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We develop an energy-stable scheme for simulating fluid-particle interaction problems 
governed by a coupled system consisting of the incompressible Navier-Stokes (NS) 
equations defined in a time-dependent fluid domain and Newton’s second law for particle 
motion. A modified temporary arbitrary Lagrangian-Eulerian (tALE) method is designed 
based on a bijective mapping between the fluid regions at different time steps. In the 
proposed numerical scheme, the tALE mesh velocity, the incompressible NS equations, and 
Newton’s second law are solved simultaneously. We prove that under certain conditions, 
the new time discretization scheme satisfies an energy law. For the space discretization, the 
extended finite element method (XFEM) is used to solve the problem on a fixed Cartesian 
mesh. The developed method is first-order accurate in time and space without being 
momentum conservative. To verify the accuracy and stability of our numerical scheme, 
we present numerical experiments including the fitting of the Jeffery orbit by rotating of 
an ellipse and the free-falling of an elliptic particle in water.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

Fluid-particle interaction plays an important role in scientific and engineering problems such as crude oil emulsions, 
fluidized suspensions and sedimentation, ship maneuvering, and underwater vehicles. In this paper, we consider interaction 
between a rigid body and the surrounding incompressible fluid. In the past decades, two categories of models have been 
proposed to describe the particle surface and the hydrodynamic interaction between the fluid and the particle, including the 
continuum approach [23,36,47,48] and the models using the direct numerical simulation (DNS) technique. The continuum 
approach views solid particles and fluids as interpenetrating mixtures with different viscosities that are governed by the 
laws of conservation. In this approach, the motion of particles and that of fluids are combined in the same mathemati-

✩ Funding: The work of Xiang Li is partially supported by the NSFC program for Scientific Research Center under program No. U1530401. The work of 
Li Luo is partially supported by the NSFC program for Scientific Research Center under program No. 11701547. The work of Xiao-Ping Wang is partially 
supported by the Hong Kong Research Grants Council (GRF grants 16302715 and 16324416, CRF grant C6004-14G, and NSFC-RGC joint research grant 
N-HKUST620/15). The work of Qiang Du is partially supported by US National Science Foundation grant DMS-1719699 and DMS-2012562.

* Corresponding author.
E-mail addresses: lixiang@csrc.ac.cn (X. Li), qd2125@columbia.edu (Q. Du), li.luo@siat.ac.cn (L. Luo), mawang@ust.hk (X.-P. Wang).

https://doi.org/10.1016/j.jcp.2020.109850

0021-9991/ 2020 Elsevier Inc. All rights reserved.



X. Li, Q. Du, L. Luo et al. Journal of Computational Physics 424 (2021) 109850

cal framework to form a single system of equations and the boundary conditions are imposed implicitly on the particle 
surface. The continuum approach is flexible and can efficiently solve various kinds of fluid-particle interaction problems. 
However, the false response from the viscous material used to mimic the rigid objects might produce undesirable hydrody-
namic effects in the case when the particle concentration is dense, or when particle-wall and particle-particle interactions 
are considered. Alternatively, the DNS technique treats the fluid and the particle separately and computes hydrodynamic 
interactions as a part of the solution. The boundary conditions that capture precisely the momentum and pressure response 
between the fluid and the rigid particle are imposed explicitly on the solid surfaces. The DNS technique gives a clear under-
standing of the mechanisms between the fluid and the particle and is well designed for many problems involving nonlinear 
and geometrically complicated phenomena.

For fluid-particle interaction simulations based on the DNS technique, the fluid domain is time-dependent as the particle 
moves inside the fluid. In order to track the particle and its surrounding fluid, several numerical simulation techniques 
have been developed, including the arbitrary Lagrangian-Eulerian (ALE) method, the temporary arbitrary Lagrangian-Eulerian 
(tALE) method, and the fictitious domain method. For the ALE method [21,20,22], a boundary fitted mesh is used to describe 
the fluid domain. The particle surface is aligned with element boundaries. The ALE mesh is updated after each time step 
using the ALE mapping. Moreover, when the mesh becomes too distorted, a new mesh must be generated. In order to 
simulate the fluid-particle problem on a fixed Eulerian mesh, the tALE method is proposed [10]. In the tALE approach, time 
derivatives in the fluid region are discretized by an inverse tALE mapping. The interface of the particle is approximated 
with the help of the extended finite element method (XFEM) [12,40], which is a generalization of the standard Galerkin 
finite element method with additional degrees of freedom near the particle surface. An alternative approach is the fictitious 
domain method developed by Glowinski et al. [15–17,13]. The basic idea of this approach is to extend the problem in a 
geometrically complex domain to a simple and regular domain by generalizing the weak formulation of flows from the 
fluid domain to a fictitious domain that represents the particles. This approach enforces the constraint of rigid-body motion 
with a distributed Lagrange multiplier to introduce an additional body force to the interior of the region of particles. The 
fictitious domain method is widely used to simulate fluid-particle interaction problems, including the interaction between 
the fluid and a large amount of rigid particles [14,41,42].

