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Abstract

Motivation: Viruses infect, reprogram, and kill microbes, leading to profound ecosystem consequences, from elemental
cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic datasets
are increasingly available, identifying viruses in them is challenging due to poor representation and annotation of viral
sequences in databases.

Results: Here we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent viral
protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240,311 HMM profiles,
each with at least 2 protein sequences, making efam >7-fold larger than the next largest, pan-ecosystem viral HMM profile
database. Adjusting the criteria for viral contig confidence from “conservative” to “e Xtremely Conservative” resulted in
37,841 HMM profiles in our efam-XC database. To assess the value of this resource, we integrated efam-XC into VirSorter
viral discovery software to discover viruses from less-studied, ecologically distinct oxygen minimum zone (OMZ) marine
habitats. This expanded database led to an increase in viruses recovered from every tested OMZ virome by ~24% on
average (up to ~42%) and especially improved the recovery of often-missed shorter contigs (<5 kb). Additionally, to help
elucidate lesser-known viral protein functions, we annotated the profiles using multiple databases from the DRAM pipeline
and virion-associated metaproteomic data, which doubled the number of annotations obtainable by standard, single-da-
tabase annotation approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, com-
pressed HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any
ecosystem.

Availability: The resources are available on the iVirus platform at (doi.org/10.25739/9vze-4143).

Contact: sullivan.948@osu.edu, liliana.cristina.moraru@uni-oldenburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Marine viruses infecting microbes are the most abundant biological en-
tities on the planet (Hendrix et al., 1999). With abundances of up to 10!
per liter of seawater and approaching 2x10° viral populations or “species”
cataloged across the global ocean (Gregory et al., 2019), viruses outnum-
ber their hosts in abundance and potentially in diversity (Ignacio-Espinoza
etal.,2013). Viruses affect their host’s metabolism, physiology, evolution
and mortality, and consequentially alter global biogeochemical cycles.
They are a major force driving nutrient cycling (Suttle, 2007) and are
thought to impact carbon fluxes in the oceans, making them critical play-
ers in global climate regulation (Guidi ef al., 2016). Despite their impact,
much of the viral sequence space remains to be discovered. The primary
methodology for discovery is high throughput metagenomic sequencing.
This is because the vast majority of viruses are not in culture, with only
15% of the known prokaryotic phyla having cultured representatives at all
(Roux et al., 2015b) and viral isolation is dependent on the ability to grow
their host. Additionally, the discovery and functional annotation of viral
contigs in cellular metagenomes - or even in viral metagenomes, com-
monly characterized by a high non-viral background (Roux ez al, 2013) -
utilizes tools that ultimately rely upon known viral sequences.

Hence, several Hidden-Markov-Model (HMM) profile databases have
been developed and utilized for annotating viral genes for functional char-
acterization in metagenomes. HMM databases increase the sensitivity of
homology identification, which is suitable for what is posited to be a broad
and expansive viral sequence space (Soding, 2005). Existing databases
were developed from (i) reference sequences of viral isolates and pro-
phages (e.g. RefSeq), such as POGs/pVOGs (Kristensen et al., 2013,
Grazziotin et al., 2017), uPOGs (Zheng et al., 2019), vFams (Skewes-Cox
et al., 2014), and VOGDB (http://vogdb.org/), (ii) reference sequences
(e.g. UniProt Knowledgebase) of cellular or viral origin, such as Pfam (El-
Gebali et al., 2019) and TIGRFAMs (Haft et al., 2003), or (iii) viral ref-
erence sequences and curated viral contigs from metagenomes, such as
VPF (Paez-Espino ef al., 2016). However, all these databases underrepre-
sent marine viruses for the reasons outlined above.

Here we developed efam and efam-XC, as conservative and extremely
conservative databases, respectively, representing expanded and anno-
tated HMM profiles of viral protein families recovered from the Global
Ocean Virome 2.0 (GOV 2.0) dataset (Gregory et al., 2019), to aid viral
discovery and functional annotations, particularly from marine ecosys-
tems. GOV2 is unprecedented with regard to both sequencing depth and
geographic scope including sequences from ~200K viral populations (ap-
proximately viral “species”; Gregory et al., 2016; Roux et al., 2019; Greg-
ory et al., 2019) from different ocean layers and all major ocean basins,
including geopolitically challenging circumpolar sampling from the Arc-
tic Ocean. Profile annotations were performed using both sequence simi-
larity-based, confidence-scored bioinformatic methods and dedicated met-
aproteomic experiments designed to identify proteins associated with
highly purified viral particles, while performance tests revealed signifi-
cantly improved viral detection across multiple viromes.

