
1 23

Mathematische Annalen
 
ISSN 0025-5831
 
Math. Ann.
DOI 10.1007/s00208-020-02068-4

Multilinear singular integrals on non-
commutative $$L^p$$ L p spaces

Francesco Di Plinio, Kangwei Li, Henri
Martikainen & Emil Vuorinen



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Mathematische Annalen
https://doi.org/10.1007/s00208-020-02068-4 Mathematische Annalen

Multilinear singular integrals on non-commutative Lp

spaces

Francesco Di Plinio1 · Kangwei Li2,3 · Henri Martikainen4 · Emil Vuorinen5

Received: 14 August 2019 / Revised: 21 July 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We prove L p bounds for the extensions of standard multilinear Calderón–Zygmund
operators to tuples of UMD spaces tied by a natural product structure. The product can,
for instance, mean the pointwise product in UMD function lattices, or the composition
of operators in the Schatten-vonNeumann subclass of the algebra of bounded operators
on a Hilbert space. We do not require additional assumptions beyond UMD on each
space—in contrast to previous results, we e.g. show that the Rademacher maximal
function property is not necessary. The obtained generality allows for novel applica-
tions. For instance, we prove new versions of fractional Leibniz rules via our results
concerning the boundedness of multilinear singular integrals in non-commutative L p

spaces. Our proof techniques combine a novel scheme of induction on the multilin-
earity index with dyadic-probabilistic techniques in the UMD space setting.
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1 Introduction

A Banach space X has the UMD property if any X -valued martingale difference
sequence converges unconditionally in L p for some (equivalently, all) p ∈ (1,∞).
Standard examples ofUMDspaces are provided by the reflexive L p function spaces, as
well as the reflexive Schatten–von Neumann subclasses S p of the algebra of bounded
operators on a Hilbert space. The works by Burkholder [2] and Bourgain [1] yield an
alternative characterization: X is a UMD space if and only if singular integrals, in par-
ticular the Hilbert transform, admit an L p(X)-bounded extension. Such equivalence,
albeit striking, is not so surprising when viewed from the modern dyadic-probabilistic
perspective on singular integral operators. Indeed, Petermichl [43,44] realized that the
Hilbert transform lies in the convex hull of certain dyadic operators akin to martingale
transforms (the so-called dyadic shifts), while Hytönen [28] extended this represen-
tation to general singular integral operators of Calderón–Zygmund type, relying on a
probabilistic construction. These results have roots in the pioneering work of Figiel
[13] and on the probabilistic approach ofNazarov–Treil–Volberg to non-homogeneous
T b theorems [41].

The theory of linear singular integrals on Banach spaces, beyond its intrinsic inter-
est, has historically been motivated by its interplay with several related areas, such
as geometry of Banach spaces [31,32], elliptic and parabolic regularity theory [3,47],
the theory of quasiconformal mappings [15]. Furthermore, vector-valued bounds may
often be used in the pursuit of their multi-parameter analogs [22,27].

In this article, we are concerned with Banach-valued extensions of multilinear
singular integral operators. A linear singular integral takes the general form

T f (x) =
∫
Rd

K (x, y) f (y) dy,

where different assumptions on the kernel K lead to important classes of linear trans-
formations arising across pure and applied analysis. The term singular integral refers
just to the underlying kernel structure—a Calderón–Zygmund operator is a bounded
singular integral operator. A heuristic model of an n-linear singular integral operator
T in R

d is then obtained by setting

T ( f1, . . . , fn)(x) = U ( f1 ⊗ · · · ⊗ fn)(x, . . . , x), x ∈ R
d , fi : R

d → C,

where U is a linear singular integral operator in R
nd . For the basic theory see e.g.

Grafakos–Torres [18].
Multilinear singular integrals arise naturally from applications to partial differential

equations, complex function theory and ergodic theory, among others. Focusing on
the results of greater significance for the present work, we mention that L p estimates
for the fractional derivative of a product, often referred to as fractional Leibniz rules,
are widely employed in the study of dispersive equations starting from the work of
Kato and Ponce [33], descend from the multilinear Hörmander–Mihlin multiplier
theorem of Coifman–Meyer [4]. The bilinear Hilbert transform is a prime example of
a modulation invariant bilinear Calderón–Zygmund operator. It rose to prominence
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Multilinear singular integrals on non-commutative Lp spaces

with Calderón’s first commutator program, and has been featured as a model operator
in the study of bilinear ergodic averages; the latter connection is expounded in e.g.
[11]. Proving L p estimates for the bilinear Hilbert transform in the Lacey–Thiele
framework [34,35] involves a decomposition into single trees, which are essentially
modulated bilinear Calderón–Zygmund operators.

Vector-valued extensions of multilinear Calderón–Zygmund operators have mostly
been studied within the more restrictive framework of �p spaces and function lat-
tices. Boundedness of these extensions is classically obtained through weighted norm
inequalities, more recently in connection with localized techniques such as sparse
domination: see [16] and the more recent [6,37,42] for a non-exhaustive overview of
their interplay. The paper [10], by Ou and one of us, contains a bilinear multiplier the-
orem which applies to certain non-lattice UMD spaces. The approach of [10] is based
on a localization of the UMD-valued tent space norms, see for instance [23], within
the Carleson embedding framework of Do and Thiele [12]. The tent space techniques
lead to the additional assumption of L p estimates for a certain analogue of the Hardy-
Littlewoodmaximal operator obtained by replacing uniform bounds with randomized,
or R-bounds, see e.g. [47] for a definition. This assumption, usually referred to as the
RMF property of X , dates back to the work of Hytönen, McIntosh and Portal on the
vector-valued Kato square root problem [21], and is in fact necessary for the X -valued
Carleson embedding theorem to hold [20].

In this article, we obtain vector-valued extensions of multilinear singular integrals
to tuples of UMD spaces tied by a natural product structure, such as that of pointwise
product in UMD function lattices or, more generally in fact, that of composition
within the Schatten-von Neumann classes. We do not require additional conditions
on the spaces involved—in particular, we do not require the RMF property. Thus,
we are able to extend multilinear Calrerón–Zygmund operators to natural tuples of
non-commutative L p spaces—a result which does not seem attainable via abstract
theorems involving multilinear RMF type assumptions. A motivating corollary is a
version of the fractional Leibniz rule for products of Schatten-von Neumann class-
valued functions.

In contrast to [10,21,23], our techniques are dyadic-probabilistic: a multilinear
version of the representation theorem of Hytönen [28], which appeared in the bilinear
case in [39] by Y. Ou and three of us, reduces the problem to the boundedness of
the extensions of a class of multilinear dyadic model operators, namely paraproducts
and multilinear dyadic shifts of arbitrary complexity. The novelty lies in how we treat
these operators—multilinearity poses significant problems in the vector-valued setup.

We note that UMD-valued extensions of bilinear, complexity zero dyadic shifts
have implicitly been treated in the work by Hytönen, Lacey and Parissis on the UMD
dyadic model of the bilinear Hilbert transform [30, Section 6]. The simple approach
of [30] does not extend to either the higher complexity or the multilinear cases. We
tackle the n-linear case by inducting suitably on the linearity, which is made possible
by associating to our n-tuples of UMD spaces a collection of related m-tuples, m < n.
The framework is carefully designed to allow us to treat non-commutative theory.
Moreover, bilinear theory would not reveal all the difficulties and is, in fact, strictly
easier—a feature that is also present in our followup paper [9] involving operator-
valued multilinear analysis. Before providing further insights on the novelty of our
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proof techniques, and comparisons to previous approaches, we give the statements of
our main results.

1.1 Main results

We start by discussing a simpler question, where the current literature already has
some restrictions that we can lift. If X is a Banach space and T is an n-linear integral
operator on R

d acting on n-tuples of functions in L∞
c (Rd), we may let T act on

(L∞
c (Rd) ⊗ X) × L∞

c (Rd) × · · · × L∞
c (Rd) by

T ( f1, f2, . . . , fn) (x) =
∑

e1, j T ( f1, j , f2, . . . , fn)(x), x ∈ R
d ,

f1 =
∑

e1, j f1, j , f1, j ∈ L∞
c (Rd), e1, j ∈ X .

A basic thing implied by our methods is that n-linear Calderón–Zygmund operators
extend boundedly when applied to one UMD-valued function and n − 1 scalar func-
tions, without any additional assumption on the UMD space. We send to Sect. 2.4 for
the precise definition of an n-linear Calderón–Zygmund operator. This is the simplest
complete multilinear analogue of Bourgain’s UMDHörmander-Mihlin multiplier the-
orem from [1]; see also Weis [47] and Hytönen-Weis [26] for the operator-valued,
non-translation invariant case.

In the bilinear, translation invariant, operator-valued setting, a related result
appeared in [10, Corollary 1.2] under the assumption, known to be rather restric-
tive, that X is a UMD space with the non-tangential Rademacher maximal function
property [21]. Theorem 1.1 shows, in particular, that the latter assumption is unnec-
essary. However, we formulate the following more general version to facilitate the
discussion below regarding the somewhat special nature of bilinear theory.

Theorem 1.1 Let X1, X2, Y3 be UMD spaces with an associated product (a bounded
bilinear operator)

X1 × X2 → Y3 : (x1, x2) �→ x1x2, |x1x2|Y3 ≤ |x1|X1 |x2|X2 .

Let n ≥ 2 and T be an n-linear Calderón–Zygmund operator on R
d . The n-linear

operator

T ( f1, f2, . . . , fn) (x) =
∑
j1, j2

e1, j1e2, j2T ( f1, j1 , f2, j2 , f3, . . . , fn)(x), x ∈ R
d ,

f1 =
∑

j1

e1, j1 f1, j1 , f2 =
∑

j2

e2, j2 f2, j2 f1, j , f2, j ∈ L∞
c (Rd),

e1, j1 ∈ X1, e2, j2 ∈ X2,
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extends to a bounded operator

T : L p1(Rd; X1)×L p2(Rd ; X2) ×
n∏

k=3

L p j (Rd) → Lqn+1(Rd ; Y3),

1 < pk ≤ ∞,
1

n
< qn+1 < ∞, 1

qn+1
=

n∑
k=1

1
pk

.

The proof of thismodel case is an adaptation of the proof of Theorem3.17with some
additional observations regarding the bilinear case—see Remark 4.3. This simpler
result also showcases why the genuine n-linear theory that we formulate next is harder
than bilinear theory: the n-linear theory requires us to exploit a more careful product
setting so that we can run our inductive proof. We also note that at least in the basic
case X1 = Y3 = X and X2 = C, Theorem 1.1 can also be seen as a corollary of
Theorem 3.17 using Example 3.10. It is simpler to just look at the proof, however.

Our main theorem concerns extensions of n-linear CZO operators T to an n-tuple
X1, . . . , Xn of UMD Banach spaces lying in an enveloping algebra A, allowing for a
standard definition of (associative, not necessarily abelian) product A × A → A. We
refer to these configurations as UMDHölder tuples if certain conditions are in place, in
particular, if the n-tuples are associated with suitable collections of related m-tuples,
m < n. If each X j is a subspace of A, and fk ∈ L∞

c (Rd) ⊗ Xk for 1 ≤ k ≤ n, we
may define the extension of a scalar integral operator by

T ( f1, . . . , fn) (x) =
∑

j1,..., jn

T ( f1, j1 , . . . , fn, jn )(x)

n∏
k=1

ek, jk , x ∈ R
d ,

fk =
∑

jk

ek, jk fk, jk , fk, jk ∈ L∞
c (Rd), ek, jk ∈ Xk . (1.1)

The abstract setup is developed in Sect. 3. For expository purposes, herein we provide
a statement in a rather general concrete case of a UMDHölder tuple. In the statement,
we denote by L p(M) the non-commutative L p spaces associated to a von Neumann
algebra M endowed with a normal, semifinite, faithful trace τ .

Theorem 1.2 Let M be a von Neumann algebra endowed with a normal, semifinite,
faithful trace. For s = 1, . . . , S, let (Ms, μs) be measure spaces and for s = 0, . . . , S
let

1 < ps
1, . . . ps

n, qs
n+1 < ∞,

1

qs
n+1

=
n∑

k=1

1

ps
k

be Banach Hölder tuples. Let

Xk = L pS
k (MS, μs; L pS−1

k (MS−1, μS−1; · · · L p1k (M1, μ1; L p0k (M)) · · · ),
k = 1, . . . , n,

Yn+1 = Lq S
n+1(MS, μS; Lq S−1

n+1 (MS−1, μS−1; · · · Lq1
n+1(M1, μ1; Lq0

n+1(M)) · · · ).
(1.2)
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The n-linear operator (1.1) extends to a bounded operator

T :
n∏

k=1

L pk (Rd; Xk) → Lqn+1(Rd ; Yn+1),

1 < pk ≤ ∞,
1

n
< qn+1 < ∞, 1

qn+1
=

n∑
k=1

1
pk

,

T :
n∏

k=1

L1(Rd ; Xk) → L
1
n ,∞(Rd ; Yn+1).

