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Radon transforms covering of the n-dimensional Nagel-Stein-Wainger cone by
two-dimensional Parcet-Rogers wedges.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We study sharp cardinality bounds for maximal singular integrals along lines in general
ambient Euclidean dimension, when the allowed set of lines is constrained to not support
Besicovitch sets. Our main focus is thus on directional singular integrals, defined via the
Fourier transform as follows. Let m be a Hérmander-Mikhlin multiplier on R, that is,

~Oo

m € C*(R\{0}), sup  [€]¥]0“m(&)]| Sa 1, Ya > 0.
£ER\{0}
For f € C§°(R™) and v € S"~! consider the directional multiplier

T, f(x) = / Feym(e-v)e=tde,  zeR™ (11)
R‘n,

Of course, T, depends on the choice of symbol m. We henceforth suppress this depen-
dence from the notation as the multiplier m may be thought of as fixed throughout the
exposition. A most relevant choice is that of the analytic projection m = 1(¢ ). In that
case, up to a linear combination with the identity operator, T;, is the Hilbert transform
along the direction v.

For each fixed v, LP(R™)-boundedness of the directional multiplier f — T, f is an
immediate consequence of a fiberwise application of the LP(R)-bound for the one-

dimensional multiplier operator f + (mf)Y and Fubini’s theorem. On the other hand,
LP-bounds for the operator

fHTv(x)f(m)v z ERna

where the directional multiplier is applied along a variable choice of lines x — v(x), are
highly nontrivial. The latter question, posed by E. Stein during his 1986 ICM plenary lec-
ture [25], was initially motivated by the analogy with the corresponding LP-boundedness
problem for the maximal averaging operator along a vector field v, which plays the role
of the Hardy-Littlewood maximal operator in the context of LP-differentiation along
variable lines. The critical Lebesgue exponent is p = n, dictated by the existence of
Besicovitch sets of measure zero. Testing on one such set yields the necessary condition
that the choice of lines v be a Lipschitz function, and that either the multiplier m or
the averaging operator be suitably truncated to spatial scales smaller than the inverse
of ||v||L1p. Whether this condition is also sufficient, at least for weak L?-boundedness in
dimension two, is the object of an earlier conjecture of Zygmund.
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Partial results towards Zygmund’s conjecture are due to Bourgain [4]; see also Guo
[13]. Partial progress on LP-bounds for the truncated Hilbert transform along a Lipschitz
vector field has been obtained, among others, by Lacey and Li [19,20], Stein and Street
[26], Bateman and Thiele [3], Guo, Thiele, Zorin-Kranich with the second author [10].
We also note that Demeter [8] proved the sharp L2-bounds for maximal directional
Hormander-Mikhlin multipliers along finite but arbitrary sets of directions. The proof in
[8] relies strongly on the vector field result of [20] and the Chang-Wilson-Wolff reduction,
the latter of which we also use in the present paper.

An alternative way of ensuring LP-bounds for maximal directional averages, and the
ensuing differentiation theorems, is to require that the range € of the vector field v(x)
does not support Besicovitch sets. In two dimensions, the infinite sets ) giving rise to
an LP-bounded maximal directional averaging operator have been fully characterized
as finite unions of finite order lacunary sets. The sufficiency in the full range is due to
Sjogren and Sjolin [24], building upon techniques of Nagel, Stein and Wainger [22]. The
harder necessity statement is due to Bateman [2]. In higher dimensions an analogous
characterization was only recently achieved by Parcet and Rogers [23]. Lacunary sets
of directions in the plane appear for instance in the seminal article by Cérdoba and
R. Fefferman [7], as well as in the already mentioned [22,24], among many others. The
correct generalization to higher dimension is, loosely speaking, as follows: a set Q is
lacunary if the projection of 2 on each two-dimensional subspace spanned by a pair of
coordinate vectors is a two-dimensional lacunary set. This definition, detailed in Section 2
and appearing for the first time in [23], encompasses the previously known examples of
[22] and of Carbery [5].

As anticipated, the main result of this article is the full singular integral analog of the
Parcet-Rogers result. In particular, we completely close the question, raised for instance
in [23, Section 4], of sharp LP(R™)-bounds for the maximal directional multiplier operator

Tof(z) := sug\va(x)L x € R",
IS

when O is a finite subset of a finite order lacunary set ). Here, sharpness is referred to the
dependence of the operator norm of Ty on the cardinality of O. In fact, T is unbounded
on every LP(R™) when O is infinite and a lower bound ||To||z» = v/1log#O holds for
every finite set when m = 1jg o: this is a result of Laba, Marinelli and Pramanik [18],
elaborating on the two-dimensional counterexample of [15]. With the precise definition
of a lacunary set of direction given in Definition 2.2, the rigorous statement of our main
result is the following.

