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Abstract. Linear multistep methods (LMMs) are popular time discretization techniques for
the numerical solution of differential equations. Traditionally they are applied to solve for the state
given the dynamics (the forward problem), but here we consider their application for learning the
dynamics given the state (the inverse problem). This repurposing of LMMs is largely motivated by
growing interest in data-driven modeling of dynamics, but the behavior and analysis of LMMs for
discovery turn out to be significantly different from the well-known, existing theory for the forward
problem. Assuming a highly idealized setting of being given the exact state with a zero residual of
the discrete dynamics, we establish for the first time a rigorous framework based on refined notions
of consistency and stability to yield convergence using LMMs for discovery. When applying these
concepts to three popular M-step LMMs, the Adams—Bashforth, Adams—Moulton, and backward
differentiation formula schemes, the new theory suggests that Adams—Bashforth for M ranging from
1 and 6, Adams—Moulton for M = 0 and M = 1, and backward differentiation formula for all positive
M are convergent, and, otherwise, the methods are not convergent in general. In addition, we provide
numerical experiments to both motivate and substantiate our theoretical analysis.
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1. Introduction. In this work, we focus on developing a new numerical analysis
framework for the discovery of dynamical systems with given states, where finitely
many discrete measurements are used to approximately recover the unknown dynam-
ical system—a data-driven discovery of dynamics [5, 46]. Data-driven discovery of
dynamical systems is experiencing a renaissance as costs of sensors, data storage, and
computational resources has decreased [44]. Meanwhile, advancements in the fields
of machine learning and data science [17, 23, 28, 29, 47] have brought in renewed
vigor and enabled an expansive view of this field. At the same time, the growth of
data-driven discovery of dynamical systems has also led to a new solution method and
model reduction approach to study multiscale and high dimensional complex prob-
lems. For more discussions, we refer to works such as [3, 6, 18, 20, 24, 26, 27, 30, 31,
32, 37, 38, 39, 40, 41, 42, 43, 45, 50, 52, 53, 55, 56, 57, 58].

1.1. Motivation: Data-driven discovery of dynamical systems via lin-
ear multistep methods. In this work, we consider using linear multistep methods
(LMMs) to discover unspecified dynamics given the state at equidistant time steps and
contribute to the fundamental theory of using LMMs for data-driven discovery. His-
torically, LMMs have been developed as popular schemes for numerically integrating
known dynamic systems [16], with well-established mathematical theory in the last
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Errors for Adams-Moulton Scheme Errors for Adams-Moulton Scheme
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Errors for Adams-Bashforth Scheme Errors for Backwards Differentiation Formula
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Fic. 1. Absolute 2-errors for the first coordinate of the 2D Damped Cubic System (6.1) on
t € [0, 5] with varying time mesh size h = 0.01,0.02,0.03, using a single hidden layer neural network

with tanh activation function, as used in [41], after a fixzed number of training iterations for each
M.

century [2, 12, 15, 22, 33]. Recent works combine the classical numerical technique of
linear multistep methods with neural networks for dynamics discovery [41, 52, 57].
Coined “LMNet,” LMMs combined with neural networks are used for the discov-
ery of dynamics in [41, 52, 57]. Figure 1 shows the absolute errors associated with
learning f for a nonlinearly damped, two-dimensional (2D) cubic oscillator (6.1) using
neural networks with three representative schemes of LMMs—Adams—Moulton (AM),
Adams—Bashforth (AB), and backward differentiation formula (BDF). These results
are generated using the code repository built for [41]; reported are the errors of the
dynamics rather than the integrated dynamics, which are shown in [41]. For solving
differential equations with smooth solutions, increasing M corresponds to higher ac-
curacy if the scheme is also stable. The AM scheme is an example of such a method,
hence, the perplexing behavior in the errors of AM as observed in [41, 57] (see Tables
1 and 2 of [41] and Table 1 of [57]). As M increases and h decreases, the errors do not
decrease. Further, as we expand the width, thereby increasing the expressibility of
the network, the scheme still does not exhibit stable behavior. On the other hand, as
shown in Figure 1, the AB and BDF methods with a fixed network size of 256 show a
trend of convergence as M and the mesh size h decrease, while the AM methods show
erratic behavior for the same width, persistent even with more expressibility of the
network by widening the hidden layer (Figure 1(b)). Since AM is a stable method as a
time integrator, these findings warrant further investigation. Indeed, it has also been
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observed by others that increased resolution does not necessarily imply better neural
network representation and prediction without a mathematically sound formulation of
the learning problem [3]. While there are many contributing factors, such as the neural
network structure and size as well as the training process, it is the goal of this paper
to investigate these findings and provide a theoretical explanation of the phenomena.

To begin, we pose the problem of discovery of dynamics. In contrast to numer-
ically integrating dynamics to learn the state, as many classical numerical methods
do, this study focuses on learning the dynamics given the state. Dynamics discovery
may be viewed as an inverse problem to the forward problem of classical numerical
integration. Well-studied for the forward problem, LMMs in this inverse setting raise
questions of classical notions of consistency, stability, and convergence. We seek in
this work to investigate if the classical theory for LMMs as time integrators to solve
the forward problem has an analogue or counterpart in solving the inverse problem
of learning dynamics. To initiate studies in this direction, we introduce a systematic
framework for the numerical analysis of the discovery of dynamics using LMMs. Our
new framework is rooted in the classical theory for LMMs as numerical integrators
of differential equations, but it adopts new stability and convergence criteria due to
the inverse nature of using discrete time integrators for dynamics discovery. Con-
sequently, it draws different conclusions regarding convergence in stark contrast to
the conventional wisdom. The stability properties of particular schemes depart from
the traditional numerical differential equation viewpoint, and some methods that
are stable for the forward problem do not retain the property for the inverse problem
dynamics discovery. Our theory is able to explain the unusual phenomena as reported
in Figure 1 and lays a rigorous foundation for further elucidating the effect of neural
networks on dynamics discovery via LMMs through follow-up studies. Therefore, this
helps the scientific community broadly in our goal of making machine learning more
transparent, explainable, stable, and trustworthy.

1.2. Summary of results. We present a framework in section 3 consisting of
nuanced notions of consistency and stability to handle unique challenges presented by
using LMMs for discovery. These concepts are then combined to prove convergence. A
set of algebraic criteria is developed to check for the consistency and stability, and thus
convergence, of LMMs for dynamics discovery. With this foundation, in Theorems
4.1 and 4.2, we outline consistency and stability properties of the AB, AM, and BDF
schemes, and consequentially, in Corollary 4.3, their convergence guarantees.

1.3. Outline. This paper is organized as follows. In section 2 we briefly re-
view LMMs and their theory for solving ordinary differential equations, including the
standard notions in numerical analysis of truncation error, consistency, stability, and
convergence, along with an algebraic root condition for stability. In section 3 we frame
the problem of discovery using LMMSs and develop nuanced versions of consistency
and stability for discovery. In particular, in section 3.3, we discuss how truncation
error for discovery is inherited from the forward problem and introduce a stronger
notion of consistency; in section 3.4 we refine the traditional definition of stability
and the algebraic root condition, and we show equivalent theorems connecting the
root conditions and the refined notions of stability. In section 4, the discovery frame-
work of section 3 is applied to characterize convergence properties of the AB, AM,
and BDF schemes. Some discussions on the long-time dynamics discovery are made
in section 5. Then, in section 6, we show results of numerical experiments. Finally,
in section 7, we summarize the results and discuss future directions.
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2. LMDMs: Quick review. In this section, we introduce notation used through-
out this work and briefly review the theory of LMMs as time integrators. While LMMs
are well-documented in standard textbooks for solving ordinary differential equations
(see [15, 33, 2, 22]), we include the salient points to facilitate direct comparison with
the new theory for the discovery of unknown dynamics developed in the next sec-
tion.