In fact, we have the stronger estimate

|〈T ( f1, . . . , fn), fn+1〉| �
∥∥∥M

(
| f1|X1 , . . . , | fn|Xn , | fn+1|Y ∗

n+1

)∥∥∥
1
,

M(g1, . . . , gn+1)(x):= sup
x∈Q

n+1∏
j=1

〈|g j |〉Q, 〈g〉Q := 1

|Q|
∫

Q
g. (1.3)

The estimate (1.3) is equivalent to a certain sparse bound, see Remark 3.16.

We send to Sect. 3.3 and to the references [7,8] for more details on sparse bounds
and to [37,38] for a survey of the weighted inequalities that may be derived as a
consequence.

Theorem 1.2 is obtained as a corollary of Theorem 3.17 using Example 3.12. How-
ever, we remark that, at least to the best of the authors’ knowledge, the spaces (1.2)
encompass all known examples of UMD Banach spaces. We further remark that the
mixed norm structure of the spaces (1.2) prevents from using purely non-commutative
tools, as (1.2) may be interpreted as semi-commutative spaces only if ps

k does not
vary with s for all 1 ≤ k ≤ n; on the other hand, (1.2) are not UMD lattices, so that
Theorem 1.2 is out of reach of purely lattice-type techniques.

Theorems 1.1 and 1.2 can be used to deduce certain weighted multilinear Leibniz
rules in the UMD-valued and non-commutative setting. For simplicity of notation,
we particularize the statements to the bilinear, unweighted, non-endpoint case for the
homogeneous fractional derivative Ds f = F−1(|ξ |s f̂ (ξ)), in the setting of Theorem
1.1. A variety of formulations may be found e.g. in the article by Grafakos and Oh
[17].

Corollary 1.3 (Fractional Leibniz rules in UMD spaces) Let X1, X2, Y3 be UMD
spaces as in the statement of Theorem 1.1. For all sufficiently smooth f1 : R

d →
X1, f2 : R

d → X2 there holds

∥∥Ds( f1 f2)
∥∥

Lq3 (Rd ;Y3)
�
∥∥Ds f1

∥∥
L p1 (Rd ;X1)

‖ f2‖L p2 (Rd ;X2)

+‖ f1‖Lr1 (Rd ;X1)

∥∥Ds f2
∥∥

Lr2 (Rd ;X2)
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whenever s > d and

1 < p1, p2, r1, r2 ≤ ∞,
1

2
< q3 < ∞, 1

q3
= 1

p1
+ 1

p2
= 1

r1
+ 1

r2
.

Corollary 1.3 appears to be the first instance of a Leibniz type rule in the full vector-
valued setting, with no additional assumptions on the UMD spaces involved. We
have not strived for optimality of the range for the fractional exponent s. While
the range obtained in Corollary 1.3 is wider than what would follow from results
of Coifman-Meyer type, see [17, Remark 1], the extension to the sharp range

s > max
{
0, d

(
1
q3

− 1
) }

requires bilinear estimates for kernels which fail to be

of the standard CZ type considered herein. Such estimates are carried out e.g. in [17]:
their extension to the full vector-valued setting is left for future work.

Proof of Corollary 1.3 We follow the beginning of the proof of [17, Theorem 1]. The
estimatewe seek is reduced to a bound for theUMD-valued extension of three different
bilinear paraproducts (meaning suitable parts of a Littlewood–Paley decomposition
of a product of functions—not in the exact sense as we use the word in connection
with dyadic model operators). We note that the symbol of the high-low paraproducts
�1 and �2 is of Coifman-Meyer type; therefore �1,�2 are bilinear CZO operators
as defined in Sect. 2.4 and Theorem 1.2 applies directly. The high-high term �3 is a
bilinear integral operator with kernel

K (x, y1, y2) =
∑
m∈Z

∫
Rd

23mdφs(2
m(u − x))ψ(2m(u − y1))ψ(2m(u − y2)) du

where ψ is a Schwartz function whose Fourier transform � is supported in an annular
region around the origin and φs = Dsφ for some Schwartz function φ such that its
Fourier transform has compact support containing 0, so that

|φs(x)| � (1 + |x |)−(d+s), x ∈ R
d .

As s > d for us, this implies that �3 is a bilinear CZO operator with a kernel K
satisfying

‖�3‖
L3×L3→L

3
2

+ ‖K‖CZ(s−d)/2 � 1,

where ‖K‖CZα is the kernel constant defined in the beginning of Sect. 2.4. The required
bounds for �3 follow from an application of Theorem 1.1. 
�

1.2 Proof techniques and novelties

A basic example of an n-linear dyadic shift operator of complexity zero on R, in
adjoint form, is
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( f1, . . . , fn+1) �→
∑
m∈Z

εm

∫ (∏
k∈C

�m fk(x)

)(∏
k∈N

Em fk(x)

)
dx

where εm are bounded coefficients, and Em and �m respectively indicate the con-
ditional expectation on the m-th dyadic filtration and the corresponding martingale
difference, C ∩ N = ∅ and C ∪ N = {1, . . . , n + 1}, with the key feature that the car-
dinality of the cancellative indices C is always at least 2. We approach UMD-valued
extensions of the above forms to (n + 1)-tuples of UMD spaces via a novel induction
argument, aimed at reducing the cardinality of the set of non-cancellative indices N
and the linearity of the shift n at the same time. The induction relies upon a certain
structure of the tuples involved, which is most easily described in the bilinear, n = 2,
case. Loosely speaking, we consider UMD spaces X1, X2, X3 endowed with a linear
functional τ defined on all products e1e2e3, e j ∈ X j , with the property that

‖e1‖X1 ∼ sup
|e2|X2=|e3|X3=1

|τ(e1e2e3)|

and the same holds for all permutations of X1, X2, X3. In combinationwith themartin-
gale decoupling inequality ofMcConnell [40] andHytönen [29], and Stein’s inequality
in UMD spaces, this structure allows to reduce a trilinear shift form on X1, X2, X3
where, say, 1 ∈ C and 2 ∈ N , to a bilinear shift form on X1, X∗

1 , where both indices are
cancellative, and whose boundedness is known from the UMD character of X1. The
induction is crucial in the n-linear case to allow a repeated use of Stein’s inequality.

We remark here that the martingale decoupling has been previously used by Hän-
ninen and Hytönen [19] in the proof of a T 1 theorem for linear singular integrals
on UMD spaces with operator-valued kernels, providing among other results a non-
translation invariant analogue ofWeis’s theorem [47]. Themultilinear operator-valued
theory, together with a related representation theorem, is the object of forthcoming
work by the authors [9].

2 Definitions and preliminaries

2.1 Vinogradov notation

Wewrite A � B if A ≤ C B for some absolute constant C . The constant C can at least
depend on the dimensions of the appearingEuclidean spaces, on integration exponents,
on the degree of linearity of the multilinear operators, and on various Banach space
constants. We use the notation A ∼ B if B � A � B.

2.2 Dyadic notation

Let D0 be the dyadic lattice in R
d , defined by

D0 = {2−k([0, 1)d + m) : k ∈ Z, m ∈ Z
d}.
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We recall the random dyadic grids of Nazarov–Treil–Volberg, see for example [41].
The version we use here is from [29]. Let � = ({0, 1}d)Z and let P be the natural
probability measure on � such that the coordinates are independent and uniformly
distributed on {0, 1}d . If Q ∈ D0 and ω = (ωk)k∈Z ∈ �, we set

Q + ω:=Q +
∑

k : 2−k<�(Q)

ωk2
−k .

The random dyadic lattice Dω on R
d is defined by Dω = {Q + ω : Q ∈ D0}. By a

dyadic lattice D we mean that D = Dω for some ω.
Let X be a Banach space. If p ∈ (0,∞] we denote by L p(X) = L p(Rd ; X) the

usual Bochner space of X -valued functions f : R
d → X . Let D be a dyadic lattice.

Suppose Q ∈ D and f ∈ L1
loc(X) (the set of locally integrable functions). We use the

following notation:

• The side length of Q is denoted by �(Q);
• ch(Q) consists of those Q′ ∈ D such that Q′ ⊂ Q and �(Q′) = �(Q)/2;
• If k ∈ Z, k ≥ 0, then Q(k) denotes the cube R ∈ D such that Q ⊂ R and
2k�(Q) = �(R);

• The average of f over Q is 〈 f 〉Q = 1
|Q|
∫

Q f dx , and we also write EQ f =
〈 f 〉Q1Q ;

• The martingale difference �Q f is �Q f =∑Q′∈ch(Q) EQ′ f − EQ f ;
• For k ∈ Z, k ≥ 0, define

�k
Q f =

∑
R∈D

R(k)=Q

�R f and Ek
Q f =

∑
R∈D

R(k)=Q

ER f .

Haar functions

When Q ∈ D we denote by hQ a cancellative L2 normalized Haar function. This
means the following. Writing Q = I1 × · · · × Id we can define the Haar function hη

Q ,

η = (η1, . . . , ηd) ∈ {0, 1}d , by setting

hη
Q = hη1

I1
⊗ · · · ⊗ hηd

Id
,

where h0
Ii

= |Ii |−1/21Ii and h1
Ii

= |Ii |−1/2(1Ii,l − 1Ii,r ) for every i = 1, . . . , d. Here
Ii,l and Ii,r are the left and right halves of the interval Ii respectively. If η �= 0 the
Haar function is cancellative:

∫
hη

Q = 0. We usually exploit notation by suppressing

the presence of η, and simply write hQ for some hη
Q , η �= 0.

Notice that if f ∈ L1
loc(X), then �Q f = ∑

η �=0〈 f , hη
Q〉hη

Q , or suppressing the η

summation, �Q f = 〈 f , hQ〉hQ . Here 〈 f , hQ〉 = ∫ f hQ .
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2.3 Definitions and properties related to Banach spaces

An extensive treatment of Banach space theory is given in the books [24,25] by Hytö-
nen, van Neerven, Veraar and Weis.

We say that {εk}k is a collection of independent random signs, where k runs over
some index set, if there exists a probability space (M, μ) so that ε : M → {−1, 1},
{εk}k is independent and μ({εk = 1}) = μ({εk = −1}) = 1/2. Below, {εk}k will
always denote a collection of independent random signs.

Suppose X is a Banach space.We denote the underlying norm by |·|X . The Kahane-
Khintchine inequality says that for all x1, . . . , xM ∈ X and p, q ∈ (0,∞) there holds
that

⎛
⎝E

∣∣∣∣∣
M∑

m=1

εm xm

∣∣∣∣∣
p

X

⎞
⎠

1/p

∼
⎛
⎝E

∣∣∣∣∣
M∑

m=1

εm xm

∣∣∣∣∣
q

X

⎞
⎠

1/q

.

We also denote

‖(xm)‖Rad(X):=
(
E

∣∣∣∑ εm xm

∣∣∣2
X

)1/2
.

The Kahane contraction principle says that if (am)M
m=1 is a sequence of scalars and

p ∈ (0,∞], then

(
E

∣∣∣
M∑

m=1

εmam xm

∣∣∣p
X

)1/p
� max |am |

(
E

∣∣∣
M∑

m=1

εm xm

∣∣∣p
X

)1/p
. (2.1)

Actually, if p ∈ [1,∞] and am ∈ R, then (2.1) holds with “≤” in place of “�”, see
[24] for more details.

A Banach space X is said to be a UMD space if for all p ∈ (1,∞), all X -valued
L p-martingale difference sequences (d j )

k
j=1 and signs ε j ∈ {−1, 1} there holds that

∥∥∥
k∑

j=1

ε j d j

∥∥∥
L p(X)

�
∥∥∥

k∑
j=1

d j

∥∥∥
L p(X)

. (2.2)

Here the L p(X)-norm is with respect to the measure space where the martingale
differences are defined. If the estimate (2.2) holds for one p0 ∈ (1,∞), then it holds
for all p ∈ (1,∞).

A version for UMD-valued functions of Stein’s inequality concerning conditional
expectations is due to Bourgain. For a proof, see for example [24, Theorem 4.2.23].
For our purposes we formulate the estimate in the following way. Suppose X is a
UMD space and let D ⊂ R

d be a dyadic lattice. Suppose that for each Q ∈ D we
have a function fQ ∈ L1

loc(X) supported in Q (such that only finitely many of them
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are non-zero). Then for all p ∈ (1,∞) there holds that

E

∥∥∥ ∑
Q∈D

εQ〈 fQ〉Q1Q

∥∥∥
L p(X)

� E

∥∥∥ ∑
Q∈D

εQ fQ

∥∥∥
L p(X)

. (2.3)

The decoupling inequality

We record a special case of the decoupling estimate [19, Theorem 6] by Hänninen–
Hytönen. These decoupling estimates originate from McConnell [40], but see also
Hytönen [29].

LetD be a dyadic lattice inR
d and Q ∈ D. LetVQ be the probability measure space

VQ = (Q,Leb(Q), |Q|−1 dx�Q), where Leb(Q) is the set of Lebesgue measurable
subsets of Q and |Q|−1 dx�Q is the normalized Lebesgue measure restricted to Q.
Define the product probability space V =∏Q∈D VQ , and let ν be the related measure.
If y ∈ V , we denote the coordinate related to Q ∈ D by yQ .

