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Abstract

Compressed Sensing using ¢, regularization is among the most powerful and popu-
lar sparsification technique in many applications, but why has it not been used to
obtain sparse deep learning model such as convolutional neural network (CNN)?
This paper is aimed to provide an answer to this question and to show how to make
it work. Following Xiao (J Mach Learn Res 11(Oct):2543-2596, 2010), We first
demonstrate that the commonly used stochastic gradient decent and variants train-
ing algorithm is not an appropriate match with £, regularization and then replace
it with a different training algorithm based on a regularized dual averaging (RDA)
method. The RDA method of Xiao (J Mach Learn Res 11(Oct):2543-2596, 2010)
was originally designed specifically for convex problem, but with new theoretical
insight and algorithmic modifications (using proper initialization and adaptivity), we
have made it an effective match with £, regularization to achieve a state-of-the-art
sparsity for the highly non-convex CNN compared to other weight pruning methods
without compromising accuracy (achieving 95% sparsity for ResNet-18 on CIFAR-
10, for example).

Keywords Sparse optimization - #, regularization - Dual averaging - CNN

1 Introduction

This paper is devoted to the training of sparse deep neural networks. In the many
successful applications of deep learning [18], the number of weights in most of the
relevant models is often much more than the number of data available (c.f. [9, 13,
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34]). It is therefore of great theoretical and practical interests to develop numerical
methods to reduce such weight redundancy and hence compress the network mod-
els. The aim of this paper is to study sparse training algorithms for a special class of
deep neural networks, namely convolutional neural networks (CNN).

As summarized in [4], roughly speaking, there are four major different methods
that have been developed for compressing neural network models: (1) network prun-
ing and sharing, (2) low-rank factorization, (3) transferred/compact convolutional
filters and, (4) knowledge distillation. In particular, the network pruning is the most
popular compressing method due to its good compatibility and competitive perfor-
mance and it is also the one that the current paper focuses on.

Among the many possible approaches for network pruning, the widely used com-
pressed sensing with ¢, regularization [3, 5] appears to be an obvious choice. One
natural step is to first add a proper multiple of the #; norm of the weights to a stand-
ard loss function and then train the resulting model with the most commonly used
training algorithms such as SGD [29]. But this approach, as observed in [10], does
not give satisfactory sparse results for CNN models. Another approach [2, 17] is to
zero out the weights under a threshold at each iteration by using a proximal SGD
(Prox-SGD). As explained in Sect. 3, this approach is slightly more efficient than
the above method, but still generates very limited sparsity due to its decaying soft-
thresholding parameter.

Perhaps due to the aforementioned non-satisfactory performances of SGD when
applied to ¢ regularization, no reports can be found in the literature on any suc-
cessful application of compressed sensing technique with ¢, regularization to deep
neural networks. Such a situation is, however, different in the context of convex opti-
mization such as logistic regressions. Xiao [37] successfully developed a special
compressed sensing technique for convex machine learning models. In this work, he
also observed that the SGD type method is not effective when used with £, regulari-
zation. Instead he turns to the simple dual averaging method (SDA) [32], which is
specifically designed for convex optimization problems. By combining SDA with 7,
regularization, Xiao [37] developed the regularized dual averaging (RDA) method
and obtained very satisfactory sparse solutions of convex stochastic regularized
problems.

One natural question is if the idea in [37] can be generalized to deep neural net-
works that are often highly non-convex. But, with an extensive literature search, we
have not yet found any works that discuss such a generalization. In fact, we could
not find any works that use SDA type of methods for the training of any machine
learning models that are not convex. Given the fact that SDA method is originally
designed for convex problems naturally, SDA is not expected to work and has
never been applied for non-convex problems, not to mention non-convex problems
together with ¢, regularization.

Despite of these historic developments, we report in this paper that SDA, with
some appropriate modification, can also be made highly effective with £, regulari-
zation to obtain sparse convolutional neural networks. Our work is motivated by a
critical observation that we made and report in this paper: SDA can be interpreted as
a perturbation of SGD! Since SGD is a good training algorithm for CNN, we expect
that SDA is potentially also a good training algorithm for CNN. Furthermore, we
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demonstrate that SDA can be combined with a soft-thresholding operator in the for-
ward—backward splitting form to obtain an RDA algorithm for training sparse CNN.