2 Methods - Construction of efam and efam-XC

2.1 Selection of highest-confidence viral contigs from the
GOV 2.0 dataset

The GOV2.0 dataset (Gregory et al., 2019), containing 848,507 viral con-
tigs, was used as a source of novel marine viral genomes. A length

threshold of > Skb was used for linear contigs, and of > 1.5 kb for circular
ones. We re-analyzed all GOV 2.0 contigs using three different viral pre-
diction tools: VirSorter (Roux et al., 2015a), DeepVirFinder (Ren et al.,
2020), and MARVEL (Amgarten ef al., 2018). VirSorter was run in the
“virome decontamination” mode, choosing the virome database as the ref-
erence. DeepVirFinder and MARVEL were run using the default param-
eters. The strictest cut-offs for viral contig detection were used to select
sets of viral contigs with the highest confidence scores according to each
tool’s classification model, as follows: i) category 1 for VirSorter; ii) score
> 0.9 and p-value < 0.05 for DeepVirFinder; and iii) score > 90% for
MARVEL. Additionally, only contigs predicted by all three tools (efam-
XC) or by at least two of them (efam) were selected. Further, each dataset
was cleaned from non-viral regions by using CheckV’s contamination
module (Nayfach et al., 2020).

2.2 Protein prediction, decontamination, and clustering

For each contig, the open-reading-frames (ORFs) and their correspond-
ing proteins were predicted using Prodigal in metagenomic mode (Hyatt
et al., 2010). The resulting proteins were then searched against a RefSeq-
database containing all bacterial and archaeal proteins (access date: Jan
12th, 2019) using Diamond BLASTP (Buchfink et al., 2015). Sequences
that showed high local identity (percent identity > 95% with no minimum
coverage requirement and considering all the hits rather than just the top
hit) to bacterial and archaeal proteins were excluded. Exceptions were the
proteins with one of the following keywords in its annotation: “tail”, “cap-
sid”, “portal”, “virus”, “virion”, “viral”, “phage”, “bacteriophage”, or
“terminase”, detected by using the string search (str_detect) function of
package “stringr” (Wickham, 2017) in R (R Core Team, 2020). Subse-
quently, the remaining proteins were dereplicated (at 100% identity) using
USEARCH (Edgar, 2010) with the —fastx_uniques flag.

The selected protein sequences were clustered by (i) running an all-
against-all Diamond BLASTP search using the default parameters (except
for using the --more-sensitive flag), (ii) filtering out matches with an
evalue >10e-5, coverage <70% of the length of either sequence (to reduce
regions with gaps in the multiple sequence alignment step below (sensu
the vFams pipeline; Skewes-Cox et al., 2014)), and with total length <50
amino acids for either sequence (to minimize including mis-called pro-
teins in the Prodigal step above as well as incomplete protein sequences),
(iii) performing a negative log10 transformation on the e-values (to make
the values directly proportional to sequence similarity) and then, removing
any non-positive transformed e-values and applying a ceiling of 200 on
the remaining transformed e-values (i.e., treating all cases with an e-value
< e-200 the same), and (iv) clustering the matching protein pairs (nodes)
based on the final transformed e-values (edges) using the graph-based
clustering method in ClusterONE (Nepusz et al., 2012). The default pa-
rameters for ClusterONE were used, except for the minimum sequence
number per cluster (-s 2). In order to examine the impact of the clustering
software on the final cluster sets, we also clustered the proteins using MCL
(Enright ef al., 2002), using the transformed e-values as edge weight and
the default parameters of MCL.

2.3 Creation of Hidden-Markov-Model Profiles and bioin-
formatic annotations

Sequences within each cluster were aligned using MUSCLE (Edgar,
2004), with a maximum number of iterations of 4 (—maxiters = 4), to bal-
ance accuracy and speed. Then, HMM profiles were built for each of the
multiple-sequence-alignments using hmmbuild, which is part of the
HMMER3 package (Eddy, 2011), with the default parameters. All HMM
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profiles were compressed into a HMMER3 searchable database, using
hmmpress (from HMMER3 package). This allows for quick searches of
the database with hmmscan or similar programs.

The proteins in each cluster were annotated using the ‘annotate genes’
module of DRAM (Shaffer et al., 2020) against KEGG (Kanehisa et al.,
2016), UniRef90 (Suzek et al., 2015), Pfam (El-Gebali et al., 2019), and
VOGDB (http://vogdb.org/). Information about each cluster, including
cluster number, the number of proteins within the cluster, and the confi-
dence/rank of the annotations are included in the companion tables of the
searchable HMM databases.

