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In this paper, we theoretically investigate the migration of a surfactant covered droplet
in a Poiseuille flow by including the surface viscosities of the droplet. We employ a
regular perturbation expansion for low surface Péclet numbers and solve the problem
upto a second order approximation. We represent the drop surface as a two-dimensional
homogeneous fluid using the Bousinessq-Scriven law and employ the Lamb’s general
solution to represent the velocity fields inside and outside the droplet. We obtain an
expression for the cross-stream migration velocity of the droplet, where the surface vis-
cosities are captured by the Bousinessq numbers for surface shear and surface dilatation.
We elucidate the influence of the surface viscosities on the migration characteristics of the
droplet and the surfactant redistribution on the droplet surface. Our study sheds light
upon the importance of the inclusion of droplet surface viscosity in theoretical models
aimed at predicting the droplet migration characteristics in experiments involving droplet
manipulation.

1. Introduction

Migration of droplets plays an important role in microfluidic devices (Pamme 2007).
Some important applications involving droplet manipulation include cell sorting, sepa-
ration of particles and drug delivery (Karimi et al. 2013; Stone et al. 2004; Di Carlo
et al. 2007; Gascoyne et al. 2004). In such applications, accurate control of the droplet
motion is important for realizing optimum process capabilities. The Reynolds number
in such applications is typically much smaller than unity (Re � 1) due to the small
channel dimensions as well as the droplet size. It is known that a non-deformable droplet
placed in a purely viscous Newtonian fluid only translates in the flow direction with a
lower velocity than the background flow at the drop center (Hetsroni & Haber 1970). It
does not experience any lateral motion across streamlines due to the reversibility of the
Stokes flow. However, the presence of non-linearities can break the fore-aft symmetry
and consequently the reversible nature of the flow. In such a case, the droplet can
exhibit a cross-stream migration as well. Some significant mechanisms through which non-
linearities can be introduced in the system are in the form of fluid inertia, particle surface
deformation and non-Newtonian rheology of the suspending fluid (Leal 2007). Initial
works started with the analysis of migration of solid particles in the presence of fluid
inertia (Segre & Silberberg 1961; Rubinow & Keller 1961; Saffman 1965; Cox & Brenner
1968; Ho & Leal 1974; Vasseur & Cox 1976). Subsequently, several works have focused
on the cross-stream migration of droplets due to surface deformation (Haber & Hetsroni
1971; Wohl & Rubinow 1974; Chan & Leal 1979; Stan et al. 2011; Mandal & Chakraborty
2015; Mandal et al. 2016) and the non-Newtonian rheology of the suspending fluid (Chan
& Leal 1979; Mukherjee & Sarkar 2013, 2014).

Most of the microfluidic systems involving manipulation of droplets are expected to
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Work Regime

Hanna & Vlahovska (2010) Pes →∞, ηµ = 0, ηκ = 0

Pak et al. (2014) Pes � 1, ηµ = 0, ηκ = 0

Schwalbe et al. (2011) Pes →∞, ηµ 6= 0, ηκ 6= 0

This work Pes � 1, ηµ 6= 0, ηκ 6= 0

Table 1: List of previous works studying the cross-stream migration of an eccentrically
placed surfactant laden droplet in an unbounded Poiseuille flow. Pes represents the
surface Péclet number, ηµ and ηκ represent the surface shear and dilatation viscosity
respectively.

contain surfactants which might be present as contaminants, additives or impurities
(Stan et al. 2013). The surfactant molecules have two distinct chemical moieties which
allows them to adsorb at interfaces between immiscible liquids. In the presence of an
external flow, surface advection causes the surfactant molecules to redistribute along the
interface. An asymmetric redistribution leads to interfacial tension gradients along the
interface which drives a flow in the surrounding fluid known as the Marangoni flow. This
phenomenon breaks the fore-aft symmetry of the problem and thereby the reversibility
which causes a surfactant laden droplet to migrate across the streamlines. This is a
relatively unexplored phenomena in literature which compels us to focus on this problem.

Theoretical work in this direction started within the last decade, when Hanna &
Vlahovska (2010) predicted the cross-stream migration velocity of a surfactant laden
droplet in a Poiseuille flow with negligible surface diffusion (Pes → ∞), where Pes
represents the surface Péclet number. They performed their analysis for the cases of
high Marangoni number and high drop viscosity, by employing a regular perturbation
expansion approach to solve the problem. Through their analysis, they found that, for
both the cases, the drop always migrates towards the center of the channel. Later, Pak
et al. (2014) extended their analysis as they explored the opposite limit of small surface
Péclet numbers (Pes � 1). They employed a regular perturbation expansion method
with the small parameter as Pes combined with an efficient use of the Lorentz reciprocal
theorem to bypass the detailed calculations of the full flow problem. Interestingly, they
found that, the cross stream velocity is zero upto first order in the surface Péclet
number and the first non-zero term only appears at the second order. Again, they
observed that the drop migrates towards the center of the channel with a velocity directly
proportional to the distance of the drop from the centerline of the Poiseuille flow. Das
et al. (2017) considered the droplet to be deformable and predicted the migration velocity
of the droplet in terms of an asymptotic expansion with the small parameter as the
capillary number (Ca). They found that, for small surface Péclet numbers (Pes � 1),
the drop has a tendency to migrate towards or away from the centerline depending
on the viscosity ratio of the fluid inside and outside the drop. More recently, Santra
et al. (2018) experimentally measured the cross-stream migration velocity of a surfactant
laden droplet subjected to an imposed flow in a confined fluidic environment. Panigrahi
et al. (2018) explored the effect of interfacial viscosities on the droplet motion in a non-
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isothermal Poiseuille flow. Gounley et al. (2016) provided a comprehensive numerical
analysis regarding the effect of surface viscosities on droplets immersed in shear flow.
However, in their analysis, they neglect the surfactant transport on the surface of the
drop and the Marangoni stresses which arise from gradients in the surface tension.

