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1. Introduction

In this paper we consider the model convection-diffusion problem for an unknown function u satisfying
—V - (aVu — bu) =f, in £,
u=g;, on Ip, (1.1)

(—aVu+bu)-n =g, on [y.
Here, £2  RY(d = 2, 3) is an open bounded domain whose boundary 952 is a Lipschitz polyhedron (polygon for d = 2)
with I'pU Ty = 952. Further, n is the unit outward norm?l vector to I'y. Assume the Dirichlet boundary value satisfies the
low regularity of g; € L*(I) as opposed to the usual H2 regularity. We furtdh%r assume that the diffusion tensor and the
convection vector b are smooth enough, namely, a = {a;}4xq € [W1’°°(.Q)] “be [W2°(2)]% In addition, we assume
that a(x) is symmetric and positive definite; i.e., there exists a constant & > 0, such that

£Tat > at'e, Ve € RY
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Some of the results presented below hold also for piece-wise smooth diffusion and convection coefficients and we indicate
this where appropriate.

As is often observed, (see e.g. [1,2] and the references therein) the standard Galerkin finite element approximation
for the convection-diffusion may exhibit nonphysical oscillations, especially in convection dominating regime when the
eigenvalues of a are small compared to the size of b and prohibitively small mesh sizes are required for providing
accurate approximation. A variety of numerical stabilization techniques have been developed to resolve this challenge in
the past several decades such as fitted mesh methods [2,3], fitted operator methods [2], methods using approximations
of the fluxes [4,5], discontinuous Galerkin methods and mixed finite element methods. Such methods usually provide
upwind-type schemes and are applicable to the problems of complicated domains or layer structures. Among the various
upwind schemes, the streamline upwind Petrov-Galerkin method proposed by Hughes and Brooks is an efficient numerical
method [6,7] in improving the stability of the standard Galerkin method through the use of an additional stabilization term
in the upwind direction. It is known, however, that upwind methods introduce a great deal of artificial diffusion which is
not desirable, especially in spatial dimensions d > 2 [6,7]. Bakhvalov [8] proposed the optimization of numerical meshes,
where the meshes were generated from projections of an equidistant partition of layer functions. Another effective idea
of piecewise-equidistant meshes was proposed by Shishkin [9]. An efficient adaptive method has been proposed [10,11]
to address a variety of difficulties including layers [12]. The discontinuous Galerkin (DG) method [13-17] is an effective
technique for solving conservation laws for elliptic problems. Furthermore, DG schemes include a upwinding which is
equivalent to the stabilization for the convection-diffusion problems [2,18-25]. Recently, Burman and He [26] developed
a primal-dual mixed finite element method for indefinite advection-diffusion equations with optimal a priori error
estimates in the energy and the L2 norm for the primal variable when the Pecket number is low. In [27], Burman, Nechita
and Oksanen devised a stabilized finite element method for a kind of inverse problems subject to the convection-diffusion
equation in the diffusion-dominated regime. Some error estimates in local H' or L> norms were derived for their numerical
approximations.

Our goal is to derive and analyze a finite element discretization for the convection-diffusion problem (1.1) using the
primal-dual weak Galerkin (PDWG). The PDWG framework provides mechanisms to enhance the stability of a numerical
scheme by combining solutions of the primal and the dual (adjoint) equation. Such technique was successfully used for
the constructing approximations to the elliptic Cauchy problems [28,29], elliptic equations in non-divergence form [30],
and Fokker-Planck equations [31]. A similar idea has been explored by Burman [26,27,32-38] in other finite element
contexts. Our choice of using the PDWG framework is mainly motivated by the fact that the PDWG techniques are natural
for deriving error estimates under low regularity assumptions. They also allow for general polyhedral (not necessarily
simplicial) finite elements. Methods for convection-diffusion equations on such general meshes have been also developed
in the context of Virtual Finite Element methods (VEM) [39-41], DG methods and Hybrydized DG methods (HDG) [42-46].
While in many cases variants of the HDG, VEM and WG methods are shown to be equivalent [47-49], for low regularity
solutions such equivalences are of little help in deriving error estimates. Our PDWG scheme is a novel approach allowing
for a priori error estimates for the primal variable in H-norm for 0 < € < % when the solution does not have regularity
higher than H'.

Compared with other existing finite element methods, our analysis of error estimates is based on the H>¢(£2) (0 < € <
%) regularity assumption for the solution of the dual problem with homogeneous boundary data, so that the corresponding
error estimate for the primal (main) variable requires merely the H*(£2) regularity for some t < 1 when C°-WG elements
are employed. This low regularity assumption on u is important because the weak solution to the model problem (1.1)
as characterized by (2.1) may have only H® regularity with 0 < s < 1 when the Dirichlet data is only in L*(/). To our
knowledge, regularity results for discontinuous boundary data are rather difficult to establish albeit the solutions can be
approximated. In such cases, the solution of the continuous problem may not be in a classical Sobolev spaces. For detailed
theoretical results we refer to a monograph by J. Chabrowski [50], work by M. Costabel [51], and further remark that such
results are discussed by N. Wiener [52,53] as early as the beginning of the last century.

The paper is organized as follows. Section 2 is devoted to a discussion/review of the weak differential operators as well
as their discretizations. In Section 3, the primal-dual weak Galerkin algorithm for the convection-diffusion problem (1.1)
is proposed. Section 4 presents some technical results, including the critical inf-sup condition, which plays an important
role in deriving the error analysis in Section 6. The error equations for the PDWG scheme are derived in Section 5. In
Section 6, the error estimates in an optimal order are derived for the primal-dual WG finite element method in some
discrete Sobolev norms. Finally in Section 7, a series of numerical results is reported to demonstrate the effectiveness and
accuracy of the numerical method developed in the previous sections.

2. Preliminaries and notation

Throughout the paper, we follow the standard notation for Sobolev spaces and norms. For any open bounded domain
D c RY with Lipschitz continuous boundary, we use || - ||sp and |Is,p to denote the norm and seminorm in the Sobolev
space H*(D) for any s > 0, respectively. The norms in H%(D) for s < 0 are defined by duality with the norms in H"!(D) [54].
The inner product in H5(D) is denoted by (-, -)s.p. The space H(D) coincides with L?(D), for which the norm and the inner
product are denoted by | - ||p and (-, -)p, respectively. When D = §2, or when the domain of integration is clear from the
context, we drop the subscript D in the norm and the inner product notation. For convenience, throughout the paper, we
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use “<” to denote “less than or equal to” up to a generic constant which is independent of important parameters such as
the mesh size and physical parameters.
The weak formulation of the convection-diffusion model problem (1.1) is: find u € L?(£2) satisfying

(u, V-(@Vw)+b-Vw) = —(f, w)+ (&, w)n, + (g1, aVw -n)p,, Yw e W, (2.1)

where W = {w € H>™¢(2): w|rp,=0,aVw - n|p,= 0} for some fixed € € [0, %).
The dual problem corresponding to this primal formulation is: for a given v € H™¢(£2), find A € W such that

(v, V-(aVA)+b-VA) = (¢, v), Yv € H(£2). (2.2)

In the following we assume that the solution to the dual problem is H?>~¢(£2)-regular and satisfies the following regularity
estimate

[All2—e S 11l (2.3)

This regularity assumption also implies that when i = 0, then the dual problem (2.2) has a unique solution A = 0.