The main purpose of this paper is to develop an energy-stable scheme for the simulation of fluid-particle interaction 
problems. Energy stability becomes crucial in numerical simulations when large time step sizes are used and long-time 
behavior is simulated. Ensuring numerical stability for fluid-particle interaction is far from trivial. Wood et al. [45] indicated 
that numerical schemes based on sequential computation of fluid and particle dynamics are often unstable if there are 
no sub-iteration steps between computations of the fluid and the particle. To improve the stability, certain sub-iteration 
steps are performed between the two sets of computations [8,39,43]. Efforts have been made to study the stability of 
numerical methods such as the immersed boundary methods [26,27,38,46], the block-factorization methods [3,35], and the 
weak-coupling scheme using the summation-by-parts (SBP) operators [32,28]. The SBP-based schemes are proven to be 
energy-stable for both time and space discretization, and they have been applied successfully in fluid-structure interaction 
[31]. Other studies of the stable numerical schemes are also available [34,44]. Recently, a stable partitioned algorithm [4–6]
has been presented to simulate the fluid-particle interaction problems with light or zero-mass rigid particles.

In this paper, we develop an energy-stable time discretization scheme for simulating the fluid-particle interaction prob-
lem. The energy-stable scheme is based on a DNS-type model. The incompressible Navier-Stokes equations and Newton’s 
second law are used to describe the fluid and the particle motion respectively. To track the time-dependent fluid domain, 
our numerical scheme develops a bijective mapping based on the tALE mapping [10]. To ensure energy stability, the tALE 
mesh velocity, the fluid equations, and Newton’s second law are solved implicitly and simultaneously. We prove that under 
a mild condition that is usually omitted in practical implementation, the new time discretization scheme satisfies a discrete 
energy law. The discrete energy law is similar to the energy law of the continuous system. For the discretization in space, 
we use the XFEM [12,40] to handle discontinuities near the particle surface. Only a fixed Eulerian mesh is required for the 
entire computation, without the need to regenerate or deform the meshes.

Numerical tests are carried out to verify the stability and accuracy of the energy-stable scheme. We simulate the Jeffery 
orbit of a fixed ellipse rotating in a shear flow and compare the results with those obtained from the standard tALE-XFEM 
method [49]. It is shown that our energy-stable scheme allows the usage of large time step sizes such as δt = δx, while the 
standard tALE-XFEM method soon blows up even with a much smaller time step size. Moreover, our energy-stable scheme 
remains stable in long time simulation. Tests show that our algorithm is first-order accurate in both time and space. We also 
simulate a thin ellipse sinking in water which displays fluttering and tumbling motions. The proposed numerical scheme is 
shown to be energy-stable for both cases.

The rest of the paper is organized as follows. In Section 2, we introduce the governing equations and derive the energy 
law for the continuous system. In Section 3 we introduce the tALE method with a bijective tALE mapping between the 
different time steps. The energy-stable scheme is developed in Section 4. The discrete energy law of the time discretization 
scheme is also proved in this section. Implementation details of the proposed scheme are described in Section 5. Numerical 
experiments are presented in Section 6 to support the theoretical results. The paper is concluded in Section 7.
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Fig. 1. Fluid-particle interaction problem.

2. Model of the fluid-particle system

2.1. Governing equations

We consider the motion of a solid particle in the fluid, as illustrated in Fig. 1. Let � be the entire computational domain 
with boundary ∂�. Let P (t) be the interior of the solid particle, and let ∂ P (t) denote its surface. Equations (2.1)-(2.6) are 
the governing equations of the fluid-particle system:

The fluid motion is governed by the incompressible NS equations in � \ P (t):

Re(
∂u

∂t
+ (u · ∇)u) = −∇p + ∇ · σ + f, (2.1)

∇ · u = 0. (2.2)

Here ρ stands for the fluid mass density and η is the fluid viscosity coefficient. u is the vector of fluid velocity, p stands 
for the pressure, and f denotes the external force on the fluid. For incompressible flow, tensor σ is given by σ := ∇u. 
Parameter Re is the particle Reynolds number, which is given by Re := ρV0L0

η . V0 and L0 are the characteristic velocity and 
characteristic length of the particle, which are the particle diameter and the particle maximal velocity norm, respectively.

