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A recent result by Parcet and Rogers is that finite order 
lacunarity characterizes the boundedness of the maximal 
averaging operator associated to an infinite set of directions 
in Rn. Their proof is based on geometric-combinatorial 
coverings of fat hyperplanes by two-dimensional wedges. 
Seminal results by Nagel-Stein-Wainger relied on geometric 
coverings of n-dimensional nature. In this article we find the 
sharp cardinality estimate for singular integrals along finite 
subsets of finite order lacunary sets in all dimensions. Previous 
results only covered the special case of the directional Hilbert 
transform in dimensions two and three. The proof is new in 
all dimensions and relies, among other ideas, on a precise 
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Radon transforms covering of the n-dimensional Nagel-Stein-Wainger cone by 
two-dimensional Parcet-Rogers wedges.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We study sharp cardinality bounds for maximal singular integrals along lines in general 
ambient Euclidean dimension, when the allowed set of lines is constrained to not support 
Besicovitch sets. Our main focus is thus on directional singular integrals, defined via the 
Fourier transform as follows. Let m be a Hörmander-Mikhlin multiplier on R, that is,

m ∈ C∞(R\{0}), sup
ξ∈R\{0}

|ξ|α|∂αm(ξ)| �α 1, ∀α ≥ 0.

For f ∈ C∞
0 (Rn) and v ∈ Sn−1 consider the directional multiplier

Tvf(x) :=
ˆ

Rn

f̂(ξ)m(ξ · v)eix·ξ dξ, x ∈ Rn. (1.1)

Of course, Tv depends on the choice of symbol m. We henceforth suppress this depen-
dence from the notation as the multiplier m may be thought of as fixed throughout the 
exposition. A most relevant choice is that of the analytic projection m = 1(0,∞). In that 
case, up to a linear combination with the identity operator, Tv is the Hilbert transform 
along the direction v.

For each fixed v, Lp(Rn)-boundedness of the directional multiplier f �→ Tvf is an 
immediate consequence of a fiberwise application of the Lp(R)-bound for the one-
dimensional multiplier operator f �→ (mf̂)∨ and Fubini’s theorem. On the other hand, 
Lp-bounds for the operator

f �→ Tv(x)f(x), x ∈ Rn,

where the directional multiplier is applied along a variable choice of lines x �→ v(x), are 
highly nontrivial. The latter question, posed by E. Stein during his 1986 ICM plenary lec-
ture [25], was initially motivated by the analogy with the corresponding Lp-boundedness 
problem for the maximal averaging operator along a vector field v, which plays the role 
of the Hardy-Littlewood maximal operator in the context of Lp-differentiation along 
variable lines. The critical Lebesgue exponent is p = n, dictated by the existence of 
Besicovitch sets of measure zero. Testing on one such set yields the necessary condition 
that the choice of lines v be a Lipschitz function, and that either the multiplier m or 
the averaging operator be suitably truncated to spatial scales smaller than the inverse 
of ‖v‖LIP. Whether this condition is also sufficient, at least for weak L2-boundedness in 
dimension two, is the object of an earlier conjecture of Zygmund.
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Partial results towards Zygmund’s conjecture are due to Bourgain [4]; see also Guo 
[13]. Partial progress on Lp-bounds for the truncated Hilbert transform along a Lipschitz 
vector field has been obtained, among others, by Lacey and Li [19,20], Stein and Street 
[26], Bateman and Thiele [3], Guo, Thiele, Zorin-Kranich with the second author [10]. 
We also note that Demeter [8] proved the sharp L2-bounds for maximal directional 
Hörmander-Mikhlin multipliers along finite but arbitrary sets of directions. The proof in 
[8] relies strongly on the vector field result of [20] and the Chang-Wilson-Wolff reduction, 
the latter of which we also use in the present paper.

An alternative way of ensuring Lp-bounds for maximal directional averages, and the 
ensuing differentiation theorems, is to require that the range Ω of the vector field v(x)
does not support Besicovitch sets. In two dimensions, the infinite sets Ω giving rise to 
an Lp-bounded maximal directional averaging operator have been fully characterized 
as finite unions of finite order lacunary sets. The sufficiency in the full range is due to 
Sjögren and Sjölin [24], building upon techniques of Nagel, Stein and Wainger [22]. The 
harder necessity statement is due to Bateman [2]. In higher dimensions an analogous 
characterization was only recently achieved by Parcet and Rogers [23]. Lacunary sets 
of directions in the plane appear for instance in the seminal article by Córdoba and 
R. Fefferman [7], as well as in the already mentioned [22,24], among many others. The 
correct generalization to higher dimension is, loosely speaking, as follows: a set Ω is 
lacunary if the projection of Ω on each two-dimensional subspace spanned by a pair of 
coordinate vectors is a two-dimensional lacunary set. This definition, detailed in Section 2
and appearing for the first time in [23], encompasses the previously known examples of 
[22] and of Carbery [5].

As anticipated, the main result of this article is the full singular integral analog of the 
Parcet-Rogers result. In particular, we completely close the question, raised for instance 
in [23, Section 4], of sharp Lp(Rn)-bounds for the maximal directional multiplier operator

TOf(x) := sup
v∈O

|Tvf(x)|, x ∈ Rn,

when O is a finite subset of a finite order lacunary set Ω. Here, sharpness is referred to the 
dependence of the operator norm of TO on the cardinality of O. In fact, TO is unbounded 
on every Lp(Rn) when O is infinite and a lower bound ‖TO‖Lp �

√
log #O holds for 

every finite set when m = 1[0,∞): this is a result of Laba, Marinelli and Pramanik [18], 
elaborating on the two-dimensional counterexample of [15]. With the precise definition 
of a lacunary set of direction given in Definition 2.2, the rigorous statement of our main 
result is the following.