The variation of the surface tension with the surfactant concentration gives rise to
Gibbs elasticity which provides a measure of the sensitivity of the surface tension with
the surfactant concentration, as well as Marangoni stresses at the interface (Leal 2007).
In addition, surfactants also give rise to a surface excess rheology in comparison with
a clean interface. In particular, the interface between two fluids can exhibit a complex
rheological behavior, which can comprise of a surface viscosity as well as surface elasticity.
In the present analysis, we neglected the elastic effects on the surface rheology and only
focus on the effects of the surface viscosity. The surface viscosity arises from the rate
dependent resistance of the interface to velocity gradients in the plane of the interface.
We thus expect that interfacial viscosity combined with the interfacial tension will provide
a more realistic depiction of the fluid-fluid interface. The simplest model which describes
the mechanics of an interface is the Bousinessq-Scriven law (Boussinesq 1913; Scriven
1960) which treats the interface as a homogeneous two-dimensional fluid with surface
shear and dilatation viscosities. Using the Boussinesq-Scriven model to represent the
interfacial viscosities, Schwalbe et al. (2011) predicted the cross-stream migration velocity
of an eccentrically placed surfactant covered droplet in a Poiseuille flow with negligible
surface diffusion (Pes → ∞). In addition, they found that the presence of interfacial
stresses significantly altered the slip velocity and the droplet-circulation velocities.

Currently, we are unaware of the effect of the interfacial stresses on the droplet
dynamics in limit of small surface Péclet number (Pes � 1). Analysis of this limit will
allow us to close the current literature gap and provide a more complete picture regarding
the cross-stream migration of a surfactant covered droplet in an unbounded Poiseuille
flow (refer to Table 1). In this work, we explore the migration of a surfactant covered
non-deformable droplet in an unbounded Poiseuille flow including the effects of interfacial
stresses, at low surface Péclet numbers. We assume that the surfactant is insoluble in
the bulk fluid and that a small amount of surfactant is adsorbed on the drop surface.
We note that, the assumption of a dilute surfactant concentration considerably limits
the extension of our analysis to biological flows, where the surfactants are expected to be
more tightly packed and the intermolecular interactions between the adsorbed surfactant
molecules should be considered (Manikantan & Squires 2020). We use the Bousinessq-
Scriven law to represent the interface as a two-dimensional fluid with surface shear and
dilatation viscosities. We neglect the elasticity of the interface and assume the interfacial
viscosities to be independent of the surfactant concentration. This allows us to examine
the effect of interfacial rheology on the droplet dynamics. Section 2 summarizes the
problem formulation and the governing equations for the problem. Section 3 focuses on
the solution methodology and important results from our study.

2. Problem Formulation

Figure 1 shows a surfactant covered neutrally buoyant droplet of radius a and viscosity
λη immersed in a fluid of viscosity η and density ρ. There are two coordinate systems
defined in the manuscript (x, y, z) and (r, θ, φ). θ is the angle made by the vector shown
as r in the figure with the z-axis. φ is the angle made by the projection of the vector r on
the x− y plane with the x-axis. The dashed blue line represents the projection operation
which transforms the vector r to a vector in the x − y plane. The migration velocity of
the droplet is represented as U . The droplet is subjected to an external Poiseuille flow
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Figure 1: Surfactant laden droplet of radius a immersed in a cylindrical Poiseuille flow
at a radial distance of b from the flow axis. (x, y, z) and (r, θ, φ) represent the Cartesian
and spherical coordinate systems attached to the centre of the droplet respectively. Here,
θ is the angle made by the vector shown as r in the figure with the z-axis, φ is the angle
made by the projection of the vector r on the x− y plane (shown as a blue vector) with
the x-axis. The dashed blue line represents the z− coordinate of the vector r

.

which is given by,

U∞ = Uc

(
1− r20

R2

)
ez

Here, r0 is the radial distance measured from the flow axis and Uc is the fluid velocity
at r0 = 0. The droplet is eccentrically located at a radial distance of b from the flow
axis. In the absence of any flow, the surfactant distributes itself uniformly on the droplet
surface at equilibrium. The equilibrium surfactant concentration is given by Γeq. For a
clean drop, the interfacial tension is represented by σc. However, due to the presence of
the surfactant, the interfacial tension is lowered. If the surfactant concentration is small,
the surface tension can be described by the following linear relationship (Leal 2007),

σ = σc −RTΓ (2.1)

Here, Γ denotes the surfactant concentration, R is the gas constant and T is the ambient
temperature. We assume that the surfactant is insoluble in both the fluids inside and
outside the drop. The interfacial viscosities are represented by ηµ and ηκ, which signify
the surface shear and dilatational viscosities respectively.

We solve the problem in the creeping flow limit (Re = 0). In this limit, we can neglect
the inertial forces exerted on the drop and the velocity field can be assumed to be setup
instantaneously. We also assume that the drop is non-deformable. This assumption is
valid if the surface tension forces dominate the viscous forces and the capillary number
ηUc/σc is small. We use a quasi-steady approximation and assume that the time taken for
the surfactant redistribution is very small compared to the time scale associated with the
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drop migration. Owing to the use of a regular perturbation methodology with Pes as the
small parameter, we expect the characteristic velocity scale in the transverse direction
to be expressed as PensUc. Here, n ≥ 1 and represents the order of approximation at
which the transverse migration velocity first becomes non-zero. When interfacial stresses
are not considered, Pak et al. (2014) showed that the migration velocity is zero upto the
first order and thus n = 2. Although in our problem we cannot predict the value of n
a priori, we expect the magnitude of the velocity scale in the transverse direction to be
at least an order of magnitude less than the longitudinal velocity scale Uc as Pes � 1.
Hence, in order to check the validity of the quasi-steady approximation, the surfactant
redistribution time scale (a2/Ds) should be compared with the time scale associated with
the motion of the droplet in the longitudinal direction (a/Uc). This implies that Pes � 1
which is the regime of analysis in our work.