The motion of the solid particle is given by Newton’s law:

ReMs
dUs

dt
= −

∫

∂ P (t)

(−pI + σ ) · ndS + Fs, (2.3)

Re(Is
dωs

dt
+ ωs × Isωs) = −

∫

∂ P (t)

r× ((−pI + σ ) · n)dS. (2.4)

Here Us is the velocity of the particle’s center of gravity, ωs is the particle angular velocity, I denotes the unit matrix, n is 
the inner normal of P (t) on its surface (thus it is the outer normal of � \ P (t) on ∂ P (t)), r = x − Xs is the vector from the 
particle’s gravity center Xs to a point x on the particle surface, and Fs is the external force on the particle. In this model, the 
particle is assumed to be rigid and is made of a homogeneous material of density ρs . Dimensionless mass Ms and inertia Is
of the particle are defined as:

Ms := (ρs/ρ)

∫

P (t)

dx,

Is := (ρs/ρ)

∫

P (t)

|r|2dx (2D case),

Is := (ρs/ρ)

∫

P (t)

(|r|2I− r⊗ r)dx (3D case),

where r ⊗ r denotes the Kronecker product of r and rT . If the fluid-particle motion occurs in 2D, or if the particle is a 
spherical body made of a homogeneous material, the nonlinear term ωs × Isωs in (2.4) becomes zero.

The boundary conditions on ∂ P (t) are

1

Ls
(u− us) · τ = −(σ · n) · τ , (u− us) · n = 0. (2.5)
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Here us = Us + ωs × r, and τ is the tangent vector on ∂ P (t), Ls is the slip length coefficient.

The boundary conditions on ∂� are

1

Ls
(u− uw) · τ = −(σ · n) · τ , u · n = 0. (2.6)

Here n is the outer normal of �, and uw denotes the wall speed whose direction is parallel to ∂�.

The total energy E of the governing system consists of the kinetic energy of the fluid and the particle, which is defined 
as:

E := ReEk +ReMsE pm +ReIsE pr, (2.7)

where

Ek :=
1

2

∫

�\P (t)

|u|2dx, E pm :=
1

2
|Us|

2, E pr :=
1

2
|ωs|

2.

2.2. Energy law of the governing system

In this section, we derive the energy law for the governing system. For simplicity we assume the wall velocity uw = 0. 
We denote (F , G)S as the integral in the region S of the product, inner product, or Kronecker product of F and G , when 
F and G are scalars, vectors, or matrices respectively. ||F ||S denotes the L2 norms of F . Subscript S is omitted when S is 
chosen as � \ P (t). < F , G >∂ S denotes the corresponding boundary integral and ||F ||∂ S the corresponding L2 norm on ∂ S . 
The following theorem gives the energy law of the continuous system:

Theorem 2.1 (Energy law of the continuous system). Assume that uw = 0. The governing equations (2.1) - (2.6) satisfy the following 
energy law:

dE

dt
= − ||∇u||2 −

1

Ls
||u · τ ||2∂� −

1

Ls
||(u− us) · τ ||2∂ P (t) + (f,u) + Fs ·Us. (2.8)

Proof. Using Green’s formula and incompressibility equation (2.2), we obtain

dEk

dt
=(

∂u

∂t
+ (u · ∇)u,u) (2.9)

=(
∂u

∂t
,u)+ <

1

2
|u|2(u · n) >∂� + <

1

2
|u|2(u · n) >∂ P (t) .