2.4 Annotations of virion-associated proteins using metap-
roteomic data

A total of 48 viral metaproteomes from the 7ara Oceans expeditions were
used to further annotate viral structural proteins in efam and efam-XC.
Twelve metaproteomes were previously generated from 4 samples (Brum
et al., 2016) and 36 were generated in this study, from 33 samples, and
analyzed using the mass spectrometry platform described in Huang et al.,
2016. The sampling dates, locations, and depths for all the viral metapro-
teomes are provided in (Supplementary Table 1). The metaproteome
spectral files were queried for the presence of GOV 2.0 proteins, as fol-
lows. Spectral input files were first converted from .RAW to .mzML using
msConvert of ProteoWizard 3.0.10200 (Chambers et al. 2012), using the
default parameters. Spectral files were then searched using MSGFPlus
v2017.01.13 (Kim et al., 2014) against all protein sequences from the
GOV2.0. MSGFPlus searches were performed with the following param-
eters: £20 ppm parent mass tolerance; isotope error range (-ti *-1,2”); fully
tryptic enzyme settings (-e 1 -ntt 2); 6 and 50 as the minimum and maxi-
mum peptide lengths to consider, respectively; reporting only the Peptide-
Spectral Matches (PSMs) with the highest MSGF score (-n 1); conducting
a parallel search against a decoy protein database (-tda 1) for calculating
the false discovery rate (FDR). After conducting the searches, the FDR
was calculated as described previously (Woodcroft et al. 2018) and an
FDR cutoff of 1% was applied for each independent search.

All detected peptides (FDR < 1%) were mapped to the dereplicated set of
proteins that comprise efam and efam-XC using the PeptideToProtein-
Mapper console app v1.3.6794 (omics.pnl.gov/software/protein-cover-
age-summarizer) with flags “\G \H \A”. The set of proteins and clusters
that recruited each peptide were collapsed and condensed in a single table,
adding the statistics of these mapped proteins and clusters and the DRAM
annotations to each cluster along with any additional information on these
annotations, such as whether it was previously annotated and/or had a
structural annotation. A cluster was considered previously annotated if its
annotations from KEGG, UniRef90, Pfam, or VOGDB did not include any
the following keywords: “uncharacterized”, “hypothetical”, “no annota-
tion”, or “duf” (short for domain of unknown function). Among clusters
with previous annotations, a cluster was considered to have a previous
structural annotation if it included any of the following keywords: "coat",
"capsid", "virion", "head", "neck", "mu", "fiber", "tail", "sheath", "struc-
tur*" (for structure or structural), "spike", "baseplate","gp23" (major cap-
sid protein),"gp9" (baseplate protein). All searches against these keywords
were case insensitive.

2.5 Benchmarking viral discovery in metagenomes with
efam-XC

In order to assess the potential contribution of efam-XC towards the de-
tection of unknown viral sequences, VirSorter was run on two sets of

marine metagenomes — both of which were not part of building efam or
efam-XC, and both are ecologically distinct from open ocean viromes
(Vik et al., 2020) — as well as two sets of non-marine metagenomes from
the well-studied human gut (Shkoporov et al., 2019; Gregory et al., 2020)
and less-studied permafrost soils (Roux et al., 2019a). The first marine
dataset comprised of 28 viromes, collected from the Eastern Tropical
South Pacific oxygen minimum zone (ESTP-OMZ; Vik et al., 2020). The
second marine dataset represented a deeply re-sequenced virome from wa-
ters of the LineP transect (Hurwitz and Sullivan, 2013). The sampling
dates, locations, and depths for all the samples in these two marine datasets
and the details about the samples from the gut and permafrost soil datasets
are provided in (Supplementary Table 2). VirSorter was run twice on
these metagenomes, one time using the built-in “Virome” database and
one time using a combined “Viromes + efam-XC” database, while leaving
all other parameters the same. Subsequently, the number of identified viral
contigs (considering all of the VirSorter categories) was compared for
each run. Finally, the newly identified contigs (due to the addition of efam-
XC) were assessed for their viralness using DeepVirFinder, MARVEL,
and CheckV.