2.1. Governing Equations

We express the equations of motion in a frame of reference translating with the drop
(refer to the (r, θ, φ) coordinate system in figure 1). The velocity and pressure fields
inside and outside the drop are represented by (ui, pi) and (ue, pe) respectively. We
make the governing equations dimensionless by using the following scales: length scale
(lc) = a, velocity scale (uc) = Uc, pressure scale (pc) = ηUc/a. As inertia is considered
to be negligible, the creeping flow dimensionless equations inside and outside the drop
are given by,

−∇pi + λ∇2ui = 0, ∇ · ui = 0, (2.2a)

−∇pe + ∇2ue = 0, ∇ · ue = 0. (2.2b)

Additionally, we have the surfactant transport equation for an insoluble surfactant which
describes the steady state convection and diffusion processes on the interface as follows
(Leal 2007),

Pes (∇s · (Γus) + Γ(∇s · n)(u · n)) = ∇2
sΓ (2.3)

We have made the equation dimensionless by using Γeq as the characteristic concentration
scale. Here, Pes = Uca/Ds is the surface Péclet number, where Ds represents the
diffusivity of the surfactant. Γ is the surfactant concentration at the interface, us is
the interface velocity, n is the normal vector at the interface and ∇s = ∇ − n(n ·∇)
represents the gradient operator in the plane of the interface. Here, it should be noted
that the unsteady term has been neglected in the above equation due to the quasi-steady
approximation discussed in the previous section.

2.2. Boundary conditions

Far away from the drop, the velocity field is given by the difference between the
background flow and the drop migration velocity as follows,

ue(r →∞) = U∞ −U . (2.4)

At the surface of the droplet, we apply the condition of velocity continuity and the
kinematic boundary condition for a non-deforming interface to yield the following,

ui = ue at r = 1, (2.5a)

ui · n = 0 at r = 1. (2.5b)

Finally, we write the tangential stress balance at the surface of the drop as follows,

n · (σe − λσi) · (I − nn) = Ma∇sΓ−∇s · τ s. (2.6)
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Here, Ma = RTΓeq/Ucη is the Marangoni number which signifies the relative strength of
the characteristic Marangoni stresses and viscous stresses. We have used equation (2.1)
to express the surface tension in terms of the surfactant concentration. τ s represents
the interfacial stress which arises due to the presence of surface viscosities. We use the
Bousinessq-Scriven constitutive law to represent the interfacial stress as follows,

τ s = 2BqµDs + (Bqκ −Bqµ)(∇s · us)Is (2.7)

Here, Ds = 1
2

(
(∇sus) · Is + Is · (∇sus)

T
)

and Is = I − nn, where I is the identity
tensor. Bqµ = ηµ/ηa is the Bousinessq number for surface shear viscosity and Bqκ =
ηκ/ηa is the Bousinessq number for surface dilatation viscosity. In the normal direction,
the viscous pressure and the stress contributions across the interface are balanced by
the capillary pressure and a contribution from the surface tension variation with the
surfactant concentration. In particular, the normal stress balance across the interface
can be written as follows,

n · (σe − λσi) · n =
1

Ca
∇s · n−

βΓ

Ca
∇s · n. (2.8)

Here, β = RTΓeq/σc is the Gibbs elasticity parameter which measures the sensitivity of
the variation of the surface tension with the surfactant concentration. Typical values of
β lie between 0 and 1 (Das et al. 2017). This implies that, if Ca � 1, the difference in
the normal stresses can balanced by a very small contribution from the term ∇s ·n and
the droplet deformation can be neglected (Leal 2007)

Additionally, we note that, due to the kinematic boundary condition (refer to equation
(2.5b)), the second term in the surfactant transport equation (refer to equation (2.3)) is
identically zero.

3. Solution

In order to solve equations (2.2) and (2.3), we use a regular perturbation expansion
approach with Pes as the small parameter. We express the unknown variables in the
following form,

h = h(0) + Pesh
(1) + Pe2sh

(2) +O(Pe3s), h = {ui,ue, pi, pe,Γ,U}.

As the velocity fields at every order in Pes satisfy the Stokes equations (refer to equation
(2.2)), we use the Lamb’s general solution to express the velocity and pressure fields in
terms of spherical harmonics. The velocity and pressure fields inside the droplet can be
represented in terms of growing spherical harmonics as follows,

u
(q)
i =

∞∑
n=1

∇× (rχn)+∇φn+
n+ 3

2(n+ 1)(2n+ 3)λ
r2∇pn−

n

(n+ 1)(2n+ 3)λ
rpn, (3.1a)

p
(q)
i =

∞∑
n=0

pn (3.1b)

Expressions for pn, φn and χn are given in Appendix A. Similarly, we can express the
velocity field outside the droplet as follows,

u(q)
e = (U∞−U)+

∞∑
n=1

∇×(rχ−n−1)+∇φ−n−1−
n− 2

2n(2n− 1)
r2∇p−n−1+

n+ 1

n(2n− 1)
rp−n−1,

(3.2a)
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p(q)e =
∞∑
n=0

p−n−1 (3.2b)

Expressions for p−n−1, φ−n−1 and χ−n−1 are given in Appendix A. Finally, we express
the surfactant concentration at the drop surface in terms of solid spherical harmonics as
follows,