Taking inner product of (2.1) with u and using Green’s formula and (2.2), we obtain

Re
dEk

dt
= − (σ ,∇u)+ < σ · n,u >∂� + < σ · n,u >∂ P (t) − < p,u · n >∂� − < p,u · n >∂ P (t) +( f ,u)

= − ||∇u||2 + (f,u)+ < (−pI+ σ ) · n,u >∂� + < (−pI + σ ) · n,u >∂ P (t) . (2.10)

Taking the inner product of (2.3) with Us and the inner product of (2.4) with ωs , then summing up these two equations, 
we obtain

d

dt
(ReMsE pm +ReIsE pr) = ReMsUs ·

dUs

dt
+ReIsωs ·

dωs

dt
= − < (−pI+ σ ) · n,us >∂ P (t) +Fs ·Us. (2.11)

Summing (2.10) and (2.11) and using the boundary conditions (2.5) and (2.6), we obtain

dF

dt
= − ||∇u||2+ < (−pI+ σ ) · n,u >∂� + < (−pI + σ ) · n,u− us >∂ P (t) +(f,u) + Fs ·Us

= − ||∇u||2+ < (σ · n) · τ ,u · τ >∂� + < (σ · n) · τ , (u − us) · τ >∂ P (t) +(f,u) + Fs ·Us

= − ||∇u||2 −
1

Ls
||u · τ ||2∂� −

1

Ls
||(u− us) · τ ||2∂ P (t) + (f,u) + Fs ·Us. �

Remark 2.1. If the wall velocity uw �= 0, we introduce W (t) as the accumulated work done by the shear force on the wall,

W (t) :=

t∫

0

w(t̃)dt̃, w(t) := − < (σ (x, t) · n) · τ ,uw(t) · τ >∂� . (2.12)

4



X. Li, Q. Du, L. Luo et al. Journal of Computational Physics 424 (2021) 109850

Fig. 2. Particle motion from time step tn (dashed line) to tn+1 (solid line).

Fig. 3. Computational mesh at tn+1 (right) and the fictitious tALE mesh constructed at tn (left). The ellipse at tn+1 is shown by a solid line and the ellipse 
at tn is shown by a dotted line.

Then the energy law becomes

d

dt
(E + W ) = −||∇u||2 −

1

Ls
||(u− uw) · τ ||2∂� −

1

Ls
||(u− us) · τ ||2∂ P (t) + (f,u) + Fs · Us.

Remark 2.2. The governing system conserves mass since the fluid is incompressible and the particle is rigid. If there is no 
external force acting on the fluid and the particle, the fluid-particle system (2.1) - (2.6) conserves momentum, which could 
be derived by combining the momentum equations for the fluid and the particle.

3. Time discretization with a bijective tALE mapping

We will construct an energy-stable time discretization based on the tALE method. Before introducing our tALE time 
discretization, we first review the standard ALE and tALE methods. Then we construct a tALE-based time discretization with 
a bijective mapping in 2D and in 3D.

3.1. A brief review of the ALE and tALE methods

As a particle moves, field variables near its boundary at the previous time step tn may become undefined at time tn+1

since there may not be any fluid flow (as shown by the dashed region in Fig. 2). One way to resolve this issue is to use the 
ALE method. In the ALE method, each mesh point moves at a mesh velocity so that it can track the motion of the particle. 
For instance, for a point xn+1 at time tn+1 , we map this point to a point xn at the previous time step tn by

xn+1 = B(xn) := xn + δtun
(xn).

Here un is the mesh velocity field of the ALE method. An example of the ALE mesh motion is shown in Fig. 3. However, the 
ALE mesh may become too distorted after a few time steps. In this case, mesh reregeneration is needed.

To solve the system on a fixed Eulerian mesh, Choi et al. [10] introduced the tALE method. Different from the ALE 
method, mesh points in the tALE method do not move. For the time discretization of the tALE method, we find the previous 
position of the fixed mesh points by an inverse flow mapping B̃ (see Fig. 4) such that

xn = B̃(xn+1) := xn+1 − δtun+1
(xn+1).

Here un+1 is the mesh velocity field of the tALE method. The values of the physical quantities at such points in the previous 
time step are calculated by interpolation. Unlike the ALE method, the tALE method maps the fixed mesh at the current time 
step, to a fictitious mesh at the previous time step (see Fig. 3). Mesh regeneralization is not needed since only a fixed mesh 
is used in the practical implementation. Similar to the ALE method, the inverse mapping may be constructed from “mesh 
velocity”. However, the “mesh velocity” in tALE is only used to find the previous position of a mesh point, thus it does not 
change the mesh in the calculation.
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Fig. 4. Inverse mapping �−1 between the computational mesh and the tALE mesh. The mesh in red is the fixed mesh in computation, while the mesh in 
blue is the tALE fictitious mesh in the previous time step. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 5. Illustration of (Xn
s , θ

n
s ) for an ellipse.