Theorem A. Let n > 2, 1 < p < 0o, and 2 C S"! be a lacunary set of finite order.
Then

sup I1To fllLr®n) < (log N)Y2(| £l o @), (1.2)
HO=N
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where the implicit constants depend on the dimension n, on p, and on the order of
lacunarity of the set Q.

A comparison with the above mentioned lower bound [18] shows that the N-
dependence in Theorem A is in general best possible.

Remark 1.1. Our methods work equally well for the more general case of families of

translation invariant directional singular integrals of the form (R, f)* (&) := m, (£-v) f(£).
Here

S"™ 1o Q3v e my()

is a measurable collection of Hormander-Mikhlin multipliers on R obeying uniform
bounds

m, € C°(R\{0}), sup sup [€]¥]0%“My(8)] Sa 1, Ya > 0.
veR ¢eR\{0}

Indeed, the conclusion of Theorem A holds verbatim for the maximal operator
Raf(z) :=sup Ry f(z)]
veQ

with identical proof. This variation may be of interest when dealing with tree operators
from time-frequency models of directional singular integrals, see for instance [9,19]. The
corresponding multipliers differ for each tree, but they do obey uniform bounds. In the
two-dimensional case, maximal directional multipliers such as Rq have been studied in
[16] for arbitrary finite sets of directions Q C S?t.

Estimate (1.2) was proved, in the case of the Hilbert transform only, in dimensions
n =2 [11] and n = 3 [12]. For n > 4, the theorem above is new even for the maximal
directional Hilbert transform: in fact, Theorem A is the first sharp estimate for maximal
directional singular integrals in general dimensions. The presence of a generic Hérmander-
Mikhlin symbol £ — m(€ - v) which is not constant in the halfspaces perpendicular to v,
as well as the availability of more coordinates in dimensions n > 4, introduce new, and
intertwined, essential obstacles that may not be treated with the approach of [11,12].

In fact, the analysis in [12] relied on a model operator for the maximal directional
Hilbert transform which may be described heuristically as the maximal truncation to
products of two-dimensional inner-outer wedges from [23]. This approach is satisfactory
in dimension two and three. However, an adaptation of the counterexamples from [15,18]
yields a lower bound of (log N)L3) on the LP-norms of the model operator. This is
done by constructing a two-dimensional counterexample from [15] for each of the |3 |
pairs with distinct entries, out of the n coordinates, in a way that the counterexamples
are not interacting with each other; see [12, Section 6] for details. Ultimately, these
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considerations show that the sharp exponent obtained here in is out of reach for the
purely two dimensional approach of [12,23] and novel ideas are needed.

The correct approach in dimension n > 4 is a new type of geometric covering that
combines the two-dimensional wedges of Parcet-Rogers [23] with the full-dimensional
cones of Nagel, Stein and Wainger from [22]. A rough description of the proof is as follows:
we cover the singularity hyperplane £ - v = 0 with the exterior of a full dimensional cone.
When v comes from a lacunary set, these exterior cones give rise to a bounded square
function: this is shown by covering each exterior cone by unions of two-dimensional
wedges. The complementary part of the operator is then a maximal conical multiplier
which is amenable to a one parameter Littlewood-Paley square function estimate, via
the Chang-Wilson-Wolff inequality. In contrast, the maximal truncation to products of
two-dimensional inner-outer wedges may only be treated with a Littlewood-Paley square
function in | 2] parameters, whence the unavoidable (log N)L% loss.

A key component when dealing with higher order lacunarity is the use of recursive-type
vector-valued estimates. We find convenient to treat these by means of LP(w)-bounds
for directional weights, so that vector-valued estimates follow for free from extrapolation
techniques. These tools are recalled in Section 3. The proof of Theorem A is provided
in Section 4, while the concluding Section 5 contains complementary remarks and open
questions.
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2. Lacunary sets of directions and associated frequency projections

We begin this section with a thorough definition of lacunary sets of directions in
general dimension. We later give a simplified but equivalent version which will be used
throughout the paper. In the remainder of the section, we define frequency projections,
associated to lacunary cones or wedges, which will be used to decompose the maximal
multipliers along lacunary sets into tractable pieces.

2.1. Lacunary sets of directions

Throughout the paper the ambient space is R™ and we consider sets of directions
Q c S" 1. Note that by possibly adding O, (1) directions to £ we can always assume
that span(Q2) = n; we will do throughout the rest of the paper. We then define the sets
of ordered pairs of indices
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Y=%n):={c=(k): 1<j<k<n}

we will typically drop the dependence on n from the notation.