With careful theoretical analysis and extensive numerical experiments, we find
that the effectiveness of our RDA method depends crucially on two important tech-
niques, namely (1) proper initialization, and (2) adaptive sparse retraining. The first
one is the key for RDA to work with CNN, and the second one further improves both
sparsity and accuracy. Consequently, our RDA training process can be described as a
two-step pipeline: (1) train CNN by RDA with a specific initialization, and (2) apply
adaptive sparse retraining. These two steps lead to state-of-the-art performance of
RDA to achieve high sparsity for CNN without compromising accuracy in compari-
son with other weight pruning methods.

The remainder of this paper is organized as follows. In Sect. 3, we briefly review
SGD, SDA, Prox-SGD and RDA, then provide a comparison of these methods to
explain why RDA performs better than the other methods. We describe in Sect. 4
two techniques that are essential in utilizing RDA. Following the detailed imple-
mentation listed in Sect. 5, we show the numerical results of different methods and
compare them with some existing work. In Sect. 6, we summarize our results.

2 Related works

Recently, there have been many discussions in the literature on the value of network
pruning. Liu et al. [24] reviews various pruning methods and proposes that the value
of network pruning is to search good architectures. Mittal et al. [30] shows that a
randomly pruned network has comparable performance to the original one due to
its plasticity. Zhu and Suyog [39] argues that pruned large sparse models outper-
form small-dense models, although their memory footprints are almost the same,
and hence indicates that network pruning is meaningful in practice.

In general, network pruning includes individual weight pruning and structured
pruning. The earliest examples of individual weight pruning methods are Optimal
Brain Damage [19] and Optimal Brain Surgeon [11]. Recently, Han et al. [10] pre-
sents a general three-step pipeline: training, pruning and fine-turning. Typically,
individual weight pruning can only guarantee the sparsity of weight matrices, but
does not necessarily lead to compression and speedup without the support of spe-
cific hardware and libraries. A three-stage pipeline is proposed by Han et al. [9] to
reduce the storage and energy required to run the networks. The first stage is based
on the individual weight pruning in [10], followed by quantization and Huffman
coding stages to reduce the storage.

Structured pruning, on the other hand, aims to prune the filters or channels. Fil-
ters can be pruned based on their corresponding £, norm [21]. Similarly, some other
methods prune filters based on the information of output channels [14, 15, 25].
Group sparsity is also widely used in the pruning process after training. Wen et al.
[36] proposes a group sparsity strategy including filter-wise, channel-wise, shape-
wise and depth-wise structured sparsity. Alvarez and Mathieu [1] makes use of a
group regularizer on the neurons of the fully connected layers. Liu et al. [23] utilizes
the scaling factors in BN layers as a metric to prune filters. Huang and Naiyan [16]
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selects sparse structures by imposing sparsity constraints on the outputs of specific
structures, such as neurons, groups or residual blocks.

Compressed sensing with £, regularization has been successfully used in many
applications [7, 26]. As an important technique, £, regularization is also adopted in
machine learning fields to obtain sparse model in specific learning problems. In past
few years, numerous algorithms are designed to find solutions of regularized convex
optimization problems. Among them, the Prox-SGD method, also known as FOBOS
[6] in forward—backward splitting form [22] has been used in deep learning, for
example in [16]. As noticed in [38], one drawback of Prox-SGD is that the thresh-
olding parameters will decay in the training process, which results in unsatisfactory
sparsity. Thus Xiao [38] developed the RDA method to obtain more sparse solu-
tion while keeping the accuracy, and further established the convergence of his RDA
method for convex problems. But Xiao’s RDA method has not yet been applied in
deep learning thus far.

3 Algorithms using 7, regularization

In this section, we first briefly review SGD and SDA as training algorithms for deep
learning, and prove that SDA can be viewed as a perturbation of SGD. We then
introduce Prox-SGD and RDA for ¢, regularized problems. In the equivalent for-
ward-backward splitting form, these two algorithms can be viewed as iteratively
using SGD or SDA with soft-thresholding. Finally, we explain why RDA is much
more effective than Prox-SGD for obtaining sparsity, which motivates its use to a
sparse training algorithm for deep learning.