For both theoretical analysis and practical implementation of the tALE method, one of the key issues is to ensure the 
bijectivity of the fluid region at different time steps. Without such bijectivity, the position of a point inside the fluid in 
the current time step might be tracked to a position inside the particle or outside the entire domain in the previous time 
step. Such poor tracking will make the algorithm not well-posed. Moreover, such bijectivity is crucial to the stability of the 
numerical scheme. The issue of bijectivity also appears in the standard ALE analysis [30].

Remark 3.1. The tALE method allows discretization on a fixed mesh, and so it is less costly compared to the standard ALE 
method. However, one of the drawbacks of the tALE method is that it cannot be written in a conservative form in a discrete 
setting.

3.2. Bijective tALE mapping: 2D case

For our model problem, we show how to construct a bijective mapping between time steps tn and tn+1 . We start from a 
simple case where the particle does not rotate. We show that the ALE/tALE method can form a bijective mapping. However, 
the ALE/tALE method fails in bijectivity as soon as the particle starts to rotate. Then we introduce our bijective map to 
resolve this problem.

Assume that the particle is circular and does not rotate. Denote by Xn
s and θn

s the position of the particle’s center of 
gravity and the angular orientation of the particle respectively. Here the angular orientation of the particle is defined by the 
angle from the x axis to a particular half-line. The half line starts from the particle’s center of gravity and goes through a 
fixed reference point on the particle interface. Fig. 5 shows an example of (Xn

s , θ
n
s ) for an ellipse at t = tn , where the fixed 

reference point is positioned at Xn
r f
. Using the ALE method for example, the bijective mapping (xn, Xn

s ) → (xn+1, Xn+1
s ) can 

be constructed in a simple way:

{
xn+1 = xn + δtun

(xn),

Xn+1
s = Xn

s + δtUn
s ,

where the tALE mesh velocity un is given by
⎧
⎨
⎩

−	un = 0, in � \ P (tn),

un = Un
s , on ∂ P (tn),

un = 0, on ∂�.

Denote B(xn) = xn + δtun
(xn). Assume that un is Lipschitz continuous, that is,
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Fig. 6. Example of non-bijective mapping between different time steps. The solid circle is P (tn), which is rotating. The dashed circle is P (tn+1), which is 
the particle boundary at t = tn+1 calculated by the tALE mapping using (3.1).

Fig. 7. Example of bijective mapping between different time steps. The solid line circle is both P (tn) and P (tn+1). The modified tALE mapping is shown by 
arrows.

|un
(x2) − un

(x1)| < L|x2 − x1|, ∀ x1, x2 ∈ � \ P (tn), x1 �= x2.

Then the discrete mapping B is a bijection from � \ P (tn) to � \ P (tn+1), for all δt < 1/L, since (i) the mapping on particle 
surface is bijective, (ii) the mapping and inverse mapping are continuous. However, when the particle rotates, we cannot 
construct a bijective mapping using the ALE mesh velocity field.

To further illustrate this, for an arbitrary point with coordinate xn on the particle boundary, rn is defined by rn := xn −Xn
s . 

If we define a mapping B using the above tALE velocity field, the tangential velocity on the particle boundary will distort 
the particle surface. We show an example in Fig. 6, where the particle is a rotating sphere with a fixed center of gravity. 
In this example, since mesh velocity on the sphere surface is in the tangential direction of the sphere, for the mapping 
B(xn) = xn + δtun

(xn), a point on the particle surface at time tn will not be mapped onto the particle surface at time tn+1 . 
The same problem also occurs in the tALE method since the mesh velocity field is similarly derived.

⎧
⎨
⎩

−	un = 0, in � \ P (tn),

un = Un
s + ωn

s × rn, on ∂ P (tn),

un = 0, on ∂�.

(3.1)

In order to resolve this issue, a modified mesh velocity field needs to be designed. Denote by xn+1 the position of an 
arbitrary point on the particle surface at time tn+1 , and denote by Xn+1

s the position of the center of gravity of the particle 
at time tn+1 . Define rn+1 := xn+1 − Xn+1

s . Denote by θn+1 and θn the angular orientation of xn+1 and xn with respect to 
the particle’s center of gravity. In order to ensure bijectivity, we need to map each point xn = Xn

s + (|rn| cos θn, |rn| sin θn) to 
xn+1 = Xn+1

s + (|rn+1| cos θn+1, |rn+1| sin θn+1). This is done by developing the boundary condition of the tALE mesh velocity 
field by un = (xn+1 − xn)/δt for each point xn on ∂ P (tn). We can see from the same example that the modified tALE mesh 
velocity helps maintain the shape of the particle (see Fig. 7). Note that |rn| = |rn+1| for each pair of xn and xn+1 above. We 
have

xn+1 − xn = Un
s δt + |rn|(cos(θn + ωn

s δt) − cos θn, sin(θn + ωn
s δt) − sin θn).

