


Robotics: Science and Systems (2021) http://dx.doi.org/10.15607/RSS.2021.XVII.064

proof in the form of the separating manifold or polytope.

First, we assume a kinematic motion planning problem where

infeasibility is caused only by the obstacle region rather than

the case of differential constraints. Second, we assume hyper-

parameters are properly chosen to incrementally fit the SVM

that will result in a closed and continuous manifold and a

successful triangulation of the manifold (see Sec. IV-A and

Sec. IV-C). Third, we assume the ability to sample points on

the manifold and find penetration depths in configuration space;

we present empirically robust, optimization-based approaches

in (1) to sample points on the manifold and (2) to find

such penetration depths for serial manipulators and workspace

(Cartesian) obstacles. When these assumptions are satisfied,

our algorithm results in a complete planner.

We demonstrate this approach on up-to four-dimensional

configuration spaces of serial robot manipulators (see Figure 1a

and Figure 7b). To the best of our knowledge, this is the first

approach to construct motion planning infeasibility proofs for

such serial manipulators in higher than three dimensions.

II. RELATED WORK

Sampling-based motion planning is an efficient and widely-

used approach for high-dimensional motion planning [11]–[13],

[15]–[17]. However, these approaches are only probabilistically

complete. Recent developments in tools for high-dimensional

computational geometry have made complete motion planning

more feasible [18]–[20].

Some previous work addressed motion planning infeasibility

proofs for single objects. [21] proves path non-existence

for single, rigid objects in a 2D or 3D workspace. They

approximate the obstacle region with a decomposition into

lower dimensional subsets and connected components of those

subsets. Using these components, they construct a connectivity

graph to query whether two configurations are connected.

[22] considers the simplified problem of a rigid body passing

through a narrow gate. They discretize the object’s orientation

and test whether the object can pass through the gate for each

discrete orientation region. These works focus on single objects

in the Cartesian space rather than the configuration space of

robot manipulators.

Other works offer complete motion planning based on space

decomposition. In [23], the authors decompose the obstacle

region into alpha-shapes and then query the connectivity of

two points; scalability to higher dimensions depends on the

computation of high-dimensional alpha-shapes, which is still

an open research question. In [9] and [10], the authors combine

cell decomposition with a probabilistic roadmap (PRM). The

algorithms proposed in [9], [10] are resolution-complete due

to the underlying cell decomposition. However, decomposing

the entire configuration space poses scalability challenges in

higher dimensions.

Deterministic sampling-based motion planning provides

certain guarantees on plan non-existence [24], [25]. Using

low-dispersion sampling strategies, if such a planner does

not find a plan, then either no solution exists or a solution

exists only through some narrow passage. However, the low-

dispersion sampling must largely cover the configuration space,

and the result is similar to resolution-completeness where the

infeasibility guarantee is not exact.

Visibility [26] and sparsity [27] based planners also provide

some degree of infeasibility information. These methods add

sampling points to a roadmap if the points are useful for

coverage, connectivity, or path quality. Planning terminates

when no further points can be added for a certain number

(M ) of consecutive samples, and the percentage of the free

space not covered by the roadmap is estimated as 1/M . Thus,

these methods can usually cover a high percentage of the free

space. If no plan is found when the algorithm terminates, the

problem may be considered to be infeasible [28]. However,

these methods do not definitely prove plan nonexistence since

they are based on covering a portion of the free space. In

contrast, our approach seeks to find definite, exact infeasibility

proofs through geometric methods.

To summarize, previous works on infeasibility proofs either

limit analysis to single objects, require decomposition of the

entire configuration space, or provide semi-definite plan non-

existence guarantee. The algorithm in this paper applies to robot

manipulators and only requires decomposition of a manifold in

the configuration space. The result, under stated assumptions,

is either a feasible plan or an infeasiblity proof.

Our previous approach for infeasibility proof construction

in [14] proposed an algorithm to construct a polytope in the

configuration space obstacle region. First, we generated a set of

facets in the obstacle region. Then, we identify the facets that

form a closed polytope separating the start and goal by solving

a set of linear constraints. Facet generation is computationally

expensive, limiting scalability to higher dimensions. Compared

to [14], this paper uses machine learning to generate an initial

manifold, offering better scalability to higher dimensions.