Theorem A. Let n ≥ 2, 1 < p < ∞, and Ω ⊂ Sn−1 be a lacunary set of finite order. 
Then

sup
O⊂Ω

#O=N

‖TOf‖Lp(Rn) � (logN)1/2‖f‖Lp(Rn), (1.2)
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where the implicit constants depend on the dimension n, on p, and on the order of 
lacunarity of the set Ω.

A comparison with the above mentioned lower bound [18] shows that the N -
dependence in Theorem A is in general best possible.

Remark 1.1. Our methods work equally well for the more general case of families of 
translation invariant directional singular integrals of the form (Rvf)∧(ξ) := mv(ξ ·v)f̂(ξ). 
Here

Sn−1 ⊃ Ω � v �→ mv(·)

is a measurable collection of Hörmander-Mikhlin multipliers on R obeying uniform 
bounds

mv ∈ C∞(R\{0}), sup
v∈Ω

sup
ξ∈R\{0}

|ξ|α|∂αmv(ξ)| �α 1, ∀α ≥ 0.

Indeed, the conclusion of Theorem A holds verbatim for the maximal operator

RΩf(x) := sup
v∈Ω

|Rvf(x)|

with identical proof. This variation may be of interest when dealing with tree operators
from time-frequency models of directional singular integrals, see for instance [9,19]. The 
corresponding multipliers differ for each tree, but they do obey uniform bounds. In the 
two-dimensional case, maximal directional multipliers such as RΩ have been studied in 
[16] for arbitrary finite sets of directions Ω ⊂ S1.

Estimate (1.2) was proved, in the case of the Hilbert transform only, in dimensions 
n = 2 [11] and n = 3 [12]. For n ≥ 4, the theorem above is new even for the maximal 
directional Hilbert transform: in fact, Theorem A is the first sharp estimate for maximal 
directional singular integrals in general dimensions. The presence of a generic Hörmander-
Mikhlin symbol ξ �→ m(ξ · v) which is not constant in the halfspaces perpendicular to v, 
as well as the availability of more coordinates in dimensions n ≥ 4, introduce new, and 
intertwined, essential obstacles that may not be treated with the approach of [11,12].

In fact, the analysis in [12] relied on a model operator for the maximal directional 
Hilbert transform which may be described heuristically as the maximal truncation to 
products of two-dimensional inner-outer wedges from [23]. This approach is satisfactory 
in dimension two and three. However, an adaptation of the counterexamples from [15,18]
yields a lower bound of (logN)�n

2 � on the Lp-norms of the model operator. This is 
done by constructing a two-dimensional counterexample from [15] for each of the 
n

2 �
pairs with distinct entries, out of the n coordinates, in a way that the counterexamples 
are not interacting with each other; see [12, Section 6] for details. Ultimately, these 
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considerations show that the sharp exponent obtained here in is out of reach for the 
purely two dimensional approach of [12,23] and novel ideas are needed.

The correct approach in dimension n ≥ 4 is a new type of geometric covering that 
combines the two-dimensional wedges of Parcet-Rogers [23] with the full-dimensional 
cones of Nagel, Stein and Wainger from [22]. A rough description of the proof is as follows: 
we cover the singularity hyperplane ξ ·v = 0 with the exterior of a full dimensional cone. 
When v comes from a lacunary set, these exterior cones give rise to a bounded square 
function: this is shown by covering each exterior cone by unions of two-dimensional 
wedges. The complementary part of the operator is then a maximal conical multiplier 
which is amenable to a one parameter Littlewood-Paley square function estimate, via 
the Chang-Wilson-Wolff inequality. In contrast, the maximal truncation to products of 
two-dimensional inner-outer wedges may only be treated with a Littlewood-Paley square 
function in 
n

2 � parameters, whence the unavoidable (logN)�n
2 � loss.

A key component when dealing with higher order lacunarity is the use of recursive-type 
vector-valued estimates. We find convenient to treat these by means of Lp(w)-bounds 
for directional weights, so that vector-valued estimates follow for free from extrapolation 
techniques. These tools are recalled in Section 3. The proof of Theorem A is provided 
in Section 4, while the concluding Section 5 contains complementary remarks and open 
questions.
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2. Lacunary sets of directions and associated frequency projections

We begin this section with a thorough definition of lacunary sets of directions in 
general dimension. We later give a simplified but equivalent version which will be used 
throughout the paper. In the remainder of the section, we define frequency projections, 
associated to lacunary cones or wedges, which will be used to decompose the maximal 
multipliers along lacunary sets into tractable pieces.

2.1. Lacunary sets of directions

Throughout the paper the ambient space is Rn and we consider sets of directions 
Ω ⊂ Sn−1. Note that by possibly adding On(1) directions to Ω we can always assume 
that span(Ω) = n; we will do throughout the rest of the paper. We then define the sets 
of ordered pairs of indices



6 N. Accomazzo et al. / Advances in Mathematics 380 (2021) 107580

Σ = Σ(n) := {σ = (j, k) : 1 ≤ j < k ≤ n};

we will typically drop the dependence on n from the notation.
For σ ∈ Σ we now consider lacunary sequences {θσ,i}i∈Z that satisfy 0 < θσ,i+1 ≤

λσθσ,i, with 0 < λσ < 1. Take λ := maxσ λσ. From here on we will assume that the 
lacunarity constant λ ∈ (0, 1) has a fixed numerical value and all sequences considered 
below will be lacunary with respect to that fixed value λ.

Given an orthonormal basis (ONB) of span(Ω) = Rn

B := (e1, . . . , en),

and a choice of lacunary sequences {θσ,�} as above we get for each σ ∈ Σ a partition of 
the sphere into sectors

Sσ,� :=
{
v ∈ Sn−1 : θσ,�+1 <

|v · eσ(2)|
|v · eσ(1)|

≤ θσ,�

}
, Sn−1 =

⋃
�∈Z

Sσ,�.