For 0 € ¥ we now consider lacunary sequences {6, ;}icz that satisfy 0 < 0,41 <
Aoboi, with 0 < A, < 1. Take A := max, A\,. From here on we will assume that the
lacunarity constant A € (0,1) has a fixed numerical value and all sequences considered
below will be lacunary with respect to that fixed value A.

Given an orthonormal basis (ONB) of span(2) = R"”

B:=(e1,...,en),

and a choice of lacunary sequences {6, ¢} as above we get for each ¢ € ¥ a partition of
the sphere into sectors

V- ey _
So = {v T I LOL GM}, s = Soe.

v-e
[v-eo) <z

Strictly speaking we need to complete the partition by adding the limit set S, =
S™ 1N (ep (1) Uey(a)r). A convenient way to do so is to define Z* := Z U{oo}. We write
any £ C S™! as a disjoint union as follows:

Q=] aonSei=J Qu Voex
LeZ* LeZx>

The collection of |X(n)| = n(n — 1)/2 partitions of 2 will be called a lacunary dissection
of  with parameters 8 and {6, }. In particular we have that {S, ¢} as defined above
is a lacunary dissection of the sphere S"~1. We will refer to the sets {Qy s}, {Sse} as
sectors of a dissection.

We will also need a finer partition of subsets of the sphere into cells which is generated
as follows. Consider a lacunary dissection of 2 C S”~!, namely an ONB 8 and sequences
{0,4}. Given £ = {l, : 0 € %(n)} € Z* we define

Sei={) Sotr Q= () .,

oEX cEX

so that we get the partitions

snl = U Se, Qp = U Qp.

YAy L=

We note here, as in [23, p. 1540], that this partition of S"~! is in some sense redundant
as many of the cells Sy and corresponding sets €y will be empty. This is unavoidable if
one wants a definition of lacunarity in higher dimensions that yields bounded maximal
operators.

We now recall the definition of lacunary sets of directions introduced in [23, p. 1537].
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Definition 2.2. Let Q C S"~! be a set of directions and assume that span(Q) = R”. Then
Q is called lacunary of order 0 if it consists of a single direction. If L is a positive integer
then Q is called lacunary of order L if there exists a dissection {{, ¢} of © such that for
each o € ¥(n) and ¢ € Z*, the sector Q, s = S, ¢ NN is a lacunary set of order L — 1. A
set €2 will be called lacunary if it is a finite union of lacunary sets of finite order.

Observe that a set Q is lacunary of order 1 if there exists a dissection {{,,} such
that each sector €2, , contains at most one direction.

We immediately simplify the definition of lacunarity by assuming -without loss of
generality- that all dissections are given with respect to lacunary sequences 0, o = 2=¢ for
all o € 3, corresponding to A = 1/2. Furthermore by a standard approximation argument
we can dispose of the final set of the partition €2, o, and work with Z instead of Z*. Also,
by a finite splitting, we can and will assume that Q C {z e R": 2; >0, i =1,...,n}.

2.8. Nagel-Stein- Wainger frequency projections

Given a Hormander-Mikhlin multiplier m and v € S®~! we note that the function
€ — m(&-v) is in general singular on the hyperplane v*. It is thus convenient, and very
effective, to isolate the singularity of the symbol by the use of suitable cones or wedges.

Let w(§) denote a function that is homogeneous of degree zero and C*° away from
the origin in R™, and which satisfies

0, if |G+ +&l =l

For a direction v € S*~! we define the smooth frequency projections

-~

W, f(z) == /w(vlgl,...,vngn)f(g)e”f d¢, r € R"™ (2.1)

R~

These multipliers were first considered in [22]. Note that the operator Id—W,, is a smooth
frequency projection onto a cone with axis along v. In particular the frequency support
of the symbol of Id — W, only intersects the (n — 1) dimensional hyperplane v at the
origin.

2.4. Parcet-Rogers frequency projections

Following [23] we define for o € ¥ and ¢ € Z the following two-dimensional wedges

2—(€+1) _é‘ 1)
U, p:=13EER ety : <=2 <24n},
! { \o(2) n §o(2)



8 N. Accomazzo et al. / Advances in Mathematics 380 (2021) 107580

Fig. 2.1. The exterior of a Nagel-Stein-Wainger cone with axis v, corresponding to the operator Id — W,,,
covers the singularity vhia Parcet-Rogers wedge for a single o is also pictured.

and

9—(€+1)

U, = {g € R"\eky) : < 280 gty 4 1)} .

n+1l = &2

Take x to be a bump function such that
1 on [1/2n,n],
0 on [1/2(n+1),n+ 1],

and define the Fourier multiplier operators K, ; with symbols

€o 5
50,2(5) =R <_W(01)(2)) 5 Ka',@f = (Ka,lf)v'

Note that s ¢ is smooth, identically 1 on the wedge ¥, ,, and identically 0 off \Tlmg. For
a subset @ # U C ¥(n) we define

Kue:= [] Ko,
ocU

with the product symbol being used to denote for compositions of operators in the display
above.