3.1 SGD and SDA

Consider a classification problem. Let z = (x, y) be an input-output pair of data, such
as a picture and its corresponding label. Let w be weights in the model, and filw, z)
be the loss function corresponding to z and w. Our aim is to solve the optimization
problem

. 1
min {;Zezzf(W,Z)}, (1

where Z = {z,,2,, ... ,z,} 1s the dataset.
SGD is a commonly used algorithm for solving (1). The major step in SGD with
mini-batch can be represented as:

Wit =W, = N8y 2)

with g, = izzex, V..f(w,,z) on mini-batch X, C Z. In another form, w,,, can be
interpreted as follows
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— : T 1 2

Wy = arg min gtW+ —||W—W;||2 . (3)
w 2n,

Intuitively, the empirical loss function in (1) is replaced with its first-order approxi-

mation, then we have gTw on X,. And regularization term 1 ||w w, |2, which uses w,

as moving proximal center, is added to control the dlstance between w, and w,.

Generally speaking, for convex functions, #, can be taken as — in [31] with hyper-

\/

parameter a. And in real application of CNN, we use the strategy as discussed in
Sect. 5.2.

SDA can be understood as solving a different subproblem at each time step
with respect to the SGD form in (3). As shown in [32], SDA is primal-dual type
method since, it generates a feasible approximation to the optimum of an appro-
priately formulated dual problem. Specifically, the update scheme of SDA we
consider here is

Wiy = argmin{E,TW+ 2 lw —w, IIZ} “)
w t

Where gt ZT | &~ Unlike SGD, the original loss function in (1) is approximated
by 2 _1 &;w, alinear function obtained by averaging all prev10us stochastic gradi-
ent’ g, This sequence corresponds to the support functions g w in the dual space.
Also, the second term establishes a dynamically updated scale between the primal
and dual spaces. The regularization term % [lw— wc||§ is strongly convex and uses w,
as fixed proximal center, which is different from SGD. According to RDA in [38],
w, = 0 if we apply the ¢, regularization term. Thus, we will take w,. = 0 in the rest
of our paper. And {&,} is a nonnegative and nondecreasing sequence which d ter-
mines the convergence rate. Here, following the idea in [32], &, is chosen to be +

Originally, the SDA method was designed for solving convex Optll’l’llZathIl
problems because it was first inspired by convex combination of linear functions.
Some comparison and connections between SDA and SGD are discussed in [27,
28]. We also show the underlying relation between SGD and SDA with a concise
lemma below.

Lemma 1 The SDA method is equivalent to the following perturbed SGD method:

Wi = (1= €)w, = 7,8, 5)
where
1 1
€, = < ,
t+ye—r -1
andy, =

=

Proof The update scheme of (4) can be rewritten as
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W =-68 W.=0 in (4))

=1 (6)

Then SDA can be expanded recursively as

t
Wil = 0% Zgr
7=1

t—1
—n(Z g +g,>

—( Vi 12& V8

= Lw - 18
yt_l t 151

= -e)w, - 18

where
1 < 1
r+Ve— u-1 )

This finishes the proof. O

€t=

Thus SDA can be viewed as a perturbation of SGD, since, as either ¢ is suf-
ficiently large

l—e =2 iLxn, 8)
Ye-1 4
and y, = 5 = —. From the lemma above, SDA may potentially have similar effi-

i

ciency w1th SGD in solving non-convex problems, even applied to deep learning
fields.

Lemma 2 Let w, and W, be the sequences generated by SGD and SDA respectively.
Then

w,—w, =0

ast — oo, in some appropriate sense.
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3.2 7, regularization, sparsity and algorithms

A natural idea to obtain a sparse CNN model is to add an 7| regularization term to
the loss function, which is a well-known technique in compressed sensing [5]. In other
words, we hope to achieve the sparsity by solving the following regularized problem

n{vi'n {d)(w) = % Zf(W, 2) + Allwlly }7 9

EZ

where 4 is a hyper-parameter which controls the sparsity of solution. Despite the fact
that there is no rigorous theory to prove the sparsity for the solution of such a com-
plex model (9), numerical soft-thresholding introduced by the £, norm may generate
sparsity at the cost of accuracy. That is to say, an appropriate training algorithm with
¢, regularization may achieve sparsity with acceptable accuracy. Naturally, we have
the following two strategies for solving the above problem:

e  Prox-SGD add the £, regularization into (3), which will be discussed in Sect. 3.3.
e RDA add the 7, regularization into (4), which will be discussed in Sect. 3.4.