Strictly speaking we need to complete the partition by adding the limit set Sσ,∞ :=
Sn−1∩ (eσ(1)⊥ ∪eσ(2)⊥). A convenient way to do so is to define Z∗ := Z ∪{∞}. We write 
any Ω ⊆ Sn−1 as a disjoint union as follows:

Ω =
⋃

�∈Z∗

Ω ∩ Sσ,� :=
⋃

�∈Z∗

Ωσ,�, ∀σ ∈ Σ.

The collection of |Σ(n)| = n(n − 1)/2 partitions of Ω will be called a lacunary dissection
of Ω with parameters B and {θσ,�}. In particular we have that {Sσ,�} as defined above 
is a lacunary dissection of the sphere Sn−1. We will refer to the sets {Ωσ,�}, {Sσ,�} as 
sectors of a dissection.

We will also need a finer partition of subsets of the sphere into cells which is generated 
as follows. Consider a lacunary dissection of Ω ⊆ Sn−1, namely an ONB B and sequences 
{θσ,�}. Given � = {�σ : σ ∈ Σ(n)} ∈ ZΣ we define

S� :=
⋂
σ∈Σ

Sσ,�σ , Ω� :=
⋂
σ∈Σ

Ωσ,�σ ,

so that we get the partitions

Sn−1 =
⋃

�∈ZΣ

S�, Ω� =
⋃

�∈ZΣ

Ω�.

We note here, as in [23, p. 1540], that this partition of Sn−1 is in some sense redundant 
as many of the cells S� and corresponding sets Ω� will be empty. This is unavoidable if 
one wants a definition of lacunarity in higher dimensions that yields bounded maximal 
operators.

We now recall the definition of lacunary sets of directions introduced in [23, p. 1537].
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Definition 2.2. Let Ω ⊂ Sn−1 be a set of directions and assume that span(Ω) = Rn. Then 
Ω is called lacunary of order 0 if it consists of a single direction. If L is a positive integer 
then Ω is called lacunary of order L if there exists a dissection {Ωσ,�} of Ω such that for 
each σ ∈ Σ(n) and � ∈ Z∗, the sector Ωσ,� = Sσ,� ∩Ω is a lacunary set of order L − 1. A 
set Ω will be called lacunary if it is a finite union of lacunary sets of finite order.

Observe that a set Ω is lacunary of order 1 if there exists a dissection {Ωσ,�} such 
that each sector Ωσ,� contains at most one direction.

We immediately simplify the definition of lacunarity by assuming -without loss of 
generality- that all dissections are given with respect to lacunary sequences θσ,� = 2−� for 
all σ ∈ Σ, corresponding to λ = 1/2. Furthermore by a standard approximation argument 
we can dispose of the final set of the partition Ωσ,∞ and work with Z instead of Z∗. Also, 
by a finite splitting, we can and will assume that Ω ⊂ {x ∈ Rn : xi > 0, i = 1, . . . , n}.

2.3. Nagel-Stein-Wainger frequency projections

Given a Hörmander-Mikhlin multiplier m and v ∈ Sn−1 we note that the function 
ξ �→ m(ξ · v) is in general singular on the hyperplane v⊥. It is thus convenient, and very 
effective, to isolate the singularity of the symbol by the use of suitable cones or wedges.

Let ω(ξ) denote a function that is homogeneous of degree zero and C∞ away from 
the origin in Rn, and which satisfies

ω(ξ) ≡

⎧⎨
⎩

1, if |ξ1 + · · · + ξn| < 1
2n2 ‖ξ‖,

0, if |ξ1 + · · · + ξn| ≥ 1
n2 ‖ξ‖.

For a direction v ∈ Sn−1 we define the smooth frequency projections

Wvf(x) :=
ˆ

Rn

ω(v1ξ1, . . . , vnξn)f̂(ξ)eix·ξ dξ, x ∈ Rn. (2.1)

These multipliers were first considered in [22]. Note that the operator Id−Wv is a smooth 
frequency projection onto a cone with axis along v. In particular the frequency support 
of the symbol of Id −Wv only intersects the (n − 1) dimensional hyperplane v⊥ at the 
origin.

2.4. Parcet-Rogers frequency projections

Following [23] we define for σ ∈ Σ and � ∈ Z the following two-dimensional wedges

Ψσ,� :=
{
ξ ∈ Rn\e⊥σ(2) : 2−(�+1)

n
≤

−ξσ(1)

ξσ(2)
< 2−�n

}
,
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Fig. 2.1. The exterior of a Nagel-Stein-Wainger cone with axis v, corresponding to the operator Id − Wv, 
covers the singularity v⊥; a Parcet-Rogers wedge for a single σ is also pictured.

and

Ψ̃σ,� :=
{
ξ ∈ Rn\e⊥σ(2) : 2−(�+1)

n + 1 ≤
−ξσ(1)

ξσ(2)
< 2−�(n + 1)

}
.

Take κ to be a bump function such that

κ ≡

⎧⎨
⎩

1 on [1/2n, n],

0 on [1/2(n + 1), n + 1]c,

and define the Fourier multiplier operators Kσ,� with symbols

κσ,�(ξ) := κ

(
−

ξσ(1)

2−�ξσ(2)

)
, Kσ,�f := (κσ,�f̂)∨.

Note that κσ,� is smooth, identically 1 on the wedge Ψσ,�, and identically 0 off Ψ̃σ,�. For 
a subset ∅ �= U ⊆ Σ(n) we define

KU,� :=
∏
σ∈U

Kσ,�σ

with the product symbol being used to denote for compositions of operators in the display 
above.

The main geometric observation relating the Nagel-Stein-Wainger cones with the 
Parcet-Rogers wedges is contained in the following lemma, which is an elaboration of a 
similar statement from [23, Proof of Theorem A]. See Fig. 2.1.