3 Results and Discussion

3.1 efam and efam-XC vastly extend the viral protein se-
quence space organized into databases

Given our interest in maximizing marine viral protein sequence space or-
ganization, we focused on generating efam and efam-XC with data from
the GOV 2.0 dataset (Gregory et al., 2019). GOV 2.0 includes 145 deeply
sequenced viromes derived from water samples distributed throughout the
world's oceans, from pole to pole, and collected from the epi-, meso- and
bathy-pelagic oceanic layers (0-150 m, 150-1000 m, > 2000 m, respec-
tively). Therefore, it also includes less sampled, but highly relevant marine
environments, such as the Arctic Ocean and the deep ocean. In total,
GOV2.0 contains 848,507 viral contigs with lengths ranging from 1.5 to
500 kb, and an average of ~44 kb (Gregory et al., 2019). On these data we
applied 3 layers of stringent selection to maximize the confidently identi-
fied viral content of efam and efam-XC (Fig. 1).

First, the GOV 2.0 dataset was subjected to three complementary virus
prediction tools, applying the most stringent cutoffs from each tool (see
Methods). To build efam-XC, we used only those contigs predicted by all
the three tools (Fig. 2; see Methods for details). To build efam, we used
the contigs predicted by at least two of the three tools to override the lim-
itations of each individual tool. For example, DeepVirFinder and
MARVEL can capture shorter contigs (Ren et al., 2020; Amgarten et al.,
2018; Pratama ef al., in press), a limitation of VirSorter. VirSorter, on the
other hand, is better able to capture viral contigs that have similar K-mer
signatures to their hosts, a limitation of DeepVirFinder, with lower false
positive rates than the other tools when mobile elements are present in
datasets (Roux et al., 2015a; Ren et al., 2020; Pratama et al., 2021). Out
of all GOV 2.0 contigs, only 29% (n=250,021) met the stringent criteria
required for efam, and the number decreased to 4% (n=33,115) upon using
the extremely stringent criteria for efam-XC (Fig. 2). Most of the contigs
that were exclusively recognized by only one program at the highest con-
fidence level were captured at a lower confidence level by at least one of
the other two programs (Fig. 2). This leaves room for the inclusion of a
larger number of viral contigs into future versions of efam and efam-XC,
as new algorithms arise (e.g., VIBRANT, VirSorter2) that may improve
viral detection and confidence assessments (Kieft ez al., 2020; Guo et al.,
2021). Notably, the stringent selection of contigs in this first layer did not
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strongly bias the viral taxonomic groups included in the efam and efam-
XC databases towards Caudovirales, a viral order that is over-represented
in reference databases. This is because cross-referencing efam and efam-
XC viral contigs with the taxonomic classification from GOV2.0 (Gregory
et al., 2019) showed that only 18.4% and 27% of the input viral popula-
tions used in our databases, respectively, come from Caudovirales (com-
pared to the 9.8% Caudovirales viral populations in GOV2.0). Hence,
even though there is a slight bias towards Caudovirales (especially for the
efam-XC database), our resources go beyond this order and should be of
greater benefit to the future users.

Viral contigs from metagenomes

GOV2.0 @ input
contigs: 848,507

Stringent subsetting of dataset + decontamination

(MARVEL) (VirSorter) efam  efam-XC
{DeepVirFinder) contigs: 242,078 33,099
ORF prediction (Prodigal)
C— efam efam-XC
proteins: 3,741,966 500,342
Removal of bacterial proteins
—_— efam efam-XC
proteins: 3,740,522 500,198

Dereplication

—
Cr—r—1—— efam efam-XC
proteins: 2,613,528 402,958

Similarity
dUStering efam efam-XC
{ClusterOne) cluster: 240,311 37,841

Creation of multiple alignments (MUSCLE)

alignments: 240,311 37,841

Creation of profile HMMs (hmmbuild)
efam efam-XC
HMMs: 240,311 37,841

Fig. 1. Computational workflow used to construct efam and efam-XC. This pipeline
illustrates the major steps (rectangles) followed to generate efam and efam-XC. Whenever
applicable, software used in each step are shown in parentheses. Viral sequences from
GOV2.0 were re-analyzed by three different viral prediction tools and extremely conserva-
tive subsets of these predictions were used downstream after decontamination (i.e. removal
of prokaryotic genes from any potential prophage contig) by CheckV. Open reading frames
(ORFs) on each viral contig were predicted and the protein sequences that were 95% locally
similar to bacterial or archaeal proteins were removed. The remaining proteins were then
dereplicated and clustered, and the sequences within each cluster were multiple aligned.
Finally, HMM profiles were built out of each alignment and the profiles were pressed into
a searchable HMM database. Statistics for each step in the generation of the efam and efam-

XC are shown in the bottom right corner of each box.