Before these two algorithms are introduced, the soft-thresholding operator related to £,
regularization defined as entry-wised form

(soft(x, 5) = sgn(x?”) max {|x”| - 5,0}, (10)

where i is the index of element. Numerically speaking, we can conclude from the
definition of the soft-thresholding operator that the larger the parameter 6, the more
sparse the solution we will be.

3.3 Prox-SGD: applying ¢, directly to SGD

Adding the regularization term A||w/||, to subproblem (3) directly gives prox-SGD as:

. 1
W, = arg min {gtTw+ E”W—W;”%"‘/{”W”]} (11)
w t
With some simple induction, Prox-SGD can be written in the forward—backward
splitting (FOBOS [6]) scheme

WH—% =W, = N8

. 1 12)
Wy = argmin { EIIW Wil 113+ Allwll, }

t

where the forward step is a single step of SGD, and the backward step is equivalent

to a soft-thresholding operator working on w, 1 with parameter #,4. The learning
1 2

ay/i

rate 7, = to obtain reasonable convergence rate in convex problem.
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3.4 RDA by Xiao: applying 7, in a different way

Regularized dual averaging (RDA) is originally designed for convex online learning
and stochastic optimization problems [38]. However, RDA can also be understood
as SDA with an additional Z, regularization. Based on the analysis in Lemma 1 con-
necting of SDA and SGD, and the success of SGD in non-convex optimization, we
hope that RDA may also work for non-convex problems, especially for CNN models.

Similar to Prox-SGD, RDA is obtained from adding A||lw||; to subproblem (4),
and it also requires w, = 0. The update scheme takes the form

W, = argmin {g,Tw 2 —IIwll3 + Allwll, } (13)
w t

We can clearly see the underlying relation between Prox-SGD and SGD with soft-
thresholding from the forward—backward splitting form. The following induction

Wiy = arg min {g,TW 3 w3 + AIIWIll}
w é[

! (14)
= arg min { > w+ &2115 + Allwll, }
w f;
gives us the forward—backward splitting of RDA,
W;+% =-£8,
(15)

. 1
W,y = arg min { —|lw — wl+_ ||2 + Allwll, }
w 25[
where &, = R to obtain the best convergence rate in the convex case [38], and a is
hyper- parameter From (15), one can see that the forward step is actually SDA’s sin-
gle step and the backward step is the soft-thresholding operator working on w,
with the parameter A&, = v as presented in (10).

The final algorithms of Prox-SGD and RDA for CNN with £ | regularization term
can be found in Algorithms 1 and 2.
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Algorithm 1 Prox-SGD (Directly applying ¢; to SGD)
Input: a dataset Z and a loss function % Y ez f(w, 2) + Aw|l1 where w is a vector of
the weights.

Initialization: initialize wg with the standard method.
fort=1to T do

Select a mini-batch X; from the dataset.
Compute g¢ = % >zex, Vuf(we, 2).
Update w41 with Prox-SGD in element-wised form:

, wi? = (g + ), wgl) - mgéi? > mA,
wif, =10, ' _ o = megt”| < me, (16)
wi — (gt =), wi — gt < —me,

where where 7 is the index of the elements.
end for

Algorithm 2 RDA (Applying ¢; in a different way)

Input: a dataset Z and a loss function
the weights.
Initialization: randomly choose w; as introduced in §4.1, and set go = 0.
fort=1to T do

Select a mini-batch X; from the dataset.

Compute g¢ = % >zex, Vuf(we, 2).

