively. Assume that the

iffusion tensor a = a(x) and the convection vector b are piecewise constant functions in Ω with respect to the finite element
artition Th. Then, the error functions eh and εh satisfy the following equations

s(ε ,w) + b(e , w) = ℓ (w), ∀ w ∈ W 0, (6.5)
h h u h

7
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b(v, εh) = 0, ∀v ∈ Mh, (6.6)

where ℓu(w) is given by

ℓu(w) =

∑
T∈Th

(Lw0 + b · ∇w0, u − Qs
hu)T

+ ⟨w0 − wb, (a∇(u − Qs
hu) − b(u − Qs

hu)) · n⟩∂T

− ⟨a∇w0 · n − wn, u − Qs
hu⟩∂T .

(6.7)

roof. From (6.4) and (4.5) we have

b(v, εh) = b(v, λh) = 0, ∀v ∈ Mh,

hich gives rise to (6.6).
Next, observe that λ = 0. Thus, from (4.4) we arrive at

s(λh − Qhλ,w) + b(uh − Qs
hu, w)

=s(λh, w) + b(uh, w) − b(Qs
hu, w)

= − (f , w0) + ⟨g2, wb⟩ΓN + ⟨g1, wn⟩ΓD − b(Qs
hu, w).

(6.8)

or the term b(Qs
hu, w), we use Lemma 6.1 to obtain

b(Qs
hu, w)

=

∑
T∈Th

(Qs
hu,Lww + b · ∇ww)T

=

∑
T∈Th

(Lw0 + b · ∇w0,Qs
hu)T + RT (w,Qs

hu)

=

∑
T∈Th

(Lw0 + b · ∇w0, u)T + (Lw0 + b · ∇w0,Qs
hu − u)T + RT (w,Qs

hu).

(6.9)

ntegration by parts then shows that∑
T∈Th

(Lw0 + b · ∇w0, u)T

=

∑
T∈Th

(w0,∇ · (a∇u − bu))T − ⟨w0, (a∇u − bu) · n⟩∂T + ⟨a∇w0 · n, u⟩∂T .
(6.10)

ince u is the exact solution of (1.1), wb = 0 on ΓD and wn = 0 on ΓN , we have∑
T∈Th

⟨wb, (a∇u − bu) · n⟩∂T = −⟨wb, g2⟩ΓN , (6.11)

∑
T∈Th

⟨wn, u⟩∂T = ⟨wn, g1⟩ΓD . (6.12)

sing (6.10), (6.11), (6.12) and (1.1), we arrive at∑
T∈Th

(Lw0 + b · ∇w0, u)T

= − (w0, f ) −

∑
T∈Th

⟨w0 − wb, (a∇u − bu) · n⟩∂T + ⟨a∇w0 · n − wn, u⟩∂T

+ ⟨wb, g2⟩ΓN + ⟨wn, g1⟩ΓD .

(6.13)

ubstituting (6.13) and (6.9) into (6.8) gives rise to the error equation (6.5), which completes the proof of the lemma. □

emark 6.1. For C0-WG elements (i.e., w0 = wb on the boundary of each element), the middle term in (6.7) vanishes so
hat ℓu(w) has the following simplified form:

ℓu(w) =

∑
T∈Th

(Lw0 + b · ∇w0, u − Qs
hu)T − ⟨a∇w0 · n − wn, u − Qs

hu⟩∂T , (6.14)

hich shall allow the derivation of an error estimate for the primal variable uh with u ∈ Hτ (Ω) for some τ < 1.
8
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7. Error estimates

For simplicity and without loss of generality we introduce a semi-norm ||| · |||b in the finite element space Wh. For any
= {v0, vb, vn} ∈ Wh, define on each T ∈ Th

|||v|||b,T := ⟨(|a|T + |b · n|)(v0 − vb), v0 − vb⟩
1/2
∂T (7.1)

nd

|||v|||b :=

⎛⎝∑
T∈Th

h−3
T |||v|||2b,T

⎞⎠ 1
2

. (7.2)

t follows from (5.1), (4.1), and (4.3) that the following holds true:

|||v|||b ≤ |||v|||, v ∈ Wh. (7.3)

We have the following main result.

Theorem 7.1. Let u be the solution of (1.1) and (uh, λh) ∈ Mh × W 0
h be its numerical solution arising from (4.4)–(4.5) with

ndex k ≥ 2 and s = k − 2 or s = k − 1. Assume that the diffusion tensor a = a(x) and the convection vector b are piecewise
constant functions in Ω with respect to the finite element partition Th which is shape regular [55]. Furthermore, assume that
he exact solution u is sufficiently regular such that u ∈

∏
T∈Th

Hs+1(T ) ∩ H2−ϵ(T ) and that the regularity estimate (2.3) holds
or the dual problem (2.2). Then, the following error estimate holds true:

|||λh||| + hϵ∥eh∥ϵ ≲

{
hs+2(|a|

1
2 h−1

+ 1 + δs,k−2γ
−

1
2 )∥∇s+1u∥, if s ≥ 1,

h2(|a|
1
2 h−1

+ 1 + γ−
1
2 )(∥∇u∥ + h

1
2 −ϵ

∥u∥2−ϵ), if s = 0,
(7.4)

here δi,j is the Kronecker delta with value 1 when i = j and 0 otherwise.