Γ(q) =
∞∑
n=0

n∑
m=0

(
Γ(q)
n,mcos(mφ) + Γ̂(q)

n,msin(mφ)
)
Pn,m(cosθ). (3.3)

The unknown coefficients are determined by substituting the velocity fields as described
above in the surfactant transport equation (refer to equation (2.3)) and the boundary
conditions at the drop surface (refer to equations (2.5) and (2.6)). Here, we note that the
drop migration velocity U is still an unknown and yet to be determined. As the inertia
of the drop is neglected in our analysis, the net force exerted on the drop is zero. For a
neutrally buoyant drop, this implies that the hydrodynamic force acting on the drop is
zero. Consequently, we have an additional equation as follows,

F
(q)
h = 4π∇

(
r3p−2

)
= 0. (3.4)

Next, we substitute the perturbation expansions of the velocity, pressure and the surfac-
tant fields in the equations of motion and obtain the governing equations and boundary
conditions at various orders in Pes.

3.1. Solution at leading order

At leading order, the creeping flow and the surfactant transport equations are given
by,

−∇p
(0)
i + λ∇2u

(0)
i = 0, (3.5a)

−∇p(0)e + ∇2u(0)
e = 0, (3.5b)

∇2Γ(0) = 0. (3.5c)

We observe that, at leading order, the fluid flow has no effect on the surfactant con-
centration. Consequently, the surfactant is distributed uniformly along the drop surface.
The Stokes equations are subjected to the following boundary conditions,

u
(0)
i = u(0)

e at r = 1,

u
(0)
i · n = 0 at r = 1.

n ·
(
σ(0)
e − λσ

(0)
i

)
· (I − nn) = −∇s · τ (0)

s .

We use equations (3.1) and (3.2) to express the velocity fields inside and outside the drop
respectively. We then obtain the unknown coefficients in the velocity field expansions
by satisfying the above boundary conditions and the force free condition expressed in
equation (3.4). We find that, at leading order, the drop only translates in the direction
of the flow without any motion across the streamlines. The translational velocity of the
drop at leading order is given as follows,

U (0) =

(
1− b2

R2
− 2a2(2Bqκ + 3λ)

3R2(2 + 2Bqκ + 3λ)

)
ez. (3.6)

As the surfactant effects influence the droplet motion only at higher orders, Schwalbe
et al. (2011) obtained the same expression for the drop migration velocity at the leading
order for the limit of Pes → ∞, which is the opposite of the regime considered in our
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Figure 2: Figures on the left (a, c, e) show the leading order velocity vectors both
inside (shown in blue) and outside the drop (shown in black) superimposed with the
leading order surfactant concentration field, figures on the right (b, d, f) show the
first order velocity vectors both inside (shown in blue) and outside the drop (shown
in black) superimposed with the first order surfactant concentration field for (a, b)
Bqκ = 0, Bqµ = 0, (c, d) Bqκ = 100, Bqµ = 0 and (e, f) Bqκ = 0, Bqµ = 100. For
all the cases shown, a/R = 1, b/R = 1, λ = 1,Ma = 1. The flow direction is from left to
right.
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analysis. We note that, the drop lags the flow for all values of Bqκ and the migration
velocity is independent of the surface shear viscosity. This observation can be supported
by studying the leading order velocity vectors as shown in figures 2a,c,e. From the
flow patterns, we find that, shear viscosity (Bqµ) has a negligible effect on the leading
order velocity field (refer to figures 2a,e), while the dilatation viscosity (Bqκ) alters
the circulation pattern inside the drop significantly (refer to figure 2c). The detailed
expression for the leading order velocity field is provided in Appendix B. Note that, the
surfactant is bulk insoluble and the surfactant concentration in the bulk is zero which is
indicated by the purple color in figure 2.

3.2. Solution at first order

At first order, the creeping flow and the surfactant transport equations are given by,

−∇p
(1)
i + λ∇2u

(1)
i = 0, (3.7a)

−∇p(1)e + ∇2u(1)
e = 0, (3.7b)

∇2Γ(1) = ∇s · u(0)
s . (3.7c)

The above equations are subjected to the following boundary conditions,

u
(1)
i = u(1)

e at r = 1,

u
(1)
i · n = 0 at r = 1.

n ·
(
σ(1)
e − λσ

(1)
i

)
· (I − nn) = Ma∇sΓ

(1) −∇s · τ (1)
s .

From the surfactant transport equation, we observe that, at first order, the surfactant
will redistribute itself along the interface due to convection of the leading order velocity
along the drop surface. Consequently, the Marangoni stress term appears in the tangential
stress continuity boundary condition. After solving the equations of motion, we obtain
the equilibrium surfactant concentration as follows,

(3.8)
Γ(1) =

a2

R2

(
− 2

2 + 2Bqκ + 3λ
P 0
1 (cosθ) +

7

7 + 12Bqκ + 10Bqµ + 7λ
P 0
3 (cosθ)

+
5b

a(5 + 6Bqκ + 4Bqµ + 5λ)
P 1
2 (cosθ)cosφ

)
.

However, we find that, despite the surfactant redistribution, the drop migrates only in
the direction of the flow and the cross-stream migration velocity is zero upto the first
order in Pes. Here, we note that, Pak et al. (2014) made a similar observation for a non
viscous interface. The first order migration velocity is given as follows,

U (1) = − a
2

R2

(
4Ma

3(2 + 2Bqκ + 3λ)2

)
êz. (3.9)

The negative sign indicates that the first order velocity causes the drop to further lag
the flow. This lag is decreased due to the surface dilatation viscosity as Bqκ appears
in the denominator. However, the surface shear viscosity has no effect on the droplet
longitudinal speed. The first order velocity field vectors are displayed in figures 2b,d,f for
different values of surface viscosities. In all the cases, the velocity vectors outside the drop
are oriented in a direction opposite to the external flow, which reduces the longitudinal
speed of the droplet as seen from equation (3.9). We further observe that, an increase
in the surface shear viscosity, increases the resistance of the drop to surface shear forces



10 Rajat Dandekar and Arezoo M. Ardekani

which consequently reduces the compression of the streamlines in the vicinity of the
drop in comparison with the non-viscous drop (refer to figures 2b,f). However, surface
dilatation viscosity does not cause any significant changes in the streamlines pattern.
The detailed expression for the first order velocity field is provided in Appendix B.