7
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Let ωn
s = (0, 0, ωn

s,z). If the angular velocity of the particle is not 0, define

rnf := (ωn
s,zδt)

−1|rn|(sin(θn + ωn
s δt) − sin θn,−(cos(θn + ωn

s δt) − cos θn),0),

otherwise let rn
f

:= rn (this can also be obtained by letting ωs → 0). Using Taylor expansion, we can see that rn
f

is a 
first-order approximation of rn w.r.t. δt . The boundary condition of the mesh velocity field can be written as

un = (xn+1 − xn)/δt = Un
s + ωn

s × rnf on ∂ P (t). (3.2)

The modified tALE velocity is obtained by solving the following equations:

⎧
⎨
⎩

−	un = 0, in � \ P (tn),

un = Un
s + ωn

s × rn
f
, on ∂ P (tn),

un = 0, on ∂�.

(3.3)

Using the modified tALE velocity field un , we can construct a bijective mapping from the time step tn to the time step tn+1:

⎧
⎨
⎩

xn+1 = xn + δtun
(xn),

Xn+1
s = Xn

s + δtUn
s ,

θn+1
s = θn

s + δtωn
s .

(3.4)

Define a mapping Bn : � \ P (tn) → � \ P (tn+1) such that Bn(xn) = xn + δtun
(xn), where un is given by equation (3.3). For 

all δt < 1/L, where L is the Lipschitz constant of un , such discrete mapping Bn is bijective from � \ P (tn) to � \ P (tn+1), 
since (i) the mapping on the particle surface is bijective, (ii) the mapping and inverse mapping is continuous. Moreover, for 
all functions f n defined in � \ P (tn), we can define the corresponding function f n� by

f n� (xn+1) := f n((Bn)−1xn+1), ∀ xn+1 ∈ � \ P (tn+1). (3.5)

It is easy to see that

∫

�\P (tn)

f n(xn)dxn =

∫

�\P (tn+1)

f n� (xn+1)( Jn)−1dxn+1 (3.6)

where Jn the Jacobian of B .
Similarly, the bijective mesh could also be constructed from tn+1 to tn:

⎧
⎨
⎩

xn = xn+1 − δtun+1
(xn+1),

Xn
s = Xn+1

s − δtUn+1
s ,

θn
s = θn+1

s − δtωn+1
s ,

(3.7)

where

⎧
⎪⎨
⎪⎩

−	un+1 = 0, in � \ P (tn+1),

un+1 = Un+1
s + ωn+1

s × rn+1
f

, on ∂ P (tn+1),

un+1 = 0, on ∂�.

(3.8)

rn+1
f

:= (ωn+1
s,z δt)−1|rn+1|(sin θn+1 − sin(θn+1 − ωn+1

s δt),−(cos θn+1 − cos(θn+1 − ωn+1
s δt)),0).

Define a mapping B̂n+1 : � \ P (tn+1) → � \ P (tn) such that B̂n+1(xn+1) = xn+1 − δtun+1
(xn+1), and define f n� (xn+1) :=

f n(B̂n+1xn+1). Denote Jn+1 as the Jacobian of B̂n+1 , we also have

∫

�\P (tn)

f n(xn)dxn =

∫

�\P (tn+1)

f n� (xn+1) Jn+1dxn+1. (3.9)

Remark 3.2. In the above discussion, to make Bn bijective, we require δt to be small enough such that δt < 1/L. Such 
requirement for δt is rarely explicitly mentioned in numerical papers based on algorithms using the ALE method, but it is 
required to guarantee well-posedness. According to the actual implementation experience, such constraint is very mild in 
numerical simulation and is naturally satisfied in most cases.

8
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3.3. Bijective tALE mapping: 3D case

In this paper we mainly consider 2D problems. Meanwhile, the bijective tALE mapping can also be extended to 3D 
without extra difficulties. We first consider the case where the particle gravity center is fixed. In this case, we use fixed 
Eulerian coordinates. As the particle rotates, velocity of an arbitrary point x on the particle surface can be expressed as

dx

dt
= ωs × r.