Suppose X is a UMD space, p ∈ (1,∞) and f ∈ L p(X). Let k ∈ {0, 1, 2, . . . }
and j ∈ {0, . . . , k}. Define D j,k ⊂ D by

D j,k = {Q ∈ D : �(Q) = 2m(k+1)+ j for some m ∈ Z}. (2.4)

[19, Theorem 6] implies that

∫
Rd

∣∣∣ ∑
Q∈D j,k

�l
Q f (x)

∣∣∣p
X
dx ∼ E

∫
Rd

∫
V

∣∣∣ ∑
Q∈D j,k

εQ1Q(x)�l
Q f (yQ)

∣∣∣p
X
dν(y) dx

(2.5)

for any l ∈ {0, 1, . . . , k}. The point of dividing to the subcollections D j,k is that now
�l

Q f is constant on every Q′ ∈ D j,k such that Q′
� Q, which is required by the

decoupling theorem (together with the fact that
∫

�l
Q f = 0 and spt�l

Q f ⊂ Q).

2.4 Multilinear singular integrals andmodel operators

A function

K : R
d(n+1)\� → C, � = {x = (x1, . . . , xn+1) ∈ R

d(n+1) : x1 = · · · = xn+1},

is called an n-linear basic kernel if for some α ∈ (0, 1] and CK < ∞ it holds that

|K (x)| ≤ CK(∑n+1
m=2 |x1 − xm |

)dn
,
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and for all j ∈ {1, . . . , n + 1} it holds that

|K (x) − K (x ′)| ≤ CK
|x j − x ′

j |α(∑n+1
m=2 |x1 − xm |

)dn+α

whenever x = (x1, . . . , xn+1) ∈ R
d(n+1)\� and x ′ = (x1, . . . , x j−1, x ′

j , x j+1, . . .

xn+1) ∈ R
d(n+1) satisfy

|x j − x ′
j | ≤ 2−1 max

2≤m≤n+1
|x1 − xm |.

The best constant CK is called ‖K‖CZα .
An n-linear operator T defined on a suitable class of functions (e.g. on the lin-

ear combinations of cubes) is an n-linear singular integral operator (SIO) with an
associated kernel K , if we have

〈T ( f1, . . . , fn), fn+1〉 =
∫
Rd(n+1)

K (xn+1, x1, . . . , xn)

n+1∏
j=1

f j (x j ) dx

whenever spt fi ∩ spt f j = ∅ for some i �= j .
We say that T is an n-linear Calderón–Zygmund operator (CZO) if the following

conditions hold:

• T is an n-linear SIO.
• We have that for all m ∈ {0, . . . , n} there holds that

‖T m∗(1, . . . , 1)‖BMO:= sup
D

sup
K0∈D

( 1

|K0|
∑
K∈D

K⊂K0

|〈T m∗(1, . . . , 1), hK 〉|2
)1/2

< ∞,

where the first supremum is taken over all dyadic lattices D. Here T 0∗:=T ,
T m∗ denotes the mth adjoint of T for m ∈ {1, . . . , n}, and the pairings
〈T m∗(1, . . . , 1), hK 〉 have a standard T 1 type definition with the aid of the kernel
K .

• We have that

‖T ‖WBP:= sup
D

sup
Q∈D

|Q|−1|〈T (1Q, . . . , 1Q), 1Q〉| < ∞.

An SIO T is a CZO if and only if

‖T ( f1, . . . , fn)‖Lqn+1 (Rd ) �
n∏

m=1

‖ fm‖L pm (Rd ) (2.6)

for some (equivalently for all) exponents p1, . . . , pn ∈ (1,∞), qn+1 ∈ (1/n,∞)

satisfying
∑n

m=1 1/pm = 1/qn+1. While such a T 1 theorem is well-known (see e.g.
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[9,18,39]), we will need a very precise version of this called a dyadic representation
theorem. To this end, we need some definitions.

Let k = (k1, . . . , kn+1), 0 ≤ ki ∈ Z, and let D be a dyadic lattice in R
d . An

operator S = Sk
D is called an n-linear dyadic shift if it has the form

S( f1, . . . , fn) =
∑
K∈D

AK ( f1, . . . , fn), (2.7)

where

AK ( f1, . . . , fn) =
∑

Q1,...,Qn+1∈D
Q

(k j )

j =K

aK ,(Q j )

n∏
j=1

〈 f j , h̃Q j 〉̃hQn+1 .

Here aK ,(Q j ) = aK ,Q1,...,Qn+1 is a scalar satisfying the normalization

|aK ,(Q j )| ≤
∏n+1

j=1 |Q j |1/2
|K |n ,

and there exist two indices j0, j1 ∈ {1, . . . , n + 1}, j0 �= j1, so that h̃Q j0
= hQ j0

,

h̃Q j1
= hQ j1

and h̃Q j = h0
Q j

if j /∈ { j0, j1}.
An n-linear dyadic paraproduct π = πD also has n + 1 possible forms, but there

is no complexity (the k = (k1, . . . , kn+1)) associated to them. One of the forms is

π( f1, . . . , fn) =
∑
K∈D

aK

n∏
j=1

〈 f j 〉K hK ,

where the coefficients satisfy the BMO condition

sup
K0∈D

( 1

|K0|
∑
K∈D

K⊂K0

|aK |2
)1/2 ≤ 1. (2.8)

This is the paraproduct associated with the tuple (1K /|K |, . . . , 1K /|K |, hK ), and in
the remaining n alternative forms the hK is in a different position.

We call shifts and paraproducts dyadic model operators (DMOs). Suppose T is an
n-linear Calderón–Zygmund operator inR

d related to a kernel K . If f1, . . . , fn+1 are,
say, Ln+1(Rd) functions, then the representation theorem states that

〈T ( f1, . . . , fn), fn+1〉=CT Eω

∞∑
k1,...,kn+1=0

∑
u

2−max ki α/2〈U k
Dω,u( f1, . . . , fn), fn+1〉.

(2.9)
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Here

|CT | �
n∑

m=0

‖T m∗(1, . . . , 1)‖BMO + ‖T ‖WBP + ‖K‖CZα

� ‖T ‖Ln+1×···×Ln+1→L(n+1)/n + ‖K‖CZα ,

α is the parameter in the Hölder continuity assumptions of the kernel of T , and the sum
over u is finite, say, over u = 1, 2, . . . , C(n, d). If max ki > 0, then U k

Dω,u is some

dyadic shift Sk
Dω

of complexity k with respect to the lattice Dω. If max ki = 0, then

U k
Dω,u is a shift of complexity zero or a paraproduct. In this sense, a CZO T can be

represented using DMOs. For n = 2, a proof of this result is given by three of us and
Y. Ou in [39]. The n-linear case for general n, which requires certain modifications, is
[9, Theorem 6.3]. The reference [9, Theorem 6.3] is a more general theorem involving
operator-valued CZOs.We note that the additional assumptions related to the operator-
valued setup, such as the RMF assumption, concern only the estimation of the model
operators. They are not needed for the above stated structural theorem, which has
essentially the same proof in the scalar-valued and operator-valued settings.

As DMOs satisfy L p estimates in the full expected range of exponents, the T 1
theorem follows from the representation theorem. Our main task in this paper will be
to prove L p-bounds for the extensions of n-linear DMOs to suitably defined tuples of
UMD spaces, which we termUMDHölder tuples and define in the subsequent section.

3 UMDHölder tuples and the boundedness of multilinear SIOs

Throughout this section, and the remainder of the article, wemake use of the following
notational conventions. For m ∈ N we write Jm :={1, . . . , m} and denote the set of
permutations of J ⊂ Jm by �(J ). We simply write �(m) in place of �(Jm). We
say that p1, . . . , pm is a Hölder tuple of exponents if

1 < p1, . . . , pm < ∞,

m∑
j=1

1
p j

= 1. (3.1)

3.1 UMDHölder tuples

The notion of UMD Hölder tuple involves fixing an associative algebra A over C.
We denote the associative operation A × A → A by the product notation, that is, we
write (e, f ) �→ e f . In the abstract definition, we do not find useful for A itself to be
endowed with a topology; on the other hand, we will work with linear subspaces of A
endowed with a Banach norm.

We assume that there exists a subspaceL1 ofA and a linear functional τ : L1 → C,
which we refer to as trace.
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Given an m-tuple (X1, . . . , Xm) of Banach subspaces of A, we construct the semi-
norm

|e|Y (X1,...,Xm ) = sup

{∣∣∣∣∣τ
(

e
m∏

�=1

eσ(�)

)∣∣∣∣∣ : σ ∈ �(m), |e j |X j = 1, j = 1, . . . , m

}

(3.2)

on the subspace

Y (X1, . . . , Xm) =
{

e ∈ A : e
m∏

�=1

eσ(�) ∈ L1 ∀σ ∈ �(m), e j ∈ X j , j = 1, . . . , m

}

(3.3)

of A. The next lemma clarifies the intent of definition (3.2): if | · |Z is a seminorm
such that all (m + 1)-linear forms on X1 × · · · × Xm × Z in (3.4) below are bounded,
then the Z -seminorm dominates the seminorm Y (X1, . . . , Xm).

Lemma 3.1 Let (X1, . . . , Xm) be a m-tuple of Banach subspaces of A. Suppose that
e ∈ A belongs to the subspace (3.3). Then

∣∣∣∣∣τ
(

e
m∏

�=1

eσ(�)

)∣∣∣∣∣ ≤ |e|Z

m∏
j=1

|e j |X j , ∀σ ∈ �(m), e j ∈ X j , j = 1, . . . , m, (3.4)

holds for |e|Z = |e|Y (X1,...,Xm ). In addition, if | · |Z is a seminorm on A such that (3.4)
holds, |e|Y (X1,...,Xm ) � |e|Z .

Proof Immediate from the definitions. 
�
Definition 3.2 (Admissible spaces) We say that a Banach subspace X of A is admis-
sible if Y (X) from (3.3) is a Banach space with respect to | · |Y (X) of (3.2)1, the
map

y ∈ Y (X) �→ x∗[y] ∈ X∗, x∗[y](x) = τ(yx), x ∈ X , (3.5)

is onto, and furthermore, for each x ∈ X , y ∈ Y (X), xy ∈ L1 and

τ(xy) = τ(yx). (3.6)

Remark 3.3 If X is admissible, then the map (3.5) is an isometric bijection from Y (X)

onto X∗. We are thus allowed to identify Y (X)with X∗ via (3.5) and we do so without
explicit mention from now on. Notice that if X is admissible, then X is a UMD space
if and only if Y (X) is.

For our purposes, it is convenient to state the next observation in the form of a
lemma.

1 This includes that if y ∈ Y (X) then |y|Y (X) < ∞.
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Lemma 3.4 Let X be admissible and reflexive. If Y (X) is also admissible, then
Y (Y (X)) = X as sets and |x |Y (Y (X)) = |x |X for all x ∈ X.

Proof The reflexivity of X and Remark 3.3 imply that Y (Y (X)) is isometrically iso-
morphic with X . Here we want to show that they are actually equal as sets with equal
norms. Denote Y :=Y (X) and Z :=Y (Y ). It follows quite directly from the definitions
that X is a subset of Z .

Let ϕ : X∗ → Y be the isometric isomorphism from the definition of the admissi-
bility of X . This induces the isometric isomorphism φ : X∗∗ → Y ∗ defined by

φ(x∗∗)(y):=x∗∗(ϕ−1(y)),

where x∗∗ ∈ X∗∗ and y ∈ Y . Since X is reflexive and Y is admissible, we have
the canonical isometric isomorphism ρ : X → X∗∗ and the isometric isomorphism
η : Y ∗ → Z . Now, the composition η ◦ φ ◦ ρ : X → Z is an isometric isomorphism.

Suppose x ∈ X and denote z:=η ◦ φ ◦ ρ(x). Let y ∈ Y . Then we have that

τ(zy) = η−1(z)(y) = φ−1 ◦ η−1(z)(ϕ−1(y))

= ϕ−1(y)(ρ−1 ◦ φ−1 ◦ η−1(z)) = τ(xy).

Since x and z are both elements of Z , the fact that τ(zy) = τ(xy) for all y ∈ Y implies
that x = z. Thus, the isometric isomorphism η ◦φ ◦ρ : X → Z is actually the identity
map. 
�

If X , X1, . . . , Xm are Banach spaces we write X = Y (X1, . . . , Xm) to mean that
X and Y (X1, . . . , Xm) coincide as sets, Y (X1, . . . , Xm) is a Banach space with the
norm | · |Y (X1,...,Xm ), and that the norms are equivalent, that is, |x |X ∼ |x |Y (X1,...,Xm )

for all x ∈ X .
We turn to defining UMD Hölder m-tuples relatively to A, τ . We first do so for

m = 2.