From the surfactant concentration fields in figure 2, we observe that, in all the cases,
the first order velocity creates a surplus of surfactant (shown in red) at the rear end of the
drop and a deficit at the front end (shown in blue). This generates a Marangoni flow from
the rear end to the front end of the droplet as shown in the figure. For a drop without
any interfacial viscosities, as the drop is located away from the flow axis, we observe
that the peaks in the surfactant concentration is not on the z− axis passing through
the sphere center (refer to figure 2b). Introduction of the dilatation viscosity generates a
similar surfactant distribution pattern (refer to figure 2d); however, the shear viscosity
causes the surfactant concentration peaks to align with the sphere axis (refer to figure
2f).

3.3. Solution at second order

At second order, the creeping flow and the surfactant transport equations are given
by,

−∇p
(2)
i + λ∇2u

(2)
i = 0, (3.10a)

−∇p(2)e + ∇2u(2)
e = 0, (3.10b)

∇2Γ(2) = ∇s · (Γ(0)u(1)
s + Γ(1)u(0)

s ). (3.10c)

The above equations are subjected to the following boundary conditions,

u
(2)
i = u(2)

e at r = 1,

u
(2)
i · n = 0 at r = 1.

n ·
(
σ(2)
e − λσ

(2)
i

)
· (I − nn) = Ma∇sΓ

(2) −∇s · τ (2)
s .

We find that, the drop exhibits a cross-stream migration velocity in the x-direction at
this order in Pes. The net migration velocity of the drop at this order is given by,

(3.11)U (2) = − a
2

R2

(
4Ma

3(2 + 2Bqκ + 3λ)3

)
ez −

a3b

R4
f(Ma, λ,Bqκ, Bqµ)ex.

Here, f(Ma, λ,Bqκ, Bqµ) is given by,(
Ma(40 + 109λ+ 70λ2 + 144Bq2κ + 80Bq2µ + 4Bqµ(29 + 39λ) + 2Bqκ(77 + 108Bqµ + 102λ))

3(2 + 3λ)(2 + 2Bqκ + 3λ)(5 + 6Bqκ + 4Bqµ + 5λ)(7 + 12Bqκ + 10Bqµ + 7λ)

)
From the above expression, we observe that, inclusion of the interfacial stress does not
change the direction of the droplet migration and it always moves towards the centre of
the channel irrespective of the values of the Bousinessq numbers. Additionally, we find
that the cross-stream migration velocity depends on both the interfacial viscosities. If
we substitute Bqµ = Bqκ = 0, we obtain the expression for the cross-stream migration
velocity obtained by Pak et al. (2014) for a non-viscous interface as follows,

U (2)
x = −a

3b

R4

(
Ma(40 + 109λ+ 70λ2)

105(1 + λ)2(2 + 3λ)2

)
The detailed expression for the surfactant concentration at this order is provided in
Appendix B.
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Figure 3: Variation of the drop cross-stream migration velocity with (a)Boussinesq
number for surface dilatation for Bqµ = 0, λ = 1 and (b) Bousinessq number for surface
shear for Bqκ = 0, λ = 1.

Figure 3 shows the effect of the interfacial viscosities on the cross-stream velocity of the
droplet (shown by symbol V ). Vh denotes the cross-stream migration velocity for a droplet
with a non-viscous interface (Bqκ = Bqµ = 0). We observe that, both the viscosities
influence the droplet motion in different ways. Surface dilatation reduces the migration
velocity of the droplet, and for high Bousinessq numbers (Bqκ � 1), the cross-stream
migration of the droplet is greatly suppressed. On the other hand, surface shear increases
the migration velocity of the drop, which tends to reduce the time taken by drop to reach
the channel centre. Additionally, we find that, increasing the shear Boussinessq number
beyond a value of Bqµ ≈ 100 has no effect on the droplet motion and the curve reaches a
plateau of V/Vh ≈ 1.275. It is experimentally observed that, for higher surface pressures,
the surface Boussinessq numbers can attain high values (Bqκ, Bqµ � Ma) (Bhamla
et al. 2017), which can affect the droplet dynamics considerably as seen from figure 3.
Experimentally measured values of surface shear viscosities are on the order of magnitude
of ∼ 10−3gs−1 (Gupta & Wasan 1974), while the surface dilatational viscosities are
usually higher. In particular, for a number of surfactant solutions (e.g., dodecanediol,
lauryl alcohol), it was found that the surface dilatational viscosities are on the order of
magnitude of ∼ 103gs−1 (van Voorst Vader et al. 1964). Assuming a surfactant solution
in water with a micrometer size droplet we obtain the estimates for the surface shear
and dilatational Bousinessq numbers to be Bqµ ∼ 103 and Bqκ ∼ 109 respectively. The
Marangoni number (Ma) can be expressed as the ratio of the Gibbs elasticity parameter
(0 < β < 1) and the capillary number (Ca � 1). We thus expect typical values of
Marangoni numbers to be high (Ma ∼ 10 − 1000). For example, Wang et al. (2017)
performed experiments with surfactant laden bubbles with a Marangoni number of ∼ 30.
From the above estimates and figure 3, we find that, for commonly used surfactant
solutions, the effect of the dilatation viscosity is to completely inhibit the cross-stream
motion of the droplet, while the surface shear viscosity enhances the migration velocity
by a factor of ∼ 1.275.