Lemma 2.5 (Inclusion-Exclusion formula). Let {Ωσ,�} be a lacunary dissection of Ω ⊂
Sn−1 and suppose that v ∈ Ω� for some � ∈ ZΣ with � = {�σ : σ ∈ Σ}. Then
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Wvf =
∑

∅ �=U⊆Σ(n)

(−1)|U |+1WvKU,�f.

Proof. Writing (Wvf)∧ =: ωv f̂ we note that the support of ωv satisfies

suppωv ⊆
{
ξ ∈ Rn : |ξ · v| < 1

n
max

1≤k≤n
|ξkvk|

}
=: Cv.

We read from [12, Proof of Lemma 3.2], together with the assumption that v ∈ Ω�, that

Cv ⊆
⋃
σ∈Σ

Ψσ,�σ .

The conclusion of the lemma follows from the display above, the inclusion-exclusion 
formula, and the fact that for each σ ∈ Σ and � ∈ Z the operator Kσ,� has symbol κσ,�

which is identically 1 on Ψσ,�. �
3. Some auxiliary results

We will need some known facts from the weighted theory of maximal directional singu-
lar integrals, and in particular, a weighted version of the Chang-Wilson-Wolff principle. 
The latter allows us to commute a maximum over N multiplier operators with certain 
Littlewood-Paley projections, with a controlled loss in N . We refer to [12, §4] for a 
detailed exposition and just recall here the relevant statements.

3.1. Directional weighted norm inequalities

In order to state these results we briefly introduce directional Ap-weights. Given a 
closed set of directions Ω ⊂ Sn−1 and a non-negative, continuous function w on Rn, we 
say that w belongs to AΩ

p if w belongs to the one-dimensional class Ap(�v) for all lines 
�v, v ∈ Ω, with uniform bounds. More precisely, if we define the segments

I(x, t, v) := {x + sv : |s| < t} ⊂ Rn, x ∈ Rn, t > 0, v ∈ Ω,

then

[w]AΩ
p

:= sup
x∈Rn,t>0

v∈Ω

(
−
ˆ

I(x,t,v)

w

)(
−
ˆ

I(x,t,v)

w− 1
p−1

)
,

and AΩ
p := {w ∈ C(Rn) : [w]AΩ

p
< ∞}. Note that we need to consider continuous weights 

in order to make sense of their restrictions to line segments in Rn. This turns out to be 
more of a technical nuisance rather than substantial limitation and it is inconsequential 
for our applications. Finally we write
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AΩ
∞ :=

⋃
p>1

AΩ
p .

In the special case that Ω = {e1, . . . , en} is the standard coordinate basis we just 
write A∗

p for the corresponding Ap-class.
The following weighted version of the Marcinkiewicz multiplier theorem, due to Kurtz, 

can be used in several occasions where we need to prove weighted norm inequalities along 
lacunary sets of directions. We recall the statement of the result for future reference.

Proposition 3.2 (Kurtz [17]). Let m be a C∞ function in Rn away from the coordinate 
hyperplanes and assume that ‖m‖∞ ≤ B. Suppose that for all 0 < k ≤ n we have

sup
ξk+1,...,ξn

ˆ

ρ

∣∣∣ ∂km(ξ)
∂ξ1 · · · ∂ξk

∣∣∣ dξ1 · · ·dξk ≤ B

for all dyadic rectangles ρ ⊂ Rk, and any permutation of the coordinates (ξ1, . . . , ξn). 
Then for all p ∈ (1, ∞) and all w ∈ A∗

p the multiplier operator Tm(f) := (mf̂)∨ satisfies 
the weighted bounds

‖Tm‖Lp(w) := ‖Tm : Lp(w) → Lp(w)‖ � [w]γA∗
p

where γ = γ(p, n, B) and the implicit constant is independent of w.

With this result in hand we can now recall a weighted bound for the wedge multipliers 
KU,� associated with a lacunary dissection of the sphere. The proof is a direct application 
of the theorem of Kurtz above to the operator

f �→
∑
�∈ZU

ε�KU,�f,

where {ε�} is an arbitrary choice of signs.

Lemma 3.3. Let Σ be associated with a given ONB on Sn−1 and denote by A∗
p the class 

of weights corresponding to its coordinate directions. Then for all w ∈ A∗
p we have

sup
U⊆Σ

∥∥∥∥∥
( ∑

�∈ZU

∣∣KU,�f
∣∣2) 1

2
∥∥∥∥∥
Lp(w)

� [w]γA∗
p
‖f‖Lp(w)

for some γ = γ(p, n) and implicit constant independent of f and w.

In a similar spirit and with an identical proof one can easily provide weighted norm 
inequalities for the conical multipliers Wv associated with a fixed direction v ∈ Rn. See 
also (4.6) in §4 below for a similar calculation.
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Lemma 3.4. For v ∈ Sn−1 let Wv be defined as in (2.1). Then for all p ∈ (1, ∞) and all 
w ∈ A∗

p we have

sup
v∈Sn−1

‖Wv‖Lp(w) � [w]γA∗
p

for some γ = γ(n, p) and implicit constant independent of w.

The previous results imply weighted norm inequalities for the maximal function MΩ

along directions of a lacunary set Ω ⊆ Sn−1

MΩf(x) := sup
v∈Ω

sup
s>0

1
2s

sˆ

−s

|f(x + tv)| dt, x ∈ Rn.

The proof of these weighted norm inequalities can be found in [12], however said proof 
is an adaptation of the corresponding Lebesgue measure argument from [23].

Proposition 3.5. Let Ω ⊂ Sn−1 be a set of directions which is lacunary of order L, where 
L is a positive integer, and let w ∈ AΩ

p be a directional weight with respect to Ω. For all 
p ∈ (1, ∞) there exists a constant γ = γ(p, n) > 0 such that

‖MΩ‖Lp(w) � [w]γL
AΩ

p
,

with implicit constant depending only on p, n and the lacunarity order of Ω.