Definition 3.5 (UMD Hölder pair) Let X1, X2 be admissible spaces. We say that
{X1, X2} is a UMD Hölder pair if X1 is a UMD space and X2 = Y (X1). In view of
Remark 3.3 and Lemma 3.4 one can equivalently say that {X1, X2} is a UMD Hölder
pair if X2 is a UMD space and X1 = Y (X2).

For m ≥ 3 the definition of a UMD Hölder m-tuple is given inductively on m as
follows.

Definition 3.6 (UMD Hölder m-tuple, m ≥ 3) Let X1, . . . , Xm be admissible spaces.
We say that {X1, . . . , Xm} is a UMD Hölder m-tuple if the following properties hold.
P1. For all j0 ∈ Jm there holds

X j0 = Y
({

X j : j ∈ Jm\{ j0}
})

.

P2. If 1 ≤ k ≤ m − 2 and J = { j1 < j2 < · · · < jk} ⊂ Jm , then Y (X j1 , . . . , X jk )

is an admissible Banach space with the norm (3.2) and

{X j1 , . . . , X jk , Y (X j1 , . . . , X jk )}
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is a UMD Hölder (k + 1)-tuple.

The following remark is an important consequence of the definition.

Remark 3.7 Let m ≥ 3 and {X1, . . . , Xm} be a UMDHölder m-tuple. Then according
to P2 the pair {X j0 , Y (X j0)} is a UMD Hölder pair, which by Definition 3.5 implies
that X j0 and Y (X j0) are UMD spaces. The inductive nature of the definition then
ensures that each Y (X j1 , . . . , X jk ) appearing in (3.6) is a UMD space.

Remark 3.8 Let m ≥ 2 and {X1, . . . , Xm} be a UMD m-Hölder tuple. Let e j ∈ X j for
j ∈ Jm . For each σ ∈ �(m), as Xσ(1) = Y (Xσ(2), . . . , Xσ(m)), we necessarily have∏m

j=1 eσ( j) ∈ L1 and

|τ(eσ(1) · · · eσ(m))| ≤ |eσ(1)|Y (Xσ(2),··· ,Xσ(m))

m∏
j=2

|eσ( j)|Xσ( j) =
m∏

j=1

|e j |X j .

We clarify the extent of our definition with some examples of UMD Hölder tuples.

Example 3.9 It is immediate to verify that the m-tuple X j = C, j = 1, . . . , m, is a
UMD Hölder m-tuple with respect to the usual product.

The next example is of relevance if one wants to deduce Theorem 1.1 in the basic
case X1 = Y3 = X and X2 = C from Theorem 3.17. However, otherwise we do not
need it, and Theorem 1.1 is best seen mimicking our main proofs.

Example 3.10 Let X = X1 be a complexUMDspace and denote X2 = X∗. The goal of
this example is to show that for each m ≥ 2 the tuple {X1, X2, . . . , Xm} with X j = C

for 2 < j ≤ m is a UMD Hölder tuple. This is conceptually simple but requires some
work in order to define a suitable enveloping algebra A. We let V = X ⊕ X∗, and
define A to be the tensor algebra over V , namely

A =
∞⊕

k=0

V ⊗k .

We let

L1 = span{e ⊗ e∗ + f ∗ ⊗ f , e, f ∈ X , e∗, f ∗ ∈ X∗};
notice that this is a linear subspace of V ⊗2. We then define the functional τ by

τ
(
e ⊗ e∗ + f ∗ ⊗ f

) = 〈 f ∗, e〉 + 〈e∗, f 〉

for e, f ∈ X , e∗, f ∗ ∈ X∗ and extend it to all of L1 by linearity. We notice that the
definition (3.3) yields that

Y (X j1 , . . . , X jk ) =

⎧⎪⎨
⎪⎩

X 1 /∈ { j1 . . . , jk}, 2 ∈ { j1 . . . , jk},
X∗ 1 ∈ { j1 . . . , jk}, 2 /∈ { j1 . . . , jk},
C {1, 2} ⊂ { j1 . . . , jk} or {1, 2} ∩ { j1 . . . , jk} = ∅.
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With this information in hand, we learn that X , X∗, C are admissible spaces. Proceed-
ing by induction on m, we then easily verify that {X1, X2, . . . , Xm} is a UMD Hölder
tuple.

We now start explaining how non-commutative L p spaces fit our abstract frame-
work.

Example 3.11 Consider a von Neumann algebra M ⊂ B(H), namely a self-adjoint
unital subalgebra of the algebra of bounded linear operators on a complex Hilbert
space H which is closed in the weak operator topology [45,46]. Let M+ = {A ∈
M : 〈Ah, h〉 ≥ 0 ∀h ∈ H} denote the positive part of M. A trace τ is a functional
M+ → [0,∞] satisfying

τ(A + λB) = τ(A) + λτ(B), ∀A, B ∈ M+, λ > 0

as well as the tracial property

τ(AA∗) = τ(A∗ A)

for all A ∈ M. Following [46], we assume τ is normal, semifinite, faithful (n.s.f.)
and define the corresponding space of measurable operators A = L0(M) equipped
with convergence in measure: a detailed definition is in [46]. Then A is a (metrizable)
topological ∗-algebra and M is dense in A. We will also recall the notion of S+,S as
introduced in [46, p. 1463]:S+ is the coneof those A ∈ M+ such that τ(supp A) < ∞,

where supp A is the least projection P ∈ M+ with P A = A, and S ⊂ M is the linear
span of S+. We note [48, Proposition 1.15(ii)] that τ may be extended to a unique
linear functional on S, satisfying

τ(A∗) = τ(A), τ (AB) = τ(B A), ∀A, B ∈ S. (3.7)

For 1 ≤ p < ∞, we call noncommutative L p space the Banach subspace of A
obtained by completion of S with respect to the norm

‖A‖L p(M) =
[
τ
((

A� A
) p
2
)] 1

p
, 1 ≤ p < ∞.

In fact, we record the characterization

L p(M) =
{

A ∈ A : τ
(
(A� A))

p
2

)
< ∞

}
;

in the above equality, τ denotes the extension of the trace to the positive part of A
defined via generalized singular numbers [46].We also point out the Hölder inequality

‖ξ1ξ2‖L p(M) ≤ ‖ξ1‖L p1 (M)‖ξ2‖L p2 (M),
1
p = 1

p1
+ 1

p2
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valid whenever 1 ≤ p1, p2, p < ∞. A suitable substitute holds for p = ∞ if
the L p(M)-norm is replaced by the B(H)-norm. Furthermore, notice that τ may be
extended from S to a unique linear bounded functional on L1(M) satisfying

|τ(A)| ≤ ‖A‖L1(M).

The tracial property (3.7) extends to the following: if A, B ∈ A are such that A ∈
L p(M) and B ∈ L p′

(M), then

τ(AB) = τ(B A). (3.8)

This is the concrete equivalent of property (3.6) we assumed in the abstract setup. We
refer to [48, Rem. 1.2.11] for the details of (3.8).

For 1 < p < ∞, we then have L p(M)∗ = L p′
(M) with isometric isomorphism

given by the Riesz representation map

λ ∈ L p(M)∗ �→ Bλ ∈ L p′
(M), λ(A) = τ(Bλ A) ∀A ∈ L p(M).

A fortiori, L p(M) is reflexive for 1 < p < ∞. For our purposes, it is also important
to observe that L p(M) is a UMD space in the same range [46, Corollary 7.7]. We
detail below two concrete examples of von Neumann algebras equipped with a n.s.f.
trace.

IfM is an abelian von Neumann algebra, thenM = L∞(M, μ) for some measure
space (M,�), a n.s.f. trace is obtained by integration with respect to the measure μ,
and A = L0(M, μ), the topological ∗-algebra of measurable functions on M with
respect to convergence in measure. Then L p(M) = L p(M, μ) for 1 ≤ p < ∞.

If M = B(H), the bounded linear operators over a separable Hilbert space H and

τ(A) =
∞∑
j=1

〈Aei , ei 〉

where ei is any orthonormal basis of H [46, Example (ii), p. 1465], then the spaces
L p(M) are referred to as Schatten-von Neumann classes and denoted by S p.

Let now p j , j = 1, . . . , m be a Hölder tuple as in (3.1). We claim that X j =
L p j (M) is a UMD Hölder tuple relative to the algebra A = L0(M), with trace τ .
This can be proved by induction on m, relying on the equality

L p(J )(M) = Y ({L p j (M) : j ∈ J }), 1

p(J )
= 1 −

∑
j∈J

1

p j

valid for each ∅ � J � Jm , whose verification is immediate and left to the reader.

Example 3.12 In Appendix A, we prove that if {ps
j : 1 ≤ j ≤ m} are Hölder tuples of

exponents as in (3.1) for s = 0, . . . , S,M is a von Neumann algebra with n.s.f. trace τ
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as in Example 3.11, and (Ms, μs) are σ -finite Borel measure spaces for s = 1, . . . , S,
the tuple of spaces

X j = L pS
j (MS, μS; L pS−1

j (MS−1, μS−1; · · · L p1j (M1, μ1; L p0j (M)) · · · )

is a UMD Hölder m-tuple relative to the trace

f �→
∫

M1×···×MS

τ( f (t1, . . . , tS)) dμ1 × · · · × μS(t1, . . . , tS).

A precise statement is provided in Proposition A.1.

3.2 Extensions of CZOs

If X is a Banach space we will use the notation L∞
c ⊗ X for functions of the type∑N

i=1 fi ei , where N ∈ N, fi ∈ L∞
c (Rd) =: L∞

c and ei ∈ X .
Let {X1, . . . , Xn+1} be aUMDHölder tuple where n ≥ 1. Suppose T0 is an n-linear

CZO with a kernel K0 as defined in Sect. 2.4. Since we know that T0 is a bounded
operator, see (2.6), we know that 〈T0( f1, . . . , fn), fn+1〉 makes sense for f j ∈ L∞

c .
We define the corresponding (n + 1)-linear form

�T0 : L∞
c ⊗ X1 × · · · × L∞

c ⊗ Xn+1 → C,

�T0( f1, . . . , fn+1) =
∑

a1,...,an+1

〈T0( f1,a1 , . . . , fn,an ), fn+1,an+1〉τ
⎛
⎝n+1∏

j=1

e j,a j

⎞
⎠ ,

(3.9)

where f j =∑N j
a=1 f j,ae j,a . If U is a dyadic model operator as in Sect. 2.4 we define

the form �U in the corresponding way. We can also make sense of �U more directly.
For example, if U is a dyadic shift as in (2.7), then

�U ( f1, . . . , fn+1) =
∑
K∈D

∑
Q1,...,Qn+1∈D

Q
(k j )

j =K

aK ,(Q j )τ
( n+1∏

j=1

〈 f j , h̃Q j 〉
)
. (3.10)

Remark 3.13 We chose to utilize the identity permutation in �(n + 1) for the prod-
uct appearing in (3.9). However, the notion of being a UMD Hölder tuple is clearly
invariant under reordering of {X1, . . . , Xn+1} .
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Let p j ∈ (1,∞) for j ∈ Jn+1 be such that
∑n+1

j=1 1/p j = 1. From Theorem 3.17
it will follow among other things that

|�T0( f1, . . . , fn+1)| �
n+1∏
j=1

‖ f j‖L p j (X j )
. (3.11)

Based on this boundedness one can define as usual n + 1 adjoint operators. Let us
describe how the adjoints look like in our Hölder tuple set up.

Fix j0 ∈ Jn+1 and f j ∈ L p j (X j ) for j ∈ Jn+1\{ j0}. Consider the linear functional

f j0 ∈ L p j0 (X j0) �→ �T0( f1, . . . , fn+1), (3.12)

which is bounded because of (3.11). Recall that L p j0 (X j0)
∗ is identified with

L(p j0 )′(Y (X j0)) with duality pairing

〈g, f j0〉 =
∫
Rd

τ(g(x) f j0(x)) dx .

Therefore, there exists a function

T ∗ j0( f j : j ∈ Jn+1\{ j0}):=T j0∗( f1, . . . , f j0−1, f j0+1, . . . , fn+1) ∈ L(p j0 )′(Y (X j0))

so that

�T0( f1, . . . , fn+1) =
∫
Rd

τ(T ∗ j0( f j : j ∈ Jn+1\{ j0})(x) f j0(x)) dx .

The n-linear bounded operator

T j0∗ : L p1(X1) × · · · × L p j0−1(X j0−1) × L p j0+1(X j0+1)

× · · · × L pn+1(Xn+1) → L(p j0 )′(Y (X j0))

is one of the adjoint operators. In the same way one can define the adjoint T j∗
0 of T0

so that

〈T j0∗
0 (g1, . . . , g j0−1, g j0+1, . . . , gn+1), g j0〉 = 〈T0(g1, . . . , gn), gn+1〉,

where g j ∈ L p j .