Update

% Y .ez f(w, 2) + Awl|]1 where w is a vector of

_ t—1_ 1
gt = gt—1+zgt~

Update w41 with RDA in element-wise form:

_ —&(3) + 2, g <=,
wili =30, RS (17)
~&(3” =), g > A

where 7 is the index of the elements.
end for

3.5 Comparison of Prox-SGD and RDA
The soft-thresholding of Prox-SGD and RDA are quite different.

e In Algorithm 2, we have

w? =0, if |g§”| <A (18)

t+1

where the criterion to zero out wiil only depends on a constant A.
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e In Algorithm 1, we have

()
+1

w” =0, if ’wgi) - 11lg§i>

<n4, (19)

thus the criterion in this case depends on —_ 4, which

avi

1
where 7, = o
approaches to 0 as ¢ goes to infinity.

Considering that wﬁ') - r],ggl) will converges to certain point which many not be zero
in (19), we cannot expect significant sparsity in Algorithm 1 since #,4 will approach
to 0. However, the right hand term (thresholding value) in (18) will keep constant as
in RDA, which may produce a better sparsity. Similar discussions can also be found
in [38].

Furthermore, from the formulation of the regularized problem (9), one can see
that there is a trade-off between the accuracy and the regularization term, which can
be concluded as too large regularization term controlled by A can weaken the effect
of the loss function. In other words, increasing regularization term A will decrease
the accuracy of the model. Thus, it is necessary to make use of an algorithm which
can produce a sparse solution with small A. As our analysis above shows, RDA has a
good balance between sparsity and accuracy.

4 Two techniques for RDA in CNN

In this section, we introduce two techniques, the initialization and the adaptive
sparse retraining method. The first one is essential for RDA to work, and the second
one gives much improvement to the results given by RDA.

4.1 Initialization

In the original paper [38], the theoretical analysis requires that w, =0 and
wy = arg min [|w||; = 0 as an initialization. Such an initialization is also shown to
w

work very well numerically for convex problem studied in [38]. Let us examine now
how this initialization technique would work for a typical CNN model, such as VGG
[35], ResNet [13] which we will test in this paper. We note that a typical CNN model
can be written as:

Jwix) = S(Wfenn(0:x) + b), (20)

where S(y) = Softmax(y) := (%) and foyn(60;x) stands for the main CNN struc-
ture except for the fully connected layer with Softmax. Let w = {W, b, 0}, where
{W,b} are the parameters for last fully connected layer with Softmax and 6 repre-
sents all parameters in the main structure of CNN models. One simple but important

observation is that all those CNN models satisfying the following property
Jonn(O5x) =0, 21

as long as the underly activation function satisfies
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6(0) = 0. (22)

This property is satisfied by o(x) = ReLU(x) := max{0, x}. That is to say, if all
parameters are chosen as zero, the output of the main structure of a general CNN
model will always equal to zero. Thus, for a general CNN model f{w; x) as in (20)
with property (21), we will have

af P (wix) 0 ‘ ,
— = ——[s[ Y wr (000 +5?
W) WGk ; CNN . (23)
=8 (69)6,£%) . (0x) =0, Vij,k.
That is to say
af (wix)
=0.
W | (24)
Furthermore,
IO (wix) 0 ip) ¢P) ()
o0 = i | Sl 2 W00 + b
P w=0
s (b (i) f&)N(a X =
= t W L =0,
w=0
for all i, j as W = 0. That indicates that
of (w3x)
heh\iduZd =0
0 | (26)

Considering the observations (24) and (26) for zero initialization in CNN, we have
the next proposition.

Proposition 1 The RDA method with w, = 0 cannot converge for CNN with activa-
tion function o satisfying c(0) =

As a result, non-zero initialization is a necessary condition in all gradient-based
training algorithm including RDA for CNN. Thus we propose to initialize w; via
some random strategies as discussed later in this subsection. Actually, this modifica-
tion will not influence the convergence of the algorithm. As proven in Theorem 1,
the convergence rate for convex problems based on this modification is still O( \/)

when ¢, = (9(\[ 1.