Proof. We split the proof into several steps estimating the terms corresponding to each member of the triplet defining
the errors. By letting w = εh = {ε0, εb, εn} in (6.5) and using (6.6) we arrive at

s(εh, εh) = ℓu(εh), (7.5)

here, by (6.7),

ℓu(εh) =

∑
T∈Th

(Lε0 + b · ∇ε0, u − Qs
hu)T

+ ⟨ε0 − εb, (a∇(u − Qs
hu) − b(u − Qs

hu)) · n⟩∂T

+ ⟨εn − a∇ε0 · n, u − Qs
hu⟩∂T

=

∑
T∈Th

(J1(T ) + J2(T ) + J3(T )) .

(7.6)

ere Ji(T ) is given by the corresponding term in the summation formula for i = 1, 2, 3. The rest of the proof is focused
n the estimate for each Ji(T ).
J1(T )-estimate: We recall that s = k−2 or s = k−1 is the degree of polynomials for approximating the primal variable

. As Lε0 + b · ∇ε0 is a polynomial of degree k − 1 on each element T , it follows that J1(T ) = 0 when s = k − 1. For the
ase of s = k − 2, one may use the Cauchy–Schwarz inequality to obtain

|J1(T )| =
⏐⏐(Lε0 + b · ∇ε0, u − Qs

hu)T
⏐⏐

≤
⏐⏐(Lε0 + b · ∇ε0, u − Qs

hu)T
⏐⏐

≤∥Lε0 + b · ∇ε0∥T∥u − Qs
hu∥T

≲hs+1
T ∥∇

s+1u∥T∥Lε0 + b · ∇ε0∥T ,

(7.7)

here we have used the following interpolation error estimate in the last line:

∥u − Qs
hu∥T ≤ Chs+1

∥∇
s+1u∥T . (7.8)

y summing (7.7) over all T ∈ Th we have from (5.1), (4.1), and (4.3) that∑
|J1(T )| ≲

{
γ−

1
2 hs+1

∥∇
s+1u∥|||εh|||, for s = k − 2,

0, for s = k − 1.
(7.9)
T∈Th

9
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J2(T )-estimate: The Cauchy–Schwarz inequality and the boundedness of the convective vector b imply

|J2(T )|
=

⏐⏐⟨ε0 − εb, (a∇(u − Qs
hu) − b(u − Qs

hu)) · n⟩∂T
⏐⏐

≤
⏐⏐⟨ε0 − εb, a∇(u − Qs

hu) · n⟩∂T
⏐⏐ +

⏐⏐⟨ε0 − εb, (u − Qs
hu)b · n⟩∂T

⏐⏐
≲|a|T∥ε0 − εb∥∂T∥∇(u − Qs

hu)∥∂T + ∥|b · n|
1
2 (ε0 − εb)∥∂T∥u − Qs

hu∥∂T

≲

(
|a|

1
2
T ∥∇(u − Qs

hu)∥∂T + ∥u − Qs
hu∥∂T

)
|||εh|||b,T .

(7.10)

he boundary integral ∥u − Qs
hu∥∂T can be handled by using the trace inequality (3.1) and the estimate (7.8) as follows

∥u − Qs
hu∥∂T ≲ h

s+ 1
2

T ∥∇
s+1u∥T . (7.11)

s to the term ∥∇(u−Qs
hu)∥∂T , for s ≥ 1, from the error estimate for the L2 projection Qs

hu and the trace inequality (3.1)
e have

∥∇(u − Qs
hu)∥∂T ≲ h

s− 1
2

T ∥∇
s+1u∥T . (7.12)

or s = 0, the above estimate must be modified by using the trace inequality (3.1) with θ = ϵ as follows

∥∇(u − Qs
hu)∥∂T ≲ h

−
1
2

T ∥∇u∥T + h
1
2 −ϵ

T ∥∇u∥1−ϵ,T . (7.13)

Next, by substituting (7.11)–(7.13) into (7.10) we have

|J2(T )| ≲

⎧⎨⎩h
s+ 1

2
T (|a|

1
2
T h

−1
T + 1)∥∇s+1u∥T |||εh|||b,T , for s ≥ 1,

h
1
2
T (|a|

1
2
T h

−1
T + 1)(∥∇u∥T + h

1
2 −ϵ

T ∥∇u∥1−ϵ,T )|||εh|||b,T , for s = 0,

umming over T ∈ Th and then using the Cauchy–Schwarz inequality and (7.2) gives∑
T∈Th

|J2(T )| ≲

{
hs+2(|a|

1
2 h−1

+ 1)∥∇s+1u∥|||εh|||b, if s ≥ 1,

h2(|a|
1
2 h−1

+ 1)(∥∇u∥ + h
1
2 −ϵ

∥u∥2−ϵ)|||εh|||b, if s = 0.
(7.14)