2.1. LMMs: Notation and concepts. Consider the ordinary differential equa-
tion (ODE)

(2.1) %x(t) = f(x(t)), a <t <b, x(ty) = X0,

where x € C*(0,00)% and f is assumed to be a Lipschitz continuous, smooth,
and bounded function. Discretizing the model problem (2.1), we assume a grid on
the interval [a,b] defined to be a set of points: a = tg < ¢ < -+ < ty = b
with equidistant mesh t,11 — ¢, = h = (b —a)/(N+1), n € {0,1,...,N}. Let
[a,b]n denote this ordered set. We denote the set of grid functions T'p[a,b] =
{z]|z e RWHDXd 7 —g(t,) e R%t, € [a,b]y} [15].

An M-step LMM approximates the nth value x,, = x(t,,) in terms of the previous
M (M > 1) time steps Xj—1,Xn—2,-..,Xp—n [15, 33, 2, 22]. An M-step linear
multistep method is given by

M M
(2.2) > amXn-m=hY BmfEn-m), n=MM+1,...,N,
m=0 m=0

where x € T'[a, b], the coefficients cuy,, B € R for m =0,1,..., M, and ag # 0. The
function f is assumed to be given and Lipschitz, and the LMM scheme (2.2) defines
an iterative procedure stepping forward in the independent variable ¢ € [a,b] to solve
for x(t) at the gridpoints. Associated with an M-step LMM are its first and second
characteristic polynomials, given, respectively, by

M M
(2.3) p(z) = Z ap—mz™, and o(z) = Z Br—mz™,
m=0 m=0

where it is assumed that o # 0 [33].

For the numerical integration of differential equations, the method (2.2) is called
explicit if By = 0 and implicit otherwise [15, 33, 2]. Implicit methods require a
nonlinear solver to the generated system of equations, whereas explicit methods do
not. The existence and uniqueness of solutions in the case of implicit schemes is
shown in [15, 22]. For both implicit and explicit methods, a kickstarting method for
initial M values must be chosen, and as such a critical component of analyzing any
multistep method scheme is to understand how much errors in initial values pollute
the subsequent calculations [15]. This aspect of numerical methods is called numerical
stability [2].

Finally, for any index set S with cardinality S, we let ||z]|, = Y, 5 |2i| and
||lz|| ., = max;cs |2z;| denote the standard discrete norms for any vector z naturally
embedded in R¥*? where |z;| can be any vector norm of z; € R?. The same notation
is used also for discrete grid functions given either in I';[a, b] or its subsets.
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Remark 2.1. To fix ideas, we use the hat notation ~ to mark grid functions gener-
ated by the discretization (2.2). In the forward problem, the state x(t) is iteratively
produced by LMMs, and hence we study x, whereas for dynamics discovery, we study
f (see section 3).

2.2. The Adams family and BDF. AB, AM, and the BDF are three popular
multistep method schemes that arise from a Lagrange interpolating polynomial of the
state or dynamics at time ¢, using data from previous time steps. Without loss of
generality, we consider the scalar model problem in this section; for higher dimensions,
the theory need only be applied in each dimension. Let Ag = {—M,—-M+1,...,—1,0}
and Ay = {—M,—M +1,...,—1}. The Lagrange interpolating polynomial of a func-
tion u : R — R over the set {t,.;,i € A} is the polynomial of degree M for A = A,
and degree M — 1 for A = A; obtained from the linear combination of basis functions

. t—tyti .
(2.4) lem(t;A) = ﬁ keA,
jeA\ Ky TR T I

with u(t,4x) for each k € A as the coefficient of the linear combination. The M-step
AM (or AM-M) and AB (or AB-M) are M-step LMMs that arise from interpolating
the dynamics f(z(t,)), with Lagrange interpolating polynomials corresponding to
A = Ap and A = A4, respectively, and then applying the fundamental theorem of
calculus on the model problem (2.1). Letting f(¢,) denote f(z(t,)) for brevity, we
have

(2.5) x(tn) = x(tn_1) —i—/t ' Z f(tn+k)€k’n(t;/~\)dt.
"=l pelk

BDF-M, on the other hand, is an M-step LMM for M > 1 derived from interpolating
the state x € I'y[a,b] in (2.1) directly on the lattice Ag, so that

S ) T (1 K0) 2 ) = S0,

keAo dt

By the change of variables u = (¢t — t,—1)/h, we have a scaled Lagrange interpolating
polynomial, denoted ¢}, given by

heowy u—1-—1 <
(2.6) 0 (u; A) = H —— ke
i€A\{k}

With (2.6), the integrand of (2.5) may be written independently of the time step, so
that

(2.7) x(tn) = x(tn-1) —|—/0 Z f ()00 (u; A)du.

kel

The simplified coefficients for the BDF method with uniform mesh can be obtained
similarly.
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2.3. Truncation error and comnsistency. In this section, we introduce the
residual and notions related to analytical error for LMMs. The residual operator is
given by [15]:

1 M

(2.8)  (RpX)p := Emz m&n,m—ZBmf(fcn,m), n=MM+1,...,N,

defined for %X € I'y[a,b]. How accurately the discretization (2.2) approximates the
solution of (2.1) is measured by the truncation error, defined below.

DEFINITION 2.2 (local truncation error [33, 2, 22, 15]). Let x € T'y[a,b] be the
exact solution of the dynamic system (2.1) defined at the grid coordinates. The local
truncation error T, = ((Tr)ar, (Th) sty - - (Th)n) € RV=MEDXA g ginen, by

(2.9) (Th)n = (Rpx), for n=M,M+1,...,N.

For smooth functions f and x, we have

(o)
(Th)n = Z Cph™ 'V 2(t,) for n=M,M+1,...,N,

m=0
where
(2.10)
M 1 M 1 M .
CO:kZ:O% Cm = (= ﬁkz:: _1)!;:01@ Bil, m=1,2,....

Now, we proceed to define order of error and the notion of consistency.

DEFINITION 2.3 (order of error [15]). A linear multistep method has an error
order of p if || Th|lo = O(RP) as h — 0 and admits a principal error function e(t) €
Cla,b] provided

e(t) #0 and (T4)n = e(ty)h? + O(hP™) as h — 0,

or simply, |7, — hPel|, = O(hPT1).

DEFINITION 2.4 (consistency [15]). A linear multistep method is consistent with
the differential equation provided ||Th||, — 0 as h — 0.

The Adams family and BDF are consistent in the sense of Definition 2.4. More-
over, the local truncation error associated with the M-step AB and BDF schemes are
O(hM), whereas for the M-step AM, the local truncation error is O(hM+1) [33, 2].

It is well-known that consistency can be formulated algebraically in terms of the
characteristic polynomials [11]. In particular, the consistency condition, i.e., Cy =
Cy = 01in (2.10), is equivalent to p(1) = 0 and p'(1) = o(1). Moreover, the truncation
error is order k if

(2.11) p(e*) — zo(e*) = O(zF*),  as 2z —0.
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2.4. Stability and the root condition. In this section, we review definitions
of stability and the root condition for LMMs. Stability is defined as follows.

DEFINITION 2.5 (stability [15]). A linear M-step method for the ordinary differ-
ential equation & = f(t,x(t)) is called stable on [a,b] provided there exists a constant
K not depending on h such that, for any two grid functions uw,v € T'y[a,b], we have
for all h sufficiently small

Ju= ol < K (e s =il + R = Froll, ).

The characteristic polynomials defined in (2.3) may be used to determine the
stability of a linear multistep method via the root condition.

DEFINITION 2.6 (algebraic root condition [33, 15]). A polynomial satisfies the
root condition provided the roots of the polynomial do not exceed magnitude 1, and
those of magnitude 1 are simple.

The following theorem states the equivalence between the stability and the root
condition.

THEOREM 2.7 (stability and the root condition [33, 15]). A linear multistep
method is stable if and only if its first characteristic polynomial p(z) satisfies the
algebraic root condition given by Definition 2.6.

Note that all AB and AM schemes satisfy the root condition and are stable by
Definition 2.5, whereas BDF-M satisfies the root condition and is stable only for
1< M <6 [22].

2.5. Convergence. Finally, we introduce the definition of convergence for LMMs
and the celebrated equivalence theorem for determining it.