Theorem 1 Assume the loss function f(w, z) in the problem (9) is convex and there
exists an optimal solution w* to the problem (9) with ¥ (w) = A||\w||, that satisfies
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%Ilw* ||§ < D? for some D > 0. In addition, we assume that we have the next bound
for the randomly chosen wy:

Y(wy) = Allwill; < Q. 27

Let the sequences {w,}, be generated by Algorithm 2, and assume ||g ||, < G for
some constant G. Then the expected cost E¢p(w,) converges to ¢p* with rate O( %)

_ 1
Ep(w,) — ¢* = 0<7> (28)
t
with w, = ; > w.and p* = p(w*).
By adding the extra assumption that for the bound of w, as in (27), we can then
prove the above result by following Xiao’s work in [38] with difference of an extra
coefficient in O(#) which is related to Q. The only difference between the original

RDA and RDA used in Algorithm 2 is that the former one takes w, = arg min ||w||; = 0

as initialization whereas the latter one allows us to chooses w, randomly. This is a small
modification in algorithm and proof but it plays a crucial role in applying RDA to CNN
as discussed in the beginning of this section.

In particular, when the activation function is ReLU, the weights in CNN are usually
initialized with a uniform or a normal distribution [8, 12, 20]. For RDA, we propose to
initialize the weights with a uniform distribution (—b, b), where

b= \/g (29)

For a convolutional layer, n = k?c is the size of the filter, where c is the number of
input channels and k is the width of the filter. For a fully connected layer, n is the
dimension of the input vector. In both cases, s is a scalar to increase the weights (e.g.
[12] proposes to choose s = 6).

Since fis non-linear, the effect of initialization on g,, the gradient of w,, is not that
clear. Assuming that fis a linear function, then g, is scaled in the same way as w,. Since
with a thresholding (ignoring the initial learning rate #, = 1), g, becomes the value of
W, the initial value should not be too small, nor should it be too large because of the
exploding gradient problem [33], as shown in Tables 1 and 2. Here we have the next
definition for sparsity of CNN models:

. the number of zero weights
Sparsity =

the number of all weights ’

for all tables referred later.
Finally, we listed some good choices for s in Table 3.
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Table 1 Different initialization
scalars on ResNet-18, CIFAR-
10 with RDA

Table 2 Different initialization
scalars on ResNet-18, CIFAR-
100 with RDA

Table 3 Suitable /s for
different models and datasets

\fs TOP-1 TOP-5 Sparsity
1,2 10.00 50.00 N/A
3 85.52 99.24 0.98
4 86.72 99.45 0.97
5 90.03 99.44 0.95
10 90.67 89.50 0.94
100 91.41 99.58 0.84
1000 90.36 99.62 0.63
10,000 71.80 97.94 0.34
20,000 68.06 97.39 0.99

This table shows TOP-1 and TOP-5 accuracy on validation dataset.
All models are trained for 120 epochs

(TOP-1 accuracy is the conventional accuracy, which means that
the model answer (the one with the highest probability) must be
exactly the expected answer. TOP-5 accuracy means that any of your
model that gives 5 highest probability answers that must match the
expected answer)

\fs TOP-1 TOP-5 Sparsity
63.67 87.85 0.91
66.90 88.53 0.60

5 65.47 88.09 0.60

10 65.54 88.21 0.42

15 64.22 87.53 0.43

25 63.06 88.10 0.50

30 62.75 86.80 0.42

50 64.48 87.14 0.38

100 60.00 86.14 0.36

This table shows TOP-1 and TOP-5 accuracy on validation dataset.
All models are trained for 120 epochs

Dataset Model \/E
CIFAR-10 ResNet-18 10
VGG-16bn 20
VGG-19bn 10
CIFAR-100 ResNet-18 2
VGG-16bn 60
VGG-19bn 40
ImageNet ResNet-18 2

ImageNet represents ILSVRC2012
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Table 4 ASR helps improve

. Model RDA RDA (ASR)
both the sparsity and the
accuracy TOP-1 Sparsity TOP-1 Sparsity
ResNet-18 91.34 0.87 93.47 0.95
VGG-16bn 93.07 0.92 93.24 0.94
VGG-19bn 92.65 0.74 93.02 0.90

This table shows TOP-1 accuracy on validation dataset, and the spar-
sity of weights. The dataset is CIFAR-10

Table 5 Compare RDA and

Method TOP-1 TOP-5 A a Sparsity
prox-SGD for ResNet-18 on
CIFAR-10 with 120 epochs prox-SGD  89.80 99.40 105 08 003
RDA 91.41 99.69 1076 1.0 0.84

RDA achieves better accuracy and sparsity

4.2 Adaptive sparse retraining (ASR)

Fine-tuning is a widely used technique that retrains a pruned model, since the prun-
ing method often decreases the accuracy. This is equivalent to fix the weights to be
pruned to zero in the original model, and only update the remaining weights.