Suppose f j = ∑N j
a=1 f j,ae j,a ∈ L∞

c ⊗ X j for j ∈ Jn+1\{ j0}. A calculation
involving the invariance of τ under cyclic permutations yields that

T ∗ j0( f j : j ∈ Jn+1\{ j0})
=
∑

T j0∗
0 ( f j,a j : j ∈ Jn+1\{ j0})e j0+1,a j0+1 · · · en+1,an+1 · · · e j0−1,a j0−1 .
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3.3 Sparse domination of dyadic operators

The following basic sparse domination result, Lemma 3.14, was first proved byCuliuc,
Ou and one of us in the linear scalar-valued setting in [6,7] and recast byY.Ou and three
of us in themultilinear scalar-valued case [39]. The proof in our current Banach-valued
setting is completely analogous.

Let η ∈ (0, 1). We say that a collection S of cubes in R
d (not necessarily dyadic)

is η-sparse (or just sparse) if for every Q ∈ S there exists a set EQ ⊂ Q with
|EQ | > η|Q| so that the sets EQ , Q ∈ S, are pairwise disjoint.
Lemma 3.14 Let n ≥ 1, {X1, . . . , Xn+1} be a UMD Hölder tuple, D be a dyadic
grid, k = (k1, . . . , kn+1), 0 ≤ ki ∈ Z. Suppose that the scalars aK ,(Q j ) satisfy the
normalization

|aK ,(Q j )| ≤ A1

n+1∏
j=1

|Q j |1/2|K |−n

and we are given scalar functions u j,Q = ∑
Q′∈ch(Q) c j,Q′1Q′ satisfying |u j,Q | ≤

|Q|−1/2.
If there exists a Hölder tuple p1, . . . , pn+1 as in (3.1) such that the forms

UD′(g1, . . . , gn+1):=
∑

K∈D′

∑
Q1,...,Qn+1∈D

Q
(ki )
i =K

aK ,(Qi )τ
( n+1∏

j=1

〈g j , u j,Q j 〉
)
, D′ ⊂ D,

satisfy

sup
D′⊂D

|UD′(g1, . . . , gn+1)| ≤ A2

n+1∏
j=1

‖g j‖L p j (Rd ;X j )
,

g j ∈ L∞
c (Rd; X j ), j = 1, . . . , n + 1,

then for each tuple f j ∈ L∞
c (X j ), j = 1, . . . , n + 1, and η > 0 there exists an

η-sparse collection S = S(( f j ), η) ⊂ D such that

|〈UD( f1, . . . , fn), fn+1〉| �η (A1 + A1κ + A2)
∑
Q∈S

|Q|
n+1∏
j=1

〈| f j |X j 〉Q,

where κ = max km.

In the previous lemma the sparse collection is in the same grid where the dyadic
operator is defined. The result can be updated to involve a universal sparse set, which is
explained in Remark 3.15. This is important when we move the sparse estimate from
DMOs to CZOs via the representation theorem, which involves a family of dyadic
grids.
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Remark 3.15 There exist dyadic grids Di , i = 1, . . . , 3d , with the following property,
see Lacey–Mena [36], or [8,39], for a simple proof. Let gm ∈ L1

loc, m = 1, . . . , n +1,
be scalar-valued and let η1, η2 ∈ (0, 1). Then for some i there exists an η2-sparse
collection U = U((gm), η2) ⊂ Di , so that for all η1-sparse collections of cubes S we
have

∑
Q∈S

|Q|
n+1∏
m=1

〈|gm |〉Q �η1,η2

∑
Q∈U

|Q|
n+1∏
m=1

〈|gm |〉Q .

Remark 3.16 In [8], it is noted that the sparse domination estimate for an n + 1-linear
form � on R

d , acting on scalar functions

|�( f1, . . . , fn+1)| �
∑
Q∈S

|Q|
n+1∏
j=1

〈| f j |〉Q,

is equivalent to the estimate in terms of the multilinear maximal operator M

|�( f1, . . . , fn+1)| � ‖M( f1, . . . , fn+1)‖1,

M( f1, . . . , fn+1)(x) = sup
x∈Q

n+1∏
j=1

〈| f j |〉Q .

Vector-valued versions of this principle may be formulated in a totally analogous way.
We have used this equivalence to state the sparse bounds in our main results; this is
particularly convenient as the formulation in terms of themultilinearmaximal function
may be given without defining what a sparse collection is.

Next, we discuss the well known fact that the sparse domination of an operator
implies boundedness in the full range: for more details and weighted corollaries see
[8,39] and references therein.

Let X1, . . . , Xn+1 be Banach spaces, n ≥ 1. Assume that � is an (n + 1)-linear
form initially defined on L∞

c (Rd) ⊗ X1 × · · · × L∞
c (Rd) ⊗ Xn+1 such that if f j ∈

L∞
c (Rd) ⊗ X j , then there exists a dyadic lattice D and a sparse collection S ⊂ D so

that

|�( f1, . . . , fn+1)| �
∑
Q∈S

|Q|
n+1∏
j=1

〈| f j |X j 〉Q . (3.13)

This easily implies that if p j ∈ (1,∞) for j ∈ Jn+1 are such that
∑n+1

j=1 1/p j = 1
then � can be extended to a bounded form � : L p1(X1) × · · · × L pn+1(Xn+1) → C.
Indeed, just use Hölder’s inequality and then Carleson embedding theorem in the right
hand side of (3.13).

We estimate the adjoints T j∗ of �, which are defined in the usual way based on
the functional as in (3.12). By symmetry it will suffice to tackle the case j = n + 1
and simply write T in place of T (n+1)∗.
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We use the so-called A∞ extrapolation from Cruz-Uribe–Martell–Pérez [5]. Let
A∞(Rd) be the class of A∞ weights in R

d , see [5] for a definition. Suppose v ∈
A∞(Rd) and f j ∈ L∞

c (X j ) for j ∈ Jn . Taking fn+1(x) = ξ(x)v(x) for a suitably
chosen ξ ∈ L∞

c (Xn+1) there holds that

∫
Rd

|T ( f1, . . . , fn)|X∗
n+1

v ∼ �( f1, . . . , fn+1)

�
∑
Q∈S

n∏
j=1

〈| f j |X j 〉Qv(Q)

≤
∑
Q∈S

(〈
Mn

D(| f1|X1 , . . . , | fn|Xn )
1/2〉v

Q

)2
v(Q)

�
∫
Rd

Mn
D(| f1|X1 , . . . , | fn|Xn )v,

where 〈h〉vQ = v(Q)−1
∫

Q hv and Mn
D(g1, . . . , gn):= supQ∈D

∏n
m=1〈|gm |〉Q1Q is the

dyadicmaximal function and in the last stepwe used the Carleson embedding theorem.
Now, the A∞ extrapolation result, Theorem 2.1 in [5], gives that

∫
Rd

|T ( f1, . . . , fn)|p
X∗

n+1
v �

∫
Rd

Mn
D(| f1|X1 , . . . , | fn|Xn )

pv

for all p ∈ (0,∞) and v ∈ A∞(Rd). Using this with v = 1 the boundedness of the
maximal function gives that

‖T ( f1, . . . , fn)‖Lqn+1 (X∗
n+1)

�
n∏

j=1

‖ f j‖L p j (X j )
,

where p j ∈ (1,∞] are such that 1/qn+1:=∑n
j=1 1/p j > 0. Notice that the bound-

edness of Mn
D follows from Hölder’s inequality and the boundedness of M1

D, since
there holds that Mn

D(g1, . . . , gn) ≤∏n
m=1 M1

D(gm). As is clear, multilinear weighted
bounds also follow from this argument and the corresponding results of Mn

D.

3.4 Proof of themain theorem

In this section we state and prove our main theorem assuming the estimates for model
operators from Sects. 4 and 5.

Theorem 3.17 Let n ≥ 1, T0 be an n-linear CZO with kernel K0 and {X1, . . . , Xn+1}
be a UMD Hölder tuple. The (n +1)-linear form �T0 defined in (3.9) can be extended
to act on functions f j ∈ L∞

c (X j ), and given η ∈ (0, 1) there exists an η-sparse
collection of cubes S = S(( fm), η) so that

123

Author's personal copy



Multilinear singular integrals on non-commutative Lp spaces

|�T0( f1, . . . , fn+1)| �η

[
‖K0‖CZα + ‖T0‖WBP +

n+1∑
j=1

‖(T0) j∗(1, . . . , 1)‖BMO

]

×
∑
Q∈S

|Q|
n+1∏
j=1

〈| f j |X j 〉Q .

Consequently, we for instance have

‖T0( f1, . . . , fn)‖Lqn+1 (X∗
n+1)

�
n∏

j=1

‖ f j‖L p j (X j )

whenever p j ∈ (1,∞] are such that 1/qn+1:=∑n
j=1 1/p j > 0. See Sect. 3.3 for a

full discussion of the corollaries of the sparse estimate.

Proof Let f j ∈ L∞
c ⊗ X j for j ∈ Jn+1 be of the form f j = ∑N j

a=1 f j,ae j,a . Then,
we have by the dyadic representation (2.9) that

�T0( f1, . . . , fn+1)

= CT

∑
a1,...,an+1

Eω

∞∑
k1,...,kn+1=0

∑
u

2− αmax ki
2 〈U k

Dω,u( f1,a1 , . . . , fn,an ), fn+1,an+1〉τ
⎛
⎝n+1∏

j=1

e j,a j

⎞
⎠

= CT Eω

∞∑
k1,...,kn+1=0

∑
u

2− αmax ki
2 �U k

Dω,u
( f1, . . . , fn+1).

(3.14)

In Sects. 4 and 5 it is shown that if U is a dyadic model operator then

|�U (g1, . . . , gn+1)| �
n+1∏
j=1

‖g j‖L p j (X j )
(3.15)

holds for any p j ∈ (1,∞) and g j ∈ L∞
c (X j ), j ∈ Jn+1, such that

∑n+1
j=1 1/p j = 1;

ifU is a shift, then the estimate depends polynomially on the complexity. This implies
that �T0 can be extended to act on functions f j ∈ L∞

c (X j ) and that (3.14) holds for
such functions.

The estimate (3.15) implies via Lemma 3.14 and Remark 3.15 that if f j ∈ L∞
c (X j )

for j ∈ Jn+1 then there exist a dyadic grid and an η-sparse collection S = S(( f j )) ⊂
D so that all the model operators appearing in (3.14) satisfy

|�U k
Dω,u

( f1, . . . , fn+1)| �
∑
Q∈S

|Q|
n+1∏
j=1

〈| f j |X j 〉Q,
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where the estimate depends polynomially on the complexity. This combined with
(3.14) finishes the proof. 
�
In Sect. 6, we show that the UMD Hölder tuples enjoy a suitable maximal property
among tuples of spaces admitting L p-bounded extensions of n-linear CZO operators
and dyadic shifts.

4 Boundedness of multilinear shifts in UMDHölder tuples

This section is dedicated to the proof of the boundedness of multilinear shifts. Before
starting the main argument, we record a randomized bound for UMDHölder tuples in
the following lemma.

Lemma 4.1 Let {X1, . . . , Xn+1} be a UMD Hölder tuple, n ≥ 2, and let K ∈ Z+. For
each k = 1, . . . , K let ak be a scalar such that |ak | ≤ 1 and for each j ∈ Jn assume
that we are given e j,k ∈ X j . Then we have

∣∣∣
K∑

k=1

ak

n∏
j=1

e j,k

∣∣∣
Y (Xn+1)

≤
n∏

j=1

‖(e j,k)
K
k=1‖Rad(X j ).

Proof Fix K , |ak | ≤ 1 and e j,k ∈ X j as in the assumptions. Let {εi
k}K

k=1, i ∈ Jn−1, be
collections of independent random signs. We denote the expectation with respect to
the random variables {εi

k}K
k=1 by E

i , and write E = E
1 · · · En−1. We have the identity

K∑
k=1

ak

n∏
j=1

e j,k = E

K∑
k1,...,kn=1

ε1k1ε
1
k2ε

2
k2ε

2
k3 · · · εn−1

kn−1
εn−1

kn
ak1

n∏
j=1

e j,k j

= E

( K∑
k1=1

ε1k1ak1e1,k1
)( K∑

k2=1

ε1k2ε
2
k2e2,k2

)
· · ·
( K∑

kn=1

εn−1
kn

en,kn

)
.

We can dominate this with

E

∥∥∥
K∑

k1=1

ε1k1ak1e1,k1

∥∥∥
X1

( n−1∏
i=2

∥∥∥
K∑

ki =1

εi−1
ki

εi
ki

ei,ki

∥∥∥
Xi

)∥∥∥
K∑

kn=1

εn−1
kn

en,kn

∥∥∥
Xn

,

which is further controlled by

(
E

∥∥∥
K∑

k1=1

ε1k1ak1e1,k1

∥∥∥2
X1

)1/2

×
[
E

( n−1∏
i=2

∥∥∥
K∑

ki =1

εi−1
ki

εi
ki

ei,ki

∥∥∥2
Xi

)∥∥∥
K∑

kn=1

εn−1
kn

en,kn

∥∥∥2
Xn

]1/2
.

(4.1)
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The first factor is less than ‖(e1,k)K
k=1‖Rad(X1) by Kahane’s contraction principle.