For experiments involving droplet migration in microchannels, the lift forces acting
on the drops due to the fluid inertia and the droplet deformation are considered to
be important. We seek to analyze the relative magnitudes of inertial, deformation and
surfactant induced lift forces acting on a droplet in a microchannel experiment. Asmolov
(1999) derived an expression for the inertial lift force acting on particles suspended in a
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Figure 4: Second order surfactant distribution Γ(2) for a) Bqκ = 0, Bqµ = 0, b) Bqκ =
100, Bqµ = 0 and c) Bqκ = 0, Bqµ = 100. In all the cases, a/R = 1, b/R = 1, λ = 1,Ma =
1 and the external flow is along the z− axis.

Poiseuille flow. In particular their analysis is valid for small particle Reynolds numbers
denoted as Rp. The theoretical expression for the deformation induced lift forces was
given by Chan & Leal (1979). For small droplets located away from the channel walls
(a/R = b/R ∼ 0.1), surface Péclet number Pes ∼ 0.1, viscosity ratio λ = 1, particle
Reynolds number Rp ∼ 10−3 − 1 and a capillary number Ca ∼ 10−3 − 0.1, we find the
relative magnitudes of the surfactant induced lift force (F s), inertial induced lift force
(F i) and deformation induced lift force (F d) to be as follows,

F s

F i
∼ 2.6× 10−6Ma− 2.6× 10−3Ma,

F s

F d
∼ 5× 10−4Ma− 5× 10−2Ma.

We thus find that, for large Marangoni numbers, Ma ∼ 102−103, the surfactant induced
lift forces would be comparable to the inertial and the deformation induced lift forces for
small particle Reynolds numbers and capillary numbers.

We can qualitatively understand the influence of the surface viscosities on the cross-
stream migration velocity by analyzing the surfactant distribution on the droplet surface
at this order (refer to figure 4). For the case of a large surface dilatation viscosity
(Bqκ = 100), we observe that the surfactant redistribution is greatly suppressed as
the surface concentration appears to be uniform. We expect that, a suppression in the
surfactant redistribution decreases the strength of the Marangoni flow and consequently
the cross-stream migration velocity is reduced significantly as seen from figure 3a. On
the other hand, a large surface shear viscosity causes the surfactant to be redistributed,
but in a different manner as compared to a non-viscous interface. In particular, the
minimum surfactant concentration (shown in yellow-orange) is observed near a region
located further away from the the local z-axis passing through the sphere center which
is parallel to the flow direction. We expect this redistribution to generate a stronger
Marangoni flow in the cross-stream direction (along the x− axis), which consequently
increases the cross-stream migration velocity of the droplet as seen from figure 3b.

Our work is applicable in the limit of small Reynolds number (Re � 1) based on
the particle size, small surface Péclet number (Pes � 1) and a small capillary number
(Ca� 1). In addition, we assume the surfactant concentration to be negligible (Γeq � 1),
i.e., we neglect any intermolecular interactions between the surfactant molecules which
are adsorbed on the droplet surface. As the cross-stream migration occurs as a second
order effect in the surface Péclet number, the effect of the droplet capillary number (i.e,
drop deformation) might become important even if the value of the capillary number is
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small. Hence, for our results to be applicable in practical scenarios, the neglect of the
drop deformation is justified if Ca� Pe2s. For surfactant laden droplets of size ∼ O(µm)
immersed in water with an average flow speed ∼ 10−3ms−1, the Reynolds number is
∼ 10−3. Assuming a surface tension of ∼ 10−3kgs−2, the capillary number can estimated
to be ∼ O(10−3). These requirements have been satisfied in number of experiments in
the literature including the comprehensive analysis by Stan et al. (2013) which estimated
the lift forces acting on a droplet in a microchannel for different pairs of continuous
and dispersed phase fluids. The condition of small Péclet number (Pes ∼ 0.1), would
be satisfied for surfactant diffusivity values which are ∼ 10−8m2s−1. This requirement
seems reasonable as typical values of surfactant diffusivity are expected to lie between
∼ 10−8m2s−1 and ∼ 10−10m2s−1 (van Voorst Vader et al. 1964; Das et al. 2017).

4. Conclusion

We predicted the migration velocity of a surfactant covered droplet in a Poiseuille flow
including the interfacial viscosities of the drop. We performed a regular perturbation
expansion for low surface Péclet numbers (Pes) and solved the problem upto the second
order in Pes. We represented the interface as a two-dimensional homogeneous fluid using
the Bousinessq-Scriven constitutive equation and employed the Lamb’s general solution
for representing the velocity fields both inside and outside the droplet. We obtained an
expression of the cross-stream migration velocity of the droplet, where the interfacial
effects were captured by Boussinessq numbers for surface shear and surface dilatation
(Bqµ, Bqκ).