Notice that the primal and the dual equation are unrelated to each other in the continuous model. However, combining
the discrete primal equation with the discrete dual equation through some stabilization terms in the context of weak
Galerkin finite element methods gives rise to an efficient numerical scheme.

3. Discrete weak differential operators

Denote by £ := V-(aV) the diffusion part of the differential operator in (1.1). The operator £ and the gradient operator
are the two principle differential operators used in the weak formulation (2.1) for the convection-diffusion equation (1.1).
This section briefly introduces a weak version of £ and the gradient operator; see [55] for details.

Let 7, be a finite element partition of the domain £2 into polygons in 2D or polyhedra in 3D which is shape regular if
and only if the following trace and inverse inequalities hold for any T € 7;, ¢ € H'=(T) and yr-a polynomial on T € 7j:

N3 < hr ol +hy Ml o7 ¥ l3r < byt Iw I3 (3.1)

We refer the reader to [55] for details and discussion of sufficient conditions on the partition so that these inequalities
hold.

Further, we denote by &, the set of all edges or flat faces in 7, and by 5,? the set of all interior edges or flat faces. We
denote by hr the meshsize of T € 7 and by h = maxyc7; hr the meshsize of 7.

Let T € T, be a polygonal or polyhedral region with boundary aT. With every element T we associate a product space
WI(T) defined as

W(T) := [X(T) x L*(dT) x L*(3T).

The element of this space is denoted by {vg, vp, v,}. Such definition is quite general, and just to give an example, if
v € CYT) we can define vy to be just v, v, to be the trace of v on dT; v, = aVuv - n to be the trace of the flux on
dT. Here n is the outward normal vector on dT. In the most general case, the members of such triplet do not have to be
related at all.

Given v € W(T) (note v is a triplet of functions), we now define the functionals (distributions) [V, v](¥) and [£,v](¢)
for all ¥ € [HY(T))?, ¢ € HX(T) as follows:

[Vuul(¥)r = —(vo, V- ¥)r + (vp, ¥ - Mo,
[Luv](@)r = (vo, LO)r — (vp, aV - M7 + (Vn, P)or.

Note that V,v and £, v are the distributional versions of V and V - (aV), respectively.

We now define the discrete versions of these functionals. Let us denote by P.(T) the space of polynomials on T of
degree (< r). The discretizations of [V,,v] and [£,v] for v € W(T) are defined as the projections on [P.(T)]¢ of the Riesz
representation of [V,,](-), and [£,,](-). Namely, for all ¥ € [P(T)]% w € P,(T), we set

(Vur v, ¥)r = [Vuul(¥) = —(vo, V- ¥)1 + (vp, ¥ - 1)o7,
(Lu,r,rv, W)y = [LyrrvI(w) = (vo, LW)r — (Vp, AVW - M)y + (Vy, W)or- (3.3)
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Integration by parts gives the equivalent representations of these projections:

(Vur1v, ¥)r = (Vuvg, ¥)r — (vo — vp, ¥ - Mar, (34)
(L"w,r,Tva w)T = (CU(), W)T + (Uo — Up, aVw - ﬂ)a'[ — (aVvo N — vy, u))aT.

4. Primal-dual weak Galerkin formulation

We now consider the following local and global piece-wise polynomial spaces (with and without boundary values).
For a given integer k > 1 and s > 0 we define:

Wi(T) = P(T) x P(3T) X Pr—1(3T),
Wy = {{00. 05, on} : {00, 0b, on}lre Wil(T), ¥T € Tr},
Wy = {veWy:v,=0o0nIp,v, =0on Iy},
My = {w : w|re Py(T), VT € Tp}.

Here, the integer s is usually taken to be either k — 1 or k — 2. For any A € Wy, w € Wy, and u € Mj, we introduce the
following bilinear forms

s(hw) = ) sr(row), (4.1)
TeTy
bu, w) = ) (u, Luw +b - Vyw)r, (42)
TeTh
where

st(h, w) =hy>((laly + [b - n])(ho — Ap), Wo — Wh)ar
+ hy N aVig - 1 — Ap, aVwg - 1 — wy)ar (4.3)
+ y(Lro+ b - Vo, Lwyg+ b - Vwy)r.

Here, y > 0is a parameter independent of the meshsize h and the coefficients of the PDE; and |a|% = SUDyer (ij:1 al.zj(x)).

With this setup and notation, the primal-dual weak Galerkin finite element method for the convection-diffusion model
problem (1.1) is as follows:

Algorithm 4.1 (Primal-Dual Weak Galerkin). Find (up; ) € Mp, x W,? satisfying
S(An, w) 4 b(up, w) = —(f, wo) + (&2, wp) 1y, + (&1, W)y, Yw € WY, (4.4)
b(v, )\.h) =0, Yv € M. (4.5)
For any w € H'(£2), denote by Q,w the L? projection onto the weak finite element space W}, such that on each element
T,
Qw = {Qw, Qw, Q(aVw - n)}.

Here and in what follows of this paper, on each element T, Q, denotes the L? projection operator onto Pi(T); on each
edge or face e C 3T, Qy and Q, stand for the L? projection operators onto Py(e) and Py_(e), respectively. We denote by
Qﬁ” and Q; the L? projection operators onto the space of piecewise vector-valued polynomials of degree < (k — 1) and
the space Mj, respectively.

Lemma 4.1. The L? projection operators Qy, Q’,j_l and Q;, satisfy the following commuting relations:

Vi(Quw) = 95 ((Vw),  Yw e H(T); (4.6)
L,(Quw) = Qi(Lw),  Yw € H'(T), aVw € H(div; T). (4.7)

Proof. The detailed proof of (4.6) can be found in [55].
As to (4.7), for any ¢ € Py(T) and w € HY(T) such that aVw € H(div; T), from (3.3) and integration by parts, we have
(Lw(Quw), §)r = (Qw, LP)r — (Qw, aVe - M)t + (Qu(aVw - n), P)ar
= (w, L) — (w, aVe - m)r + (aVw - n, P)ar
= (Lw, d)r = (Q}(Lw), P)r,
which completes the proof of (4.7). O
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5. Existence and uniqueness

The stabilizer s(-, -) induces a semi-norm in the finite element space W, as follows:
lwll = s(w, w)2,  Yw € W (5.1)

In what follows of this paper, for the convenience of analysis, we assume that the convection vector b and the diffusion
tensor a are piecewise constants with respect to the partition 7;. The analysis, however, can be generalized to the case
that the convection b and diffusion a are piecewise smooth functions.