The boundedness of the directional maximal function MΩ now allows us to extrapolate 
weighted norm inequalities from L2(w) as in [12, §4.2]. Namely the following holds.

Proposition 3.6. Let Ω ⊆ Sn−1 be a (closed) lacunary set of directions of finite order. 
Suppose that there exists a p0 ∈ (1, ∞) and γ > 0 such that for some family of pairs of 
non-negative function (f, g) we have

‖f‖Lp0 (w) � [w]γ
AΩ

p0
‖g‖Lp0 (w)

with implicit constant independent of (f, g) and w. Then for all p ∈ (1, ∞) and all 
w ∈ AΩ

p we have

‖f‖Lp(w) � [w]γp

AΩ
p
‖g‖Lp(w)

where γp depends on γ, n, p and the order of lacunarity of Ω; the implicit constant depends 
only on p, n and the lacunarity order of Ω.
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3.7. A maximal inequality for Nagel-Stein-Wainger cones

In the proof of our main theorem we will need a maximal version of Lemma 3.4. For 
this let us consider a set Ω ⊂ Sn−1 and define the maximal cone multiplier operator

WΩf(x) := sup
v∈Ω

|Wvf(x)|, x ∈ Rn.

Lemma 3.8. Let Ω ⊂ Sn−1 be a lacunary set and w ∈ AΩ
p . Then

‖WΩ‖Lp(w) � [w]γ
AΩ

p

for some γ depending on p, n, and the lacunarity order of Ω.

Proof. By the extrapolation result of Proposition 3.6 it will be enough to prove the
L2(w)-version of the conclusion whenever w ∈ AΩ

2 . We will do so by proving the recursive 
formula

‖WΩf‖L2(w) ≤ B[w]γ
AΩ

2
sup
σ∈Σ

sup
�∈Z

‖WΩσ,�
‖L2(w)

with γ as in the conclusion of the lemma and B > 0 a numerical constant depending 
only upon dimension. The proof then follows by an inductive application of the formula 
above, repeated as many times as the order of lacunarity L of Ω. The base step of the 
induction corresponds to lacunary sets of order 0 in which case the desired estimate is 
the content of Lemma 3.4.

To prove the recursive formula let v ∈ Ω so that v ∈ Ω� for some unique � ∈ ZΣ. By 
Lemma 2.5 we have that

|Wvf(x)| =
∣∣∣ ∑
∅ �=U⊆Σ

(−1)|U |+1WΩ�
KU,�f

∣∣∣ � sup
∅ �=U⊆Σ

sup
�∈ZΣ

|WΩ�
KU,�f |

and so

‖WΩf‖L2(w) �
∥∥ sup

∅ �=U⊆Σ
sup
�∈ZΣ

|WΩ�
KU,�f |

∥∥
L2(w) � sup

∅ �=U⊆Σ

∥∥ sup
�∈ZΣ

|WΩ�
KU,�f |

∥∥
L2(w).

The implicit constants in the estimates above depend only on the dimension. Now given 
∅ �= U ⊆ Σ and � ∈ ZΣ we write, as in [23, p. 1545, (6)] ZΣ = ZU × ZΣ\U and 
� =: j ×k with j ∈ ZU and k ∈ ZΣ\U . With this notation in hand we can now estimate 
for ∅ �= U ⊆ Σ and any sequence {fj}j∈ZU
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∥∥∥ sup
j×k=�∈ZΣ

|WΩ�
fj |

∥∥∥
L2(w)

≤
( ∑

j∈ZU

∥∥∥ sup
k∈ZΣ\U

|WΩ�
fj |

∥∥∥2

L2(w)

) 1
2

≤ sup
j∈ZU

∥∥∥ sup
k∈ZΣ\U

WΩ�

∥∥∥
L2(w)

( ∑
j∈ZU

‖fj‖2
L2(w)

) 1
2

≤ sup
σ∈Σ

sup
�∈Z

‖WΩσ,�
‖L2(w)

( ∑
j∈ZU

‖fj‖2
L2(w)

) 1
2

.

For ∅ �= U ⊂ Σ fixed and j ∈ ZU = {jσ}σ∈U as above we let

fj :=
∏
σ∈U

Kσ,jσf =
∏
σ∈U

Kσ,�σf = KU,�f

by the definition of j ∈ ZU . Using the weighted vector-valued inequality of Lemma 3.3
and the estimates above we get

‖WΩf‖L2(w) �n [w]γA∗
2

sup
σ∈Σ

sup
�∈Z

‖WΩσ,�
‖L2(w)‖f‖L2(w)

which is the desired estimate. �
3.9. The Chang-Wilson-Wolff reduction

The proof of our main result relies upon suitable frequency decompositions of the 
maximal multiplier in hand, with directions in a lacunary set. The main splitting of the 
operator gives an inner part, including the singular sets of the symbols m(ξ · v) for all 
v ∈ Ω, and an outer part which is only singular at the origin. Due to the presence of the 
supremum in the directions, we cannot however directly use Littlewood-Paley theory to 
analyze these objects. A familiar tool that has been successfully used in several occasions 
in the theory of directional singular integrals is a consequence of the Chang-Wilson-
Wolff inequality, [6]. This allows us to commute the supremum over N multipliers with 
a suitable Littlewood-Paley projection at a 

√
logN -loss.

As we are proving L2(w)-results with the plan to extrapolate to Lp(w), we need a 
weighted version of the Chang-Wilson-Wolff reduction which we formulate below. For 
the details of the proof see for example [12, Proposition 5.2] or [8] and the references 
therein. In order to state this result we introduce a coordinate-wise Littlewood-Paley 
decomposition in the usual fashion.