The second and third layers of selection leveraged detection of contami-
nation due to similarity to ‘prokaryotic’ databases. Specifically, the se-
lected contigs were subjected to decontamination using CheckV (Nayfach
et al., 2020), which identifies contaminants based on detection of “prokar-
yote only” proteins in HMM profile searches, removing host genes from
prophage contigs (Nayfach et al., 2020) and potentially contigs with long
stretches of Auxiliary metabolic genes (Shaffer er al., 2020). This

removed only ~3.2% (n=7,943) and ~0.05% (n=16) potential prophage
contigs from efam and efam-XC, respectively, leaving 242,078 (efam) and
33,099 (efam-XC) contigs remaining (Fig. 1). Finally, a third layer of se-
lection was applied at the protein level, to remove those that have local
similarity to bacterial or archaeal analogs (see Methods) to avoid recruit-
ing those prokaryotic proteins by the final database due to short sequence
(e.g domain) matches. In total, 3,741,966 and 500,342 proteins were pre-
dicted from the remaining efam and efam-XC contigs above, respectively.
A local alignment search against bacterial and archaeal proteins followed
by the removal of strong matches resulted in the removal of only ~0.04%
(n= 1,444) and ~0.03% (n= 153) proteins from efam and efam-XC, re-
spectively. This was followed by a dereplication step (see Methods) that
resulted in the removal of ~30% (n=1,126,994) and ~19.5% (n= 97,231)
proteins, leaving 2,613,528 (efam) and 402,958 (efam-XC) unique pro-
teins remaining. Clustering these remaining proteins resulted in 240,311
(efam) and 37,841 (efam-XC) non-singletons protein clusters (number of
non-included singletons was 300,021 and 56,148, respectively; Supple-
mentary Table 3). The entire overview of this workflow is outlined in
(Fig. 1).

DeepVirFinder
-+l efam score >0.9 and p < 0.05
B efam_XC
n = 848,507

113,539

51,773 158,324

/ Marvel
>90 %

VirSorter
Category 1

Fig. 2. Stringency levels used for selecting the viral contigs contributing to efam and
efam-XC. The Venn-diagram shows the extent of agreement between VirSorter,
DeepVirFinder, and MARVEL at the highest stringency levels of each program. The inter-
section of the highest stringency of at least two programs was used to construct efam, while
the intersection of the highest stringency of all three programs was used to construct efam-
XC.

In their nascent iterations, efam and efam-XC represent a big contribution
to the viral protein sequence space organized into HMM databases. In ad-
dition to better capturing previously underrepresented marine viral se-
quences (see below), the sheer scale of the databases was some of the larg-
est in comparison to previously established databases (Fig. 3 and Supple-
mentary Table 4). Specifically, efam-XC is currently the largest viral
HMM profile database available; it exceeds VPF (from IMG/VR v.2.0;
built from viral contigs found in habitats throughout the planet (Paez-Es-
pino et al., 2016), uPOGs — the recently updated version of pVOGs (Zheng
et al., 2019), vFams (Skewes-Cox et al., 2014), and all other currently
known databases as listed in (Fig. 3). Notably, efam, which still conserva-
tively captures viral sequence space, is more than 6-fold and 7-fold larger
than efam-XC and the next largest publicly available database (VPF), re-
spectively. To assess whether our new databases were larger merely due
to newer clustering algorithms or to the data underlying them, we re-clus-
tered our underlying efam and efam-XC datasets using MCL, the cluster-
ing software used by VPF and vFams. This revealed the same patterns of
database size distribution after re-clustering (Fig. 3). Thus, while
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ClusterOne produced slightly more clusters than MCL for both efam and
efam-XC and, in both cases, most of the clusters produced by ClusterOne
contained more proteins (Fig. 3), it was not the dominant factor driving
database size in this study. Instead, the workflow that we introduced be-
fore the protein clustering step (Figure 1) to maximize the confidence in
the “viralness” of proteins from our new and highly diverse environmental
viromes (Gregory et al., 2019), leveraged by modern viral identification
tools that were largely not available to other databases at the time of their
inception (Figure 2), allowed for establishing efam and efam-XC as much
expanded resources over existing databases. This workflow, along with
the workflow we introduced for annotating the protein clusters both de
novo and using multiple databases (see below) differentiates efam and
efam-XC from previously published efforts. The methods described here
can be directly applied to other viromes and other ecosystems, perhaps
with the exception of viral-targeted metaproteomes (to annotate the pro-
tein clusters de novo) that may be difficult to generate from more complex
ecosystems such as soils.