We now consider the second factor. We see that the variables ε1k appear only inside
the norm X2, and moreover there holds that

E
1
∥∥∥

K∑
k2=1

ε1k2ε
2
k2e2,k2

∥∥∥2
X2

= ‖(e2,k)K
k=1‖2Rad(X2)

.

After using this identity, the variables ε1k do not appear anymore, and the variables ε2k
appear only inside the norm X3. Repeating the same reasoning, we deduce that the
second factor in (4.1) is equal to the product

∏n
j=2 ‖(e j,k)

K
k=1‖Rad(X j ). 
�

Now, we turn to the actual proof of boundedness of shifts. We assume that n ≥ 1
and that {X1, . . . , Xn+1} is a UMDHölder tuple. Let k = (k1, . . . , kn+1), 0 ≤ ki ∈ Z,
and let D be a dyadic lattice in R

d . Suppose Sk :=Sk
D is an n-linear dyadic shift as

described in Eq. (2.7). We consider its related (n + 1)-linear form �Sk which acts on
locally integrable functions f j : R

d → X j by

�Sk ( f1, . . . , fn+1) =
∑
K∈D

�K ( f1, . . . , fn+1), (4.2)

where

�K ( f1, . . . , fn+1) =
∑

Q1,...,Qn+1∈D
Q

(k j )

j =K

aK ,(Q j ) j∈Jn+1
τ

⎛
⎝n+1∏

j=1

〈 f j , h̃Q j 〉
⎞
⎠ .

Here aK ,(Q j ) j∈Jn+1
is a scalar satisfying |aK ,(Q j ) j∈Jn+1

| ≤ ∏n+1
j=1 |Q j |1/2|K |−n , and

there exist two indices j0, j1 ∈ Jn+1, j0 �= j1, so that h̃Q j0
= hQ j0

, h̃Q j1
= hQ j1

and

h̃Q j = h0
Q j

if j ∈ Jn+1\{ j0, j1}.
The sparse domination lemma 3.14 reduces the problem to the following theorem.

Theorem 4.2 Suppose p j ∈ (1,∞) for j ∈ Jn+1 are such that
∑n+1

j=1 1/p j = 1. The
dyadic shift form from (4.2) satisfies the estimate

|�Sk ( f1, . . . , fn+1)| �
n+1∏
j=1

‖ f j‖L p j (X j )

for f j ∈ L∞
c (X j ), where the estimate depends polynomially on κ:=max j k j .

Proof Let f j ∈ L∞
c (X j ) for j ∈ Jn and consider (4.2). Recall the lattices Di,κ

from (2.4), where κ:=max j k j . We first divide the sum over the cubes K ∈ D as∑κ
i=0
∑

K∈Di,κ
. We fix one i and consider the corresponding term.
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Let J̃ be the set of those indices such that the corresponding Haar functions are
non-cancellative, that is, h̃Q j = h0

Q j
. Suppose j ∈ J̃ is such that k j > 0. We use that

fact that 〈 f j , h̃Q j 〉 = 〈E
k j
K f j , h0

Q j
〉 and split

E
k j
K f j =

k j −1∑
l j =0

�
l j
K f j + EK f j . (4.3)

There holds that
〈
EK f j , h0

Q j

〉
=
〈

f j , h0
K

〉 〈
h0

K , h0
Q j

〉
(4.4)

and

〈
�

l j
K f j , h0

Q j

〉
=
〈

f j , h
Q

(k j −l j )

j

〉 〈
h

Q
(k j −l j )

j

, h0
Q j

〉
, (4.5)

where as usual we suppressed the summation over the different Haar functions.
We use (4.3) to split

∑
K∈Di,κ

�K ( f1, . . . , fn+1) into at most (1+ κ)n−1 terms of
the form

∑
K∈Di,κ

∑
Q1,...,Qn+1∈D

Q
(k j )

j =K

aK ,(Q j ) j∈Jn+1
τ

⎛
⎝n+1∏

j=1

〈P
l j
K , j f j , h̃Q j 〉

⎞
⎠ , (4.6)

where l j ∈ Z, 0 ≤ l j ≤ k j . For j ∈ Jn+1\J̃ we have that P
l j
K , j is the identity

operator, and below we write l j = k j . If j ∈ J̃ and l j > 0 then P
l j
K , j = �

l j
K , and if

j ∈ J̃ and l j = 0 then P0
K , j is either EK or �K (but does not change with K ). We

write

∑
K∈Di,κ

∑
Q1,...,Qn+1∈D

Q
(k j )

j =K

=
∑

K∈Di,κ

∑
L1,...,Ln+1∈D

L
(l j )

j =K

∑
Q1,...,Qn+1∈D

Q
(k j −l j )

j =L j

and notice that by (4.4) and (4.5) we always have that

〈
P

l j
K , j f j , h̃Q j

〉
=
〈

f j , h′
L j

〉
γ (Q j , L j ),

where h′
L j

∈ {h0
L j

, hL j } and

|γ (Q j , L j )| = |Q j |1/2
|L j |1/2 .
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We can now write (4.6) further as

∑
K∈Di,κ

∑
L1,...,Ln+1∈D

L
(l j )

j =K

bK ,(L j ) j∈Jn+1
τ

⎛
⎝n+1∏

j=1

〈 f j , h′
L j

〉
⎞
⎠ , (4.7)

where

bK ,(L j ) j∈Jn+1
=

∑
Q1,...,Qn+1∈D

Q
(k j −l j )

j =L j

aK ,(Q j ) j∈Jn+1

n+1∏
j=1

γ (Q j , L j ).

There existsJ ⊂ Jn+1 with #J ≥ 2 so that h′
L j

= hL j for j ∈ J and if j ∈ Jn+1\J
then h′

L j
= h0

L j
and l j = 0. Also, we have the normalization |bK ,(L j ) j∈Jn+1

| ≤∏n+1
j=1 |L j |1/2|K |−n .

We have reduced to considering the new shift type operator (4.7). The coefficients
satisfy the usual normalization of shifts, but the number #J of indiceswith cancellative
Haar functions may be bigger than 2. What is essential is that the complexity related
to the non-cancellative indices is zero—that is, if j ∈ Jn+1\J then l j = 0. We now
start estimating (4.7). Also, the separation of scales, K ∈ Di,κ , will allow us to use
the decoupling estimate (2.5).

Case 1. Assume that J = Jn+1. Let qn+1 ∈ (1,∞) be the exponent determined
by 1/qn+1 =∑n

j=1 1/p j . We need to estimate

∥∥∥ ∑
K∈Di,κ

∑
L1,...,Ln+1∈D

L
(l j )

j =K

bK ,(L j ) j∈Jn+1

n∏
j=1

〈 f j , hL j 〉hLn+1

∥∥∥
Lqn+1 (Y (Xn+1))

∼
(
E

∫
Rd

∫
V

∣∣∣ ∑
K∈Di,κ

εK 1K (x)
∑

L1,...,Ln+1∈D
L

(l j )

j =K

bK ,(L j ) j∈Jn+1

×
n∏

j=1

〈 f j , hL j 〉hLn+1(yK )

∣∣∣qn+1

Y (Xn+1)
dν(y) dx

)1/qn+1
,

where we used the decoupling estimate. Notice that since by assumption Xn+1 =
Y (X1, . . . , Xn), there holds also that Y (Xn+1) = Y (Y (X1, . . . , Xn)), so we could
also use the norm | · |Y (Y (X1,...,Xn)) instead. Write
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∑
L1,...,Ln+1∈D

L
(l j )

j =K

bK ,(L j ) j∈Jn+1

n∏
j=1

〈 f j , hL j 〉hLn+1(yK )

= 1

|K |n
∫

K n
bK (yK , z)

n∏
j=1

�
l j
K f j (z j ) dz =

∫
Vn

bK (yK , zK )

n∏
j=1

�
l j
K f j (z j,K ) dνn(z),

where νn is the product measure ν × · · · × ν on the product space Vn and

bK (yK , zK ) = |K |n
∑

L1,...,Ln+1∈D
L

(l j )

j =K

bK ,(L j ) j∈Jn+1

n∏
j=1

hL j (z j,K )hLn+1(yK ).

Wecannowcontinue the estimate by usingHölder’s inequality related to the integral∫
Vn . We end up with

(
E

∫
Rd

∫
V

∫
Vn

∣∣∣ ∑
K∈Di,κ

εK 1K (x)bK (yK , zK )

n∏
j=1

�
l j
K f j (z j,K )

∣∣∣qn+1

Y (Xn+1)

dνn(z) dν(y) dx
)1/qn+1

. (4.8)

Suppose n ≥ 2. Notice that |bK (yK , zK )| ≤ 1 and use Lemma 4.1 to get that

∣∣∣ ∑
K∈Di,κ

εK 1K (x)bK (yK , zK )

n∏
j=1

�
l j
K f j (z j,K )

∣∣∣
Y (Xn+1)

≤
n∏

j=1

‖(1K (x)�
l j
K f j (z j,K ))K∈Di,κ ‖Rad(X j ).

Using first Hölder’s inequality, then Kahane-Khintchine inequality and finally the
decoupling estimate, we conclude that

(4.8) �
n∏

j=1

( ∫
Rd

∫
V

‖(1K (x)�
l j
K f j (zK ))K∈Di,κ ‖p j

Rad(X j )
dν(z) dx

)1/p j

∼
n∏

j=1

(
E

∫
Rd

∫
V

∣∣∣ ∑
K∈Di,κ

εK 1K (x)�
l j
K f j (zK )

∣∣∣p j

X j
dν(z) dx

)1/p j

�
n∏

j=1

‖ f j‖L p j (X j )
.
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Suppose then n = 1. In this case we have that q2 = p1 and Y (X2) = X1. We
use Kahane-Khintchine inequality to move the expectation inside of the exponent p1.
Then, we use Kahane’s contraction principle and move the expectation out again. This
gives that

(4.8) �

⎛
⎝E

∫
Rd

∫
V

∣∣∣ ∑
K∈Di,κ

εK 1K (x)�
l1
K f1(zK )

∣∣∣p1
X1

dν(z) dx

⎞
⎠

1/p1

� ‖ f1‖L p1 (X1),

where the last step used the decoupling estimate. Linear estimates for shifts have
appeared e.g. in [19,29].

Case 2. Assume now that J � Jn+1. Since #J ≥ 2, this implies that n ≥ 2. Let
j0 ∈ Jn+1\J be an index such that j0 + 1 ∈ J ; by (n + 1) + 1 we mean 1. Let σ ∈
�(n+1) be the cyclic permutation such thatσ(n) = j0. Thenσ(n+1) ∈ J . If e j ∈ X j

for j ∈ Jn+1 then from Remark 3.8 one sees that
∏n

j=1 e j ∈ Y (Xn+1) and therefore
the cyclic invariance of the trace (3.6) gives that τ(e1 · · · en+1) = τ(en+1e1 · · · en).

Repeating this we have that (4.7) is equal to

∑
K∈Di,κ

∑
L1,...,Ln+1∈D

L
(l j )

j =K

bK ,(L j ) j∈Jn+1
τ

⎛
⎝n+1∏

j=1

〈 fσ( j), h′
Lσ( j)

〉
⎞
⎠ .

Having made this important observation, we may now assume, for small notational
convenience, that j0 = n and σ = id. Under this assumption n ∈ Jn+1\J , which
implies that ln = 0. Thus, the coefficient bK ,(L j ) j∈Jn+1

depends only on the cubes
L1, . . . , Ln−1, Ln+1 and K . Below we will write the coefficient as bK ,(L j ).