J3(T )-estimate: From the Cauchy–Schwarz and the trace inequality (3.1) we obtain

|J3(T )| =
⏐⏐⟨εn − a∇ε0 · n, u − Qs

hu⟩∂T
⏐⏐

≤∥εn − a∇ε0 · n∥∂T∥u − Qs
hu∥∂T

≲∥εn − a∇ε0 · n∥∂T
(
h−1
T ∥u − Qs

hu∥
2
T + hT∥∇(u − Qs

hu)∥
2
T

)1/2
≲h

s+ 1
2

T ∥εn − a∇ε0 · n∥∂T∥∇
s+1u∥T .

(7.15)

umming over all the element T ∈ Th yields∑
T∈Th

|J3(T )| ≲
∑
T∈Th

h
s+ 1

2
T ∥εn − a∇ε0 · n∥∂T∥∇

s+1u∥T

≲hs+1
∥∇

s+1u∥

⎛⎝∑
T∈Th

h−1
T ∥εn − a∇ε0 · n∥

2
∂T

⎞⎠1/2

≲hs+1
∥∇

s+1u∥|||εh|||.

(7.16)

By combining (7.6) with the estimates (7.9), (7.14), and (7.16) we arrive at

|ℓu(εh)| ≲

{
hs+2(|a|

1
2 h−1

+ 1 + δs,k−2γ
−

1
2 )∥∇s+1u∥|||εh|||, for s ≥ 1,

h2(|a|
1
2 h−1

+ 1 + γ−
1
2 )(∥∇u∥ + h

1
2 −ϵ

∥u∥2−ϵ)|||εh|||, for s = 0,

where δi,j is the Kronecker delta with value 1 for i = j and 0 otherwise. Substituting the above estimate into (7.5) yields

|||εh|||
2 ≲

{
hs+2(|a|

1
2 h−1

+ 1 + δs,k−2γ
−

1
2 )∥∇s+1u∥|||εh|||, for s ≥ 1,

h2(|a|
1
2 h−1

+ 1 + γ−
1
2 )(∥∇u∥ + h

1
2 −ϵ

∥u∥2−ϵ)|||εh|||, for s = 0,

which leads to

|||εh||| ≲

{
hs+2(|a|

1
2 h−1

+ 1 + δs,k−2γ
−

1
2 )∥∇s+1u∥, for s ≥ 1,

2 1
2 −1 −

1
2

1
2 −ϵ

(7.17)

h (|a| h + 1 + γ )(∥∇u∥ + h ∥u∥2−ϵ), for s = 0.

10
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Furthermore, the error equation (6.5) yields

b(eh, w) = ℓu(w) − s(εh, w), ∀w ∈ W 0
h .

t follows that
|b(eh, w)| ≤|ℓu(w)| + |||εh||||||w|||

≲

{
hs+2(|a|

1
2 h−1

+ 1 + δs,k−2γ
−

1
2 )∥∇s+1u∥|||w|||, for s ≥ 1,

h2(|a|
1
2 h−1

+ 1 + γ−
1
2 )(∥∇u∥ + h

1
2 −ϵ

∥u∥2−ϵ)|||w|||, for s = 0,

for all w ∈ W 0
h . Thus, from the inf–sup condition (5.5) we obtain

β0hϵ∥eh∥ϵ ≲

{
hs+2(|a|

1
2 h−1

+ 1 + δs,k−2γ
−

1
2 )∥∇s+1u∥, for s ≥ 1,

h2(|a|
1
2 h−1

+ 1 + γ−
1
2 )(∥∇u∥ + h

1
2 −ϵ

∥u∥2−ϵ), for s = 0,

which, together with the error estimate (7.17), completes the proof of the theorem. □

The triangle inequality and the error estimate (7.4) give the following for the numerical approximation of the primal
variable.

Corollary 7.2. Under the assumptions of Theorem 7.1, one has the following optimal order error estimate in the Hϵ-norm for
∈ [0, 1

2 ):

hϵ∥u − uh∥ϵ ≲

{
hs+2(|a|

1
2 h−1

+ 1 + δs,k−2γ
−

1
2 )∥∇s+1u∥, if s ≥ 1,

h2(|a|
1
2 h−1

+ 1 + γ−
1
2 )(∥∇u∥ + h

1
2 −ϵ

∥u∥2−ϵ), if s = 0.