TIGRFAMV1S :I .
Clustering Method MCL — ClusterOne
POGs :I
) efam-xC efam
vFams 612
:I 512
Checkv 256
@ 256 "
pVOGS :| H =
2 2
RVDBV18.0 ] g 5
(=% i=%
= a2 2w
uPOGs ° o
[ Q
Plamv32.0 £ £
3 =1
KEGG Orthology =4 2 =z
2
WPF(2016)
:l 0 10000 20000
Damain-Centric DB Cluster rank 0 100000 200000
Cluster rank

efam

=)

50000 100000 150000 200000 250000
Number of clusters

Fig. 3. Comparison of viral HMM database sizes and clustering algorithms. Number
of clusters (HMM profiles) in efam, efam-XC and currently available public databases.
SFams, another HMM profile database (Sharpton et al., 2012), was excluded from our com-
parisons because it did not include any viral genomes in its construction. (Inset) Clustering
structure produced by ClusterOne and MCL for efam (right) and efam-XC (left). The num-
ber of clusters on the x-axes were capped at 200,000 (efam) and 20,000 (efam-XC) for
visibility. ClusterOne generally produced longer tails (more clusters) and larger clusters
except for the highly ranked clusters. Since ClusterOne was instructed to apply a “hair-
trimming” step after the clustering to remove dangling nodes and since the highly ranked
clusters have more representative sequences that are used to build the HMM profiles, we
felt comfortable proceeding with well-trimmed slightly smaller high-rank clusters. The
number of protein sequences used for clustering in each database is listed in (Supplemen-

tary Table 4).

3.2 efam and efam-XC boost viral discovery in metagenomes

The identification of viral contigs within metagenomes is largely reliant
on sequence similarity searches against a database of known viral se-
quences. Therefore, we hypothesized that augmenting the reference data-
bases of viral identification tools with efam or efam-XC would improve
detection sensitivity in new metagenomes. To assess this, we augmented
the “viromes” database of VirSorter with efam-XC, and found that, in-
deed, it consistently increased the number of identified viral contigs across
all virome samples collected from new marine virome datasets from the
Eastern Tropical South Pacific oxygen minimum zone (ESTP-OMZ; Fig.
4) and the LineP transect (Fig. 5). These viromes were selected to be per-
formance test samples because (i) they were not part of the contig pool
used to establish efam and efam-XC, and (ii) their viruses were only dis-
tantly related to open ocean viruses (Vik ez al., 2020). The percent increase

in viral contig recovery ranged from to 12.1% to 41.8% (with an average
of ~24%) more contigs, depending on the sample. These new contigs are
unlikely to be microbial in origin because 88% (17,307 out of 19,654) of
them were also called viral by DeepVirFinder (score>0.7 & p-value<0.05)
or MARVEL (>70% probability score), and 98.2% (19,306 out of 19,654)
of them had 0% contamination (with only 97 contigs having >= 50% con-
tamination) using CheckV. For the LineP sample, a deeply sequenced
sample collected off the coast of British Columbia, the number of identi-
fied viral contigs increased by 16.8%, while for non-marine samples (from
the more-studied human gut (n=3) and less-studied permafrost soils
(n=3)), the increase was on average 2.7% and 7.1%, respectively. Even
though the current version of the database proved useful to other ecosys-
tems, future versions will integrate viruses from a variety of ecosystems,
including a large number of novel viruses currently under investigation by
our group, to maximize discovery.

VirSorier @ VirBartar + efam_XC

Incraase in viral cantigs identified [2]

2000 4000 6000

Number of viral contigs identified Samples

Fig. 4. efam-XC enables viral discovery in metagenomes. The paired dot plot (A) shows
that the number of recovered viral contigs from every single ETSP-OMZ virome increased
upon integrating efam-XC in VirSorter. As a result, the median and average number of viral
contigs recovered per sample (B) increased for the new implementation of VirSorter, with

the average increasing from 2,904 to 3,558 viral contigs per sample (22.5% increase).