Before we prove the existence and uniqueness (which follow from Lemma 5.2) we need the following result which is
found in [55].

Lemma 5.1. Let 7, be a shape regular partition of §2. For 0 < t < min(2, k), the following estimates hold true:

Do hlu—Qoull?y S PV ullyy,,  melt—1,k, k=1, (5.2)
TeTy
> o u— o uly S PMulZ.  melt Kkl k=1, (5.3)
TeTy
Y ohfu = of Pull < WMl meltk—1], k> 2. (5.4)
TeTy

We are ready to prove that the discrete problem is solvable. We have the following result.

Lemma 5.2. Assume the convection tensor b and diffusion tensor a are uniformly piecewise constants with respect to the
finite element partition Ty,. The following inf-sup condition holds true:

b(v, 1)
[

> Bohf|lvlle, Vv € My, (5.5)
rew)

where By > 0 is a constant independent of the meshsize h.

Proof. For any ¢ € H¢(£2), let w € H?>7(£2) be the solution to the dual problem (2.2) satisfying the regularity
estimate (2.3). By letting p = Quw € W,?, from the trace inequality (3.1) with & = 0, and the estimate (5.2), we arrive at

> 1 [ Galy+1b-mi)po = s
T

TeTy
§Zh;3f |ng—wa|2ds
TeTh T
th?/ |Quw — wlds (56)
TeTy aT
—4 2 -2 2
<y oh /|Q0w—w| dT + h; fIVQow—Vw| dT
TeTh T T

—2 2
Sh™llwll5_.

Analogously, we have from the trace inequality (3.1) with § = € that

Soht [ avonn— poias

TeTh aT
<> k! / laVQow - 1 — Qu(aVw - n)|*ds

Ter, aT

5.7

5Zh;1/ |[aVQow - n — aVw - n|*ds (5.7)

TeTh oT
<Y 2 1aVQw - n—aVw - n|f + hy*(aVQw - n— aVw - nll}_ ;

TeTh

—2 2
sh™lwlz_.
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The inverse inequality then gives

> v(Lpo+b- Voo, Loo+b-Vook <y D hrllpol3_ 1
TeTh TeTy

S [ (5.8)
TeTy

SYhJwll3_.
By combining the estimates (5.6)-(5.8), the H?>¢-regularity estimate (2.3), and the definition of ||p||, we arrive at

ol < =l —. (5.9)

Now, by letting p = Q,w € W?, and then using Lemma 4.1 we obtain

b(v, p) =Y (v, Lu(Quw) + bV, (Quw))r

TeTy

=Y (v, Qew))r + (bv, Q' (Vw))r
TeTh

= (v, Lw)r + (bv, Vw)r (5.10)
TeTy

=Y (v, Lw+b-Vu)

TeTy
=(v, ¥).
Using (5.10) and (5.9) gives
b(v, 1) - b(v, p)

> sup
I~ pquuewo N0l

_ (v, ¥)
YeH €(2) o)l

2 ,30 Sup ﬂ
ven—<(2) <Vl -

= Boh“lvlle

for a constant By independent of the meshsize h. This completes the proof of the lemma. O

sup

0
rEW,

Remark 5.1. If the stabilizer st(A, w) defined in (4.3) is chosen depending on the regularity as follows

5100 w) =hy > ((laly + b - n1)(ho — Ay, wo — wp)ar
+ h-;1+2€ (aV)\,o .n— )\n, ano -n— U)n>8T
+ yhi“(Lro + b Vio, Lwo + b - Vwo)r,

then the inf-sup condition (5.5) is independent of h.

The following theorem is concerned with the main result on solution existence and uniqueness for the primal-dual
weak Galerkin schemes (4.4)-(4.5).

Theorem 5.3. Assume that the diffusion tensor a = a(x) and the convection vector b are piecewise constants with respect to
the finite element partition Tj,. Under the H>~¢(0 < € < %)—regularity assumption (2.3), the primal-dual weak Galerkin finite
element algorithm (4.4)-(4.5) has one and only one solution for any k > 2 and s = k —2 or s = k — 1 when y > 0. For the
case of y = 0 (i.e,, no residual stability), the numerical scheme (4.4)-(4.5) has one and only one solution for any k > 2 and
s=k-—1.

Proof. It suffices to show that zero is the only solution to the problems (4.4)-(4.5) with homogeneous dataf = 0,g; =0
and g, = 0. To this end, assume f = 0, g = 0 and g, = 0 in (4.4)-(4.5). By letting v = u, and w = X, the difference of
(4.4) and (4.5) gives s(An, Ap) = 0, which implies Ao = A, and aV g - n = XA, on each 9T. This, together with the fact that
An € Wﬁ, leads to A\ =0 on Ip and aVig-n=0on Iy.
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Next, it follows from (4.5), (3.4), (3.5) and integration by parts that for all v € My

0 =b(v, Ap)
= (v, Lurn + b Vin)r
TeTh
= Z(U‘O’ v)r + (Ao — Ap, AVV - M)gr — (@VAg - 1 — Ay, V)or
TeTh
+ (VAg, bv) — (Ao — Ap, bv - m)yr (5.11)
= Z(ﬁ)»o +b- Vi, v)r + (ko — Ap, (aVv — bv) - n)yr
TeTy

— {aVig -1 — Ay, V)or
=) (Lho+b-Vio, v,
TeTh

where we have used Ao = A, and aViy - n = A, on each dT. This implies LAg + b - VAo = 0 on each T € 75 by taking
v = LAo+b-Vigifs = k—1. For the case of s = k—2, from y > 0 and the fact that s(Ay, Ap) = 0 we have LAo+b-Viy =0
on each element T € 7. Since Ag = 0 on I'p and aVig - n = 0 on 'y, we then have Ao = 0 in £2. It follows that A, = 0,
as A, = Ag and A, = aVAg - n on each dT.

To show that up = 0, we use Ay = 0 and Eq. (4.4) to obtain

b(up, w) =0,  Yw e Wp. (5.12)
From Lemma 5.2, we have
b(up, w)

= Boh lulc,
wewd Tl

which, combined with (5.12), gives uy = 0 in £2. This completes the proof of the theorem. O

6. Error equations

Let u and (up, Ap) € My, x Wﬁ be the solution of (1.1) and its discretization schemes (4.4)-(4.5), respectively. Note that
An approximates the trivial function A = 0 as the Lagrange multiplier.