The main geometric observation relating the Nagel-Stein-Wainger cones with the
Parcet-Rogers wedges is contained in the following lemma, which is an elaboration of a
similar statement from [23, Proof of Theorem A]. See Fig. 2.1.

Lemma 2.5 (Inclusion-Exclusion formula). Let {Qs¢} be a lacunary dissection of Q C
S"=1 and suppose that v € Qy for some £ € Z* with £ = {{, : 0 € ¥}. Then
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Wof = > (=D)IVFW, Ky, f.
DAUCE(n)

Proof. Writing (W, /)" =: wvf we note that the support of w, satisfies

1
- malE- — } =:C,.
supp w, C {5 ER™: |€-v| < - lrgnkagn |€k v C,

We read from [12, Proof of Lemma 3.2], together with the assumption that v € Qg, that

Cv - U \IIU,ZU-

oex

The conclusion of the lemma follows from the display above, the inclusion-exclusion
formula, and the fact that for each o € ¥ and ¢ € Z the operator K, , has symbol k¢
which is identically 1 on ¥, ,. O

3. Some auxiliary results

We will need some known facts from the weighted theory of maximal directional singu-
lar integrals, and in particular, a weighted version of the Chang-Wilson-Wolff principle.
The latter allows us to commute a maximum over N multiplier operators with certain
Littlewood-Paley projections, with a controlled loss in N. We refer to [12, §4] for a
detailed exposition and just recall here the relevant statements.

3.1. Directional weighted norm inequalities

In order to state these results we briefly introduce directional A,-weights. Given a
closed set of directions Q € S”~! and a non-negative, continuous function w on R", we
say that w belongs to A? if w belongs to the one-dimensional class A4,(¢,) for all lines
Ly, v € , with uniform bounds. More precisely, if we define the segments

I(z,t,v) :={x +sv: [s| <t} CR", reR” t>0, veQ,

then

s g (] ) f )

veEQR I(x,t,v) I(x,t,v)

and Ag ={we CR"): [w]Ag < 00}. Note that we need to consider continuous weights
in order to make sense of their restrictions to line segments in R™. This turns out to be
more of a technical nuisance rather than substantial limitation and it is inconsequential
for our applications. Finally we write
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Q.= UAZ?.

p>1

In the special case that Q = {ej,...,e,} is the standard coordinate basis we just
write A} for the corresponding Aj-class.

The following weighted version of the Marcinkiewicz multiplier theorem, due to Kurtz,
can be used in several occasions where we need to prove weighted norm inequalities along
lacunary sets of directions. We recall the statement of the result for future reference.

Proposition 3.2 (Kurtz [17]). Let m be a C*° function in R™ away from the coordinate
hyperplanes and assume that ||m|ls < B. Suppose that for all 0 < k < n we have

sup / ’
1y 851

for all dyadic rectangles p C R¥, and any permutation of the coordinates (&1, ...,&,).
Then for all p € (1,00) and all w € Aj, the multiplier operator T, (f) := (m[f)" satisfies
the weighted bounds

~d§ < B

1Tl Loy = 1T : L (w) = LP(w)]| S [w]).

P

where v = v(p,n, B) and the implicit constant is independent of w.

With this result in hand we can now recall a weighted bound for the wedge multipliers
K associated with a lacunary dissection of the sphere. The proof is a direct application
of the theorem of Kurtz above to the operator

f'_> Z EEKU,Efa

LcZbY

where {e¢} is an arbitrary choice of signs.

Lemma 3.3. Let X be associated with a given ONB on S"~! and denote by A3 the class
of weights corresponding to its coordinate directions. Then for all w € A} we have

S [w]l;

sup Fllze w)

( Y |Kuef| )

LeZY

Lr(w)
for some v = v(p,n) and implicit constant independent of f and w.
In a similar spirit and with an identical proof one can easily provide weighted norm

inequalities for the conical multipliers W, associated with a fixed direction v € R™. See
also (4.6) in §4 below for a similar calculation.
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Lemma 3.4. For v € S~ let W, be defined as in (2.1). Then for all p € (1,00) and all
w € Ay we have

sup [[Wollow) S [w];

veES"—

for some v = v(n,p) and implicit constant independent of w.