For standard tALE, this leads to an explicit discretization

xn+1 − xn = δt(ωn
s × rn),

which is not bijective between tn and tn+1 , as shown in the previous section. To obtain a bijective tALE mapping, similarly 
we find an rn+1

f
such that the following identity holds exactly:

xn+1 − xn = δt(ωn+1
s × rn+1

f
). (3.10)

Given xn+1 , xn , ωn+1
s , and ωn

s , (3.10) becomes a group of linear equations of rn+1
f

. Similar to the 2D case, rn+1
f

can be 
explicitly expressed by the position and angular velocity at the current and previous time steps by solving the above linear 
system. Using the bijective mapping on the particle surface, we can calculate the tALE mesh velocity field un and construct 
a bijection from � \ P (tn) to � \ P (tn+1).

If the particle simultaneously translates and rotates, consider Newton-Euler coordinates which are always centered at the 
particle’s gravity center. Motion of the particle is decomposed into translation and rotation. Rotation of the particle can be 
described in the Newton-Euler coordinates and rn+1

f
can be solved in a similar way.

For the 3D case, the Jacobian determinant Jn of linear transformation Bn is

Jn =

∣∣∣∣∣∣∣∣

1+ δt
∂(un)1

∂x1
δt

∂(un)1
∂x2

δt
∂(un)1

∂x3

δt
∂(un)2

∂x1
1+ δt

∂(un)2
∂x2

δt
∂(un)2

∂x3

δt
∂(un)3

∂x1
δt

∂(un)3
∂x2

1+ δt
∂(un)3

∂x3

∣∣∣∣∣∣∣∣

=1+ δt∇ · un + δt2( J12 + J23 + J31) + δt3 det(∇un
),

where

J12 =

∣∣∣∣∣
1+ δt

∂(un)1
∂x1

δt
∂(un)1

∂x2

δt
∂(un)2

∂x1
1+ δt

∂(un)2
∂x2

∣∣∣∣∣ ,

J23 =

∣∣∣∣∣
1+ δt

∂(un)2
∂x2

δt
∂(un)2

∂x3

δt
∂(un)3

∂x2
1+ δt

∂(un)3
∂x3

∣∣∣∣∣ ,

J31 =

∣∣∣∣∣
δt

∂(un)3
∂x1

1+ δt
∂(un)3

∂x3

1+ δt
∂(un)1

∂x1
δt

∂(un)1
∂x3

∣∣∣∣∣ .

Equation (3.6) also holds in 3D using the above rn
f
and Jn .

4. Energy-stable time discretization

In this section, we derive the energy-stable time discretization for our model problem. As mentioned earlier, one of the 
main difficulties in constructing an energy-stable time discretization comes from the time-dependent shape of the fluid 
domain. In order to overcome this difficulty, we first modify the tALE method with the bijective mapping introduced in 
section 3. Then, we construct an implicit numerical scheme in which the tALE mesh velocity, the NS equations for the 
fluid and Newton’s law for the particle are solved in a coupled system. We introduce the Jacobian determinant Jn+1 in the 
numerical scheme of the NS equations, which enable us to balance the fluid kinetic energy in different fluid regions in the 
energy analysis. From this section, (·, ·) is the abbreviation for (·, ·)�\P (tn+1) and || · || denotes the corresponding L2 norm in 
� \ P (tn+1).

4.1. Energy-stable time discretization

Using the bijective tALE mapping designed in the previous section, we design an energy-stable scheme for the fluid-
particle interaction problem:

9
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Algorithm 4.1 (Energy-stable time discretization).

Step I: Given (un, pn, Un
s , ω

n
s , X

n
s , θ

n
s ) at time step tn , solve the following coupled system (a)-(c) simultaneously to obtain 

(̃un+1, ̃Un+1
s , ̃ωn+1

s , Xn+1
s , θn+1

s ) at tn+1:

(a) Calculate particle position and angular orientation by solving
{
Xn+1
s = Xn

s + Ũn+1
s δt,

θn+1
s = θn

s + ω̃n+1
s,z δt.

The region P (tn+1) and � \ P (tn+1) are determined by Xn+1
s and θn+1

s in this step. Here ω̃n+1
s = (0, 0, ̃ωn+1

s,z ).