DEFINITION 2.8 (convergence [15]). Consider the initial value problem (2.1) and
a fized linear multistep method defined by (2.2). Let & € T'p[a,b] be the grid function
obtained by applying (2.2) on a uniform, real-valued grid of [a,b] with mesh size h,
and let © € T'pla,b] be the exact solution of (2.1) at the grid points. The linear
multistep method is said to converge on [a,b] if

le—&| ., —0 as h = 0 whenever pemax |z, — =(te)]l o, — 0.
With Definition 2.8, one can obtain the Dahlquist equivalence theorem, Theorem
2.9 [33].

THEOREM 2.9 (equivalence theorem [15]). The multistep method (2.2) converges
in the sense of Definition 2.8 for all Lipschitz f if and only if it is consistent and
stable.

From the equivalence theorem, it can be shown that the order of the error
|Ix — %x||, is the same order as the truncation error (Definition 2.3) and thus the
order of approximation, provided the initial error maxo<gx<ar—1 |Xx — x(tx)], is also of
the same order.

In this work, we develop an analogous theory for multistep methods modifying
these theorems to deal with the discovery of dynamics rather than solving the differ-
ential equation. In particular, we show how the second characteristic polynomial is
determinant of stability for discovery and whether the Adams family and BDF are
stable or not.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/24/21 to 160.39.162.244. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

436 RACHAEL T. KELLER AND QIANG DU

3. Discovery of dynamics. In this study, we consider a data-driven technique
to solve for the dynamics f given information on the state x at equidistant time steps
[41]. First, we introduce the problem and then discuss notions of consistency, stability,
and convergence. We now proceed to define the problem of LMMs for discovery.

3.1. Problem definition. Following earlier discussions, we are concerned with
the initial value problem (2.1). In this section and the next, multivariate functions
representing the continuum models are denoted by scalar notations, i.e., f = f(x)
and x = x(t), so that boldface symbols can be reserved for vectors corresponding to
discrete forms of dynamics, which should be clear in context without ambiguity. The
task of learning is to produce a function to approximately represent the dynamics,
f = f(x), based on a set of observed states, that conforms with the discrete dynamics
described by a linear multistep method. In practice, one often encounters situations
with only partial (incomplete) data or data containing observation errors and uncer-
tainties; these complications are typical for inverse problems. When combined with
deep networks, the approximation is produced by a network in a learned parametrized
form, which introduces further approximations as well as implicit regularizations.

As the first step to develop a rigorous numerical analysis framework, we consider
a very idealized setting in this work by assuming that (A1) a complete set of exact
values of the state, {x,, = x(t,)})_,, given at equally distributed, ordered grid points
{ta}N_0; (A2) the neural networks (or the underlying function classes used to represent
the dynamics) have sufficient approximation capability to produce zero residual for
the discrete dynamical system; and (A3) approximated values of the exact dynamics
for some observed initial states are available.

Although the assumptions make the situation very idealized, the study is a very
constructive step toward the understanding of the mathematical and computational
issues related to the data-driven modeling using neural networks and discretized forms
of the unknown dynamics, which are the focuses of our ongoing work. The findings
made here shed light on future studies of similar issues under more realistic conditions,
as discussed in section 3.2 and further in section 7. Under the assumptions (A1), (A2),
and (A3) stated above, the procedure of learning dynamics can be described as follows.
Given x, = x(t,) for 0 < n < N and f; as suitable approximations of f(x;) for i in a
suitable subset of {0 < i < M — 1}, we have zero residuals for the discrete dynamics
based on the LMM discretization for t,, with n = M,..., N, i.e.,

M ) | M
> Bufum=7 Y CwXn-m, n=MM+1,... N
m=0 m=0

Indeed, the above system for f is simply (2.2) rewritten for learning the dynamics
rather than the state. To help with later discussions, we let Nay = N — M + 1 denote
the number of linear equations in the system. Given that the values of {3,,}M_,
affect the structure of the resulting system, we let my and M, be the smallest and

the largest index, respectively, among those m’s satisfying f3,, # 0, i.e.,
Bm =0 for any m with either m < mgy or m > My, while 8,,, # 0 and Sy, # 0.

We collect the ordered coefficients of the LMM scheme in the vectors a =

(o, a1,...,apn) and B = (Bmgs Bmo+1, - - - » B, )- The system for f in this reduced

notation is then
Mo

(3.1) > BuFum=

m=mg

M
Zamxn,m, n=M,M-+1,...,N.
m=0

S| =
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For brevity, we introduce the index sets Z = {n € N|M —mg < n < N —mg}
for the set of indices of the grid associated with the values of unknown dynamics and
Iy i={n e N|M - My <n < M—mg} for the set of indices for supplied initial
dynamics. The linear system (3.1) may be written in compact matrix-vector form:

(3.2) Bf =h'Ax—§g,

where A is the Nj; x (N + 1) matrix of coefficients for e corresponding to X, —m,
in (3.1); the matrix B is an Nj; x Njs banded lower-triangular matrix with its di-
agonal entries given by fS,,, and the kth subdiagonal entries given by B,,,+r for
k=1,2,...,My—mo; f € RNv%d ig the ordered vector of unknowns {}n}nez; and
&= (& 8riq1s---»8n) € RM X4 ig defined as

> Buemfm if n€My+Tu,

g — J m>n—DMy
n meLn

0 ifTLEI\{MQ+IM},

which can be generated from the assumed, suitably approximated starting values
{f . nezy,- We note that since B, # 0, B~! always exists so that (3.2) is solvable
whenever the right-hand terms are prescribed.

3.2. Connection to machine learning-based data-driven discovery and
LMNet. To see how the theory developed in this work is connected to the increasingly
popular machine learning based data-driven discovery of dynamics, we briefly recall
the relevant learning problems here. For more extensive works on machine learning,
we refer to [4, 17, 34, 35, 47].

In a generic supervised machine learning setting of learning an unknown function
f, one often assumes knowledge of N samples of input-output data, D =
{(Xn, f(x,,))}2_,. This sample dataset is often divided into sets of training and test
sets, and one attempts to find a neural network (NN) representation of f, say, fnn,
through an empirical loss minimization over the training set. We let x and } denote
an ordered subset of K < N data, so that (X, f) = (Xnys £ (xn,)) € D. The loss
is a suitably defined function ((X, f, f ) measuring a distance between f(x,, ) and
fynXn,) foreach k=1,2,..., K. When evaluated over only training data, this loss
leads to the training error. The desired goal is to learn f that not only minimizes
the loss in the training set (i.e., the training error), but also achieves a small loss in
the remaining test samples (i.e., the generalization error).

In the setting of dynamics discovery, it is important to note that the dynamics, or
output, data is not given directly. Instead, only the state, or the input, is provided,
and information on the true dynamics f is inferred by constraining the data to conform
with some dynamical system. For the LMM discretization of the dynamics given by
(3.1), conformity is achieved by minimizing the error associated with the LMM
system, which we call the LMM residual. A total loss function of the optimization
problem may be effectively viewed as

T(iv:fvaN) :g<i7})+g(i7}.vaN)v

where the loss l is an increasing function of the LMM residual and vanishes at the
origin, e.g., {(X, f) = |Bf — h~'Ax + g||3. A network approximation with sufficient
accuracy would attempt to conform with the discretized LMM dynamics by minimiz-
ing the LMM residual to find the unknown data }' Alternatively, as done in LMNet,
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the neural network approximation may be supplied to the LMM residual 7, where the
initial dynamics in g are also learned. If the approximation can be as accurate as
desired, we would be led to the idealized setting that as the network is trained more,
given sufficient width, the neural network would converge to f, where }' satisfies (3.2).

Naturally, due to other practical considerations as well as the finite approximation
power of the neural networks, more general loss functions, regularization techniques,
and network architectures may also be taken into account; see section 7 for further
discussions. Our main focus here is to illustrate the impact of using different LMMs
on the learning process by developing a rigorous mathematical theory of consistency,
stability, and convergence for the dynamics discovery, beginning with the highly ide-
alized setting of exact state data.