Letting p be a smooth function on R such that
∑
t∈Z

p(2−tξ) = 1, ξ �= 0,

and such that p vanishes off the set {ξ ∈ R : 1
2 < |ξ| < 2}, we define
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(P j
t f)∧(ξ) := p(2−tξj)f̂(ξ), ξ = (ξ1, . . . , ξn) ∈ Rn, t ∈ Z.

Proposition 3.10. Let {R1, . . . , RN} be Fourier multiplier operators on Rn satisfying uni-
form L2(w)-bounds

sup
1≤τ≤N

‖Rτ‖L2(w) ≤ [w]γA∗
2

for some γ > 0. Let {P j
t }t∈Z be a smooth Littlewood-Paley decomposition acting on the 

j-th frequency variable, where 1 ≤ j ≤ n. For w ∈ A∗
p and 1 < p < ∞ we then have

∥∥∥ sup
1≤τ≤N

|Rτf |
∥∥∥
Lp(w)

� [w]γp

A∗
p

(
‖f‖Lp(w)+

√
log(N + 1)

∥∥∥(∑
t∈Z

sup
1≤τ≤N

|RτP
j
t f |2

) 1
2
∥∥∥
Lp(w)

)

for some exponent γp = γp(γ, p, n) and implicit constant independent of w, f, N .

4. The proof of Theorem A

This section is dedicated to the proof of our main theorem. We remember that m ∈
C∞(Rn\{0}) and Tv is the directional multiplier operator

Tvf(x) =
ˆ

Rn

f̂(ξ)m(ξ · v)eix·ξ dξ, x ∈ Rn,

while for any Ω ⊂ Sn−1 we have defined TΩf = supv∈Ω |Tvf |. By the extrapolation result 
of Proposition 3.6 the proof of the statement

sup
O⊂Ω

#O=N

‖TOf‖p � (logN)1/2‖f‖p, p ∈ (1,∞),

is reduced to proving that for all Ω ⊂ Sn−1 which are lacunary of some order L ≥ 1 and 
all directional weights w ∈ AΩ

2 we have

sup
O⊂Ω

#O=N

‖TOf‖L2(w) � [w]γ
AΩ

2
(logN)1/2‖f‖L2(w)

for some γ > 0 depending upon dimension and the order of lacunarity of Ω.

4.1. The main splitting

The whole proof is guided by the following splitting of the operator Tv into two pieces. 
The first contains the singularity of ξ �→ m(ξ · v), with the complementary piece given 
by a Nagel-Stein-Wainger cone as in §2.3
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|Tvf(x)| ≤ |TvWvf(x)| + |Tv(Id −Wv)f(x)| =: |T in
v f(x)| + |T out

v f(x)|, x ∈ Rn.

Recall that Wv is defined in §2.3. Surprisingly, the singular inner part is the easiest to 
deal with, and we treat it first.

The inner part For fixed v ∈ O ⊂ Ω there exists a unique � ∈ ZΣ such that v ∈ Ω�. 
Fixing such v and � and using Lemma 2.5 we readily see that

|T in
v f(x)| =

∣∣∣ ∑
∅ �=U⊆Σ

(−1)|U |+1TvWvKU,�f(x)
∣∣∣

� sup
∅ �=U⊆Σ

(∑
�

sup
u∈O∩Ω�

|TuWuKU,�f(x)|2
) 1

2

= sup
∅ �=U⊆Σ

(∑
�

|T in
O∩Ω�

KU,�f(x)|2
) 1

2
,

with implicit constant depending upon dimension, and where we have implicitly defined 
the maximal operator

T in
O f := sup

v∈O
|T in

v f | = sup
v∈O

|TvWvf |. (4.1)

Taking L2(w)-norms and using the weighted vector-valued bound of Lemma 3.3

∥∥T in
O f

∥∥2
L2(w) � [w]2γ1

AΩ
2

sup
�∈ZΣ

∥∥T in
O∩Ω�

∥∥2
L2(w) ‖f‖

2
L2(w)

� [w]γ2
AΩ

2
‖WΩ‖2

L2(w) sup
σ∈Σ

sup
�∈Z

∥∥TOσ,�

∥∥2
L2(w) ‖f‖

2
L2(w).

Inserting the maximal inequality of Lemma 3.8 in the display above proves the recursive 
estimate

‖T in
O ‖L2(w) � [w]γ̃

AΩ
2

sup
σ∈Σ

sup
�∈Z

‖TOσ,�
‖L2(w) (4.2)

for some exponent γ̃ depending only on the lacunarity order of Ω and the dimension.

The outer part Let ϕ to be a bump function on R such that ϕ ≡ 0 on [−1/4, 1/4] and 
ϕ ≡ 1 on (−1/2, 1/2)c, and define

ϕj
v (ξ) := ϕ

(
nvjξj
‖(vξ)‖

)
, ξ = (ξ1, . . . , ξn) ∈ Rn\{0};

from here on, (vξ) denotes the vector (v1ξ1, . . . , vnξn). Observe that on Rn\{0} we have
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1 = ϕ1
v +

⎛
⎝n−1∑

j=2
ϕj
v

∏
1≤�<j

(1 − ϕ�
v)

⎞
⎠ +

∏
1≤�<n

(1 − ϕ�
v) =: η1

v +

⎛
⎝n−1∑

j=2
ηjv

⎞
⎠ + ηnv . (4.3)

Therefore, we can further split the operator T out
v = Tv(Id −Wv) into n pieces,

T out
v f =

n∑
j=1

T out
v N j

vf, (4.4)

where each N j
v is the Fourier multiplier with symbol ηj,v.