We need to estimate

∥∥∥ ∑
K∈Di,κ

∑
L1,...,Ln−1,Ln+1∈D

L
(l j )

j =K

bK ,(L j )

n−1∏
j=1

〈 f j , h′
L j

〉〈 fn〉K |K |1/2hLn+1

∥∥∥
Lqn+1 (Y (Xn+1))

∼
(
E

∫
Rd

∫
V

∣∣∣ ∑
K∈Di,κ

εK 1K (x)〈ϕK ,y〉K

∣∣∣qn+1

Y (Xn+1)
dν(y) dx

)1/qn+1
,

where we used the decoupling estimate, and for K ∈ Di,κ and y ∈ V we defined the
function ϕK ,y : R

d → Y (Xn+1) by setting ϕK ,y(x) to equal

|K |1/2
∑

L1,...,Ln−1,Ln+1∈D
L

(l j )

j =K

bK ,(L j )

n−1∏
j=1

〈 f j , h′
L j

〉 fn(x)hLn+1(yK ).
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After using Stein’s inequality (2.3) with respect to x ∈ R
d with fixed y ∈ V we are

left with

(
E

∫
Rd

∫
V

∣∣∣ ∑
K∈Di,κ

εK 1K (x)ϕK ,y(x)

∣∣∣qn+1

Y (Xn+1)
dν(y) dx

)1/qn+1
. (4.9)

Recall that n ≥ 2 in Case 2. From Remark 3.8 we can deduce that if en ∈ Xn

and en+1 ∈ Xn+1, then enen+1 ∈ Y (X1, . . . , Xn−1) and |enen+1|Y (X1,...,Xn−1) ≤
|en|Xn |en+1|Xn+1 . Also, since {X1, . . . , Xn−1, Y (X1, . . . , Xn−1)} is a UMD Hölder
tuple, we see from Remark 3.8 again that if e j ∈ X j for j ∈ Jn−1, then

∏n−1
j=1 e j ∈

Y (Y (X1, . . . , Xn−1)). Suppose now that e j,k ∈ X j for j ∈ Jn−1, k = 1, . . . , K , and
en ∈ Xn . Then the above consideration implies that the key inequality

∣∣∣
K∑

k=1

n−1∏
j=1

e j,ken

∣∣∣
Y (Xn+1)

≤
∣∣∣

K∑
k=1

n−1∏
j=1

e j,k

∣∣∣
Y (Y (X1,...,Xn−1))

|en|Xn (4.10)

holds. Write Z :=Y (Y (X1, . . . , Xn−1)) for the moment. Using this in (4.9) and then
Hölder’s inequality we have that (4.9) is dominated by ‖ fn‖L pn (Xn) multiplied by

(
E

∫
Rd

∫
V

∣∣∣ ∑
K∈Di,κ

εK 1K (x)
∑

L1,...,Ln−1,Ln+1∈D
L

(l j )

j =K

b̃K ,(L j )

n−1∏
j=1

〈 f j , h′
L j

〉hLn+1(yK )

∣∣∣p(Jn−1)

Z
dν(y) dx

) 1
p(Jn−1)

∼
∥∥∥ ∑

K∈Di,κ

∑
L1,...,Ln−1,Ln+1∈D

L
(l j )

j =K

b̃K ,(L j )

n−1∏
j=1

〈 f j , h′
L j

〉hLn+1

∥∥∥
L p(Jn−1)(Z)

,

where we defined 1/p(Jn−1):=∑n−1
j=1 1/p j , b̃K ,(L j ):=|K |1/2bK ,(L j ) and used the

decoupling inequality. Notice that

|̃bK ,(L j )| ≤
∏n−1

j=1 |L j |1/2|Ln+1|1/2
|K |n−1 .

We see that we have reduced the estimate to the boundedness of an (n − 1)-linear
shift type operator as in (4.7). Now, we have two possibilities. If all the Haar functions
h′

L j
for j ∈ Jn−1 are cancellative then we are in a position to apply Case 1 from

above to finish the estimate. If some of them is non-cancellative, then we dualize with
a function g ∈ L p(Jn−1)

′
(Y (X1, . . . , Xn−1)). This leads us to a corresponding situation

as the beginning of Case 2 above but now the form is n-linear and the underlying UMD
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Hölder n-tuple is {X1, . . . , Xn−1, Y (X1, . . . , Xn−1)}. We see that we can repeat the
argument in Case 2 until we can apply Case 1. This finishes the proof. 
�
Remark 4.3 We discuss why Theorem 1.1 works without any UMD Hölder tuple
assumptions on the spaces X1, X2 and Y3, and why we can’t allow more UMD spaces
in Theorem 1.1. The key point is that for e1,k ∈ X1 and e2 ∈ X2 the estimate

∣∣∣
K∑

k=1

e1,ke2
∣∣∣
Y3

≤
∣∣∣

K∑
k=1

e1,k
∣∣∣

X1
|e2|X2 , (4.11)

which corresponds to (4.10), holds without any further assumptions on the spaces.
Using this kind of estimates one can prove Theorem 1.1 with similar techniques as in
the proof of Theorem 4.2.

Suppose then we have UMD spaces X1, . . . , Xn and Yn+1, where n ≥ 3, and we
have a product X1 × · · · × Xn → Yn+1—a bounded n-linear operator. Of course, an
estimate corresponding to (4.11) holds, namely

∣∣∣
K∑

k=1

e1,k

n∏
j=2

e j

∣∣∣
Yn+1

≤
∣∣∣

K∑
k=1

e1,k
∣∣∣

X1

n∏
j=2

|e j |X j .

However, in the above proof for shifts, when we use Stein’s inequality, we need to
reduce the linearity before we can use it again. That is why we need the product
structure of UMD Hölder tuples rather than just a product X1 × · · · × Xn → Yn+1 on
the top level.

5 Boundedness of multilinear paraproducts in UMDHölder tuples

In this section we prove the boundedness of multilinear paraproducts. Let us first recall
a result for paraproducts acting on UMD-valued functions. If X is a UMD space, D is
a dyadic lattice and {aQ}Q∈D is a collection of scalars satisfying the BMO condition
(2.8), then

∥∥∥ ∑
Q∈D

aQ〈 f 〉QhQ

∥∥∥
L p(X)

� ‖ f ‖L p(X), (5.1)

where p ∈ (1,∞). This result goes back to Bourgain, see Figiel–Wojtaszczyk [14].
Another nice proof is obtained by adapting the argument of Hänninen–Hytönen [19],
who consider paraproducts with operator coefficients.

Let n ≥ 1 and let {X1, . . . , Xn+1} be a UMD Hölder tuple. Suppose that D is a
dyadic lattice and thatπ :=πD is a paraproduct as described in Sect. 2.4. Let j0 ∈ Jn+1
be the index related to the cancellative Haar functions of π and let σ ∈ �(n + 1) be
the cyclic permutation such that σ(n + 1) = j0. We consider the (n + 1)-linear form
�π acting on functions f j ∈ L∞

c (X j ) by
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�π( f1, . . . , fn+1) =
∑
Q∈D

aQτ

⎛
⎝[ n∏

j=1

〈 fσ( j)〉Q

]
〈 fσ(n+1), hQ〉

⎞
⎠ , (5.2)

where the scalars {aQ}Q∈D satisfy the BMO condition (2.8). The following theorem
combined with Lemma 3.14 proves the desired estimate.

Theorem 5.1 Suppose that p j ∈ (1,∞) for j ∈ Jn+1 are such that
∑n+1

j=1 1/p j = 1.
If f j ∈ L∞

c (X j ) for j ∈ Jn+1 then the form �π from (5.2) satisfies the estimate

|�π( f1, . . . , fn+1)| �
n+1∏
j=1

‖ f j‖L p j (X j )
.

Proof For m ∈ Jn we let p(Jm) be the exponent defined by 1/p(Jm) =∑m
j=1 1/p j .

For convenience of notation we may assume that j0 = n + 1, so that σ = id. In this
case we need to estimate the term

∥∥∥ ∑
Q∈D

aQ

n∏
j=1

〈 f j 〉QhQ

∥∥∥
L p(Jn )(Y (Xn+1))

.

The case n = 1 is the known estimate (5.1). Therefore, we assume that n ≥ 2.
Applying the UMD property of Y (Xn+1) we are led to

(
E

∫
Rd

∣∣∣ ∑
Q∈D

εQaQ

n∏
j=1

〈 f j 〉Q |hQ(x)|
∣∣∣p(Jn)

Y (Xn+1)
dx
)1/p(Jn)

, (5.3)

where to pass from hQ to |hQ | we used that for fixed x ∈ R
d the families {εQhQ(x)}

and {εQ |hQ(x)|} are identically distributed. Since |hQ | = 1Q/|Q|1/2, we can use
Stein’s inequality to have that

(5.3) �
(
E

∫
Rd

∣∣∣ ∑
Q∈D

εQaQ

n−1∏
j=1

〈 f j 〉Q fn(x)|hQ(x)|
∣∣∣p(Jn)

Y (Xn+1)
dx
)1/p(Jn)

.

Now, we use the same inequality we used in the shift proof, Eq. (4.10), and Hölder’s
inequality to have that the last term is less than ‖ fn‖L pn (Xn) multiplied by

(
E

∫
Rd

∣∣∣ ∑
Q∈D

εQaQ

n−1∏
j=1

〈 f j 〉Q |hQ(x)|
∣∣∣p(Jn−1)

Y (Y (X1,...,Xn−1))
dx
)1/p(Jn−1)

.

Since {X1, . . . , Xn−1, Y (X1, . . . , Xn−1} is a UMD Hölder n- tuple, we see that we
have reduced to a situation as in (5.3) but now the degree of linearity is n − 1. We can
repeat the argument until we end up with a linear operator, and then we apply (5.1). 
�
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6 Maximality of UMDHölder tuples

In this brief section, we show that UMDHölder tuples are in a suitable sense maximal
for L p-boundedness of extensions of n-linear CZO operators and dyadic shifts via an
associative product as in Section 3. The precise statement is in Proposition 6.2 below.

Therefore, we fix an associative algebra A and a functional τ as in Sect. 3. We
begin with a lemma.

Lemma 6.1 Let (X1, . . . , Xn) be a n-tuple of admissible spaces. If Xn+1 is an
admissible space such that for all (n + 1)-linear shift forms (3.10) and functions
f j ∈ C1(Rd) ⊗ X j , j = 1, . . . , n + 1

∣∣∣�U k
Dω,u

( f1, . . . , fn, fn+1)

∣∣∣ �
(

n+1∏
�=1

‖ f j‖Ln+1(Rd ;X j )

)
(6.1)

with implicit constant depending possibly on the complexity k, then (3.4) holds for
m = n, and in particular Xn+1 ↪→ Y (X1, . . . , Xn).

Proof Test (6.1) on a suitable trivial shift and appeal to Lemma 3.1. 
�

To make our maximality claim precise, we need an additional definition. We say that
the tuple {X1, . . . , Xn+1} of admissible spaces is an n-linear shift extension if (6.1)
holds for all (n+1)-linear shift forms (3.10). If in addition,whenever Z is an admissible
space such that for some j0 ∈ Jn+1 the tuple {X1, . . . X j0−1, Z , X j0+1, . . . Xn+1} is
an n-linear shift extension, it must be Z ↪→ X j0 , we say that {X1, . . . , Xn+1} is a
maximal n-linear shift extension.

Proposition 6.2 Let {X1, . . . , Xn+1} be a UMD Hölder tuple. Then

• {X1, . . . , Xn+1} is a maximal n-linear shift extension;
• whenever 1 ≤ k ≤ n − 1 and #J = k, {X j : j ∈ J } ∪ {Y ({X j : j ∈ J })} is a

maximal k-linear shift extension.

Proof Theorem 4.2 shows that if {X1, . . . , Xn+1} is a UMDHölder tuple, then it is an
n-linear shift extension. As X j0 = Y ({X j : j ∈ J0}) by definition of UMD Hölder
tuple, we learn from Lemma 6.1 that {X1, . . . , Xn+1} is in fact a maximal n-linear
shift extension. This proves the first point.

By the inductive definition of UMD Hölder tuple, for each 1 ≤ k ≤ n − 1 and
#J = k, {X j : j ∈ J } ∪ {Y ({X j : j ∈ J })} is a UMD Hölder tuple. Then this tuple
must be a maximal k-linear shift extension because of the first point. The second point
is also proved. 
�
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subject of multilinear UMD-valued singular integrals. F. Di Plinio is grateful to Ben Hayes and Vittorino
Pata for enlightening exchanges on factorization in noncommutative L p spaces.

123

Author's personal copy



F. Di Plinio et al.

Appendix A: Iteratedmixed-norm non-commutative Lp spaces

LetM be a von Neumann algebra equipped with a n.s.f. trace as described in Example
3.11. Recall in particular that A = L0(M) is an associative ∗-algebra endowed with
a compatible complete metrizable topology, induced by the metric dA of convergence
in measure. For an integer S ≥ 1, let (Ms, μs), s = 1, . . . , S, be σ -finite measure
spaces and (�S, ωS) the product measure space

�S =
S∏

s=1

Ms, ωS =
S∏

s=1

μs .

Let A0,S be the vector space of simple functions f : �S → A, namely

f (t) =
J∑

j=1

A j1E j (t), t = (t1, . . . , ts) ∈ �S,

with A j ∈ A, E j ⊂ �S with ωS(E j ) < ∞. Then A0,S is an associative algebra
with respect to the pointwise product: for f , g ∈ A0,S , the function f g defined by
( f g)(t) = f (t)g(t), where the latter is the strong product in A, belongs to A0,S . We
denote by

AS := closure of A0 w.r.t. sequential dA-pointwise convergence

namely, f ∈ AS if there exists a sequence fn ∈ A0,S such that

lim
n

dA( f (t), fn(t)) = 0 a.e. t ∈ �S .

ThenAS , the class of strongly measurableA-valued functions on�S , is an associative
algebra with respect to the same product. Furthermore, AS is complete with respect
to the topology of convergence in measure, namely fn → f if for all ε > 0

lim
n

μ ({t ∈ �S : dA( f (t), fn(t)) > ε}) = 0,

and the product operation is continuous.Note that the latter topology is alsometrizable,
proceeding in an analogous way to [24, Proposition A.2.4].