3.3. Truncation error and consistency. LMMs for discovery inherit the trun-
cation error of solving ordinary differential equations with LMMs. Indeed, truncation
error is specific to the discretization of the continuous problem; therefore, the trun-
cation error 75 of a scheme for dynamics discovery remains the same as that for
solving an ordinary differential equation for the state defined by (2.9). However, in
addition to inheriting the same concept of consistency from section 2, Definition 2.4,
we also introduce some strengthened notions of consistency for dynamics discovery.
We complement these concepts later on with refined notions of stability for a more
nuanced discussion of convergence for discovery using LMMs. Consistency and its
strengthened forms are defined below.

DEFINITION 3.1 (consistency for dynamics discovery). An LMM is consistent with
the differential equation for dynamics discovery provided ||T4|| ., — 0 as h — 0, and
it is strongly consistent if |Th||; = 0 as h — 0. Furthermore, a method is consistent
of degree k, for k > 1, provided N*=1 ||7p,|| .. — 0 as h — 0.

Remark 3.2. With the Definition 3.1, all LMMSs having at least kth-order trun-
cation error are consistent of degree at least k. Moreover, since

N

Imally = > [Fa)nl < Nlmnllo s
n=M

LMMs having at least second-order truncation are automatically consistent of degree
2 and thus strongly consistent.

Following from the classical truncation error analysis for LMMs, we have the
algebraic criteria for the consistency.

LEMMA 3.3 (consistency). A linear multistep method scheme for dynamics dis-
covery 1is consistent provided that p(1) = 0 and p'(1) = o(1). Furthermore, it is
consistent of degree k if it is order k in the sense of Definition 2.3, that is, if
p(e?) — zo(e?) = O(zF*1) as z — 0.

3.4. Stability and the root condition for discovery. In this section we
develop stability in a similar spirit as in section 2 but also introduce more refined
notions of stability for convergence analysis.! For discovery, the main distinction
from theory for solving the forward problem is that now we consider perturbations to

11t is interesting to note that some of our stability notions and root conditions are related to the
A stability [36], often discussed in connection to the A-stability region, at infinity, of numerical
integrators of known stiff problems, and relevant to solving differential algebraic equations (see [19],
for example).
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the recovered dynamics as opposed to the integrated states for the numerical solution
of the differential equation. To begin we introduce a linear operator given by

Mo
(3.3) (Rh}‘)n = Z ﬂmfn_m, n=M,M+1,...,N.

m=mg

Notice (R, f), arises from its forward counterpart (2.8) with the reduced B8 notation.

DEFINITION 3.4 (stability for dynamics discovery). A linear M -step method
for the dynamics discovery is called stable on [a,b] provided there exists a constant
K < o0, not depending on N, such that, for any two grid functions u,v € T'y[a,b],
we have

lu—v| <K (max lu; —vi| + HRh(u - 'U)H ) .
i€y S

DEFINITION 3.5 (marginal stability for dynamics discovery). A linear M -step
method for the dynamics discovery is called marginally stable on [a,b] provided that
there exists a constant K < oo, not depending on N, such that, for any two grid
functions u, v € Ty[a,b], we have

lu—w|| <K <max s — vy + HRh(u - v)H ) .
i€l 1

DEFINITION 3.6 (weak stability of degree —k for dynamics discovery). A linear
M -step method for the dynamics discovery is called weakly stable of degree —k for
k> 2 on [a,b] provided that there exists a constant K < oo, not depending on N,
such that, for any two grid functions u,v € T'p[a,b], we have

lu—w| <K (N“ max |u; — v;| + N¥~1 Héh(u - v)H ) .
1€l 0o

In all cases, the norm on the left-hand side is taken over the learned components
{un}nez and {v,}nez. This convention is used in the rest of the paper. Note that
we choose to use negative degree values so that more negative degrees correspond to
weaker stability. Similar to the observation given in Remark 3.2, we see that weak
stability of degree —2 follows from the marginal stability in Definition 3.5.

We would like to turn the property of stability into an algebraic condition as
for the case of numerical solution to ODEs. For the forward problem, the algebraic
root condition (Definition 2.6) serves this purpose; however, for the inverse problem,
we require a more subtle treatment of the root condition to capture the nuances in
stability for dynamics discovery.

DEFINITION 3.7 (strong root condition [1, 48, 13, 2]). A polynomial satisfies the
strong root condition provided the roots of the polynomial have magnitude less than 1.

Likewise, we also generalize the above root conditions.

DEFINITION 3.8 (kth-multiplicity root condition). A polynomial satisfies the root
condition of degree k € N provided the roots of the polynomial do not exceed magnitude
1, and those of magnitude 1 have multiplicity no larger than k.

Remark 3.9. One may view the conventional (algebraic) root condition (Defini-
tion 2.6) and the strong root condition (Definition 3.8) as special cases of the kth-
multiplicity root condition of Definition 3.8 with £ = 1 and k = 0, respectively. The
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strong root condition has been used in the numerical analysis, control theory, and
linear recurrence relation literature for the study of the relative stability for LMM
as time integrators and asymptotic properties associated with the linear recurrence
relations [1, 48, 13, 2].

Naturally, we can see that the notions of stability for discovery for LMMs are
tied to the bounds on the solutions to the linear recurrence equations determined by
the coefficients 3. We now relate them to the root conditions. Notice that while the
stability in Theorem 2.7 for numerical integration of the given dynamics is concerned
with the first characteristic polynomial p(r), the stability in Theorem 3.10 for the
discovery of dynamics is concerned with the second characteristic polynomial o(r)
defined by (2.3). More precisely, the root condition can be stated for a reduced
second characteristic polynomial

My
(3.4) a(r)= Z By Mo=m,

m=myg

Hence, we see a fundamental difference in the two stability notions. The dependence
of stability on o(r) (or 6(r)) might be unexpected as it has not appeared in the
numerical differential equation literature. However, it is also not surprising given the
inverse problem nature of using LMMs for dynamics discovery.

THEOREM 3.10 (stability for discovery). A linear multistep method for discovery
of dynamics is stable provided that the second characteristic polynomial o(r) or the
reduced 6 (r) satisfies the strong root condition in Definition 3.7. Likewise, an LMM
for the discovery of dynamics is marginally stable provided that o(r) or 6(r) satisfies
the algebraic root condition in Definition 2.6. Furthermore, an LMM for the discovery
of dynamics is weakly stable of degree —k (for k > 2) provided that o(r) or &(r)
satisfies the (k — 1)th-multiplicity root condition in Definition 3.8.

Proof. Let € = u — v, where u,v € I'p[0,T] are ‘both generated by solving the
LMM (3.2). By setting r = Ry (e) with the operator Rj, defined in (3.3), we have

Mo
> Bmn-m=tn, n=MM+1,.. N

m=myg

By standard recurrence and linear algebra theory [1, 15], the difference é can be
determined by the companion matrix of the above recurrence relation, denoted by

Z. This matrix is an (Mo — mg) x (My — mg) matrix with its first row given by

_(5mo+1 Bmg+2 Bag
Bmo ? Bmo ' Bmo
the identity matrix of size (My —mg — 1) x (My —mg — 1) and 0 is the zero column

vector in RMo—mo—1 The matrix Z is associated with a characteristic polynomial
given by 6(r) that shares the same set of roots as that of o(r), except a possible root
at 0.

To consider the propagation of the difference €, we form the matrix E,, = ZE,,_1+
R, where E,, € R(Mo—m0)xd hag jts rows given by {€én—k}o<k<My—me, and R, €
R(Mo—mo)xd hag jts first row given by the vector B;l(ljrn, and all subsequent rows by
Zeros.