We emphasize that for s = k − 1 one has (Lε0 + b · ∇ε0, u − Qs
hu)T = 0. The proof of Theorem 7.1 indicates that the

ollowing term

γ

∫
T
(Lλ0 + b · ∇λ0)(Lw0 + b · ∇w0)dT

n the stabilizer sT (·, ·) (4.3) is no longer needed in the PDWG numerical schemes (4.4)–(4.5). The corresponding error
stimate can be stated as follows:

hϵ∥u − uh∥ϵ ≲

{
hs+2(|a|

1
2 h−1

+ 1)∥∇s+1u∥, if s ≥ 1,
h2(|a|

1
2 h−1

+ 1 + γ−
1
2 )(∥∇u∥ + h

1
2 −ϵ

∥u∥2−ϵ), if s = 0.

8. Numerical results

This section shall report a variety of numerical results for the primal–dual weak Galerkin finite element schemes (4.4)–
(4.5) of the lowest order; i.e., k = 2 and s = 0, 1. Our finite element partition Th is given through a successive uniform
refinement of a coarse triangulation of the domain by dividing each coarse level triangular element into four congruent
sub-triangles by connecting the three mid-points on its edge.

Both convex and non-convex polygonal domains are considered in the numerical experiments. The representatives of
the convex domains are two squares Ω1 = (0, 1)2 and Ω3 = (−1, 1)2. The non-convex domains are featured by three
examples: (i) the L-shaped domain Ω2 with vertices A1 = (0, 0), A2 = (2, 0), A3 = (2, 1), A4 = (1, 1), A5 = (1, 2), and
A6 = (0, 2); (ii) the cracked square domain Ω4 = (−1, 1)2 \ (0, 1)× 0 (i.e., a crack along the edge (0, 1)× 0); and (iii) the
L-shaped domain Ω5 with vertices B1 = (−1,−1), B2 = (1,−1), B3 = (1, 0), B4 = (0, 0), B5 = (0, 1), and B6 = (−1, 1).

The numerical method is based on the following configuration of the weak finite element space

Wh,2 = {λh = {λ0, λb, λn} : λ0 ∈ P2(T ), λb ∈ P2(e), λn ∈ P1(e), e ⊂ ∂T , T ∈ Th},

and the finite element space

Mh,s = {uh : uh|T∈ Ps(T ), ∀T ∈ Th}, s = 0 or 1.

The weak finite element space Wh,k is said to be of C0-type if for any v = {v0, vb, vn} ∈ Wh,k, one has vb = v0|∂T on
each element T ∈ Th. Likewise, C−1-type elements are defined as the general case of v = {v0, vb, vn} ∈ Wh,k for which vb
is completely independent of v0 on the edge of each element. It is clear that C0-type elements involve fewer degrees of
freedom compared with the C−1-type elements. But C−1-type elements have the flexibility in element construction and
approximation. It should be noted that, for C−1-type elements, the unknowns associated with v0 can be eliminated locally
on each element in parallel through a condensation algorithm before assembling the global stiffness matrix.

For simplicity of implementation, our numerical experiments will be focused on C0-type elements; i.e., λb = λ0 on
∂T for each element T ∈ T . For convenience, the C0-type WG element with s = 1 (i.e., M ) and s = 0 (i.e., M ) will be
h h,1 h,0

11
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Table 8.1
Numerical rates of convergence for the C−1

− P2(T )/P2(∂T )/P1(∂T )/Ps(T ) element with exact solution u = sin(x) sin(y) on Ω1; uniform triangular
artitions; the diffusion tensor a =

1
2 [1 + x2, 0; 0, 1 + y2]; the convection vector b = [1, 1]′; the stabilizer parameter γ = 1; full Dirichlet boundary

condition.
1/h |||λh|||0 Order |||λb|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 0.06154 0.07356 0.2582 0.2576
2 0.006173 3.317 0.006173 3.575 0.04388 2.5575 0.08868 1.538

s = 1 4 0.0004702 3.715 0.0005948 3.375 0.004971 3.142 0.02248 1.980
8 3.051E−05 3.946 3.847E−05 3.951 0.0005405 3.201 0.005592 2.007
16 1.931E−06 3.982 2.431E−06 3.984 6.300E−05 3.101 0.0013957 2.002
32 1.215E−07 3.991 1.528E−07 3.992 7.682E−06 3.036 0.0003488 2.000

1/h |||λh|||0 Order |||λb|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 0.2081 0.1999 1.640 0.1353
s = 0 2 0.04310 2.272 0.05059 1.983 0.4799 1.773 0.05270 1.3600