The previous results imply weighted norm inequalities for the maximal function Mg
along directions of a lacunary set  C S*~!

1 S
Mo f(x) := SUp SUp o |f(z + tv)] dt, x € R™

vEN s>0 45

—S

The proof of these weighted norm inequalities can be found in [12], however said proof
is an adaptation of the corresponding Lebesgue measure argument from [23].

Proposition 3.5. Let Q C S™~! be a set of directions which is lacunary of order L, where

L is a positive integer, and let w € Ag be a directional weight with respect to . For all
p € (1,00) there exists a constant v = y(p,n) > 0 such that

L
Mellze(w) < [W]Z‘ga
with implicit constant depending only on p, n and the lacunarity order of ().

The boundedness of the directional maximal function Mg now allows us to extrapolate
weighted norm inequalities from L?(w) as in [12, §4.2]. Namely the following holds.

Proposition 3.6. Let 2 C S"~! be a (closed) lacunary set of directions of finite order.

Suppose that there exists a pg € (1,00) and v > 0 such that for some family of pairs of
non-negative function (f,g) we have

[ £llLro w) S [w]’,ggo 191l 7o (w)

with implicit constant independent of (f,g) and w. Then for all p € (1,00) and all
w € Ag we have

11l zr ) S [w] 5o ll9ll o)

where 7, depends ony,n,p and the order of lacunarity of Q; the implicit constant depends
only on p,n and the lacunarity order of ).
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3.7. A mazimal inequality for Nagel-Stein- Wainger cones

In the proof of our main theorem we will need a maximal version of Lemma 3.4. For
this let us consider a set 2 C S*~! and define the maximal cone multiplier operator

Wo f(z) :=sup |[W, f(z)],  x€R"
vEQ

Lemma 3.8. Let Q C S™" ! be a lacunary set and w € Ag. Then

HWGNLMw)S[wDQ
for some ~v depending on p,n, and the lacunarity order of €.

Proof. By the extrapolation result of Proposition 3.6 it will be enough to prove the
L?(w)-version of the conclusion whenever w € AS}. We will do so by proving the recursive
formula

[Wafllz2w) < Blw] e supsup [Wa, , |12 (w)
2 geX teZ

with v as in the conclusion of the lemma and B > 0 a numerical constant depending
only upon dimension. The proof then follows by an inductive application of the formula
above, repeated as many times as the order of lacunarity L of 2. The base step of the
induction corresponds to lacunary sets of order 0 in which case the desired estimate is
the content of Lemma 3.4.

To prove the recursive formula let v € € so that v € €, for some unique £ € Z*. By
Lemma 2.5 we have that

|va(as>\:] > (—1>‘U‘+1WQKKU,ef\5 sup sup [Wo,Ku.ef|
GALUCS PFUCE LeZ>

and so

< < g
HWQfHLZ(w) ~ up SUZ% ‘WQeKU,€f|HL2(w) ~ Sup H ZSGHZI; ‘WQeKUﬂf|HL2(w)-

H :ingz Lc @£UCS

The implicit constants in the estimates above depend only on the dimension. Now given
@ # U C ¥ and £ € Z¥ we write, as in [23, p. 1545, (6)] Z¥ = ZY x Z*\U and
£ =:jxkwith j € ZV and k € Z¥\U. With this notation in hand we can now estimate
for @ # U C X and any sequence { f;}czv
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1
2
H sup ‘Wmfﬂ‘ , < E H sup [Wo, f5l| )
Fxk=LcZ> L2 (w jezv keZ=\U (w)
3
< sup || sup Wq < £l )
jezv lgegmwo L2 (w) Z 15l 72 ()

jezv

1
2
<5uPbuP||WQae”L2(w ( E ||fj|%2(w)>

cEX LEL jezv
For @ # U C ¥ fixed and j € ZY = {j, },cu as above we let

- H Koj, f = H Kou,f=Kuef

oceU oeU

by the definition of j € ZU. Using the weighted vector-valued inequality of Lemma 3.3
and the estimates above we get

IWafllrz(w) Sn [wlhs supsup [Wa, , [l 2w 1f | 22(w)
c€ES (e
which is the desired estimate. 0O
3.9. The Chang- Wilson- Wolff reduction

The proof of our main result relies upon suitable frequency decompositions of the
maximal multiplier in hand, with directions in a lacunary set. The main splitting of the
operator gives an inner part, including the singular sets of the symbols m(¢ - v) for all
v € ), and an outer part which is only singular at the origin. Due to the presence of the
supremum in the directions, we cannot however directly use Littlewood-Paley theory to
analyze these objects. A familiar tool that has been successfully used in several occasions
in the theory of directional singular integrals is a consequence of the Chang-Wilson-
Wolff inequality, [6]. This allows us to commute the supremum over N multipliers with
a suitable Littlewood-Paley projection at a +/log N-loss.