Lemma 6.1. Assume that the diffusion tensor a = a(x) and the convection vector b are piecewise constant functions in §2
with respect to the finite element partition T,. For any o € Wy and v € Mj, the following identity holds true:

(Lwo +b-Vyo,v)r =(Log+b- Voo, v)r + Rr(o, v), (6.1)
where

Rr(o, v) = (09 — 0p, (aVv — bv) - m)yr — (aVog - 0 — oy, v)yr. (6.2)

Proof. From (3.4) and (3.5), we have
(Lyo +b-Vy,o,v)r
=(Vyo, bv)r + (Ly0o, v)r
=(Voyg, bv) — (o0 — 0p, bv - n)57 + (Lo, V)1
+ (09 — 0p, aVv - n)yr — (aVop - 1 — oy, V)T
=(Loo +b - Voo, v)r + Rr(o, v),
where Ry(o, v) is given by (6.2). O

By error functions we mean the difference between the numerical solution arising from (4.4)-(4.5) and the L? projection
of the exact solution of (1.1); i.e.,

en = up — Qpu, (6.3)
en = Ap — QuA = Ap.
Lemma 6.2. Let u and (up; Ap) € My x W,? be the solutions arising from (1.1) and (4.4)-(4.5), respectively. Assume that the

diffusion tensor a = a(x) and the convection vector b are piecewise constant functions in §2 with respect to the finite element
partition Tp. Then, the error functions e, and e, satisfy the following equations

s(en, w) + b(ey, w) = £y(w), Ywe W,L?, (6.5)
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b(v, Sh) =0, Yv € My, (6.6)
where £,(w) is given by

Cu(w) =Y (Lwo + b Vwo, u — Qu)y
TeTh

+ (wo — wp, (aV(u — Qju) — b(u — Qju)) - m)yr
— (aVwp - 1 — wy, U — O} U)aT.

(6.7)

Proof. From (6.4) and (4.5) we have
b(v,sh):b(v,kh):o, Yv € My,

which gives rise to (6.6).
Next, observe that A = 0. Thus, from (4.4) we arrive at

S(Ap — QuA, w) + b(up — Qu, w)
=s(An, w) + b(up, w) — b(Qpu, w) (6.8)
= U-v lU()) + <g27 wb)FN + <g17 wn)FD - b(Qiua w)

For the term b(Qju, w), we use Lemma 6.1 to obtain
b(Qu, w)

=Y (Qu, Lyw +b- V,w)
TeTy

= (Lwo +b- Vo, Qu)r + Re(w, Qju) (6.9)
TeTh
= Z(ﬁwo +b - Vwg, u)r + (Lwo + b - Vwy, Quu — u)r + Re(w, Qpu).
TeTy
Integration by parts then shows that

Z(ﬁwo +b - Vuwg, u)r
TeTh

(6.10)
=Y (wo, V- (@Vu — bu))r — (wo. (aVu — bu) - n)yr + (@Vwg - 1, ).
TeTh
Since u is the exact solution of (1.1), w, = 0 on Ip and w,, = 0 on Iy, we have
> (wp, (aVu — bu) - m)yr = —(wp, &)1y, (6.11)
TeTh
D (wn, u)or = (W, 81) 1y (6.12)
TeTh
Using (6.10), (6.11), (6.12) and (1.1), we arrive at
> (Lwo + b Vo, u)yr
TeTy
=~ (wo.f) = Y (wo — wp, (aVu — bu) - nar + (@Vwo - 1 — wp, usr (6.13)

TeTh
+ (wb7 gZ)FN + (wna gl)FD'
Substituting (6.13) and (6.9) into (6.8) gives rise to the error equation (6.5), which completes the proof of the lemma. O

Remark 6.1. For C°-WG elements (i.e., wg = w;, on the boundary of each element), the middle term in (6.7) vanishes so
that £,(w) has the following simplified form:

Cu(w) =) (Lwo +b- Vwo, u — Qu)r — (aVwo - 1 — wy, 1 — Q). (6.14)
TeTy

which shall allow the derivation of an error estimate for the primal variable uy with u € H*(§2) for some 7 < 1.

8
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7. Error estimates

For simplicity and without loss of generality we introduce a semi-norm || - ||, in the finite element space W. For any
v = {vg, Vp, vy} € Wy, defineoneach T € T,

1/2

lvlly,r = ((laly + b n])(vo — vy), vo — vy (7.1)
and
1
2
Iolly = Y h vl | (7.2)
TeTh

It follows from (5.1), (4.1), and (4.3) that the following holds true:
Iolly < livll, v e W (7.3)
We have the following main result.
Theorem 7.1. Let u be the solution of (1.1) and (up, Ay) € My X W,? be its numerical solution arising from (4.4)-(4.5) with
index k > 2 and s = k — 2 or s = k — 1. Assume that the diffusion tensor a = a(x) and the convection vector b are piecewise
constant functions in §2 with respect to the finite element partition T, which is shape regular [55]. Furthermore, assume that

the exact solution u is sufficiently regular such that u € [ [;; HsY(T) N H?~¢(T) and that the regularity estimate (2.3) holds
for the dual problem (2.2). Then, the following error estimate holds true:

h*2(|a]2h=" + 1+ 8oy~ )V ul), ifs>1,
1 1 1 .
R(jalzh~ + 1+ y 2)(|Vull + h2|lull_c), ifs=0,

where §; j is the Kronecker delta with value 1 when i = j and 0 otherwise.

NAnll + hellenlle < { (7.4)

Proof. We split the proof into several steps estimating the terms corresponding to each member of the triplet defining
the errors. By letting w = &, = {eo, €5, &,} in (6.5) and using (6.6) we arrive at

s(en, en) = Lulen), (7.5)
where, by (6.7),

Culen) =y _(Leo+b - Veo,u— Qu)r
TeTy

+ (g0 — &p, (aV(u — Quu) — b(u — Qju)) - m)yr

s (7.6)
+ (en —aVep-m,u— Qu)or
=Y (W(T) +Jo(T) + J5(T)) .
TeTh

Here J;(T) is given by the corresponding term in the summation formula for i = 1, 2, 3. The rest of the proof is focused
on the estimate for each J;(T).

J1(T)-estimate: We recall thats = k—2 or s = k— 1 is the degree of polynomials for approximating the primal variable
u. As Leg + b - Ve is a polynomial of degree k — 1 on each element T, it follows that J{(T) = 0 when s = k — 1. For the
case of s = k — 2, one may use the Cauchy-Schwarz inequality to obtain

Ui(T) = |(£€0 +b-Vey,u— Qflu)ﬂ
<|(ceo+b - Veo, u — Qu)r|

o (7.7)
<l[Leo +b - Veollrllu — Quulir
Sh IV ullrliceo + b - Veollr,
where we have used the following interpolation error estimate in the last line:
lu — Qhully < Ch*+ |V ully. (7.8)

By summing (7.7) over all T € 7, we have from (5.1), (4.1), and (4.3) that

_1

S s Y 20| VS flegll,  fors =k —2, (7.9)
0, fors=k—1.