We found that, even when interfacial effects are included, the cross-stream migration
velocity of the droplet is zero upto the first order in the surface Péclet number and the
first non-zero term only appears at the second order. Surface dilatation viscosity restricts
the surfactant redistribution on the droplet surface which suppresses the Marangoni flow
around the droplet. This causes the cross-stream velocity to decrease with the dilatation
viscosity. For a large dilatation viscosity (Bqκ > 100), the cross-stream migration
almost vanishes completely. On the other hand, surface shear viscosity redistributes more
surfactant along the cross-stream axis of the sphere, which drives a stronger Marangoni
flow in the cross-stream direction. Consequently, the migration velocity of the drop
increases with the surface dilatation viscosity. However, increasing the shear Bousinessq
number beyond a certain value (Bqµ ≈ 100) has no effect on the migration velocity and
the maximum velocity enhancement is ≈ 1.275 times more than the cross-stream velocity
of a non-viscous droplet. We found that, only the surface dilatation viscosity affects the
longitudinal speed of the droplet. In particular, the dilatation viscosity reduces the lag
experienced the drop due to the Marangoni flows from the droplet rear to the front.
Additionally, a high surface shear viscosity suppresses the compression of the streamlines
in the vicinity of the droplet. From our analysis, we emphasize that, inclusion of interfacial
viscosities is important to accurately model the migration characteristics of droplets for
experiments involving droplet manipulation.
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Appendix A

Spherical harmonics in Lamb’s general solution for flow inside the droplet:

pn = λrn
n∑

m=0

(
A(q)
n,mcos(mφ) + Â(q)

n,msin(mφ)
)
Pn,m(cosθ),

φn = rn
n∑

m=0

(
B(q)
n,mcos(mφ) + B̂(q)

n,msin(mφ)
)
Pn,m(cosθ),

χn = rn
n∑

m=0

(
C(q)
n,mcos(mφ) + Ĉ(q)

n,msin(mφ)
)
Pn,m(cosθ).

where, Pn,m(cosθ) are associated Legendre polynomials of degree n and order m.
Spherical harmonics in Lamb’s general solution for flow outside the droplet:

p−n−1 = r−n−1
n∑

m=0

(
A

(q)
−n−1,mcos(mφ) + Â

(q)
−n−1,msin(mφ)

)
Pn,m(cosθ),

φ−n−1 = r−n−1
n∑

m=0

(
B

(q)
−n−1,mcos(mφ) + B̂

(q)
−n−1,msin(mφ)

)
Pn,m(cosθ),

χ−n−1 = r−n−1
n∑

m=0

(
C

(q)
−n−1,mcos(mφ) + Ĉ

(q)
−n−1,msin(mφ)

)
Pn,m(cosθ).

Appendix B

Leading order velocity and pressure fields inside and outside the droplet:

u
(0)
i,r =

a(r2 − 1)

8R2

(
− 16acosθ

2 + 2Bqκ + 3λ
+

7ar2(3cosθ + 5cos3θ)

7 + 12Bqκ + 10Bqµ + 7λ
− 60brcosφsin2θ

5 + 6Bqκ + 4Bqµ + 5λ

)
.

u
(0)
i,θ =

a

8R2

(
8brcosφ− 20br(−3 + 5r2)cos2θcosφ

5 + 6Bqκ + 4Bqµ + 5λ
+

16a(−1 + 2r2)sinθ

2 + 2Bqκ + 3λ

− 7br2(−2 + 3r2)(3 + 5cos2θ)sinθ

7 + 12Bqκ + 10Bqµ + 7λ

)
.

u
(0)
i,φ =

abr(−12Bqκ − 8Bqµ + 5(−5 + 5r2 − 2λ))cosθsinφ

2R2(5 + 6Bqκ + 4Bqµ + 5λ)
.

u(0)
e,r =

acosθ

60R2

(
−16a(−3 + 2Bqκ + 3λ)

r3(2 + 2Bqκ + 3λ)
+ 40a

(2Bqκ + 3λ)

2 + 2Bqκ + 3λ

− 3a(12Bqκ(−5 + 7r2) + 10Bqµ(−5 + 7r2)− 35λ+ 7r2(2 + 7λ))(−1 + 5cos2θ)

r5(7 + 12Bqκ + 10Bqµ + 7λ)

− 120brcosφsinθ

+
60b(−6(3Bqκ + 2Bqµ) + 10(−1 + 3Bqκ + 2Bqµ)r2 + 5λ(−3 + 5r2))cosφsinθ

r4(5 + 6Bqκ + 4Bqµ + 5λ)

− 60ar2sin2θ

)
.
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u
(0)
e,θ =

a

48r5R2

(
3cos2θ

(
16br(6Bqκ + 4Bqµ + 5λ)cosφ

5 + 6Bqκ + 4Bqµ + 5λ

− a(−30(6Bqκ + 5Bqµ) + 14(1 + 6Bqκ + 5Bqµ)r2 + 7λ(−15 + 7r2)sinθ)

7 + 12Bqκ + 10Bqµ + 7λ

)
+ sinθ

(
a(27− 19r2 − 32r5 +

32(r2 + 2r5)

2 + 2Bqκ + 3λ
+

63(−3 + r2)

7 + 12Bqκ + 10Bqµ + 7λ
)

+ 48r6sinθ(2bcosφ+ arsinφ)

))
.

u
(0)
e,φ = −ab(6Bqκ + 4Bqµ + 5λ)cosθsinφ

r4R2(5 + 6Bqκ + 4Bqµ + 5λ)
.

p0i =
arλcosθ

R2

(
− 20a

2 + 2Bqκ + 3λ
+

21ar2(−3 + 5cos2θ)

7 + 12Bqκ + 10Bqµ + 7λ
− 105brcosφsinθ

5 + 6Bqκ + 4Bqµ + 5λ

)
.

p0e =
a

4r4R2

(
−7a(2 + 12Bqκ + 10Bqµ + 7λ)cosθ(−3 + 5cos2θ)

7 + 12Bqκ + 10Bqµ + 7λ

+
20br(2 + 6Bqκ + 4Bqµ + 5λ)cosφsin2θ

5 + 6Bqκ + 4Bqµ + 5λ

)
First order velocity and pressure fields inside and outside the droplet:

u
(1)
i,r =

aMa(r2 − 1)

8R2

(
16acosθ

(2 + 2Bqκ + 3λ)2
− 7ar2(3cosθ + 5cos3θ)