Recall that M is equipped with the n.s.f. trace τ , which is a linear bounded func-
tional on L1(M). Then the functional

τS( f ):=
∫

�S

τ( f (t)) dωS(t)

is linear and bounded on the Bochner space L1(�S, ωS; L1(M)), which is a subspace
ofAS . With this definition,AS is endowedwith the trace τS . Under these assumptions,
we have the following proposition.
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Proposition A.1 For a Hölder tuple {p0j : 1 ≤ j ≤ m} as in (3.1), let

X0
j = L p0j (M).

Let {ps
j : 1 ≤ j ≤ m} be further Hölder tuples of exponents, for 1 ≤ s ≤ S. Then the

Banach subspaces of As

Xs
j = L ps

j (Ms, μs; Xs−1
j ), s = 1, . . . , S, (A.2)

are a UMD Hölder m-tuple.

Before the proof proper, we need to set some notation, and develop suitable auxiliary
lemmata. For 1 ≤ k ≤ m − 1, J = { j1 < j2 < · · · < jk} ⊂ Jm , and 0 ≤ s ≤ S we
write

1

qs
J

=
k∑

u=1

1

ps
ju

,
1

ps
J

= 1 − 1

qs
J

.

It will be convenient to introduce the auxiliary mixed norm spaces

E1
j = L p1j (M1, μ1),

Es
j = L ps

j (Ms, μs; Es−1
j ), s = 2, . . . , S,

for j = 1, . . . , m and similarly

E0
J = C,

Es
J = Lqs

J (Ms, μs; Es−1
J ), s = 1, . . . , S.

In general we write S(X) for the unit sphere in the Banach space X .

Lemma A.3 Let J = { ju : 1 ≤ u ≤ k}. There exists maps Bs
u : S(Es

J ) → S(Es
ju
)

such that

f =
k∏

u=1

Bs
u( f ) ∀ f ∈ S(Es

J )

and

‖ fn − f ‖Es
J → 0, ‖ fn(ts) − f (ts)‖Es−1

J
→ 0 a.e. ts ∈ Ms �⇒

‖Bs
u( f ) − Bs

u( fn)‖Es
ju

→ 0, ‖Bs
u( fn)(ts) − Bs

u( fn)(ts)‖Es−1
ju

→ 0 a.e. ts ∈ Ms,

1 ≤ u ≤ k.

(A.4)
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Proof We deal with the case ju = u, u = 1, . . . , k which is generic. We prove the
statement by induction on s. If s ≥ 2, assume inductively that maps Bs−1

u as in the
statement have been constructed; for the base case s = 1, we run the argument below
with B0

u the identity map. In both cases, we need to define Bs
u : S(Es

J ) → S(Es
u). We

use that each f ∈ S(Es
J ) is Es−1

J -valued. So for each ts ∈ Ms , write

f (ts) = | f (ts)|Es−1
J

g(ts) =
k∏

u=1

⎛
⎝| f (ts)|

qs
J
ps
u

Es−1
J

gu(ts)

⎞
⎠=:

k∏
u=1

Bs
u( f )(ts)

where g is S(Es−1
J )-valued, so that each gu = Bs−1

u (g) is S(Es−1
u )-valued. Notice that

each fu = Bs
u( f ) is (strongly) μs-measurable with values in Es−1

u : in fact | f (·)|Es−1
J

is μs-measurable and each gu is μs-measurable, as Bs−1
u is (norm) continuous from

Es−1
J → Es−1

u and g is μs-measurable with values in Es−1
J . A direct calculation

reveals that

‖ fu‖Es
u

= 1, 1 ≤ u ≤ k.

It remains to show that the thus definedmaps Bs
u are continuous in the sense of (A.4) by

assuming the same properties hold for themaps Bs−1
u . Let fn, f be as in the first line of

(A.4) and write fn(ts) = | fn(ts)|Es−1
J

gn(ts). We first show the pointwise convergence:

for each we have

‖Bs
u( f )(ts) − Bs

u( fn)(ts)‖Es−1
u

≤ ‖ f (ts)‖Es−1
J

‖Bs−1
u (g(ts)) − Bs−1

u (gn(ts))‖Es−1
u

+ ‖Bs−1
u (gn(ts))‖Es−1

u

∣∣‖ f (ts)‖
qs
J
ps
u

Es−1
J

− ‖ fn(ts)‖
qs
J
ps
u

Es−1
J

∣∣

Relying on the norm continuity of Bs−1
u we obtain that both summands in the previous

display converge to zero for each ts such that ‖ fn(ts)‖Es−1
J

→ ‖ f (ts)‖Es−1
J

, ‖gn(ts)−
g(ts)‖Es−1

J
→ 0; this is a set of full μs measure, so that this part of the proof is

complete. We come to the norm continuity in (A.4). We have

‖Bs
u( f ) − Bs

u( fn)‖ps
u

Es
u

�
∫

Ms

| f (ts)|q
s
J

Es−1
J

|Bs−1
u (g(ts)) − Bs−1

u (gn(ts))|ps
u

Es−1
u

dμs(ts)

+
∫

Ms

∣∣∣∣∣∣| f (ts)|
qs
J
ps
u

Es−1
J

− | fn(ts)|
qs
J
ps
u

Es−1
J

∣∣∣∣∣∣
ps

u

|Bs−1
u (gn(ts))|ps

u

Es−1
u

dμs(ts).

The first integrand converges to zero pointwise a.e. and is dominated by | f (ts)|q
s
J

Es−1
J

,

so the integral converges to zero by dominated convergence. The second integral is
equal to
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‖F − Fn‖ps
u

L ps
u (Ms ,μs )

, F(ts) = | f (ts)|
qs
J
ps
u

Es−1
J

, Fn(ts) = | fn(ts)|
qs
J
ps
u

Es−1
J

.

Notice that ‖F‖ps
u

= ‖ f ‖qs
J /ps

u

Es
J

, ‖Fn‖pu = ‖ fn‖qs
J /ps

u

Es
J

. As Fn → F pointwise,

Fn, F ∈ L ps
u (Ms, μs) and ‖Fn‖ps

u
→ ‖F‖ps

u
, then ‖F − Fn‖ps

u
converges to zero by

a well-known variation of the proof of the L p dominated convergence theorem. 
�
Lemma A.5 Let 2

X0
J = Lq0

J (M), X0
J ,+ = Lq0

J (M)+,

Xs
J = Lqs

J (Ms, μs; Xs−1
J ), Xs

J ,+ = Lqs
J (Ms, μs; Xs−1

J ,+), s = 1, . . . , S.

Let f ∈ Xs
J ,+ be a simple function with ‖ f ‖Xs

J = 1. Then there exist fu ∈ Xs
ju ,+,

u = 1, . . . , k with

f =
k∏

u=1

fu, ‖ fu‖X S
ju

= 1.

Proof Again we deal with the generic case ju = u, u = 1, . . . , k. First of all, we
make a remark about the case s = 0. Fix A ∈ X0

J ,+ with ‖A‖X0
J

= 1. Using the

Borel functional calculus for positive closed densely defined operators to define Aθ

for θ > 0

A =
k∏

u=1

Bu(A), Bu(A) = A
q0J
p0u , u = 1, . . . , k. (A.6)

Trivially

‖Bu(A)‖X0
u

= ‖A‖
q0J
p0u

X0
J

= 1, u = 1, . . . , k.

We now prove the main statement. Let f ∈ Xs
J ,+ be a simple function with ‖ f ‖Xs

J =
1. We factor

f (t) = F(t)A(t), F(t) = | f (t)|X0
J

, t ∈ �s .

Notice that F ∈ Es
J of unit norm, so that using Lemma A.3

F =
k∏

u=1

Bs
u(F), ‖Bs

u(F)‖Es
u

= 1,

2 Recall that Lq0J (M)+ denotes the positive cone of Lq0J (M),namely the positive operators in Lq0J (M).
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and we may write, also using (A.6)

f =
k∏

u=1

fu, fu(t) = Bs
u(F)(t)Bu(A(t)),

Notice that each fu is strongly measurable as Bu(A(·)) is a simple X0
u,+-valued func-

tion and Bs
u(F) is a measurable function in Es

u . Also as |Bu(A(t))|X0
u

= 1 for all
t ∈ �s

‖ fu‖Xs
u

= ‖Bs
u(F)‖Es

u
= 1,

which completes the proof of the claim. 
�
We turn to the proof of the proposition. Namely we need to show that the tuple Xs

j
from (A.2) is a UMD Hölder tuple for each s = 1, . . . , S. In proving this, by virtue of
the case s = 0 being already established in Example 3.11 we may argue inductively
and assume the claim has been proved in the cases of 0, . . . , s − 1.

Clearly each Xs
j is a subspace of As . Denoting by qs

j , s = 0, . . . , S the conjugate
exponent of ps

j , it is convenient to define the spaces

Y 0
j = Lq0

j (M),

Y s
j = Lqs

j (Ms, μs; Y s−1
j ), s = 1, . . . , S,

which are Banach subspaces of As . Further, as each Xs
j is a reflexive Banach space

and enjoys the Radon-Nikodým property [24, Theorem 1.3.21], an inductive argument
yields the Riesz representation theorem (cf. [24, Theorem 1.3.10]) then yields that

(
Xs

j

)∗ = Y s
j , 1 ≤ j ≤ m

through the identification

λ ∈ (Xs
j )

∗ �→ gλ ∈ Y s
j λ( f ) = τs(gλ f ), f ∈ Xs

j .

We have in particular shown that each Xs
j is an admissible space for the algebra As

with trace τs and Y (Xs
j ) = Y s

j .
We verify that {Xs

j : j ∈ Jm} is a UMD Hölder tuple by induction on m. The case
m = 2 is actually immediate by virtue of the observation and the well known fact that
each Xs

j , Y s
j is a UMD space.

To obtain the inductive step, we fix m ≥ 3 and verify the following equality. For
each 1 ≤ k ≤ m − 1, J = { j1 < j2 < · · · < jk} ⊂ Jm , there holds

Y ({Xs
j : j ∈ J }) is isometrically isomorphic to

(
Xs
J
)∗

, (A.7)
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where we refer to the spaces defined in Lemma A.5. More explicitly, denoting

Y 0
J = L p0J (M),

Y s
J = L ps

J (Ms, μs; Y s−1
J ), s = 1, . . . , S,

we have Y ({Xs
j : j ∈ J }) = Y s

J =
(

Xs
J
)∗
.

Property P1 then corresponds to this equality in the cases k = m − 1. Verifying
property P2 amounts to checking that when k < m −1, the tuple {Xs

j : j ∈ J }∪{Y s
J }

is a UMDHölder (k +1)-tuple. As k < m −1, {Xs
j : j ∈ J }∪{Y s

J } is a UMDHölder
(k + 1)-tuple and the exponents {ps

j : j ∈ J , ps(J )} are a Hölder tuple, this check
is made by a straightforward appeal to the induction assumption.

We are left with proving (A.7). To do this we will define a linear surjective isometry
� : Y ({Xs

j : j ∈ J }) → Y s
J . First of all note that

‖g‖Y ({Xs
j : j∈J }) ≤ ‖g‖

L
ps
J (Ms ,μs ;Y s−1

J )
= ‖g‖Y s

J (A.8)

descends immediately from Hölder’s inequality in L p(Ms, μs)-spaces and Lemma
3.1 applied to the UMD Hölder tuple Xs−1

j1
, Xs−1

j2
, . . . , Xs−1

jk
. We will use this below.

Fix then g ∈ Y ({Xs
j : j ∈ J }).We claim that if f is a simple X0

J ,+-valued function
on �s with ‖ f ‖Xs

J = 1, then

|τs(g f )| ≤ ‖g‖Y ({Xs
j : j∈J }). (A.9)

Indeed, applying Lemma 3.1 we obtain

|τs(g f )| =
∣∣∣∣∣τs

(
g

k∏
u=1

fu

)∣∣∣∣∣ ≤ ‖g‖Y ({Xs
j : j∈J })

k∏
u=1

‖ fu‖Xs
ju
,

‖ fu‖Xs
ju

= 1, u = 1, . . . , k,

which is (A.9). As Xs
J is the Xs

J -norm closure of the linear span of simple X0
J ,+-

valued function on �s , the linear bounded functional f �→ τs(g f ) extends uniquely
to an element �(g) of (Xs

J )∗ ≡ Y s
J with

‖�(g)‖Y s
J ≤ ‖g‖Y ({Xs

j : j∈J }).

It is easy to see that the map � : Y ({Xs
j : j ∈ J }) → Y s

J is linear. From (A.8)
we gather that if g ∈ Y s

J then �(g) is well-defined. In this case the linear bounded
functionals g �→ τs(g f ) and �(g) coincide on a dense set, it must be �(g) = g. So
� is obviously surjective. Furthermore using (A.8) again we obtain

‖�(g)‖Y s
J ≥ ‖�(g)‖Y ({Xs

j : j∈J }) = ‖g‖Y ({Xs
j : j∈J }) ≥ ‖�(g)‖Y s

J

123

Author's personal copy



F. Di Plinio et al.

whence equality must hold throughout. So � is a linear isometric isomorphism and
the proof of (A.7) is complete.
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