As we are proving L?(w)-results with the plan to extrapolate to LP(w), we need a
weighted version of the Chang-Wilson-Wolff reduction which we formulate below. For
the details of the proof see for example [12, Proposition 5.2] or [8] and the references
therein. In order to state this result we introduce a coordinate-wise Littlewood-Paley
decomposition in the usual fashion.

Letting p be a smooth function on R such that

dop@T) =1, £#0,

teZ

and such that p vanishes off the set {¢ € R: § < || < 2}, we define
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(PLONE) =277 f(€),  &=(&,....&) ER",  tEZ.

Proposition 3.10. Let {Ry,..., Ry} be Fourier multiplier operators on R™ satisfying uni-
form L*(w)-bounds

sup ||RT||L2(w) < [w]ﬂll

.
1<7<N 2

for some v > 0. Let {Ptj}tez be a smooth Littlewood-Paley decomposition acting on the
J-th frequency variable, where 1 < j <n. For w € A} and 1 < p < oo we then have

Lp(w))

1
[ s el o S ol (1 TRt 5 1 (5 s, In-risey?

1<7<N
for some exponent v, = v, (v, p,n) and implicit constant independent of w, f, N
4. The proof of Theorem A

This section is dedicated to the proof of our main theorem. We remember that m €
C>(R™\{0}) and T, is the directional multiplier operator

/f “v)e™tdg,  xeR",

while for any 2 C S"! we have defined T f = sup,cq |1 f|- By the extrapolation result
of Proposition 3.6 the proof of the statement

sup || Tofllp < (log N)Y?|[fllp,  p € (1,00),
ocQ
#O=N

is reduced to proving that for all @ € S?~! which are lacunary of some order L > 1 and
all directional weights w € A§ we have

sup (| Tofllr2(w) S [w]he(log N)Y2|| £l L2 (w)
ocQ 2
#O=N

for some v > 0 depending upon dimension and the order of lacunarity of .
4.1. The main splitting
The whole proof is guided by the following splitting of the operator T, into two pieces.

The first contains the singularity of & — m(€ - v), with the complementary piece given
by a Nagel-Stein-Wainger cone as in §2.3
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o f(2)] < [T, Wo f ()] + | To(Id = Wo) f(2)| = |1, f(2)| + [T f(z)], e R™
Recall that W, is defined in §2.3. Surprisingly, the singular inner part is the easiest to

deal with, and we treat it first.

The inner part For fixed v € O C 2 there exists a unique £ € Z* such that v € Q.
Fixing such v and £ and using Lemma 2.5 we readily see that

TRf@) =] Y (DUHTW Kuef (@)
GAUCE

A

s (Y sup [TWLKuef (o))"
GAUCS N 7 ueOnQ,

1
in 2
= swp (Y IT8he, Kuef @),
4

oAUCS

with implicit constant depending upon dimension, and where we have implicitly defined
the maximal operator

T§' f := sup [T," f| = sup [T, W, f|. (4.1)
veO veO
Taking L?(w)-norms and using the weighted vector-valued bound of Lemma 3.3
1T F [y S 10l sup (T80, 172y 171132
O L2(w) ~ Ag P2 ONQe |l L2 (w) L2(w)
< o] 2 2 2 2
N [U’}Ag IWellz2 (w) igg EEIZ) HTOM ||L2(w) 11122 ()

Inserting the maximal inequality of Lemma 3.8 in the display above proves the recursive
estimate

ITE 22wy S [w]yg sup sup (| To, , |2 () (4.2)
A3 [ASPIWAYA
for some exponent 4 depending only on the lacunarity order of 2 and the dimension.

The outer part Let ¢ to be a bump function on R such that ¢ =0 on [—1/4,1/4] and
p=1on (—1/2,1/2)¢, and define

Py e o [ VS _ {01
A © = (5], €= () ER(OK

from here on, (v€) denotes the vector (vi&y, ..., v, ). Observe that on R™\{0} we have
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n—1 n—1
. ’ ’ ,
L=ol+ > el JT a=eb) |+ J] G=¢b)=ni+ | D om | +np  (43)
j=2  1<t<j 1<t<n j=2
Therefore, we can further split the operator 72" = T, (Id — W,) into n pieces,
n
T f =) TN f, (4.4)
j=1

where each N7 is the Fourier multiplier with symbol 7; .