III. PROBLEM DESCRIPTION

This work finds infeasibility proofs for kinematic motion

planning problems. A motion planning problem [29] consists

of a configuration space C of dimension n, a start configuration

qstart, and a goal configuration qgoal. The configuration space

C is the union of the disjoint obstacle region Cobs and free

space Cfree. Both qstart and qgoal are in Cfree. When a feasible

plan exists, the output is a plan σ such that σ[0, 1] ∈ Cfree,
σ[0] = qstart, σ[1] = qgoal. When there is no feasible plan,

the output is a proof of infeasibility.

We consider infeasibility proofs in the form of a closed

manifold M which lies in the obstacle region and which

separates the start qstart and the goal qgoal. We define M as

a level set with f(q) = 0 where f is a continuous function

in C. To separate qstart and qgoal, M must be closed and f
must be positive for one and negative for the other.

Definition 1 (Infeasibility Proof). An infeasibility proof is a

closed manifold M, where,

M = {q | f(q) = 0 ∧ q ∈ Cobs},

s.t. f(qstart)f(qgoal) < 0 .
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small, then the Gaussian functions will form separate regions

at the support vectors. With the right effecting range or over-

fitting parameter, the combination of Gaussian functions will

be closed and continuous when the support vectors are sampled

densely enough since the target obstacle region is closed. The

training process that incrementally over-fits will choose the

largest effecting range (with the fixed incremental value ∆γ
as changing steps) that is small enough to fit all the training

data, so that the combination of Gaussian functions will not

form separate regions, meaning the manifold is continuous.

To summarize, if no plan exist, given enough training points,

using the training process that incrementally over-fits with

a small enough over-fitting incremental value, the resulting

manifold will eventually be closed, continuous, and contained

in Cobs.
Manifold triangulation using tangential Delaunay complexes

(Sec. IV-C) requires the manifold to be a closed, continuous,

and differentiable submanifold of n-dimensional Euclidean

space [33]. In our case, the learned manifold from RBF kernel-

SVM is differentiable since the resulting manifold function is

a combination of Gaussian functions. Since we do not know

how many sample points are necessary to ensure manifold

closure and continuity, the triangulation step also serves as

a validation step. If the triangulation is successful, then the

manifold must be closed and continuous. If the triangulation

step is not successful, we need to retrain the manifold with

more sampled points from the two trees.

B. Sample Manifold Points

After learning a manifold, we use the obstacle region points

Pobs to sample points on the manifold, which we will then use

to construct the polytope in the next step. In most sampling-

based methods, Pobs are discarded, but in our algorithm, we

save all the points sampled in obstacle region.

For each point in Pobs, we find the closest point on the

manifold (line 4) which is the solution of the following

nonlinear constrained optimization problem,

min
qm

dist(qobs,qm)

s.t. f(qm) = 0 ,
(1)

where the qobs is the given point in Cobs, qm is the manifold

point we want to find, and f is defined in Definition 1, which is

the training result of the previous step. Solving this optimization

problem for every point in Pobs produces a set of points on

the manifold. We use Pobs to sample manifold points because

they are more likely to exist closer to the manifold since

the manifold is largely in Cobs, thus solving the optimization

problem faster. If solving this optimization problem fails for a

point, we discard that point. Though (1) may not be robustly

solvable for all possible configuration spaces, we are able to

robustly solve this optimization problem for the experimental

scenarios involving robot manipulators in Sec. V.

Because the manifold must be entirely in Cobs, we check

if any sampled manifold point is in Cfree at this stage. If

we find a sampled manifold point in Cfree, then the manifold

cannot be fully in Cobs, and we need to retrain the manifold.

Before retraining, we try to add the point in Cfree to either

the start tree or the goal tree by interpolating a straight line

between the point and the closest point to it on either of the

two trees (line 6). Note that our implementation adds the point

to a copy of the trees for the infeasibility proof but not the

start tree and goal tree used by the bidirectional planner (e.g.,

RRT-connect), since we want this algorithm to work with any

bidirectional motion planner without the need to modify the

underlying planner. Now that we have a set of points on the

manifold, the next step uses these points to create a polytope

that approximates the manifold.