TeTh

9
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Jo(T)-estimate: The Cauchy-Schwarz inequality and the boundedness of the convective vector b imply

2T
= (0 — &y, (aV(u — Qju) — b(u — Q}u)) - m)yr|
<|(e0 — &, aV(u — Qju) - m)ar| + | (20 — &b, (u — Qu)b - M)yr | (7.10)
1 .
Slalrlleo — epllarIV(u — Qpu)llar + ll1b - n|2 (g0 — ep)llar[lu — Qpullar

1
< (IGIT2 IV(u— Qpu)llar + llu — Qiullar) llenlly,r-
The boundary integral |[u — Qjullsr can be handled by using the trace inequality (3.1) and the estimate (7.8) as follows

+l
lu— Q§ullar < by 2 IV ullr. (7.11)

As to the term ||V(u — Qu)|lsr, for s > 1, from the error estimate for the I? projection Qju and the trace inequality (3.1)
we have

_1
IV(u — Qu)llar < by IV ully. (7.12)

For s = 0, the above estimate must be modified by using the trace inequality (3.1) with 6 = ¢ as follows

_1 1_
IV(u — Qullor < by 2 IVully +hZ [ Vulli—cr. (7.13)
Next, by substituting (7 11)-(7.13) into (7.10) we have

s+2

UZ(T)l S 1 1
h2(|a| hy '+ 1)(IVully + h% IVuli-er)lenll,r,  fors=0,

Summing over T € 7, and then using the Cauchy-Schwarz inequality and (7.2) gives

(Ial thr +1)||VS+1U||T|”8h|"bT’ fors>1,

B2(jalzh =" + DIV ullllenll,, ifs>1,
PRIIES { Lo L . (7.14)
TeTh h*(lal2h™" + 1)(IVull + h2 = |lull2—e)llenll,,  if s =0.
J3(T)-estimate: From the Cauchy-Schwarz and the trace inequality (3.1) we obtain
Us(T)| = |(en — aVeo - m, u — Qju)or|
<llen — aVeo - nllarllu — Qpullar
_ 1/2 7.15
Slen — aVeo - mllyr (B lu — QGul2 + hr|[V(u — Q) (7:15)
L1
<hi"2 len — aVeo - mllor |V ullr.
Summing over all the element T € 7, yields
L1
Y UMIS Y by 2 llen — aVeo - allar [V uly
TeTh TeTh
1/2
(7.16)
SV | > s len — aVeo - mll3,

TeTy
SEVE el
By combining (7.6) with the estimates (7.9), (7.14), and (7.16) we arrive at
ulen)] < {h”z(lalzh + 1 ey IVl el fors > 1,
W(lal2h~" 4+ 14y~ ) Vull + h? < [lullo—)lleall, fors =0,
where §;; is the Kronecker delta with value 1 for i = j and 0 otherwise. Substituting the above estimate into (7.5) yields
el < {hmugﬁh-l 14 ey~ DIV ulllenll fors > 1,
h*(lal2h=" + 14 y=2)(||Vull + h2 = [lull-c)llenll, for s =0,
which leads to
lerl < !hsﬂ(kfﬁhl + 1+ 8oy 1V, for s > 1,
h*(lal2h™" + 14 y=2)(|IVull + h2~¢||ul2—), fors=0.
10
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Furthermore, the error equation (6.5) yields
b(en, w) = £y(w) — s(ep, w),  Yw € W,
It follows that
[b(en, w)| <[€u(w)] + llenllllwll

3 {wzuaﬁh—l + 14 82y DIV ullwll, for s > 1,

~

R2(jal2h" + 1+~ 2)([Vull + h2 = ull—)llwll, for s =0,
forall w e Wf,’. Thus, from the inf-sup condition (5.5) we obtain

h*2(Ja)2h~1 + 1 + 85 oy ~2)| VS, fors > 1,

h llenlle <
Pollen W(ja|zh~" + 14y~ 2)(|Vull + hz=<|Jul,_.), fors=0,

which, together with the error estimate (7.17), completes the proof of the theorem. O

The triangle inequality and the error estimate (7.4) give the following for the numerical approximation of the primal
variable.

Corollary 7.2. Under the assumptions of Theorem 7.1, one has the following optimal order error estimate in the H*-norm for
eel0, )

h*2(jal2h™ + 1+ 8 4oy~ 2)||VSHul), ifs>1,

h2(lal2h~' 414 y~3

hflu — unlle < 1 .
DIVull +h =< Jull—e), i s =0.

We emphasize that for s = k — 1 one has (Leg + b - V&g, u — Qpu)r = 0. The proof of Theorem 7.1 indicates that the
following term

Y /(E)\.O + b- V)uo)(ﬁU)o + b- Vwo)dT
T
in the stabilizer sr(-, -) (4.3) is no longer needed in the PDWG numerical schemes (4.4)-(4.5). The corresponding error
estimate can be stated as follows:

hs+2(|a|%h—l+1)”Vs+lu”’ lfSZ .17

hflu — unlle <
| R3alh T + 14y Vul + h2 € ul,_,), ifs=0.

8. Numerical results

This section shall report a variety of numerical results for the primal-dual weak Galerkin finite element schemes (4.4)-
(4.5) of the lowest order; i.e., k = 2 and s = 0, 1. Our finite element partition 73 is given through a successive uniform
refinement of a coarse triangulation of the domain by dividing each coarse level triangular element into four congruent
sub-triangles by connecting the three mid-points on its edge.

Both convex and non-convex polygonal domains are considered in the numerical experiments. The representatives of
the convex domains are two squares £2; = (0, 1)> and £2; = (—1, 1)2. The non-convex domains are featured by three
examples: (i) the L-shaped domain £2, with vertices A; = (0,0), A, = (2,0), A3 = (2, 1), Ay = (1, 1), As = (1, 2), and
Ag = (0, 2); (ii) the cracked square domain £2, = (—1, 1)>\ (0, 1) x 0 (i.e., a crack along the edge (0, 1) x 0); and (iii) the
L-shaped domain 25 with vertices B; = (—1, —1), B, = (1, —1), B3 = (1, 0), B4 = (0, 0), Bs = (0, 1), and Bs = (—1, 1).

The numerical method is based on the following configuration of the weak finite element space

Who = {An = {Ao, Ab, An} 0 Ao € Po(T), Ap € Pa(e), An € Pi(e),e COT, T € T},
and the finite element space
Mps = {up : uplre Py(T), YT € Ty}, s=0or 1.

The weak finite element space W is said to be of CO-type if for any v = {vo, vs, vy} € Wi, one has vy = vplsr on
each element T € T;. Likewise, C~!-type elements are defined as the general case of v = {vg, vp, vn} € Wy for which vy
is completely independent of vy on the edge of each element. It is clear that C°-type elements involve fewer degrees of
freedom compared with the C~'-type elements. But C~!-type elements have the flexibility in element construction and
approximation. It should be noted that, for C~!-type elements, the unknowns associated with vy can be eliminated locally
on each element in parallel through a condensation algorithm before assembling the global stiffness matrix.