The heart of the proof for the outer part is the content of the following lemma which
provides a pointwise control of the operators T°"* N7 P/ by suitable averages which are
independent of the direction. Here Ptj is a coordinate-wise Littlewood-Paley projection
which is defined as in the discussion preceding Lemma 3.10. That is,

(PIONE =p7TEG)©), €= (&,....&) eR™{0}, t€Z,

with supp(p) C {£ € R: § < [¢] < 2}. We will need to superimpose another Littlewood-
Paley decomposition on top of {P/}. To this aim, consider a smooth function ¢ on R
such that

sup(9) C{E€R: J<lel<4},  q=1 on {5<ld<2),

and

> q279)=1,  ¢eR™M\{0}.

teZ

In the statement of the lemma below, Mg, denotes the strong maximal function in R"™,
with respect to our fixed choice of coordinates

Lemma 4.2. Forv € S™ ! and j =1,...,n, we have the pointwise estimate
TSN P f ()] S Mawr(P f)(x)
with implicit constant depending only upon dimension.

Proof. For v € S* ! call

B(0)i= [ m(v- 1 - (O Oa2 G de,  we R
Rﬂ

Remember that v € y means that for every pair o = (k,j) with 1 < k < j < n we
have that v; /v, ~ 275 . Now for a general pair (k, ), call {y; = Ly if k < j and
fkj = _K(j,k) if £ > j. Set also £ = 0.
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From the construction of ¢?, and the definition (4.3) of /, it follows that

¢esuppn, = [|(v€)] < lvs&l-

Then, for k=1,...,n,

- v o T~

which shows that |®,(z)| < [[p_, 287,

We proceed to show suitable derivative estimates for the Fourier transform of ®.
Without further mention, estimates (4.5), (4.6), and (4.7) are meant to hold for ¢ €
supp </I;, and o, ..., a, will denote non negative integers with a = a1 + - - - 4+ «, . Firstly,

«q [e77% 1 n
|%*i%%@%(ﬂ>”<%) s Tt )
" Uj Uj 1551 Py

It is not difficult to see that w, will satisfy the same derivative estimates, namely

Ot ... 08w, < U—l)al (v—">an < - g (Crj—t) 4.
0535 l®) 5 or) <112 (4.6

Note that estimate (4.6) above was already implicitly used in the proof of Lemma 3.4.
Finally, we have to consider the derivatives of £ — m(§ - v):

e feY @ U1 o Un o
|81...8”m(ﬁ-v)|<|m(a)(v-§)|v1...v70{"§< > < ) .
bt ! -8 -8
Observe that, since we are taking ¢ € supp(l — w, ), we have that

1
[0-€1 2 55 10Ol 2 losts|

so that as before
n
ogr .. ogmm(v- | S 2“0, (4.7)
k=1

Combining (4.5), (4.6), and (4.7) together with a standard integration by parts argument
leads to the bound

n

() S T

k=1

2t*Zk]‘
(L1 20T 2p )2

whence
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TS NIP] f ()] = [T NIQIP] f ()] = |®, + (P! f)(2)] S Mswe(P/ f) ()
as desired. O

Completing the proof Recall the main splitting for T, and the estimate for the inner
part. We can then write, for each O C Q2 with #0 = N, the estimate

< Y out
||TOfHL2(w) = B[w]Agl ilelIZ)] ngZ) HTOU,ZHLQ(w)||f||L2(w) + H 1821618 |T’1) f‘HLQ(w)

where B denotes the implicit constant in the bound (4.2). Using the decomposition (4.4)
and Proposition 3.10 the second summand can be further estimated as follows

sup | <o sup [[sup [N |
vE 1<j<n " veO L2 (w
1
< ViorNully s (s IPE(TO“tNifMZ)
2 1<j<n 21}60 v L2(w) (4~8)
log N[w] Ag sup <ZMst,Pf > Sx/logN[w]ingHLz(w).
1<j<n teZ L2 (w)

In passing to the last line of the estimate above we used Lemma 4.2 while the last
approximate inequality follows by the weighted vector-valued estimates for Mg, and
weighted Littlewood-Paley theory.

Combining the estimates (4.2), (4.8), we realize that we have proved the following
almost orthogonality principle for the maximal directional multiplier 7.

Theorem B. Let Q C S"! be a set of directions which contains the coordinate directions.
Then for all w € Ag and every lacunary dissection {S, ¢} of S*~! we have

sup 1To fll2(wy < Blw ]AQ(SUP Sup 1To, |l 22w + \/IOgN) £ 22 (w)
4OZN

for constants B,y > 0 depending upon dimension and the order of the lacunary dissec-
tion.