Then

), and the rest of the rows are of the form (I,0), where I is

E,=Z""MYEy 1+ ) Z" 'Ry,
k=M
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where Ej;_; is given by the initial data {€j}rez,,. Thus, stability is equivalent to

max |[|E,lle < K(|Epm-1oc + max [[Rnlle),
M<n<N M<n<N

which is implied by
N

D2y < K* < oo,

n=1
or equivalently the strong root condition. Meanwhile, marginal stability is equivalent
to

25 ol < KBu-t o+ 3 [Rallo)
_n_

which is implied by

max [|2"| < K* < oo.
1<n<Nus

We thus only need the algebraic root condition.
Likewise, we can argue that weak stability of degree —k is implied by

N
n < * nTk—2 n < * nTh—1
| Jnax 12", < K*N*? <00, and Zl 12", < K*N* 1,
n—=
which is equivalent to the (k — 1)th multiplicity root condition. |

3.5. Error analysis and convergence. In this section, we use the truncation
error to study the error for discovery, including defining convergence and the order of
approximation of LMM schemes for discovery.

DEFINITION 3.11 (convergence and order of approximation for discovery). Con-
sider the initial value problem (2.1) discretized by an M-step LMM given by (3.1).
Let f,} € Tpla,b], where f is the exact grid function on the N + 1 grid points
{f. = f(x(tn)} and f the approzimation solved from (3.1). The LMM is convergent
for dynamics discovery if |f — flloo — 0 as h — 0 whenever max;ez,,|f; — fil = 0.
Moreover, if | f — flloo = ch? + O(hPT) for some constant ¢, then p is called the con-
vergence order, or alternatively, the order of approzimation for dynamics discovery.

Using the introduced notions of consistency and stability, we now present conver-
gence theorems for dynamics discovery.

THEOREM 3.12 (convergence theorems for discovery I). Consider the dynamical
system (2.1) discretized by an M-step LMM given by (3.1). Let f,f € Thla,b],

where f is the exact grid function on the N + 1 grid points {f,, = f(z(t,))} and f
the approximation solved from (3.1). Then,

(3.5) B(f = f)=7n+an
where Ty, is the local truncation error of the scheme, and g, = (gur Gpri1,-- -+ 9N) 05
given by

(gp)n = m,%giyo

0 Zf nGI\{M0+IA/[}.
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Moreover, in the senses of consistency outlined in Definition 3.1 and stability in
Definitions 3.4-3.6, if an LMM 1is consistent and stable, or strongly consistent and
marginally stable, then it is convergent for dynamics discovery in the sense of Defini-
tion 3.11. Furthermore, if it is consistent of degree k and weakly stable of degree —k,
then provided that N*~2 max;cz,, | f;— fil = 0 as h — 0, we also have || f — f||oc — 0.

Proof. By (3.1) and the truncation error defined in (2.9), we have

=

1

M
AmXp—m — Z Bmfn—m =0,

m=mqg

S| =

3
]
o

M
AmXp—m — Z ﬁm-fnfm = (Th)n'

m=mg

NE
> =

3
]
o

Subtracting the equations, we observe
M A
(36) Z Bm(fﬂ*m_fnfm):('rh)ny n=M,M+1,...,N,

or equivalently B(f — f) = T + g;,, where f — F on the left side refers to those
components indexed in Z.

Now, by the definitions of stability given in Definitions 3.4 and 3.5, there exists
a constant Ky < oo independent of h, for h sufficiently small, such that

Hf—fHOOSKW (max fi—f,

1€

n ||rh||w) ,

where W' = oo or W = 1, if the LMM is stable or marginally stable, respectively.
Thus, by Definition 3.1 on consistency and strong consistency, we have ||f — f||cc — 0
as h — 0. Likewise, if the LMM is weakly stable of degree —k, then

fi—F

Hf—}'H §K(Nk_2max + Nkt ||Thoo> .
) 1€LMm
By the definition of the consistency of degree k, together with the assumption on the

initial data that N*~2max;cz,,|f; — f;| = 0, convergence also follows. O

Theorem 3.12 states that for LMM based dynamics discovery, convergence follows
from both stability and consistency, as in the case of LMM-based time integration.
Equation (3.5) shows the interplay between the stability aspect of solving the system,
manifested in B~!, and the consistency component of truncation error, 7, from
discretization of the differential equation.

We note that Theorem 3.12 contains only sufficient conditions for convergence.
There are examples of LMMs that are consistent and marginally stable, but not
strongly consistent nor stable, which may still be convergent for dynamics discovery.
An example is the LMM with p(r) = 72 — 1 and o(r) = (r + 1)/2; convergence for
this LMM can be checked using calculations similar to that presented in the proof of
Corollary 4.3. Nevertheless, in the spirit of the Dahlquist equivalence theorem, we
also have the following result establishing consistency and some form of stability from
convergence.
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THEOREM 3.13 (convergence theorems for discovery II). Consider the dynamical
system (2.1) discretized by an M-step LMM given by (3.1). If the LMM is conver-
gent for dynamics discovery in the sense of Definition 3.11, then it is consistent and
marginally stable in the senses of Definitions 3.1 and 3.5.

Proof. The proof is similar to its classical counterpart. Consider the special cases
of ODE 4x(t) = 0 and %x(t) = 1, respectively, with x(a) = 0. If the LMM is
convergent in the sense of Definition 3.11, then the dynamical system (3.1) leads
to a linear recurrence relation with constants p(1) or p’(1), respectively, serving as
inhomogeneous terms on the right-hand side. Since the LMM is convergent, the
learned dynamics approach 0 or 1, respectively. Thus, as h — 0, we get p(1) = 0
and p'(1) = o(1). Consequentially, the consistency conditions from Lemma 3.3 are
satisfied. Using the theory on the linear recurrence relations given in the proof of
Theorem 3.12, in order for || f — f|loc — 0 as h — 0 whenever max;ez,, | f; — fi| = 0,
there must exist some constant 0 < K < oo such that maxi<p<n,, |27 < K as
Ny 7 oo. For this bound to exist, the root condition must be satisfied, and hence
the method must be marginal stable. 0

As seen from the proof of Theorem 3.12, under some assumptions on the initial
dynamics, we immediately get the order of convergence for LMM-based dynamics
discovery.

THEOREM 3.14 (order of convergence). If an LMM has truncation error of
order k with k > 1, i.e., |74l = O(R*), as in Definition 2.3, then, as h — 0,
we have |f — fllso = O(K¥) if the LMM is stable and max;cz,, |f; — il = O(h¥).
Moreover, provided that max;cz,,|f; — f;] = O(W*1), we have || — flloo < ChF1
if it is marginally stable or ||f — f||oo < ChFH1=5 if it is weakly stable of degree —s
with k > max{s, 2}.

Remark 3.15. The different notions of stability affect the order of convergence
for dynamics discovery. These refinements motivate accompanying definitions for the
degree of consistency in Definition 3.1, whereas traditionally the order of error matches
with the order of convergence (see Definition 2.3). For dynamics discovery, the order
of convergence and degree of consistency matches for strongly stable schemes. While
this might not hold generically for marginally or weakly stable LMMs, resulting in
possible lower order of convergence than the degree of consistency, we show later that,
for some cases such as AM-1, the same order can still be maintained.

4. Application to AB, AM, and BDF. We now apply the general theorem
on LMM for the dynamics discovery to three popular special classes of methods—AB,
AM, and BDF.

4.1. Counsistency of AB, AM, and BDF. It is well-known that the Adams
family schemes and BDF are consistent as time integrators. Specifically, AB-M and
BDF-M have order of error M, while AM-M has order of error M+1. As aresult, these
three classes of LMM methods remain consistent for dynamics discovery. Moreover,
as a consequence of the order of error, AB-M and BDF-M are consistent of degree
M, and the AM-M schemes are consistent of degree M + 1, as noted in Remark 3.2.
Indeed, the latter fact is crucial to the convergence of AM-1.

THEOREM 4.1 (consistency of AB, AM, and BDF for dynamics discovery). The
AB-M, AM-M, and BDF-M schemes are all consistent for dynamics discovery. Fur-
thermore, AM-1 is consistent of degree 2 and thus strongly consistent.
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4.2. Stability and convergence of AB, AM, and BDF.

THEOREM 4.2. With the notions of stability defined in Definitions 3.5 and 3.4,
1. BDF-M for all M > 1, AB-M for 1 < M <6, and AM-0 are stable;
2. AM-1 is marginally stable and thus weakly stable of degree —2;
3. AB-M for7< M <10 and AM-M for M > 2 are unstable.