4 0.006967 2.629 0.008601 2.556 0.1163 2.045 0.01998 1.399
8 0.001193 2.546 0.001566 2.458 0.02810 2.049 0.008344 1.260
16 0.0002439 2.290 0.0003357 2.222 0.006918 2.022 0.003852 1.115
32 5.663 E-05 2.107 7.946E−05 2.079 0.001718 2.009 0.001881 1.034

denoted as C0-P2(T )/P1(∂T )/P1(T ) and C0-P2(T )/P1(∂T )/P0(T ) respectively. Analogously, the C−1-type WG element with
= 1 and s = 0 will be denoted as C−1-P2(T )/P2(∂T )/P1(∂T )/P1(T ) and C−1-P2(T )/P2(∂T )/P1(∂T )/P0(T ) respectively.
Let λh = {λ0, λb, λn} ∈ Wh,2 and uh ∈ Mh,s (s = 0, 1) be the numerical solutions arising from (4.4)–(4.5). To

emonstrate the performance of the numerical method, the numerical solutions are compared with some appropriately-
hosen interpolations of the exact solution u and λ in various norms. In particular, the primal variable uh is compared
ith the exact solution u on each element at either the three vertices (for s = 1) or the center (for s = 0) – known as
he nodal point interpolation Ihu. The auxiliary variable λh approximates the true solution λ = 0, and is compared with
hλ = 0. Thus, the error functions are respectively denoted by

εh = λh − Qhλ ≡ {λ0, λb, λn}, eh = uh − Ihu.

he following norms are used to measure the error functions:

∥eh∥0 =

(∑
T∈Th

∫
T
e2hdT

) 1
2
, |||λh|||0 =

(∑
T∈Th

∫
T
λ20dT

) 1
2
,

|||λb|||0 =

(∑
T∈Th

hT

∫
∂T
λ2bds

) 1
2
, |||λh|||1 =

(∑
T∈Th

hT

∫
∂T
λ2nds

) 1
2
.

Table 8.1 illustrates the performance of the PDWG finite element scheme for the test problem (1.1) when the C−1-
ype P2(T )/P2(∂T )/P1(∂T )/P1(T ) element and the C−1-type P2(T )/P2(∂T )/P1(∂T )/P0(T ) element are applied respectively.
The configuration of this test problem is as follows: the domain is the unit square Ω1 = (0, 1)2; the exact solution is
u = sin(x) sin(y); the diffusion tensor is a(x) =

1
2 [1 + x2, 0; 0, 1 + y2]; the convection vector is b = [1, 1]′ and the

tabilizer parameter γ = 1. We observe from Table 8.1 that the convergence rate for eh in the L2 norm is of an expected
ptimal order O(h2) and O(h) for the C−1-P2(T )/P2(∂T )/P1(∂T )/Ps(T ) element on the uniform triangular partitions when

s = 1 and s = 0 are employed respectively.
Tables 8.2–8.3 illustrate the performance of the PDWG finite element scheme for the test problem (1.1) when the exact

solution is given by u = sin(x) cos(y) for the C0-type P2(T )/P1(∂T )/P1(T ) element on the unit square domain Ω1 and the
L-shaped domain Ω2 with stabilizer parameter γ = 0. The diffusion tensor in (1.1) is given by a = [10−10, 0; 0, 10−10

]

and the convection tensor by b = [1, 1] which makes it a convection-dominated diffusion problem. The right-hand side
function f , the Dirichlet boundary data g1, and the Neumann boundary data g2 are chosen to match the exact solution
u. The numerical results in Tables 8.2–8.3 show that the convergence rates for the error function eh are of order r = 2
n the discrete L2-norm on both the unit square domain Ω1 and the L-shaped domain Ω2. The numerical results are in
reat consistency with the theoretical rate of convergence for eh in the discrete L2-norm on the convex domain Ω1. The
omputational results for the non-convex domain Ω2 outperform the theory shown in the previous section.
Table 8.4 illustrates the performance of the PDWG method with the C0- P2(T )/P1(∂T )/P0(T ) element when the exact

olution is u = sin(x) sin(y) on the domain Ω1. The diffusion tensor is given by a = [1 + x2 + y2, 0; 0, 1 + x2 + y2] and
he convection vector by b = [x, y]. The stabilizer parameter is γ = 0. The convergence for eh in the discrete L2 norm is
t the rate of O(h) which is consistent with what the theory predicts.
Tables 8.5–8.6 show the numerical results on the unit square domain Ω1 for the C0- P2(T )/P1(∂T )/P1(T ) and C0-

2(T )/P1(∂T )/P0(T ) elements, respectively. In this numerical experiment, we consider a convection-dominated diffusion
roblem by taking the diffusion tensor as a = [10−5, 0; 0, 10−5

] and the convection vector b = [1, 0]. The stabilizer
arameter for the third term is given by γ = 0; and Dirichlet boundary data is imposed on all the boundary edges. The
12
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Table 8.2
Numerical rates of convergence for the C0- P2(T )/P1(∂T )/P1(T ) element with exact solution u = sin(x) cos(y) on Ω1 = (0, 1)2; the diffusion tensor
a = [10−10, 0; 0, 10−10