For simplicity of implementation, our numerical experiments will be focused on C°-type elements; i.e., A, = Ag on
T for each element T € T;,. For convenience, the C%-type WG element with s = 1 (i.e., Mj,.;) and s = 0 (i.e., My o) will be

11



C. Wang and L. Zikatanov Journal of Computational and Applied Mathematics 394 (2021) 113543

Table 8.1
Numerical rates of convergence for the C~! — P,(T)/P,(dT)/P;(3T)/Ps(T) element with exact solution u = sin(x)sin(y) on £2;; uniform triangular
partitions; the diffusion tensor a = %[1 +x2,0; 0, 1+ y?]; the convection vector b = [1, 1]’; the stabilizer parameter y = 1; full Dirichlet boundary
condition.

1/h W2nllo Order lI25llo Order Al Order llenllo Order
1 0.06154 0.07356 0.2582 0.2576
2 0.006173 3317 0.006173 3.575 0.04388 2.5575 0.08868 1538

s=1 4 0.0004702 3715 0.0005948 3.375 0.004971 3.142 0.02248 1.980
8 3.051E-05 3.946 3.847E-05 3.951 0.0005405 3.201 0.005592 2.007
16 1.931E-06 3.982 2.431E—06 3.984 6.300E—05 3.101 0.0013957 2.002
32 1.215E—07 3.991 1.528E—07 3.992 7.682E—06 3.036 0.0003488 2.000
1/h 12nllo Order lI25llo Order 2l Order llenllo Order
1 0.2081 0.1999 1.640 0.1353

s=0 2 0.04310 2.272 0.05059 1.983 0.4799 1773 0.05270 1.3600
4 0.006967 2.629 0.008601 2.556 0.1163 2.045 0.01998 1.399
8 0.001193 2,546 0.001566 2.458 0.02810 2.049 0.008344 1.260
16 0.0002439 2.290 0.0003357 2222 0.006918 2.022 0.003852 1.115
32 5.663 E-05 2.107 7.946E—05 2.079 0.001718 2.009 0.001881 1.034

denoted as CO-P,(T)/P;(3T)/P1(T) and C°-P,(T)/P1(dT)/Po(T) respectively. Analogously, the C~'-type WG element with
s=1and s = 0 will be denoted as C~'-P,(T)/P,(3T)/P1(dT)/P1(T) and C~1-P,(T)/P,(3dT)/P1(dT)/Po(T) respectively.

Let Ay = {Ao, Ap, An} € Wy and up € Mps (s = 0,1) be the numerical solutions arising from (4.4)-(4.5). To
demonstrate the performance of the numerical method, the numerical solutions are compared with some appropriately-
chosen interpolations of the exact solution u and A in various norms. In particular, the primal variable uj is compared
with the exact solution u on each element at either the three vertices (for s = 1) or the center (for s = 0) - known as
the nodal point interpolation I,u. The auxiliary variable A, approximates the true solution A = 0, and is compared with
QnA = 0. Thus, the error functions are respectively denoted by

ep = Ap — QuA = (Ao, Ap, An}, ep = up — Iy

The following norms are used to measure the error functions:

lenllo = ( Z/eidT Maallo = ( Z/A dr

TeTy

Wollo = (3 tr / Azds) il = Zhr f xads)’

TeTy

Table 8.1 illustrates the performance of the PDWG finite element scheme for the test problem (1.1) when the C~'-
type P,(T)/P,(3T)/P1(dT)/P;(T) element and the C~'-type Py(T)/P,(3T)/P1(dT)/Po(T) element are applied respectively.
The configuration of this test problem is as follows: the domain is the unit square £2; = (0, 1)?; the exact solution is
u = sin(x)sin(y); the diffusion tensor is a(x) = %[1 + x%,0;0, 1 + y*]; the convection vector is b = [1, 1]’ and the
stabilizer parameter y = 1. We observe from Table 8.1 that the convergence rate for e; in the L> norm is of an expected
optimal order ©(h?) and ©(h) for the C~'-P,(T)/P,(3T)/P1(dT)/Ps(T) element on the uniform triangular partitions when
s = 1 and s = 0 are employed respectively.

Tables 8.2-8.3 illustrate the performance of the PDWG finite element scheme for the test problem (1.1) when the exact
solution is given by u = sin(x) cos(y) for the C°-type P,(T)/P:(3dT)/P:(T) element on the unit square domain £2; and the
L-shaped domain §2, with stabilizer parameter y = 0. The diffusion tensor in (1.1) is given by a = [107'°,0; 0, 1071]
and the convection tensor by b = [1, 1] which makes it a convection-dominated diffusion problem. The right-hand side
function f, the Dirichlet boundary data g;, and the Neumann boundary data g, are chosen to match the exact solution
u. The numerical results in Tables 8.2-8.3 show that the convergence rates for the error function e, are of order r = 2
in the discrete L>-norm on both the unit square domain $2; and the L-shaped domain £2,. The numerical results are in
great consistency with the theoretical rate of convergence for e, in the discrete L>-norm on the convex domain £2;. The
computational results for the non-convex domain £2, outperform the theory shown in the previous section.

Table 8.4 illustrates the performance of the PDWG method with the C°- P,(T)/P;(3T)/Py(T) element when the exact
solution is u = sin(x)sin(y) on the domain £2;. The diffusion tensor is given by a = [1 + x> +y%,0; 0, 1 4+ x*> + y?] and
the convection vector by b = [x, y]. The stabilizer parameter is y = 0. The convergence for e, in the discrete L* norm is
at the rate of O(h) which is consistent with what the theory predicts.

Tables 8.5-8.6 show the numerical results on the unit square domain £2; for the C%- P,(T)/P;(dT)/Py(T) and C°-
P,(T)/P1(3T)/Po(T) elements, respectively. In this numerical experiment, we consider a convection-dominated diffusion
problem by taking the diffusion tensor as a = [107>,0; 0, 10~>] and the convection vector b = [1, 0]. The stabilizer
parameter for the third term is given by y = 0; and Dirichlet boundary data is imposed on all the boundary edges. The

12
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Numerical rates of convergence for the C°- P,(T)/P;(dT)/P;(T) element with exact solution u = sin(x)cos(y) on £2; = (0, 1)*; the diffusion tensor
a = [107'°,0; 0, 107'°]; the convection vector b = [1, 1]; the stabilizer parameter y = 0; Neumann boundary condition on the boundary edge
(0, 1) x {0} and Dirichlet boundary condition on other three boundary edges.