The heart of the proof for the outer part is the content of the following lemma which 
provides a pointwise control of the operators T out

v N j
vP

j
t by suitable averages which are 

independent of the direction. Here P j
t is a coordinate-wise Littlewood-Paley projection 

which is defined as in the discussion preceding Lemma 3.10. That is,

(P j
t f)∧(ξ) := p(2−tξj)f̂(ξ), ξ = (ξ1, . . . , ξn) ∈ Rn\{0}, t ∈ Z,

with supp(p) ⊆ {ξ ∈ R : 1
2 < |ξ| < 2}. We will need to superimpose another Littlewood-

Paley decomposition on top of {P j
t }. To this aim, consider a smooth function q on R

such that

supp(q) ⊆ {ξ ∈ R : 1
4 < |ξ| < 4}, q ≡ 1 on {1

2 < |ξ| < 2},

and
∑
t∈Z

q(2−tξ)= 1, ξ ∈ Rn\{0}.

In the statement of the lemma below, Mstr denotes the strong maximal function in Rn, 
with respect to our fixed choice of coordinates

Lemma 4.2. For v ∈ Sn−1 and j = 1, . . . , n, we have the pointwise estimate

|T out
v N j

vP
j
t f(x)| � Mstr(P j

t f)(x)

with implicit constant depending only upon dimension.

Proof. For v ∈ Sn−1 call

Φv(x) :=
ˆ

Rn

m(v · ξ)(1 − ωv(ξ))ηjv(ξ)q(2−tξj)eix·ξ dξ, x ∈ Rn.

Remember that v ∈ Ω� means that for every pair σ = (k, j) with 1 ≤ k < j ≤ n we 
have that vj/vk ∼ 2−�(k,j) . Now for a general pair (k, j), call �kj := �(k,j) if k < j and 
�kj := −�(j,k) if k > j. Set also �kk = 0.



N. Accomazzo et al. / Advances in Mathematics 380 (2021) 107580 17

From the construction of ϕj
v, and the definition (4.3) of ηjv, it follows that

ξ ∈ supp ηjv =⇒ ‖(vξ)‖ � |vjξj |.

Then, for k = 1, . . . , n,

|ξk| ≤
‖(vξ)‖
vk

� vj
vk

|ξj | � 2t−�kj ,

which shows that |Φv(x)| �
∏n

k=1 2t−�kj .
We proceed to show suitable derivative estimates for the Fourier transform of Φ. 

Without further mention, estimates (4.5), (4.6), and (4.7) are meant to hold for ξ ∈
supp Φ̂, and α1, . . . , αn will denote non negative integers with α = α1 + · · ·+αn. Firstly,

|∂α1
ξ1

. . . ∂αn

ξn
ηvj (ξ)| �

(
v1

vj

)α1

· · ·
(
vn
vj

)αn 1
|ξj |α

�
n∏

k=1

2αk(�kj−t). (4.5)

It is not difficult to see that ωv will satisfy the same derivative estimates, namely

|∂α1
ξ1

. . . ∂αn

ξn
ωv(ξ)| �

(
v1

‖(vξ)‖

)α1

. . .

(
vn

‖(vξ)‖

)αn

�
n∏

k=1

2αk(�kj−t). (4.6)

Note that estimate (4.6) above was already implicitly used in the proof of Lemma 3.4. 
Finally, we have to consider the derivatives of ξ �→ m(ξ · v):

|∂α1
ξ1

. . . ∂αn

ξn
m(ξ · v)| ≤ |m(α)(v · ξ)|vα1

1 . . . vαn
n �

(
v1

|v · ξ|

)α1

. . .

(
vn

|v · ξ|

)αn

.

Observe that, since we are taking ξ ∈ supp(1 − ωv), we have that

|v · ξ| ≥ 1
2n2 ‖(vξ)‖ � |vjξj |

so that as before

|∂α1
ξ1

. . . ∂αn

ξn
m(v · ξ)| �

n∏
k=1

2αk(�kj−t). (4.7)

Combining (4.5), (4.6), and (4.7) together with a standard integration by parts argument 
leads to the bound

|Φv(x)| �
n∏

k=1

2t−�kj

(1 + 2t−�kj |xk|)2
,

whence
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|T out
v N j

vP
j
t f(x)| = |T out

v N j
vQ

j
tP

j
t f(x)| = |Φv ∗ (P j

t f)(x)| � Mstr(P j
t f)(x)

as desired. �
Completing the proof Recall the main splitting for Tv and the estimate for the inner 
part. We can then write, for each O ⊂ Ω with #O = N , the estimate

‖TOf‖L2(w) ≤ B[w]γ
AΩ

2
sup
σ∈Σ

sup
�∈Z

‖TOσ,�
‖L2(w)‖f‖L2(w) +

∥∥ sup
v∈O

|T out
v f |

∥∥
L2(w),

where B denotes the implicit constant in the bound (4.2). Using the decomposition (4.4)
and Proposition 3.10 the second summand can be further estimated as follows∥∥∥ sup

v∈O
|T out

v f |
∥∥∥
L2(w)

�n sup
1≤j≤n

∥∥∥ sup
v∈O

|T out
v N j

vf |
∥∥∥
L2(w)

�
√

logN [w]β
′

AΩ
2

sup
1≤j≤n

∥∥∥∥∥
(∑

t∈Z
sup
v∈O

|P j
t (T out

v N j
vf)|2

) 1
2
∥∥∥∥∥
L2(w)

�
√

logN [w]β
′

AΩ
2

sup
1≤j≤n

∥∥∥∥∥
(∑

t∈Z
Mstr(P j

t f)2
) 1

2
∥∥∥∥∥
L2(w)

�
√

logN [w]β
′

AΩ
2
‖f‖L2(w).

(4.8)

In passing to the last line of the estimate above we used Lemma 4.2 while the last 
approximate inequality follows by the weighted vector-valued estimates for Mstr and 
weighted Littlewood-Paley theory.

Combining the estimates (4.2), (4.8), we realize that we have proved the following 
almost orthogonality principle for the maximal directional multiplier TO.