C. Manifold Triangulation

Since proving a manifold is in Cobs directly is difficult, we

construct a polytope from the sampled manifold points using

tangential Delaunay complexes [18], [33] and then prove that

the polytope is in Cobs. Tangential Delaunay complexes can be

used to reconstruct a triangulation of a manifold given a set

of points on the manifold. In [18], [33], the authors provide

an algorithm to construct the tangential Delaunay complexes

for triangulation of manifolds, which is implemented in [34].

We apply this algorithm to the sampled manifold points from

Sec. IV-B to triangulate the SVM manifold. The triangulation

of the manifold forms a polytope, which we use in later steps.

Here, we focus on the key requirements and results of the tri-

angulation algorithm; please see [33] (chapter 7 and chapter 8)

for a more complete explanation. To construct the triangulation

successfully, the algorithm has several requirements. As stated

in Sec. IV-A, the first requirement is that the manifold should be

closed, continuous and differentiable, which is already satisfied.

Secondly, the sampling points must cover the entire manifold

and distribute evenly on the manifold. Stated precisely, the

sampled set of points must be an (ǫ, η)−net of the manifold.

Definition 2. A finite point set P is an (ǫ, η)−net of M, iff

• (ǫ-dense) for any point x ∈ M, let p be the closest point

to x in P , ‖p− x‖ < ǫ;
• (η-separated) for any two points p, q ∈ P , ‖p− q‖ > ǫη.

In algorithm 1, we ensure the (ǫ, η)−net requirement by

applying a subsampling process (line 20). This subsampling

process has two parts. First, we subsample a fixed subset of

the manifold points (half of all the manifold points) that are

as far away from each other as possible. Next, we subsample

again from the result of the first subsampling by ensuring

a minimum distance dmin between two points. Together,

these two subsampling ensures the resulting points set is an

(ǫ, η)−net of M for some ǫ and η. If we have more manifold

points, ǫ would be smaller. If we use smaller minimum distance

in the second subsampling step, ǫ would also be smaller. We

do not need to calculate ǫ and η exactly.

The minimum distance dmin in the subsampling process

is a hyper-parameter in our algorithm. We choose the dmin

according to the obstacle region Cobs of the configuration space,

with larger dmin if Cobs separating the goal or start is large

and smaller dmin if Cobs separating the goal or start is small.
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use a subsampling minimum distance of 0.01. Compared to

the previous experiment, we see that the complexity of the

workspace influences running time, since we need more points

to train and sample the manifold.

D. Feasible Plan Experiments

For the above three scenes, we modify the scenes to make

plans feasible but still difficult to find. For the Jaco arm, we

move the shelf further away from the robot base to make the

blue box reachable. For the 4DOF shoulder-elbow robot, we

move the red box away from the robot base to make the inside

reachable. For the SCARA arm, we move the ball away from

the box to make room for the arm to pass. We run these scenes

on RRT-connect with and without the infeasiblity proof for 24

trails each. Table IV shows the comparison.

When there is a feasible plan, running RRT-connect with

infeasibility proof construction introduces minor absolute

overhead if the plan can be found in a relatively short time. If

the scene is more complicated, running RRT-connect with

infeasibility proof construction introduces more overhead,

which is mainly caused by saving all the sampling points. A

better-optimized implementation may reduce this overhead. The

current implementation uses an interpreted language (Python)

to save the additional data and construct the infeasibility proof,

while RRT-connect is implemented in C++ [16].

We note that in all the trials we ran (84 trials of infeasible

scenes and 72 trials of feasible scenes), the algorithm correctly

found either the infeasibility proof or the plan.

Previous Algorithm [14] Runtime and Profiling (s)

Total LCSP Colli-Check PD

Mean 457.50 46.62 51.24 326.79

STD 396.24 41.77 146.05 172.96

Current Algorithm Runtime and Profiling (s)

Total TC samp-mf PD

Mean 177.36 15.15 51.69 89.23

STD 71.35 30.65 30.65 20.88

TABLE I: Runtime comparison with previous algorithm,

averaged over 3 scenes and 12 trials each scene. Current

algorithm runs about 3 times faster.

4 DoF Shoulder-Elbow Robot Experimental Results

Total (s) TC (s) samp-mf (s) PD (s)

Mean 230.82 67.19 51.97 94.40

STD 90.95 47.82 39.36 27.89

# of Pobs # of Facets # of Vertices

Mean 16 340.42 8188.38 1281.84

STD 4930.06 2353.53 361.61

TABLE II: Experimental results for 4 DoF shoulder-elbow

robot, averaged over 24 trials. “TC” is for triangulation with

tangential complex, “samp-mp” is for sampling of manifold

points, “PD” is for calculating penetration depth.