1/h liArllo Order [ Order llenllo Order
1 2.63E—13 0.005393 0.07722

2 6.61E—14 1.991 0.001270 2.087 0.02388 1.693
4 1.16E—14 2514 1.58E—04 3.009 0.005821 2.036
8 1.69E—15 2.776 1.52E—05 3.378 0.001425 2.030
16 2.54E—16 2.731 1.33E-06 3514 3.55E—04 2.005
32 3.66E—17 2.798 1.14E-07 3.538 8.89E—05 1.998

Table 8.3

Numerical rates of convergence for the C°-P,(T)/P;(3T)/P1(T) element with exact solution u = sin(x) cos(y) on the L-shaped domain £2,; the diffusion
tensor a = [107'°,0; 0, 1071°]; the convection vector b = [1, 1]; the stabilizer parameter y = 0; Neumann boundary condition on the boundary
edge (0, 1) x {0} and Dirichlet boundary condition on other boundary edges.

1/h lIArllo Order WAl Order llenllo Order

1 2.81E—12 0.03304 0.2771

2 591E—13 2.249 0.004297 2.943 0.06903 2.005

4 8.11E—14 2.866 4.49E—04 3.260 0.01629 2.083

8 1.18E—14 2.780 4.25E—05 3.400 0.003996 2.028

16 2.12E—15 2.481 3.92E-06 3.437 9.92E—04 2.010
Table 8.4

Numerical rates of convergence for the C°- P,(T)/Py(3T)/Po(T) element with exact solution u

a=[1+x*>+y%0;0,1+x*+y?]; the convection vector b = [x,y]; the stabilizer parameter y = 0; full Dirichlet boundary condition.

= sin(x)sin(y) on $£2;; the diffusion tensor

1/h 12k Mo Order AR Order lenllo Order
1 0.02967 0.4979 0.04851

2 0.002843 3.384 0.1173 2.086 0.02801 0.7925
4 4.53E—04 2.649 0.02797 2.069 0.01272 1.138
8 1.02E—-04 2.155 0.006792 2.042 0.006047 1.073
16 2.45E—05 2.053 0.001671 2.023 0.002980 1.021
32 6.07E—06 2.016 4.14E—04 2.012 0.001485 1.005

Table 8.5

Numerical rates of convergence for the C°- Py(T)/P;(dT)/Py(T) element with exact solution u = 0.5(1 — tanh((x — 0.5)/0.05)) on £2; the diffusion

tensor a = [1075, 0; 0, 10~°]; the convection vector b = [1, 0]; the stabilizer parameter y = 0; full Dirichlet boundary condition.

1/h 2kl Order (oY Order llenllo Order

1 1.32E—10 7.02E—06 0.06502

2 1.01E-04 —19.54 1.66E—03 —7.882 57.82 —9.796
4 1.86E—05 2.442 6.28E—04 1.399 29.78 0.9571
8 2.61E—-06 2.833 1.80E—04 1.803 6.781 2.135
16 2.32E-07 3.488 3.24E—05 2.476 1.725 1.975
32 1.54E—08 3.913 4.32E—06 2.906 0.4000 2.109

Table 8.6

Numerical rates of convergence for the C°- Py(T)/P;(dT)/P;(T) element with exact solution u = 0.5(1 — tanh((x — 0.5)/0.05)) on £2; the diffusion
tensor a = [1075, 0; 0, 10~°]; the convection vector b = [1, 0]; the stabilizer parameter y = 0; full Dirichlet boundary conditions.

1/h 124 llo Order 120114 Order llenllo Order

1 6.49E—06 0.3685 0.6662

2 6.84E—07 3.246 0.07008 2.394 0.6305 0.07942
4 2.24E—-07 1614 0.01776 1.980 0.3130 1.010

8 4.12E—-08 2.439 0.003311 2423 0.1281 1.289
16 5.98E—-09 2.785 3.58E-04 3.209 0.03184 2.009
32 1.23E-09 2.279 2.81E-05 3.671 0.006791 2.229

exact solution is u = 0.5(1 — tanh((x — 0.5)/0.05)). The numerical results in Table 8.5 indicate that the convergence for
ey in the L? norm seem to arrive at a superconvergence rate of ©(h?) which is higher than the theoretical prediction of
O(h) for the C°- P,(T)/P;(3T)/Py(T) element. Table 8.6 shows that the convergence for e, in the L> norm is at the rate of
O(h?) for the CO- P5(T)/P;(dT)/P;(T) element which is consistent with the theoretical error estimate.

Tables 8.7-8.8 illustrate the numerical results for the C°- P,(T)/Py(dT)/P;(T) and the CO- P,(T)/P1(dT)/Po(T) elements
on the unit square domain £2; with exact solution u = e~*~05)°/02-30-057/0.2 The test problem has the diffusion tensor
a = [107>,0;0,107°] and the convection b = [1,0]. The stabilizer parameters are chosen as y = 1and y = 0,

13



C. Wang and L. Zikatanov Journal of Computational and Applied Mathematics 394 (2021) 113543

Table 8.7
Numerical rates of convergence for the C°- P5(T)/Py(3T)/Po(T) element with exact solution u = e~(*-0.57/02-30-057/02 on 0. the diffusion tensor
a=[107>,0; 0, 107°]; the convection vector b = [1, 0]; the stabilizer parameter y = 1; Dirichlet boundary condition on the entire boundary.

1/h 2 llo Order 1214 Order llenllo Order

1 4,06E—15 8.77E—07 0.4682

2 3.21E-04 —36.20 0.005274 —12.55 1.21E4-02 —8.016
4 2.52E—05 3.673 7.73E—04 2.771 7.002 4.113
8 1.35E—06 4221 9.47E—05 3.029 3.980 0.8152
16 8.44E—08 4,000 1.19E—-05 2.998 0.8133 2.291
32 5.26E—09 4.004 1.48E—06 3.005 0.1313 2.631

Table 8.8

Numerical rates of convergence for the C°- P5(T)/Py(3T)/P:(T) element with exact solution u = e~(*-0:57/02-30-057/02 o 0. the diffusion tensor
a=[107°,0; 0, 107°]; the convection b = [1, 0]; the stabilizer parameter y = 0; Dirichlet boundary condition on the entire boundary.

1/h 124 llo Order [ Order llenllo Order

1 2.80E—-10 0.05239 0.2339

2 3.74E—07 —10.38 0.01817 1.528 0.1609 0.5398
4 7.24E—08 2.369 0.003381 2.426 0.1146 0.4893
8 1.77E—-08 2.035 3.09E—-04 3.452 0.03390 1.757

16 4.43E—-09 1.994 2.93E-05 3.398 0.008362 2.019

32 1.27E—-09 1.799 3.30E—-06 3.151 0.002117 1.982

Figure for Primal Variable Figure for Lagrange Multiplier

S

10

Fig. 8.1. Surface plots for the C~'-P,(T)/Py(3T)/P;1(dT)/P1(T) element on the unit square domain §2;; left for the primal variable uy; right for the
dual variable Ag.

respectively. The Dirichlet boundary condition is imposed on the entire boundary. The numerical results in Table 8.7
show a superconvergence for e, in the L?> norm, as the optimal order error estimate would imply a convergence at the
rate of ©(h) when the C°- P,(T)/P1(dT)/Py(T) element is used. Table 8.8 indicates that the convergence order for ey in
the discrete L? norm is consistent with what the theory predicts.