The proof of Theorem 4.2 is given in section 4.3.

COROLLARY 4.3. BDF-M for all M > 1 are convergent, with convergence order
M. AB-M for1 < M < 6 are convergent, with convergence order M. AM-0 is conver-
gent with first-order convergence. AM-1 is convergent with second-order convergence
if we have second-order error on the initial data.

Proof. The conclusions of Corollary 4.3 on the convergence of LMM schemes
under consideration follow immediately from the application of Theorems 4.1, 4.2, and
3.14. The order of convergence follows, with the exception of AM-1. Indeed, a direct
application would imply only first-order convergence due to its degree-1 marginal
stability. However, we note that in this special case, the recurrence relation (3.6) is
given by fn —f, = f(fn,l — fu_1) +2(7h)n. Using the error expansion given in
Definition 2.3, the leading order of }'n — f,, of the form

(0" o= S0+ o= el

k

Z (t2j)h if n = 2k,

Z (taj1)h® + (—1)"te(t1)h?  ifn=2k+1

where e(t) = z(P*t1)(t) is assumed to be a smooth function depending on the solution
x = z(t) of the exact dynamics. Therefore, given second-order error in the initial
data, AM-1 has second-order convergence even though it is not a strongly stable
method. O

Remark 4.4. As demonstrated in the proof of the above Corollary, we see that if
all the roots of 6 on the unit circle are also the roots of 1, some refined notions of the
consistency (such as requiring the difference of truncation errors at two consecutive
times steps being of a higher order) can be developed to utilize the error cancellation to
maintain convergence and error order. We note also that the finite range of instability
with respect to the order M for the AB scheme is due to the limitation of using brute
force calculations, but we conjecture that the scheme is unstable for all M > 7.
Interestingly, that M = 6 is a threshold for stability of the polynomial echoes the
stability criterion for the forward problem BDF [22], for which M = 6 is also the
largest known order method that is stable. Explicit numerical calculation or Routh
arrays (see [13]) are used to show this fact [22, 10, 14]. Schur polynomials have since
been used [9] to show a generalized stability argument for M > 13 [14]. We leave
open a generalized stability result for M > 7 using the polynomial roots, but we have
validated numerically the instability for 7 < M < 20.

4.3. Verification of root conditions for AB, AM, and BDF. We now
verify, for the three classes of LMMs, that the root condition holds for cases stated in
Theorem 4.2.
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TABLE 1
Largest magnitude roots.

Step M 1 2 3 4 5
AB - 0.3333 | 0.4663 | 0.6338 | 0.8075
AM 1.0000 | 1.7165 | 2.3658 | 2.9775 | 3.5639

Step 6 7 8 9 10

AB 0.9829 | 1.1587 | 1.3345 | 1.5100 | 1.6852
AM 4.1312 | 4.6851 | 5.2267 | 5.7586 | 6.2820

We begin by calculating the roots of the second characteristic polynomial associ-
ated with AB and AM since o(r) = 6(r) in both cases. We first present some results
for AB-M and AM-M with 1 < M < 10 as computational evidence (with exact
symbolic computation). We have also numerically validated instability for AB-M for
11 < M < 20 as well and expect instability to persist for all M > 7. However, there
is no theoretical proof so far. For AM-M, a general instability result for M > 2 is
proved in Lemma 4.7.

Fix M € N and A € {Ag,A;}, where we recall from section 2 that Ay =
{—-M,...,0} and Ay = {-M,—M + 1,...,—1}. Exchanging the integral and the
summand in the formula for the Lagrange interpolating polynomial, one can observe
that finding the roots of the second characteristic polynomial is equivalent to choosing
r € C satisfying a mean-zero equation. That is, for £ (u; A) defined in (2.6), we have

(4.1) Z /01 O (u; Ayr®du, = /01 Zﬁﬁ(u;]\)rzdu =0.

TEA z€A

As we see in Table 1, which is computed symbolically using Mathematica, the pro-
file of the roots of the characteristic polynomial associated with the different schemes
varies significantly. Equation (4.1) and the data in Table 1 immediately lead to the
following lemma.

LEMMA 4.5. Fiz A € {Ag, A1}, and let ¢"(u;A) be the Lagrange interpolating
polynomial defined in (2.6). Then, we can characterize the roots r € C of the second
characteristic polynomial as the solution to the equation

1

(4.2) Z 0" (uy A)r®du = 0.
0 we]\
Moreover, for AM-M with A = Ao, we have

1. M =1, then the single root satisfies |r| =1,

2. 2 < M <10, there exists at least one root r with |r| > 1,
and for AB-M with A = Ay, we have

1. 1< M <6, then |r| < 1,

2. 7T< M <10, there exists at least one root r with |r| > 1.

Let us state some useful properties of the second characteristic polynomial o(r)
associated with the AM methods and the corresponding coefficients of its B matrix.

LEMMA 4.6. For M > 2, the coefficients {Bm}}! of the AM method have the
following properties:

1. B1 > Bo> 0,
2. Sign(ﬁm-‘rl) = _Sign(ﬁm)a 1 <m< M — 1; and
3. Bo > |Buml
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Proof. Fix M € N with M > 2. The M-step AM scheme has coefficients
u™ '
(43) R e = A | (R ER R

i;zm

for m =0,1,..., M. The coefficients 5y and /31 are given by

| Mt 1 1 M—1
ﬁO:M/O g(u—i—i)du and 51=(M_1)!/0(1—U)i1:[1(“+i)d“~
Certainly, 8y > 0. Notice
M 1 M-1 1 M-1
(4.4) Bi>fo = 37 i ];[1 (u+i)du>/0 11 (u + 7)du.

We prove (4.4) by induction. As the base case, M = 2. For M = 2, we have
B1 =8/12 > fy = 5/12. Now assume (4.4) holds up to some arbitrary M € N with
M > 2. We will show the result for M + 1.

(4.5)

s [ Tl om= et [ (n<>Mﬁ)d
g h ([ Moo 2452 [T )
(4.7) (M+A;+]\g+2 /1]ﬁ1u+z
(4.8) >+ | ;‘\;ﬁf | u—l—z du—/

as desired. Note we used the inductive hypothesis on the second term in (4.6). The
proof by induction showing for M > 2, 81 > [y is complete. To prove part 2, note
that the relation of signs between coefficients follows from the sign of the Lagrange
basis polynomials in the integrand of the coefficients. For m € {2,3,..., M}, the
integrand of (4.3) are of the same sign, and therefore the sign of 3, depends only on
the multiplier (—1)™. Hence part 2 of Lemma 4.6 follows.

Finally, for part 3, we note that

1 1 M-2 1 M—2
|BM|:]V—”/0(1_u)E)(u+Z du<—/ g(u—l—z)du
1 1 M—2
i=0
This completes the proof. ]

LEMMA 4.7 (general instability of AM M > 2).  The linear multistep method
formed by the AM scheme for M > 2 does not satisfy the root condition.
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Proof. Fix M > 2 and consider the second characteristic polynomial associated
with the AM scheme. We write it as o(r) = 3" 8,7 ~™. From Lemma 4.6, 81 /8y >
1. Moreover, by construction of the AM method, (—1)™f,, < 0 for m > 2.

For r > 0 sufficiently large.

M
(4.9) (~D)Mo(=r) = (=1)*"r | 5o = Bi/r 4+ Y (=1)" B ™™

m=2

Taking the limit as r — +o00, we see that (—1)M o (—00) = oo since 3y > 0. Meanwhile,

(=)Mo (=51/Bo) = Z(_l)_mﬂm(ﬁl/ﬂo)M_m <0.

m>2

Hence, it follows from the intermediate value theorem that there is at least one root
of o(r) that is real in (—oo0, —f1/By) C (—o0, —1), violating the root condition. The
result thus follows. O

THEOREM 4.8 (root condition of AB, AM, BDF). The strong root condition for
discovery is satisfied by BDF-M for all M € N, the AB-M scheme for 1 < M < 6,
and AM-M for M = 0. The algebraic root condition, or the kth root condition with
k =1, is satisfied for AM-M with M = 1. On the other hand, the root condition
is not satisfied for the AB-M scheme with 7 < M < 10 or the AM-M scheme with
M > 2.