]; the convection vector b = [1, 1]; the stabilizer parameter γ = 0; Neumann boundary condition on the boundary edge
0, 1) × {0} and Dirichlet boundary condition on other three boundary edges.
1/h |||λh|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 2.63E−13 0.005393 0.07722
2 6.61E−14 1.991 0.001270 2.087 0.02388 1.693
4 1.16E−14 2.514 1.58E−04 3.009 0.005821 2.036
8 1.69E−15 2.776 1.52E−05 3.378 0.001425 2.030
16 2.54E−16 2.731 1.33E−06 3.514 3.55E−04 2.005
32 3.66E−17 2.798 1.14E−07 3.538 8.89E−05 1.998

Table 8.3
Numerical rates of convergence for the C0-P2(T )/P1(∂T )/P1(T ) element with exact solution u = sin(x) cos(y) on the L-shaped domain Ω2; the diffusion
ensor a = [10−10, 0; 0, 10−10

]; the convection vector b = [1, 1]; the stabilizer parameter γ = 0; Neumann boundary condition on the boundary
edge (0, 1) × {0} and Dirichlet boundary condition on other boundary edges.
1/h |||λh|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 2.81E−12 0.03304 0.2771
2 5.91E−13 2.249 0.004297 2.943 0.06903 2.005
4 8.11E−14 2.866 4.49E−04 3.260 0.01629 2.083
8 1.18E−14 2.780 4.25E−05 3.400 0.003996 2.028
16 2.12E−15 2.481 3.92E−06 3.437 9.92E−04 2.010

Table 8.4
Numerical rates of convergence for the C0- P2(T )/P1(∂T )/P0(T ) element with exact solution u = sin(x) sin(y) on Ω1; the diffusion tensor
a = [1 + x2 + y2, 0; 0, 1 + x2 + y2]; the convection vector b = [x, y]; the stabilizer parameter γ = 0; full Dirichlet boundary condition.
1/h |||λh|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 0.02967 0.4979 0.04851
2 0.002843 3.384 0.1173 2.086 0.02801 0.7925
4 4.53E−04 2.649 0.02797 2.069 0.01272 1.138
8 1.02E−04 2.155 0.006792 2.042 0.006047 1.073
16 2.45E−05 2.053 0.001671 2.023 0.002980 1.021
32 6.07E−06 2.016 4.14E−04 2.012 0.001485 1.005

Table 8.5
Numerical rates of convergence for the C0- P2(T )/P1(∂T )/P0(T ) element with exact solution u = 0.5(1 − tanh((x − 0.5)/0.05)) on Ω1; the diffusion
tensor a = [10−5, 0; 0, 10−5

]; the convection vector b = [1, 0]; the stabilizer parameter γ = 0; full Dirichlet boundary condition.
1/h |||λh|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 1.32E−10 7.02E−06 0.06502
2 1.01E−04 −19.54 1.66E−03 −7.882 57.82 −9.796
4 1.86E−05 2.442 6.28E−04 1.399 29.78 0.9571
8 2.61E−06 2.833 1.80E−04 1.803 6.781 2.135
16 2.32E−07 3.488 3.24E−05 2.476 1.725 1.975
32 1.54E−08 3.913 4.32E−06 2.906 0.4000 2.109

Table 8.6
Numerical rates of convergence for the C0- P2(T )/P1(∂T )/P1(T ) element with exact solution u = 0.5(1 − tanh((x − 0.5)/0.05)) on Ω1; the diffusion
tensor a = [10−5, 0; 0, 10−5

]; the convection vector b = [1, 0]; the stabilizer parameter γ = 0; full Dirichlet boundary conditions.
1/h |||λh|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 6.49E−06 0.3685 0.6662
2 6.84E−07 3.246 0.07008 2.394 0.6305 0.07942
4 2.24E−07 1.614 0.01776 1.980 0.3130 1.010
8 4.12E−08 2.439 0.003311 2.423 0.1281 1.289
16 5.98E−09 2.785 3.58E−04 3.209 0.03184 2.009
32 1.23E−09 2.279 2.81E−05 3.671 0.006791 2.229

exact solution is u = 0.5(1 − tanh((x − 0.5)/0.05)). The numerical results in Table 8.5 indicate that the convergence for
eh in the L2 norm seem to arrive at a superconvergence rate of O(h2) which is higher than the theoretical prediction of
O(h) for the C0- P2(T )/P1(∂T )/P0(T ) element. Table 8.6 shows that the convergence for eh in the L2 norm is at the rate of
O(h2) for the C0- P2(T )/P1(∂T )/P1(T ) element which is consistent with the theoretical error estimate.