Our main result Theorem A may be easily derived from Theorem B by means of the
following steps. First, Theorem B upgrades to the L?(w)-estimate

sup I1To fllz2(w) St | leg]VHfHLz

#O<N

when Q C S™! is a lacunary set of order L > 1. This is obtained by induction on the
order of lacunarity L. Indeed, the case L = 0 is immediate, as a 0-th order lacunary
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set contains exactly one direction. The inductive step follows by using the definition
of lacunarity and the almost orthogonality principle of Theorem B. Finally the L?(w)-
estimate of Theorem A for p € (1, 00) is a consequence of the L?(w)-estimate just proved
and the extrapolation result of Proposition 3.6.

5. Concluding remarks and open questions

In this concluding section we tie back our results to the question of LP-bounds for the
Hilbert transform along variable Lipschitz lines by describing a few directions of future
investigation.

5.1. Hilbert transform along lacunary-valued, Lipschitz-truncated fields

In this context, a natural analogue of Stein’s vector field problem described in the
introduction is to ask for sufficient, and possibly necessary conditions on the choice of
directions x — v(z) for the L?(w) or LP-boundedness of the linearized operator

under the assumption that the vector field v takes values in a lacunary set 2. We refer to
this question below as the lacunary vector field problem. While the latter is undeniably
a simpler question then the more renowned unrestricted version, it has the advantage
of removing obstacles related to Besicovitch sets, which, at least in dimension three and
higher, are far from being completely understood.

A closer look at the proof of Theorem A shows that the LP-bound for the inner part
(4.1), as well as the square function estimate

Sl 1<p<oo,
p

sup
1<j<n

1

. X 2

(}jsup Ts“NngfF)
teZ veEQN

hold with no dependence on the cardinality of €2, while such dependence must necessarily
enter the full operator. One possible sufficient condition in the lacunary vector field
problem is that T, almost commutes with Littlewood-Paley projections, for instance
in the form

|

for 1 < p < oo. This estimate, with /log N loss, has been obtained via the Chang-
Wilson-Wolff inequality in the finite cardinality setting. In dimension two, if we drop the

,  1<j<n, (5.1)

p

1
. 2
(Z|TOMN5< )ng|2>

TN | S+

lacunary-valued requirement and instead ask that the vector field v(+) has small Lipschitz
constant, and the multiplier entering the definition of T is a truncation of the Hilbert
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transform at unit scales, an almost-commuting estimate of the above type holds for the
full operator T;(.); see [10].

In [14], Guo and Thiele have shown that a sufficient condition for the lacunary vector
field estimate to hold when n = 2 is that v(x) = exp(2mi2¥®)) where k(z) = |log \(x)]
is the truncation of a Lipschitz function A : R? — (0, 1]. Note that v takes values in a
first order lacunary sequence: a generalization to higher order lacunary-valued Lipschitz
truncated vector fields is given in [11]. Both works proceed by establishing, more or less
explicitly, analogues of (5.1), with the simplification that in effect only one Littlewood-
Paley decomposition is relevant in dimension two. Our approach to Theorem A suggests
that a proof of (5.1) for suitably defined lacunary-valued Lipschitz truncated vector fields
is feasible, and would lead to sufficient conditions for the lacunary vector field problem
in higher dimensions.

5.2. Extensions to bi-parameter, non-translation invariant kernels

The directional multiplier T, of (1.1) may be thought of as a convolution with a
singular kernel which is the tensor product of the one-variable kernel K = m in direction
v with the Dirac delta in the n — 1 coordinates of v, and may thus be thought of as a
bi-parameter, translation invariant Calderén-Zygmund kernel. It is then natural to ask
whether suitable extensions of Theorem A and related results may hold for bi-parameter,
and possibly non-translation invariant analogs of (1.1). A rather general formulation in
this context is the following: let K be a smooth function on R (=1 x R1*+(»=1) minus
its diagonal, satisfying standard bi-parameter Calderén-Zygmund type assumptions, see
for instance [21, Section 2.1]. For each v €  C S"7 1, let R, be the rotation mapping
span {v} to R x {0Ogn-1} and v+ to {0} x R""!. The interest then lies in the sharp
cardinality bounds for the maximal directional singular integral on R™

Tof(z) := sup |p.v. / f(t,s)K(Ryx, R, (t,s)) dtds|, x € R",
ve0
R1+(n—1)

when O is a finite subset of a lacunary set ). The translation invariant case, where
K is the Fourier transform of a bi-parameter Hormander-Mikhlin multiplier, may be

more tractable within the tools developed in this article. Finally, we remark that sharp
estimates for bi-parameter directional square functions have recently appeared in [1].
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