Proof. The case of AM-0 is trivial. Lemma 4.5 implies the results of Theorem
4.8 for AB-M with 1 < M < 10 and for AM-M with 1 < M < 10. Furthermore,
by Lemma 4.7, the AM-M scheme for M > 2 violates the root condition and hence
is unstable. Finally, BDF-M has o(r) = v™~1 and 6(r) = 1 for all M > 1. Hence,
the root condition is always satisfied for the BDF scheme for arbitrary M > 1. As a
result, AM-0, identical to BDF-1, satisfies the root condition as well. 0

Finally, Theorem 4.2 follows directly from Theorems 4.8 and 3.10.

4.4. Discussions on the effect of initial conditions. The theory developed
so far is under the assumption that some initial data of the dynamics are provided,
which leads to learning the approximated dynamics at later times. One may consider
a situation where the some terminal data are given instead. In such cases, the ap-
proximate dynamics would be solved backward in time, yielding a modified system
of equations. It is not hard to check that the stability would become dependent on a
modified second characteristic polynomial whose roots are the reciprocals of those of
6. Naturally, it is of interest to check root conditions for the three classes of LMMs
as well. For BDF, we clearly see the strong root condition holds as (r) = 1. For
AM-0 and AB-1, the same also hold. Likewise for AM-1, the root condition but not
the strong root condition remains true. For AM-M with M > 2, part 3 of Lemma 4.6
implies that the product of the roots of 6(r) = o(r) is less than one. Therefore, there
might be at least one root of the modified second characteristic polynomial outside
the unit disc, and hence instability for these methods is again expected. Interest-
ingly, unlike in the case with initial data where there is not yet rigorous theory but
only computational results for the AB methods, one can prove rigorously in the next
lemma a result of instability for the backwards-in-time AB-M, M > 2, via a similar
argument as in part 3 of Lemma 4.6.
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LEMMA 4.9. For M > 2, the coefficients {Bm}3f of AB-M satisfy By = 0 and
B1 > |Buml.

Proof. By = 0 is true by construction. For M > 2, we have

_1)ym+1 1 M
(4.10) B = (m_(l)l!zM_m)!/o il;[l(u+ifl) du
i#m

form=1,2,...,M + 1. The coefficients $; and §y; satisfy

1 M-1 1 M

1 ) 1 .
WM'ZW/O Z_l:ll(u—|—z—1)du<(‘M_l)!/o g(“+l_1)du=ﬂ17

which completes the proof of the lemma. ]

From the above, we see that root conditions do not hold for the modified second
characteristic polynomial associated with AB-M with M > 2, so that instability
would occur when terminal data are supplied. In practice, it is often the case that
such initial dynamics are represented by neural networks as part of the unknown as
well. Thus, the stability in such cases is worthy of further investigation, particu-
larly in conjunction with the approximation properties of the neural networks to be
employed. Clearly, the successful runs using neural networks in Figure 1 have good
correspondence with those schemes enjoying some stability properties in one or both
types of initial/terminal data.

5. Long-time dynamics discovery. In this section, we consider the problem
of discovering dynamics of (2.1) over a variable interval (0,7"), with terminal time
1 < T — oo, and a fixed mesh h. Notice by increasing 1" we increase the number
of grid points N = T'/h; hence we hope to relate our previous studies with variable
mesh and fixed domain to this setting. For the numerical analysis of time integration,
this study is reminiscent of that of asymptotic stability, which is often treated via the
study of linear dynamics [15, 33, 2].

By rescaling time, £ = ¢/T, where 0 < £ < 1, and defining () = x(t), we have via
change of variables that the scaled dynamics f may be related to that of the original

variables by
La(0) = T2 a(t) = Tf(a(0)) = TFED).

Then, if we define f(Z(f)) = Tf(Z(f)) = Tf(x(t)), the rescaled differential equation
becomes

(5.1) —i(f) = f(z(t), 0<t<1, #(0)=xz(0) = xo.

Now, consider applying the LMM scheme to Z using the transformed model prob-
lem (5.1) with a step size b = 1/N. Under this rescaling of time, one can check
directly that the leading truncation error term of an LMM of order p in the sense of
Definitions 2.2 and 2.3 is

- grtl

(5.2) Cpi1h? dfpﬂgz({) = Cp hPTPH

qrt1 qrt1

dtp""l .T(t) = CerlThpr(t)
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In light of (5.2), we can see that the truncation error of the discovered dynamics
of (2.1) in the original time scale is a multiple of the truncation error of the rescaled
model (5.1) by the factor T-!. Meanwhile, from the analysis of section 3.4, the
stability bound in Definition 3.4 is only directly dependent on o(r), not the specific
time domain size for T > 1.

Using these observations of the effects on consistency and stability, we can deduce
the behavior of an LMM in the long-time regime. For a strongly stable
pth-order LMM, the global error behaves like O (T *1Thp) = O(hP) provided that
maxe(o,r) |+ 1) (t)| remains uniformly bounded as T increases. Hence, we may view
strongly stable LMMs as A-stable, in the case of dynamics discovery, for fixed h as
T — o0o. This can be seen as another difference with the case of the forward problem
of time integration, where the order of A-stable LMMs is known to be limited by 2
due to the celebrated Dahlquist barrier theorems [12, 15, 33, 2]. On the other hand,
for unstable methods, the exponential growth in IV of the inverse matrix B~! domi-
nates over any gain in accuracy from consistency. Thus, lack of stability leads to an
exponentially increasing error as T' grows linearly.

As a special example, the marginally stable AM-1 is not stable for dynamics
discovery, but as stated in the Corollary 4.3 and the derivation in its proof, we can
use the rescaling to get the global error in the form O(T~1Th?) = O(h?), Thus, we
expect AM-1, for a fixed h, to have a constant error as T" increases, which is supported
by numerical experiments presented in the next section.

To recap, from the analysis in this section, for dynamics discovery, BDFs enjoy
asymptotic stability for a fixed time step size h as T increases. The same holds for
AB-M, at least for a small value of M that enjoys the stability as A — 0 for a given
terminal time. While this also holds for AM-1, it does not hold for AM-M with
M > 2. As shown in Figure 2, the errors from AB and BDF remain fixed across
various values of T, while the AM methods yield exponential growth of error in 1" for
M > 2.

6. Numerical experiments. In this section, we provide numerical solutions to
the linear systems associated with each of the studied multistep methods and show
numerical evidence consistent with the theoretical findings. We limit ourselves to the
idealized setting of numerically exact states considered for the theoretical analysis and
to low dimensional dynamic systems for the sake of illustration and benchmarking.
In addition, we also take the initial data for the dynamics to be exact. For a model
problem, we consider the 2D cubic system, a nonlinearly damped oscillator, specified
as in [41, 6].

i = —0.1 23 +2.0 3,
(6.1) iy = —2.0 23 — 0.1 23,
Z,Cl(O) = 27 (EQ(O) =0.

6.1. Fixed time domain. First we study the methods on a fixed time domain,
t € [0,0.2], with varying time step. We show in Figure 3 the results from the Adams
family and BDF methods.

The exact states and dynamics are computed by numerically integrating (6.1) on
a very refined mesh. The errors of the discovered dynamics in the £>°—norm are shown
in Figure 3 for a different M against a different number of grid points. In addition,
Figure 3(d) shows a segment of the approximated dynamics captured over the interval
versus the true dynamics using a stable and convergent method (AB-3) when h = 0.01.
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M —step AM for 2D Cubic Oscillator on [0,T] M — step AB for 2D Cubic Oscillator on [0, T] M —step BDF for 2D Cubic Oscillator on [0,T]

100 —mo1 J————— —
——M=2

107] = M=3

10°
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2x10! 3x100 2x10" 3x10! 2x10! 3x100
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(a) AM (b) AB (c) BDF

F1G. 2. Long-time errors for discovery of 2D cubic system (6.1).