During our retraining step, we fix the zero weights and update the remaining
weights. If there are newly trained zero weights, they will also be fixed. Thus, in
retraining, once a weight becomes zero, it will never be updated. This can be viewed
as a stronger fine-tuning, and we call this method adaptive sparse retraining, where
the optimization method we use is the same as that used in the first phase. This tech-
nique helps improve both the accuracy and sparsity of a model, as shown in Table 4.

5 Experiments

In this section, we compare the results of RDA and other methods. All results of
RDA are based on the two techniques introduced in Sect. 4. All accuracies are of the
validation dataset. The implementation is listed as follows.

All experiments are carried out with PyTorch (pytorch.org)on TITAN V GPU.
For Prox-SGD, we use the same strategy with SGD for initialization and take learn-
ing rate as in Algorithm 1. The total epoch number for Prox-SGD as reported in
Table 5 is 120. This number of epochs is reasonable because, first, the accuracy
reaches the highest point in the end, and second, due to the decreasing threshold of
Prox-SGD, there should not be too many training epochs, otherwise there will be no
sparsity in the end as discussed in Sect. 3.5.

For RDA, filters, and weights as well as bias in fully connected layers, are ini-
tialized with uniform distribution introduced in Sect. 4.1. Weights in batch
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Fig.1 An example of the first 120 epochs of loss and accuracy curves for different methods, and the
sparsity curve of RDA on ResNet-18, CIFAR-10

normalization are initialized with default settings in PyTorch (the mean is set to a
0-vector, and the variant is set to a 1-vector). In all experiments, the training mini-
batch size is 128'. Models are all first trained by RDA for 2400 epochs, and then
RDA with ASR for 1200 epochs. Furthermore, in Sect. 5.2, we have reduced the
number of epochs to 300 on CIFAR-10 and CIFAR-100 with ResNet-18 by tuning
the parameter a and A.

ResNet-18 is based on [13]. VGG-16bn and VGG-19bn are based on [35], and
both are implemented with batch normalization.

5.1 Numerical results

We first compare RDA and prox-SGD for ResNet-18 on CIFAR-10 with both 120
epochs as shown in Table 5. One can see that RDA performs much better than
prox-SGD, and achieves a sparsity of 84%, which can be further improved to 95%

! In the original paper [38], RDA is proposed as an online learning algorithm, which takes one input at
each time.
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Table 6 RDA on different

models and CIFAR-10 MODEL TOP-1 TOP-5 A a Sparsity
ResNet-18 93.47 99.69 1076 1.0 0.95
VGG-16bn 93.24 99.52 10-6 1.0 0.94
VGG-19bn 93.02 99.34 1075 1.0 0.90

RDA works well on different CNN models

Table 7 RDA on ResNet-18 and

different datasets Dataset TOP-1 TOP-5 A a Sparsity
MNIST 99.63 100.00 100 0.1 0.95
CIFAR-10 93.47 99.69 1076 1.0 0.95
CIFAR-100 72.29 89.94 108 0.09 0.56
ImageNet 64.93 84.92 1078 0.1 0.36

RDA works well on different datasets

Table 8 To compare RDA with

PR Dataset Model TOP-1 Sparsity

the three-step pipeline in [10],

we adapt the implementation CIFAR-10 ResNet-18 (RDA) 93.47 0.95

in [24] where the model is

first trained by SGD with 160 ResNet-18 (Han) 93.95 0.95

epochs, then pruned according VGG-16bn (RDA) 93.24 0.94

to the sparsity, and finally fine VGG-16bn (Han) 93.55 0.94

tuned with 40 epochs to retrieve VGG-19bn (RDA) 93.02 0.90

the performance (denoted as ’ '

Model (Han)) VGG-19bn (Han) 93.60 0.90

CIFAR-100 ResNet-18 (RDA) 72.29 0.56

ResNet-18 (Han) 74.67 0.56
VGG-16bn (RDA) 69.04 0.67
VGG-16bn (Han) 73.56 0.67
VGG-19bn (RDA) 67.46 0.48
VGG-19bn (Han) 72.52 0.48

The results of RDA are comparable to [10]

by ASR, as explained in Sect. 4.2. We have analyzed why RDA could be bet-
ter than prox-SGD in Sect. 3, and the experiments support our claim. Figure 1
depicts an example of the sparsity changing during training.