We next wanted to understand the nature of the new viruses being identi-
fied, with particular focus on smaller contigs from the deeply sequenced
LineP virome. Due to the deeper sequencing, a high number of smaller
contigs were assembled for this sample, which we examined further. First,
integrating efam-XC into VirSorter allowed for the detection of higher
proportions of the shorter contigs (Fig. 5), which has been demonstrated
to be especially challenging to the current implementation of VirSorter
(Ren et al., 2020). However, short contigs, which constitute the majority
of metagenomic assemblies, facilitate viral gene ecology analyses and re-
cruit considerably more reads to viral sequences in viromes due to their
dominance in the assembly (Mende ef al., 2012). In the deeply sequenced
LineP sample, we found that the percent increase in viral recovery for con-
tigs increased inversely with contig length (Fig. 5A). This directly high-
lights the gaps in previous viral reference protein sequence space that were
traditionally compensated by VirSorter’s ability to detect other well-
known viral proteins on the longer contigs. Finally, in the LineP sample,
we observed that inclusion of efam-XC data into VirSorter overall im-
proved the quality of viral prediction, because many low-confidence virus
contigs (60% of “Cat 6” viral contigs and 19.4% of “Cat 3” viral contigs)
were assigned to the higher confidence categories “Cat 1” or “Cat 2” when
using efam-XC, with the remaining of Cat 6 (40%) reassigned to “Cat 3”
(Fig. 5B; Supplementary Table 5). Thus, the information efam-XC
added to such viral contigs increased the confidence calls by VirSorter’s
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probabilistic model. Similarly, 56.3% of “Cat 5” viral contigs — a high
confidence assignment by VirSorter for potential prophages — were as-
signed to Cat 2, indicating that efam-XC leveraged VirSorter’s ability to
better resolve gene assignments at the edges of the viral contigs and move
them away from a possible prophage category (Fig. 5B; Supplementary
Table 5). Notably, a small percentage (2.9%) of the contigs detected by
VirSorter were not detected or downgraded to “Cat 3” or “Cat 5 after
adding efam-XC (Supplementary Table 5). This can be attributed to the
higher sensitivity of the HMM profiles in efam-XC than the default “hall-
mark” gene profiles in VirSorter, impacting the call of "viral" by VirSorter
(Roux et al., 2015). The annotations that we provide here (see below)
should help with the updating of the “hallmark” gene list in future versions
of VirSorter (e.g. VirSorter2; Guo et al., 2021). To maximize recovery
without updating VirSorter’s underlying data, users should use VirSorter,
then “VirSorter + efam/efam-XC” and combine the results.

>
[es]

<1kb

e _

<5 kb

e -1

=10 kb Im = 2,581

-8 catiez n = 22,938
All 2

o 20 a0 100 75 50 25 0 25
Increase in viral recovery (%) Change in category assignment (%)

Cat6

Cat 485

n=2,323

Cat3

Contig length
VirSorter category

Fig. 5. efam-XC enhances the recovery of short viral contigs and increases confidence
level in identified contigs. (A) Percent increase in the number of viral contigs recovered
by VirSorter from the deeply sequenced LineP sample at different contig sizes upon inte-
grating efam-XC into VirSorter. (B) Percent decrease in the number of low-confidence viral
contigs (Cat 3 & Cat 6 of VirSorter) and the prophage category (Cat 5) upon integrating
efam-XC into VirSorter. The viral contigs that were removed from these categories were
added to the high-confidence categories (Cat 1 & Cat 2), except for 2 contigs from Cat 6
which were moved to Cat 3. The numbers next to each bin are from the VirSorter run before

integrating efam-XC.

3.3 Improved viral profile functional annotation

Beyond identifying viruses, we hoped that the efam and efam-XC data-
bases could offer a step towards a centralized resource with improved
functional annotations. This would be critical for multiple facets of virome
research including identifying genes that hold the potential to impact host
metabolism during the virus-infected or “virocell” stage that can alter bi-
ogeochemical cycles and ecosystem outputs of a cell (e.g. Forterre, 2011;
Howard-Varona et al., 2020; Roux et al., 2016), as well as identifying
viral hallmark genes that increase the confidence in detecting previously
unseen viruses in metagenomic sequences (see category 1 viruses in Vir-
Sorter; Roux et al., 2015a). Problematically, viral gene annotation has
proved to be challenging as the field has a history of observing that most
viral genes in metagenomes typically cannot be annotated (Roux et al.,
2016; Roux et al., 2019b; Gregory et al. 2019; Boratto et al., 2020). Part
of this lack of annotation is due to challenges of scaling annotation, which
limits many studies to interrogating against only a single functional anno-
tation database like KEGG or VOGDB.