M — step AB for 2D Cubic Oscillator M — step AM for 2D Cubic Oscillator

Errors
=
2

1072

2x10% 3x10! 4x10* 2x10! 3x10t 4x10!
Grid Points on [0,0.2] Grid Points on [0,0.2]
(a) AB (b) AM

Dynamics of 2D Cubic Oscillator AB-3

M — step BDF for 2D Cubic Oscillator
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(c) BDF (d) Captured dynamics with AB-3

Fic. 3. Numerical results of the three types of schemes on the 2D cubic system (6.1) on the
unit time interval for different choices of M and N.

In this figure, the dotted and dashed lines represent the true dynamics in the first and
second coordinates, i.e., f; and f,, respectively. The crosses and asterisks denote the
learned dynamics in the first and second coordinates, i.e., j" 1 and }'2, respectively. The
method is able to capture the twist and intersection of the two coordinates. Clearly,
the numerical results support the theoretical findings of this paper.

6.2. Long-time behavior. Here, we consider the problem of discovering dy-
namics over a changing domain [0,7], for T > 1, with fixed mesh size h. In Fig-
ure 2, we discover the dynamics of the 2D cubic system over specified ranges of T
(T =12.5,25,37.5). In Figures 2(a), 2(b), and 2(c), we use h = 0.01 to first generate
data over [0,50] and then select the slice of data matching the Ts. AM-M clearly
suffers from the exponential error growth when M > 2, while it has a constant error
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TABLE 2
LMMs: Similarities and differences for integrating and learning dynamics.

Task Integrating dynamics Learning dynamics

Goal Given f = f(x), find x = x(¢). Given {x(tn)}N_,, find f = f(x).
Type Forward problem Inverse problem
Consistency p(1) =0,p'(1) = o(1) p(1) =0,p'(1) = o(1)
Stability Dalhquist root condition on p New root conditions on o (or &)
Example BDF-M (M <6), AM, AB BDF, AM-0, AM-1, AB-M (M < 6)

when M = 1, as predicted in section 5. Meanwhile, also consistent with the analysis
of secton 5, AB and BDF are robust for the long-time dynamics discovery—yielding
a constant error for fixed mesh as 7" increases and a decreasing error for larger M.

7. Conclusions and future steps. In this paper, we extend the foundational
work of solving ordinary differential equations using LMMs to the problem of dy-
namics discovery. We introduced refined notions of consistency, stability, and conver-
gence for discovery based on classical definitions, and we showed how three prominent
schemes—AB, AM, and BDF—may or may not be convergent numerical methods for
dynamics discovery in general. To do so, we first derive algebraic criteria to determine
the consistency and stability of the LMM, in a spirit similar to the counterpart for
the classical theory. The key difference lies in the characteristic polynomial of atten-
tion; instead of the root condition for the first characteristic polynomial, as classically
attributed to LMMSs as time integrators, stability for discovery of dynamics is attrib-
uted to root conditions on the second characteristic polynomial. While the conditions
are trivial for the BDF class, their validity in the case of AM schemes requires the
study of some new properties of the Lagrange interpolants. The case of AB, at the
present, has to be investigated computationally. Numerical results are presented to
show agreement with the theoretical findings. In conclusion, we find theoretically and
numerically that the systems for BDF-M for all M € N, AB for 1 < M < 6, and
AM-M for M =0 and 1 are all convergent, while AB-M for 7 < M < 10 and AM-M
for M > 2 are not, as summarized in Table 2. These conclusions are drawn provided
some initial data on the dynamics are supplied. Modifications need to be made, as dis-
cussed in section 4.4, if other types of additional data on the dynamics are provided.
LMM schemes are well-studied for the forward problem in numerical analysis. As
such tools, they can be useful to the subject of machine learning. For example, they
can be applied to the design and training of neural networks that are seen as discrete
forms of dynamic systems [54, 7, 49]. Different from such applications, the new study
given here is motivated by recent interest in using machine learning [4, 17, 34, 35, 47]
to formalize a variety of inverse problems such as learning dynamics using classical
discretization techniques like LMMs. The change of the problem type from forward
integration to inverse learning leads to a different mathematical theory as illustrated
in Table 2.2 Note that in particular, BDF provides a class of methods convergent
for integrating and learning dynamics, while not all AB and AM methods can share
the same conclusion. Our framework can be applied to check on other LMMs besides
these examples. Furthermore, it will be interesting to explore if there are systematic

2Note that there are several different versions of consistency and stability of LMM based dynamics

discovery, which also affect the order of convergence; see the discussions in Theorem 3.14.
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ways to generate broader classes of LMMs good for both tasks of model-based time
integration and data-driven learning.

As discussed in section 3.2, our current study assumes the best possible case
that the exact states along with suitable approximations to the initial dynamics are
all given, together with the assumption that the neural network representation can
produce zero residual for the LMM dynamics. While this setting is highly idealized,
based on the conclusions drawn, we can speculate about the impact on the properties
of stability and convergence caused by different choices of time discretization schemes
for a more informed attempt at discovery of unknown dynamics in more practical
settings. The latter leads to many interesting issues to be considered in the future. For
instance, instead of assuming only data on the state with a loss function 7(x, f, f nn),
we may consider a more general loss function with data on the state and dynamics,

i'e'7 T(ia }7 fNNﬂ }7)2)7 given by

((%F) + G&EF Fan F)+6(E %) +Ri%) + Ra(f) + Ra(Fan) -
———r

dynamics conformity data fidelity regularization

For LMMs with grid functions, the loss £; associated with dynamics conformity comes
from the discretization (3.1), and f € T';[a, b], the space of grid functions. The total
loss can be taken as an expectation over training samples and minimized to obtain
some optimal representation of the state or dynamics. LMNet is an example where the
conformity term is minimized over parameterized neural networks of various types, so
that f = f ., as studied in [39, 41, 52, 57].

Whenever the term involving the LMM residual is accounted for, the framework
developed in this paper would be relevant. For stable LMMs considered here, one
may expect that it may be possible to extend the convergence results for exact and
complete data if the set of neural networks can satisfy some universal approxima-
tion properties. The convergence would be expected to be in the sense of function
approximations which would imply a good generalization error, at least among suit-
able classes of smooth dynamic systems. For systems displaying chaotic behavior and
sharp transitions, new ideas are likely needed in order to ensure accurate discovery of
the underlying complex dynamics.

In this more general setting, neural network representations may also provide im-
plicit regularization of the learned dynamics so that unstable LMMs could potentially
be stabilized. However, regularization likely produces additional consistency error
so the convergence has to be more carefully examined. Moreover, we may consider
compressed representation and treat incomplete data by promoting sparsity or ex-
ploring the use of partial physics as regularization to achieve physics-informed and
data-driven discovery of the dynamics. Finally, there are many avenues of exploration
to extend the results reported here. Some interesting topics for future studies include

1. the effects of regularization by specifying various forms of the regularization
terms R1 and R, such as those promoting smoothness, sparsity, low dimen-
sionality, and extending the above tasks for study of the dynamics discovery
problem with incomplete and uncertain data,

2. different reduced-order models via choice of constrained representations on
the dynamics or the state variables or both [3, 57],

3. extension of the stability framework to incorporate other multistep and mul-
tistage schemes such as predictor-corrector, Milne, and Runge-Kutta [45],

4. derivation of a general class of LMMs that are convergent for both the forward
problem of time integration and the backward problem of dynamics discovery,
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5. the errors in numerically integrated states based on learned dynamics [41],

6. distributed dynamic systems such as time-dependent PDEs and examining
the additional effect due to spatial discretization,

7. generalizing to the study of dynamics for a suitable set of initial conditions.

Naturally, learning dynamics has strong connections to the subject of time-series pre-
diction using deep learning [8, 21, 25, 51]. Our current work here may motivate further
rigorous numerical analysis studies in such a direction as well. To conclude, we see
from this study that there are many new challenges in physics-based and data-driven
modeling and simulations warranting further numerical analysis research.
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