Theorem B. Let Ω ⊂ Sn−1 be a set of directions which contains the coordinate directions. 
Then for all w ∈ AΩ

p and every lacunary dissection {Sσ,�} of Sn−1 we have

sup
O⊆Ω

#O≤N

‖TOf‖L2(w) ≤ B[w]γ
AΩ

2

(
sup
σ∈Σ

sup
�∈Z

‖TOσ,�
‖L2(w) +

√
logN

)
‖f‖L2(w)

for constants B, γ > 0 depending upon dimension and the order of the lacunary dissec-
tion.

Our main result Theorem A may be easily derived from Theorem B by means of the 
following steps. First, Theorem B upgrades to the L2(w)-estimate

sup
O⊆Ω

#O≤N

‖TOf‖L2(w) �L [w]Lγ

AΩ
2

√
logN‖f‖L2(w)

when Ω ⊂ Sn−1 is a lacunary set of order L ≥ 1. This is obtained by induction on the 
order of lacunarity L. Indeed, the case L = 0 is immediate, as a 0-th order lacunary 
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set contains exactly one direction. The inductive step follows by using the definition 
of lacunarity and the almost orthogonality principle of Theorem B. Finally the Lp(w)-
estimate of Theorem A for p ∈ (1, ∞) is a consequence of the L2(w)-estimate just proved 
and the extrapolation result of Proposition 3.6.

5. Concluding remarks and open questions

In this concluding section we tie back our results to the question of Lp-bounds for the 
Hilbert transform along variable Lipschitz lines by describing a few directions of future 
investigation.

5.1. Hilbert transform along lacunary-valued, Lipschitz-truncated fields

In this context, a natural analogue of Stein’s vector field problem described in the 
introduction is to ask for sufficient, and possibly necessary conditions on the choice of 
directions x �→ v(x) for the L2(w) or Lp-boundedness of the linearized operator

f �→ Tv(x)f(x)

under the assumption that the vector field v takes values in a lacunary set Ω. We refer to 
this question below as the lacunary vector field problem. While the latter is undeniably 
a simpler question then the more renowned unrestricted version, it has the advantage 
of removing obstacles related to Besicovitch sets, which, at least in dimension three and 
higher, are far from being completely understood.

A closer look at the proof of Theorem A shows that the Lp-bound for the inner part 
(4.1), as well as the square function estimate

sup
1≤j≤n

∥∥∥∥∥
(∑

t∈Z
sup
v∈Ω

|T out
v N j

vP
j
t f |2

) 1
2
∥∥∥∥∥
p

� ‖f‖p, 1 < p < ∞,

hold with no dependence on the cardinality of Ω, while such dependence must necessarily 
enter the full operator. One possible sufficient condition in the lacunary vector field 
problem is that Tv(·) almost commutes with Littlewood-Paley projections, for instance 
in the form

∥∥∥T out
v(·)N

j
v(·)f

∥∥∥
p

� ‖f‖p +

∥∥∥∥∥
(∑

t∈Z
|T out

v(·)N
j
v(·)P

j
t f |2

) 1
2
∥∥∥∥∥
p

, 1 ≤ j ≤ n, (5.1)

for 1 < p < ∞. This estimate, with 
√

logN loss, has been obtained via the Chang-
Wilson-Wolff inequality in the finite cardinality setting. In dimension two, if we drop the 
lacunary-valued requirement and instead ask that the vector field v(·) has small Lipschitz 
constant, and the multiplier entering the definition of T is a truncation of the Hilbert 
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transform at unit scales, an almost-commuting estimate of the above type holds for the 
full operator Tv(·); see [10].

In [14], Guo and Thiele have shown that a sufficient condition for the lacunary vector 
field estimate to hold when n = 2 is that v(x) = exp(2πi2k(x)) where k(x) = 
log λ(x)�
is the truncation of a Lipschitz function λ : R2 → (0, 1]. Note that v takes values in a 
first order lacunary sequence: a generalization to higher order lacunary-valued Lipschitz 
truncated vector fields is given in [11]. Both works proceed by establishing, more or less 
explicitly, analogues of (5.1), with the simplification that in effect only one Littlewood-
Paley decomposition is relevant in dimension two. Our approach to Theorem A suggests 
that a proof of (5.1) for suitably defined lacunary-valued Lipschitz truncated vector fields 
is feasible, and would lead to sufficient conditions for the lacunary vector field problem 
in higher dimensions.

5.2. Extensions to bi-parameter, non-translation invariant kernels

The directional multiplier Tv of (1.1) may be thought of as a convolution with a 
singular kernel which is the tensor product of the one-variable kernel K = m̂ in direction 
v with the Dirac delta in the n − 1 coordinates of v⊥, and may thus be thought of as a 
bi-parameter, translation invariant Calderón-Zygmund kernel. It is then natural to ask 
whether suitable extensions of Theorem A and related results may hold for bi-parameter, 
and possibly non-translation invariant analogs of (1.1). A rather general formulation in 
this context is the following: let K be a smooth function on R1+(n−1) ×R1+(n−1) minus 
its diagonal, satisfying standard bi-parameter Calderón-Zygmund type assumptions, see 
for instance [21, Section 2.1]. For each v ∈ Ω ⊂ Sn−1, let Rv be the rotation mapping 
span {v} to R × {�0Rn−1} and v⊥ to {0} × Rn−1. The interest then lies in the sharp 
cardinality bounds for the maximal directional singular integral on Rn

TOf(x) := sup
v∈O

∣∣∣∣∣∣p.v.
ˆ

R1+(n−1)

f(t, s)K(Rvx,Rv(t, s)) dtds

∣∣∣∣∣∣ , x ∈ Rn,

when O is a finite subset of a lacunary set Ω. The translation invariant case, where 
K is the Fourier transform of a bi-parameter Hörmander-Mikhlin multiplier, may be 
more tractable within the tools developed in this article. Finally, we remark that sharp 
estimates for bi-parameter directional square functions have recently appeared in [1].
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