SCARA Arm Experimental Results

Total (s) TC (s) samp-mf (s) PD (s)

Mean 433.00 25.01 317.47 69.80

STD 220.43 29.97 184.78 10.95

# of Pobs # of Facets # of Vertices

Mean 16 747.86 3094.17 503.80

STD 3104.73 365.65 57.46

TABLE III: Experimental results for SCARA arm, averaged

over 24 trials. “TC” is for triangulation with tangential complex,

“samp-mp” is for sampling of manifold points, “PD” is for

calculating penetration depth.

Plan Feasible Experiments mean/std (s)

Jaco 4 DoF SCARA

RRT-connect 4.21/1.69 0.025/0.010 42.20/22.43

RRT-connect w/ IF 5.18/2.56 0.109/0.027 84.34/48.30

TABLE IV: Experimental results for plan feasible experiments,

averaged over 24 trials, running RRT-connect only vs. running

RRT-connect with infeasibility proof.

VI. DISCUSSION AND FUTURE WORK

Our ongoing goal is to extend the infeasibility proof

construction to higher dimensions. A current bottleneck is the

triangulation of the manifold. Since calculating the tangential

complex [34] is exponential in the dimension of the manifold

space, we anticipate that it will take a larger percentage of

runtime in higher dimensions. The other two time-consuming

processes—sampling the manifold and calculating PD—apply

nonlinear optimization, which we expect to scale well. Another

issue is with random sampling of Pobs. An evenly distributed

Pobs would potentially reduce the number of samples needed.

Exploring deterministic sampling is a possible future direction.

There are three hyper-parameters in our algorithm, γ, ∆γ,

and dmin. The first two hyper-parameters are set for learning

the manifold. γ can be a small value since we will increase γ
by ∆γ if the manifold does not fit all the training data. We

use γ = 1.0 for all the experiments. ∆γ needs to be small

enough so that the manifold would not go from under-fitting

to having separate regions (see Appendix A) in one step’s

change. We use ∆γ = 0.1 in all the experiments. dmin is a

hyper-parameter in the subsampling process that controls the

manifold triangulation step. dmin should be small enough to

form triangulation at any small curves of the manifold. In the

experiments, we choose small values of dmin. Small dmin value

will result large numbers of manifold points for triangulation

after subsampling, which will produce more facets on the

polytope and thus make triangulation slower.

Termination of our algorithm does depend upon the selected

hyper-parameters. We acknowledge the algorithm’s reliance

on hyper-parameters, and sensitivity analyses and auto-tuning

hyper-parameters is one area of future work. However, we note

that such dependence upon hyper-parameters exists in many

algorithms. For example, selecting an RRT step size that is

too large may cause it to fail [39].

Our current implementation uses only two search trees to

learn the manifold. While we were able to construct proofs for
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the scenarios in Sec. V, general proof construction for multiple

free space components requires creating and learning from

multiple trees using a 1 vs. n classification.

Additionally, alternative approaches to check whether the

learned manifold is in Cobs could benefit proof construction. In

the experiments, we find that once we constructed a manifold

with all sampled points in Cobs, the later triangulation step

rarely discovers parts of the manifold or polytope in Cfree. That

is, after learning a manifold for the first time, we typically

already have a manifold entirely in Cobs. However, a large

portion of runtime is expended to verify this fact.

VII. CONCLUSION

We have presented a novel method to learn proofs of motion

planning infeasibility, and we demonstrated this method for

three and four DoF robot manipulators. Our approach learns

a manifold and constructs a polytope from manifold points

that separates the start and goal into different components of

the free configuration space. Under the assumptions on the

configuration space components, the ability to obtain robust

solutions to the optimization problems, and the suitability of

hyper-parameters, our planner is complete. This work improves

scalability compared to our previous method [14] and is, to

our knowledge, the first approach to construct infeasibility

proofs for robot manipulators in greater than three dimensions.

Extensions of this work to higher dimensions, more free space

components, and generalization to steering functions [30],

dynamics [31], and additional constraints [32] are promising

directions for future research.
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