For RDA itself, we show the results on ResNet-18, VGG-16bn and VGG-19bn,
CIFAR-10 in Table 6. One can see that RDA performs well on all models tested.
In Sect. 3, we have shown that SDA is a perturbation of SGD, and based on SDA,
RDA keeps its general optimization ability on different models.

Table 7 shows the results of ResNet-18 on CIFAR-10, CIFAR-100 and Ima-
geNet (ILSVRC2012). In general, RDA performs well on different datasets. For
ImageNet, the typical accuracy of SGD for ResNet should be around 69%. In
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Table 9 RDA with adaptive

a helps speed up the training Epochs * A Torl Sparsity

process [1, 100] 1 1075 92.19 0.9257
[101, 200] 0.2 1075 93.38 0.9422
[201, 300] 0.05 10-5 93.13 0.9645

The dataset is CIFAR-10 and the network is ResNet-18

Table 10 RDA with adaptive

Epochs A TOP-1 Sparsit
a helps speed up the training pochs . parsity
process. The dataset is ) [1, 100] 0.28 10-6 68.2 0.7455
CIFAR-100 and the network is
ResNet-18 [101, 200] 0.21 1077 71.25 0.6842
[201, 300] 0.08 1076 72.67 0.7782

some sense, ResNet-18 could lack the redundancy to be sparse while maintaining
satisfactory accuracy. A larger model may help improve the performance.

Table 8 compares RDA with the three-step pipeline in [10], based on the
source code provided by [24]. Han et al. [10] proposes the pipeline to compress
CNN models, where the first step is training a model, the second is pruning a
given percentage of weights in the trained model, and the third is fine tuning it.
We compare the two methods based on the same sparsity, i.e. if a model trained
by RDA has sparsity 0.95, then the model trained by SGD will be pruned 95%
weights and then fine tuned. One can see that the results of RDA are comparable
to [10]. This shows RDA is a powerful sparse optimization method for CNN.

5.2 Additional heuristic techniques

The numerical results presented in the previous subsections show that RDA
works well in CNN. Next, we present some heuristic techniques that help improve
the performance of RDA. In training algorithms like SGD and RDA, when the
iteration step ¢ gets large, the learning rate becomes too small to lead to any sig-
nificant update of the weights at each step. In order to solve this problem, we
developed some heuristic strategy for parameter turning for RDA. For example,
we modify the parameter a and A after training appropriate number of epochs,
which can speed up the training process significantly according to our investiga-
tion on CIFAR-10 and CIFAR-100 with ResNet-18 shown in Tables 9 and 10.

By trial and error, {1073, 107%, 1077} is a suitable search space for the parame-
ter A, and for the parameter a, it should be decreasing during the training process.
These numerical experiments reveal the possibility to speed up and improve RDA
with suitable adaptive parameter strategies. How to automatically find a proper
adaptive parameter on different datasets and networks by theoretical analysis and
more parameters tuning is still under further investigation.
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6 Concluding remarks

In contrary to the common perception that the SDA method of [32] should only
work for convex optimization problem for which the SDA was originally designed,
in this paper, we manage to make this method as an effective training algorithm for
the highly non-convex CNN. In particular, by combining it with £, regularization,
we develop the corresponding RDA method that proves to be very effective to obtain
sparse CNN models without compromising generalization accuracy. The theoretical
foundation of this approach is based on a critical observation we make, namely the
SDA method (with a slight modification) is equivalent to a small perturbation of the
SGD method if the learning rate is chosen appropriately. While our work is moti-
vated by [38] for convex optimization problem, we find that the effectiveness of our
RDA method depend crucially on proper initialization and adaptive sparse retrain-
ing. Preliminary numerical experiments show that our new method can be used to
train sparse CNN with performances comparable to the state-of-the-art weight prun-
ing methods [10]. We further provide theoretical justification of this method for con-
vex optimization problems and analysis of the effectiveness of different choices of
hyper-parameters in the algorithm.
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