(7 + 12Bqκ + 10Bqµ + 7λ)2

+
60brcosφsin2θ

(5 + 6Bqκ + 4Bqµ + 5λ)2

)
.

u
(1)
i,θ =

aMa

8R2

(
20br(−3 + 5r2)cos2θcosφ

(5 + 6Bqκ + 4Bqµ + 5λ)2
+

16a(1− 2r2)sinθ

(2 + 2Bqκ + 3λ)2

+
7ar2(−2 + 3r2)(3 + 5cos2θ)sinθ

(7 + 12Bqκ + 10Bqµ + 7λ)2

)
.

u
(1)
i,φ = − 5abMar(−3 + 5r2)cosθsinφ

2R2(5 + 6Bqκ + 4Bqµ + 5λ)2
.

u(1)
e,r =

aMa

6R2

(
8acosθ

(2 + 2Bqκ + 3λ)2
− 8acosθ

r3(2 + 2Bqκ + 3λ)2

− 21a(−1 + r2)cosθ(−3 + 5cos2θ)

r5(7 + 12Bqκ + 10Bqµ + 7λ)2
+

45b(−1 + r2)cosφsin2θ

r4(5 + 6Bqκ + 4Bqµ + 5λ)2

)
.

u
(1)
e,θ =

aMa

48R2

(
− 64asinθ

(2 + 2Bqκ + 3λ)2
− 32asinθ

r3(2 + 2Bqκ + 3λ)2

− 21a(−3 + r2)sinθ(3 + 5cos2θ)

r5(7 + 12Bqκ + 10Bqµ + 7λ)2
+

240bcosφcos2θ

r4(5 + 6Bqκ + 4Bqµ + 5λ)2

)
.

u
(1)
e,φ = − 5abMacosθsinφ

r4R2(5 + 6Bqκ + 4Bqµ + 5λ)2
.



16 Rajat Dandekar and Arezoo M. Ardekani

p
(1)
i =

aMarλcosθ

R2

(
20a

(2 + 2Bqκ + 3λ)2
− 21a(−r2)(−3 + 5cos2θ)

(7 + 12Bqκ + 10Bqµ + 7λ)2

+
105brcosφsinθ

(5 + 6Bqκ + 4Bqµ + 5λ)2

)
.

p(1)e =
5aMa

4r4R2

(
− 7acosθ(−3 + 5cos2θ)

(7 + 12Bqκ + 10Bqµ + 7λ)2
+

12brcosφsin2θ

(5 + 6Bqκ + 4Bqµ + 5λ)2

)
.

Second order surfactant concentration distribution:

Γ(2) = P 0
1 (cosθ)

(
2a2Ma

R2(2 + 2Bqκ + 3λ)2

)
+ P 0

2 (cosθ)
a2

378R4

(
45b2(40 + 42Bqκ + 28Bqµ + 35λ)

(5 + 6Bqκ + 4Bqµ + 5λ)2
+

504a2

(2 + 2Bqκ + 3λ)2

+
49a2

(7 + 12Bqκ + 10Bqµ + 7λ)2
− 378a2

(2 + 2Bqκ + 3λ)(7 + 12Bqκ + 10Bqµ + 7λ)

)
+ P 0

3 (cosθ)

(
− 7a2Ma

6R2(7 + 12Bqκ + 10Bqµ + 7λ)2

)
+ P 0

4 (cosθ)
a2

924R4

(
− 1320e2

(5 + 6Bqκ + 4Bqµ + 5λ)2

− 7a2(1190 + 2070Bqκ + 1760Bqµ + 1169λ)

(2 + 2Bqκ + 3λ)(7 + 12Bqκ + 10Bqµ + 7λ)2

)
+ P 0

6 (cosθ)

(
175a4

594R4(7 + 12Bqκ + 10Bqµ + 7λ)2

)
+P 1

1 (cosθ)cosφ

(
a3b(40 + 144Bq2κ) + 80Bq2µ + 109λ+ 70λ2

2R4(2 + 2Bqκ + 3λ)(5 + 6Bqκ + 4Bqµ + 5λ)(7 + 12Bqκ + 10Bqµ + 7λ)

+
4Bqµ(29 + 39λ) + 2Bqκ(77 + 108Bqµ + 102λ)

R4(2 + 2Bqκ + 3λ)(5 + 6Bqκ + 4Bqµ + 5λ)(7 + 12Bqκ + 10Bqµ + 7λ)

)

+ P 1
2 (cosθ)cosφ

(
− 5abMa

3R2(5 + 6Bqκ + 4Bqµ + 5λ)2

)
+P 1

3 (cosθ)cosφ

(
a3b(2170 + 252Bq2κ) + 2457λ+ 315λ2

216R4(2 + 2Bqκ + 3λ)(5 + 6Bqκ + 4Bqµ + 5λ)(7 + 12Bqκ + 10Bqµ + 7λ)

+
12Bqµ(254 + 21λ) + 2Bqκ(1931 + 84Bqµ + 294λ)

216R4(2 + 2Bqκ + 3λ)(5 + 6Bqκ + 4Bqµ + 5λ)(7 + 12Bqκ + 10Bqµ + 7λ)

)
+ P 1

5 (cosθ)cosφ

(
− 10a3b

27R4(5 + 6Bqκ + 4Bqµ + 5λ)(7 + 12Bqκ + 10Bqµ + 7λ)

)
+ P 2

2 (cosθ)cos2φ

(
−5a2b2(20 + 42Bqκ + 28Bqµ + 35λ)

252R4(5 + 6Bqκ + 4Bqµ + 5λ)2

)
+ P 2

4 (cosθ)cos4φ

(
5a2b2

42R4(5 + 6Bqκ + 4Bqµ + 5λ)2

)
.
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