Tables 8.7–8.8 illustrate the numerical results for the C0- P2(T )/P1(∂T )/P1(T ) and the C0- P2(T )/P1(∂T )/P0(T ) elements
on the unit square domain Ω1 with exact solution u = e−(x−0.5)2/0.2−3(y−0.5)2/0.2. The test problem has the diffusion tensor
a = [10−5, 0; 0, 10−5

] and the convection b = [1, 0]. The stabilizer parameters are chosen as γ = 1 and γ = 0,
13



C. Wang and L. Zikatanov Journal of Computational and Applied Mathematics 394 (2021) 113543

d

r
s
r
t

s
b
e
b
t
I
m
a
0
t
v
i

d
a
d
r

Table 8.7
Numerical rates of convergence for the C0- P2(T )/P1(∂T )/P0(T ) element with exact solution u = e−(x−0.5)2/0.2−3(y−0.5)2/0.2 on Ω1; the diffusion tensor
a = [10−5, 0; 0, 10−5

]; the convection vector b = [1, 0]; the stabilizer parameter γ = 1; Dirichlet boundary condition on the entire boundary.
1/h |||λh|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 4.06E−15 8.77E−07 0.4682
2 3.21E−04 −36.20 0.005274 −12.55 1.21E+02 −8.016
4 2.52E−05 3.673 7.73E−04 2.771 7.002 4.113
8 1.35E−06 4.221 9.47E−05 3.029 3.980 0.8152
16 8.44E−08 4.000 1.19E−05 2.998 0.8133 2.291
32 5.26E−09 4.004 1.48E−06 3.005 0.1313 2.631

Table 8.8
Numerical rates of convergence for the C0- P2(T )/P1(∂T )/P1(T ) element with exact solution u = e−(x−0.5)2/0.2−3(y−0.5)2/0.2 on Ω1; the diffusion tensor
a = [10−5, 0; 0, 10−5

]; the convection b = [1, 0]; the stabilizer parameter γ = 0; Dirichlet boundary condition on the entire boundary.
1/h |||λh|||0 Order |||λh|||1 Order ∥eh∥0 Order

1 2.80E−10 0.05239 0.2339
2 3.74E−07 −10.38 0.01817 1.528 0.1609 0.5398
4 7.24E−08 2.369 0.003381 2.426 0.1146 0.4893
8 1.77E−08 2.035 3.09E−04 3.452 0.03390 1.757
16 4.43E−09 1.994 2.93E−05 3.398 0.008362 2.019
32 1.27E−09 1.799 3.30E−06 3.151 0.002117 1.982

Fig. 8.1. Surface plots for the C−1-P2(T )/P2(∂T )/P1(∂T )/P1(T ) element on the unit square domain Ω1; left for the primal variable uh; right for the
ual variable λ0 .

espectively. The Dirichlet boundary condition is imposed on the entire boundary. The numerical results in Table 8.7
how a superconvergence for eh in the L2 norm, as the optimal order error estimate would imply a convergence at the
ate of O(h) when the C0- P2(T )/P1(∂T )/P0(T ) element is used. Table 8.8 indicates that the convergence order for eh in
he discrete L2 norm is consistent with what the theory predicts.

Figs. 8.1–8.2 illustrate the plots of the numerical solution uh and the Lagrange multiplier λ0 arising from the PDWG
chemes (4.4)–(4.5) on the unit square domain Ω1. The diffusion tensor is a = [3/2, 0; 0, 5], the convection vector is
= [1, 1], and the load function is f = 0. The full Dirichlet boundary data is set as follows: g1 = 1 on the boundary

dge 0 ∗ (0, 1), g1 = −1 on the boundary edge 1 ∗ (0, 1), g1 = 2 on the boundary edge (0, 1) ∗ 0, and g1 = −2 on the
oundary edge (0, 1) ∗ 1. Figs. 8.1–8.2 show the numerical solution uh and the Lagrange multiplier λ0 when the C−1-
ype P2(T )/P2(∂T )/P1(∂T )/P1(T ) element and C−1-type P2(T )/P2(∂T )/P1(∂T )/P0(T ) element are employed respectively.
n the same problem configuration, Figs. 8.3–8.4 illustrate the plots of the numerical solution uh and the Lagrange
ultiplier λ0 for the C0-P2(T )/P1(∂T )/P1(T ) element and C0-P2(T )/P1(∂T )/P0(T ) element respectively. Note that in the
bove configurations, no exact solutions of the primal variable are known and the exact solutions of the dual variable are
. We can see from Figs. 8.1–8.4 that the dual variable is zero almost everywhere in the domain except some spikes on
he corners which reaches 10−4. However, it is not clear to us why there are spikes appearing on the corners, which is
ery interesting and will be explored in the future. We would like to point out that the exact solution of the dual variable
s 0, which could be treated as an error function in the a posteriori error estimation.

Fig. 8.5 illustrates the plots of the numerical solution uh arising from the PDWG schemes (4.4)–(4.5) for a convection-
ominated diffusion problem on the unit square domainΩ1. In this numerical experiment, the diffusion tensor is given by
= [10−5, 0; 0, 10−5

], the convection vector by b = [1, 0], and the load function is given by f = 1. The Neumann boundary
ata g2 = 10−5 is imposed on the boundary edge {0} × (0, 1), and the Dirichlet boundary data g1 = x is imposed on the
est of the boundary edges. The figure on the left shows the numerical solution u when the C0-type P (T )/P (∂T )/P (T )
h 2 1 1

14
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Fig. 8.2. Surface plots for the C−1-P2(T )/P2(∂T )/P1(∂T )/P0(T ) element on the unit square domain Ω1; left for the primal variable uh; right for the
ual variable λ0 .