Figs. 8.1-8.2 illustrate the plots of the numerical solution u, and the Lagrange multiplier Ao arising from the PDWG
schemes (4.4)-(4.5) on the unit square domain £2;. The diffusion tensor is a = [3/2, 0; 0, 5], the convection vector is
b = [1, 1], and the load function is f = 0. The full Dirichlet boundary data is set as follows: g; = 1 on the boundary
edge 0% (0, 1), g1 = —1 on the boundary edge 1 % (0, 1), gt = 2 on the boundary edge (0, 1) * 0, and g = —2 on the
boundary edge (0, 1) % 1. Figs. 8.1-8.2 show the numerical solution u, and the Lagrange multiplier 1o when the C~!-
type Py(T)/P,(3T)/P1(dT)/P1(T) element and C~!-type P,(T)/P,(3T)/P1(dT)/Po(T) element are employed respectively.
In the same problem configuration, Figs. 8.3-8.4 illustrate the plots of the numerical solution u; and the Lagrange
multiplier Ao for the C°-P,(T)/P;(dT)/P;(T) element and C°-P,(T)/P1(3T)/Py(T) element respectively. Note that in the
above configurations, no exact solutions of the primal variable are known and the exact solutions of the dual variable are
0. We can see from Figs. 8.1-8.4 that the dual variable is zero almost everywhere in the domain except some spikes on
the corners which reaches 10~%. However, it is not clear to us why there are spikes appearing on the corners, which is
very interesting and will be explored in the future. We would like to point out that the exact solution of the dual variable
is 0, which could be treated as an error function in the a posteriori error estimation.

Fig. 8.5 illustrates the plots of the numerical solution uy arising from the PDWG schemes (4.4)-(4.5) for a convection-
dominated diffusion problem on the unit square domain £2;. In this numerical experiment, the diffusion tensor is given by
a = [1072,0; 0, 107°], the convection vector by b = [1, 0], and the load function is given by f = 1. The Neumann boundary
data g, = 107 is imposed on the boundary edge {0} x (0, 1), and the Dirichlet boundary data g; = x is imposed on the
rest of the boundary edges. The figure on the left shows the numerical solution u, when the C%-type P,(T)/P1(dT)/P:(T)
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Figure for Primal Variable Figure for Lagrange Multiplier

Fig. 8.2. Surface plots for the C~'-P,(T)/P,(dT)/P1(3T)/Po(T) element on the unit square domain £2;; left for the primal variable uy; right for the
dual variable Xo.

Figure for Primal Variable Figure for Lagrange Multiplier

0%

0 o

Fig. 8.3. Surface plots for the CO-Py(T)/P;(dT)/P;(T) element on the unit square domain $2; left for the primal variable uy; right for the dual
variable Ao.

Figure for Primal Variable Figure for Lagrange Multiplier

Fig. 8.4. Surface plots for the CO-Py(T)/P;(dT)/Py(T) element on the unit square domain £2; left for the primal variable uy; right for the dual
variable \o.

element is used and the one on the right is for the numerical solution u with the C%-type P,(T)/P1(dT)/Py(T) element.
Note that the exact solution for the primal variable in the configuration is u = x. We conclude that the numerical solution
uy, obtained by PDWG scheme is consistent with the exact solution.

Fig. 8.6 shows the plots for the numerical solution uy on the unit square domain £2; when the C°-type P,(T)/P1(dT)/P,
(T) element is employed to the test problem with convective direction b = [1, 0] and load function f = 1. The Neumann
boundary condition of g, = a1 (where a = (a;)) is imposed on the inflow boundary edge {0} x (0, 1) and the Dirichlet
boundary condition g; = 0 is imposed on the rest of the boundary. Fig. 8.6 shows the numerical solution uy for different
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Fig. 8.6. Surface plots for the primal variable u; on the unit square domain £2; with the C°-P,(T)/P;(3T)/Py(T) element: left for the diffusion tensor
a=1[10"",0;0,10"'], middle for the diffusion tensor a = [10~3, 0; 0, 10~3], right for the diffusion tensor a = [10~%, 0; 0, 10~°].

3 - o 4 4
1 a8 08 04 02 o . o ] ' 06 04 02 0 02 04 06 08 1 1 08 06 04 02 0 02 04 08 08 1

Fig. 8.7. Contour plots for the primal variable uy: left for the square domain £23; middle for the cracked square domain £24; and right for the
L-shaped domain $2s.

diffusion tensors: a = [10~',0; 0, 10~'] (left), a = [1073, 0; 0, 10~3] (middle), and a = [107%, 0; 0, 10®] (right). The
exact solutions for the primal variable in the configurations are unknown. However, we can see from Fig. 8.6 that when
the diffusion tensor becomes smaller, the boundary layer phenomena is more clear.

Fig. 8.7 illustrates the contour plots for the numerical solution u; arising from the primal-dual weak Galerkin
finite element method on three different domains: (i) the square domain £2; = (—1,1)?, (ii) the cracked square
domain £24, and (iii) the L-shaped domain £2s. In this numerical experiment, the model problem has a diffusion tensor
a = [1074,0;0,107*] and a convective (rotational) vector b = [y, —x]. Fig. 8.7 is obtained by using the following
configurations: (a) the C°-P,(T)/P;(dT)/P:(T) element, (b) Neumann boundary condition g, = 0 on the inflow boundary
edges (b - n < 0), (c) Dirichlet boundary condition g; = sin(3x) on the outflow boundary edges (b - n > 0); and (d) the
load function f = 1. Note that no exact solutions for the primal variable are known in the configurations. However, some
interesting and trustable numerical solutions arising from PDWG method are illustrated in Fig. 8.7.

In summary, the numerical performance of the PDWG schemes (4.4)-(4.5) for the convection-dominated convection-
diffusion problem (1.1) is typically consistent with or better than what our theory predicts. Theorem 7.1 and the numerical
tests show that the stabilization parameter y is not necessary to make the PDWG method convergent and accurate when
s = k — 1. We conjecture that the PDWG finite element scheme with y = 0 is stable and has the optimal order of
convergence for both s = k — 2 and s = k — 1 when the diffusion tensor a and the convection vector b are uniformly
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piecewise continuous functions, provided that the meshsize is sufficiently small. Interested readers are encouraged to
explore the corresponding theory with more sophisticated mathematical tools.

9. Conclusions

The primal-dual weak Galerkin finite element method developed here for convection-diffusion problems has shown
several promising features as a discretization approach in the following aspects: (1) it provides a symmetric and well-
posed discrete problem; (2) it is consistent in the sense that the exact solution, if sufficiently regular, satisfies the discrete
variational problem; (3) it allows for low regularity of the primal variable and admits optimal a priori error estimates.
Further exploration is needed for constructing fast solvers for the resulting discrete problems and this is a subject of a
current and future work.
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