To provide an improved viral protein resource, we annotated efam and
efam-XC via i) DRAM, a rigorous multi-database-supported annotation
pipeline designed for both microbial and viral genomes, and ii) identifying
previously unknown virion-associated proteins using mass-spectrometry-
based metaproteomic measurements made directly on viral particles

(Brum et al., 2016). First, DRAM annotated about one-third of the
240,311 (efam) and 37,841 (efam-XC) HMM profiles, with functional an-
notations (excluding “hypothetical proteins”, “uncharacterized proteins”,
and “domains of unknown functions”; see Methods) provided for 33.5%
(n=80,431) and 38.3% (n=14,492), respectively (available at:
doi.org/10.25739/9vze-4143). This almost doubled the number of annota-
tions retrievable using a single database such as KEGG (40,707 and 6,819
for efam and efam-XC, respectively) or VOGDB (35,664 and 7,136 for
efam and efam-XC, respectively) at the same parameters and cut-offs used
in DRAM. Notably, there was a statistically significant difference between
the medians of the cluster sizes for the annotated (median=6) and unanno-
tated (median=3) clusters in the efam database (p-value <= le-04), sug-
gesting that larger clusters tend to be more amenable to annotation. For
each protein cluster giving rise to an HMM profile, all database annota-
tions of the cluster members were collected and collapsed to different lev-
els of detail; we provide detailed annotations, each with its source database
specified, as well as the collective annotation(s) agreed upon by different
databases (both available at: doi.org/10.25739/9vze-4143). These annota-
tions (per predicted protein and per protein cluster) are formatted as com-
panion metadata tables to the searchable efam and efam-XC databases that
can be queried by the cluster or protein ID. Second, peptides from the viral
metaproteomes mapped to ~3.7% (n=8,847) and 8.6% (n=3,262) of the
protein clusters of efam and efam-XC, respectively. Therefore, these pro-
tein clusters and their member protein sequences were annotated as virion-
associated (sensu Brum et al., 2016). This effort complemented DRAM
annotations (i.e. solved the cases that were not annotated by DRAM) by
adding a de novo annotation of ‘virion-associated protein’ to 33.7%
(n=2,984) and 28.1% (n=916) of protein clusters matched by a mass-spec
detected peptide from efam and efam-XC, respectively (see Methods).
Notably, for all cases in which DRAM provided annotation for a metap-
roteome-detected protein cluster (n=5,863 and 2,346), very few (2.8% and
1.5% of the protein clusters for efam and efam-XC, respectively) were
annotated as something other than “structural protein” (see Methods and
metadata tables at doi.org/10.25739/9vze-4143). This large concordance
where DRAM and metaproteomic evidence overlap boosts the confidence
of the new annotations inferred from the metaproteomes. We also provide
these metaproteome annotations in the companion metadata tables to efam
and efam-XC (available at: doi.org/10.25739/9vze-4143).

4 Conclusions

Microbiome researchers have helped bring out the myriad and significant
roles that microbes play in diverse ecosystems, with many of these ad-
vances attributable to better “seeing” microbes as sequencing technologies
illuminated the unseen majority often termed ‘microbial dark matter’
(Rinke et al., 2013). A similar revolution is happening for viruses,
whereby we are clearly immersed in a ‘third age of phage’ (Mann, 2005)
that is being complemented by advances across all viral types with recent
surveys in the oceans alone exposing widespread and hidden endogenous
viruses (Moniruzzaman et al., 2020), non-tailed viruses (Kauffman et al.,
2018), giant viruses (Schulz et al., 2020), and RNA viruses (Wolf et al.,
2020). Complementarily, the toolkit to assess viral impacts is expanding
rapidly with recent advances including scalable assessment of resistance
mechanisms (Mutalik et al., 2020), multi-omics views of how virus-in-
fected cells change their ecosystem outputs (Howard-Varona et al., 2020),
and high-throughput detection of virus-host linkages (Deng et al., 2014;
Bickhart et al., 2019; Dzunkova et al., 2019). Here, by organizing and
thoroughly annotating the largest ocean virus survey data to date into the
efam and efam-XC databases, we hope to have taken one more step for-
ward in these efforts to increasingly expand our window into the wild to
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better see and understand the roles that viruses play in complex commu-
nities. Future implementations of efam and efam-XC will benefit from ex-
panding environmental diversity and adding evolutionary information
(sensu pVOGs), as well as integration into modern cyberinfrastructures
and databases (Bolduc ef al., 2017). efam and efam-XC are planned to be
updated bi-annually as funding allows and will be kept freely accessible
with no restrictions on use.

Data and Software Availability

Code availability: Scripts used in this manuscript are available at
(doi.org/10.25739/9vze-4143), while the programs and R packages are
listed in Supplementary Table 6.

Data availability: efam and efam-XC databases are available through
iVirus (doi.org/10.25739/9vze-4143), as well as all the underlying viral
contigs, viral protein clusters, multiple alignments and individual HMM
profiles.

Direct links to code and data:
doi.org/10.25739/9vze-4143

datacommons.cyverse.org/browse/iplant/home/shared/iVirus/Zayed_efam_2020.1
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