Fig. 8.3. Surface plots for the C0-P2(T )/P1(∂T )/P1(T ) element on the unit square domain Ω1; left for the primal variable uh; right for the dual
ariable λ0 .

Fig. 8.4. Surface plots for the C0-P2(T )/P1(∂T )/P0(T ) element on the unit square domain Ω1; left for the primal variable uh; right for the dual
ariable λ0 .

lement is used and the one on the right is for the numerical solution uh with the C0-type P2(T )/P1(∂T )/P0(T ) element.
ote that the exact solution for the primal variable in the configuration is u = x. We conclude that the numerical solution
h obtained by PDWG scheme is consistent with the exact solution.
Fig. 8.6 shows the plots for the numerical solution uh on the unit square domain Ω1 when the C0-type P2(T )/P1(∂T )/P0

T ) element is employed to the test problem with convective direction b = [1, 0] and load function f = 1. The Neumann
oundary condition of g2 = a11 (where a = (aij)) is imposed on the inflow boundary edge {0} × (0, 1) and the Dirichlet
oundary condition g = 0 is imposed on the rest of the boundary. Fig. 8.6 shows the numerical solution u for different
1 h

15



C. Wang and L. Zikatanov Journal of Computational and Applied Mathematics 394 (2021) 113543

L

d

t

f
d
a
c
e
l
i

d
t
s
c

Fig. 8.5. Surface plot of uh on the unit square domain Ω1: left for the C0-P2(T )/P1(∂T )/P1(T ) element, right for the C0- P2(T )/P1(∂T )/P0(T ) element.

Fig. 8.6. Surface plots for the primal variable uh on the unit square domain Ω1 with the C0-P2(T )/P1(∂T )/P0(T ) element: left for the diffusion tensor
a = [10−1, 0; 0, 10−1

], middle for the diffusion tensor a = [10−3, 0; 0, 10−3
], right for the diffusion tensor a = [10−6, 0; 0, 10−6

].

Fig. 8.7. Contour plots for the primal variable uh: left for the square domain Ω3; middle for the cracked square domain Ω4; and right for the
-shaped domain Ω5 .

iffusion tensors: a = [10−1, 0; 0, 10−1
] (left), a = [10−3, 0; 0, 10−3

] (middle), and a = [10−6, 0; 0, 10−6
] (right). The

exact solutions for the primal variable in the configurations are unknown. However, we can see from Fig. 8.6 that when
he diffusion tensor becomes smaller, the boundary layer phenomena is more clear.

Fig. 8.7 illustrates the contour plots for the numerical solution uh arising from the primal–dual weak Galerkin
inite element method on three different domains: (i) the square domain Ω3 = (−1, 1)2, (ii) the cracked square
omain Ω4, and (iii) the L-shaped domain Ω5. In this numerical experiment, the model problem has a diffusion tensor
= [10−4, 0; 0, 10−4

] and a convective (rotational) vector b = [y,−x]. Fig. 8.7 is obtained by using the following
onfigurations: (a) the C0-P2(T )/P1(∂T )/P1(T ) element, (b) Neumann boundary condition g2 = 0 on the inflow boundary
dges (b · n < 0), (c) Dirichlet boundary condition g1 = sin(3x) on the outflow boundary edges (b · n > 0); and (d) the
oad function f = 1. Note that no exact solutions for the primal variable are known in the configurations. However, some
nteresting and trustable numerical solutions arising from PDWG method are illustrated in Fig. 8.7.

In summary, the numerical performance of the PDWG schemes (4.4)–(4.5) for the convection-dominated convection–
iffusion problem (1.1) is typically consistent with or better than what our theory predicts. Theorem 7.1 and the numerical
ests show that the stabilization parameter γ is not necessary to make the PDWG method convergent and accurate when
= k − 1. We conjecture that the PDWG finite element scheme with γ = 0 is stable and has the optimal order of
onvergence for both s = k − 2 and s = k − 1 when the diffusion tensor a and the convection vector b are uniformly
16
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piecewise continuous functions, provided that the meshsize is sufficiently small. Interested readers are encouraged to
explore the corresponding theory with more sophisticated mathematical tools.

9. Conclusions

The primal–dual weak Galerkin finite element method developed here for convection–diffusion problems has shown
several promising features as a discretization approach in the following aspects: (1) it provides a symmetric and well-
posed discrete problem; (2) it is consistent in the sense that the exact solution, if sufficiently regular, satisfies the discrete
variational problem; (3) it allows for low regularity of the primal variable and admits optimal a priori error estimates.
Further exploration is needed for constructing fast solvers for the resulting discrete problems and this is a subject of a
current and future work.
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