(b) Solve the bijective tALE velocity field:
⎧
⎨
⎩

−	un+1 = 0, in � \ P (tn+1),

un+1 = ũn+1
s , on ∂ P (tn+1),

un+1 = 0, on ∂�,

(4.1)

where

ũn+1
s = Ũn+1

s + ω̃n+1
s × rn+1

f
,

rn+1
f

= (ω̃n+1
s,z dt)−1|rn+1|(sin θn+1 − sin(θn+1 − ω̃n+1

s,z δt),−(cos θn+1 − cos(θn+1 − ω̃n+1
s,z δt)),0).

(c) Solve the NS equations for the fluid in � \ P (tn+1) and Newton’s law for the particle:

Re[
ũn+1 − un

��

δt
+ ((̃un+1 − un+1

) · ∇ )̃un+1] = ∇ · σ̃ n+1 −
1

2
Re(∇ · (̃un+1 − un+1

))̃un+1 + fn+1, (4.2)

ReMs
Ũn+1
s −Un

s

δt
= −

∫

∂ P (tn+1)

σ̃ n+1 · nds + Fn+1
s , (4.3)

ReIs
ω̃n+1

s − ωn
s

δt
+ ωn+1

s × Isω
n
s = −

∫

∂ P (tn+1)

rn+1
f

× (σ̃ n+1 · n)ds, (4.4)

where un
�� := un

�( J
n+1)

1
2 , un

�(x) := un(B̂n+1x). Jn+1 is the Jacobian determinant of bijective mapping B̂n+1 , which is defined 
by

B̂n+1 : � \ P (tn+1) → � \ P (tn), B̂n+1(xn+1) = xn+1 − un+1
(xn+1).

The boundary conditions on ∂� are

ũn+1 · n = 0,
1

Ls
(̃un+1 − uw) · τ = −(σ̃ n+1 · n) · τ . (4.5)

The boundary conditions on ∂ P (tn+1) are

(̃un+1 − ũn+1
s ) · n = 0,

1

Ls
(̃un+1 − ũn+1

s ) · τ = −(σ̃ n+1 · n) · τ . (4.6)

Step II: Given (̃un+1, ̃Un+1
s , ̃ωn+1

s , Xn+1
s , θn+1

s ), solve (un+1, pn+1, Un+1
s , ωn+1

s ) in � \ P (tn+1) by pressure correction (see 
e.g. [18]):

Re
un+1 − ũn+1

δt
= −∇pn+1, (4.7)

∇ · un+1 = 0, (4.8)

ReMs
Un+1
s − Ũn+1

s

δt
= −

∫

∂ P (tn+1)

−pn+1I · nds, (4.9)

ReIs
ωn+1

s − ω̃n+1
s

δt
= −

∫

∂ P (tn+1)

rn+1
f

× (−pn+1I · n)ds. (4.10)

10
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The boundary condition on ∂� is

un+1 · n = 0. (4.11)

The boundary condition on ∂ P (tn+1) is

(un+1 − un+1
s ) · n = 0, (4.12)

where un+1
s = Un+1

s + ωn+1
s × rn+1

f
.

Remark 4.1. From the definition, Jn+1 is of order 1 + O (δt). Multiplying Jn+1 by un
� brings an O (δt) truncation error in the 

discrete scheme, so that the time discretization is consistent with the continuous system, while the accuracy is limited to 
O (δt).

Similar to the continuous model, we may also define total energy of the discrete system. At time step tn , the total energy 
En of the governing system is defined as:

En := ReEnk +ReMsE
n
pm +ReIsE

n
pr (4.13)

where

Enk :=
1

2

∫

�\P (tn)

|un|2dx, Enpm :=
1

2
|Un

s |
2, Enpr :=

1

2
|ωn

s |
2.

4.2. Energy law of the time discretization

Assuming that wall velocity is zero, we have the following energy law for the time discretization Algorithm 4.1:

Theorem 4.2 (Energy law of the time discretization). Assume that the wall velocity uw = 0, Algorithm 4.1 satisfies the following energy 
law:

En+1 − En ≤ − δt||∇ũn+1||2 + δt(fn+1, ũn+1) + δtFn+1
s · Ũn+1

s (4.14)

− δt
1

Ls
||̃un+1 · τ ||2∂� − δt

1

Ls
||(̃un+1 − ũn+1

s ) · τ ||2
∂ P (tn+1)

.

Proof. Using property (3.9) of the bijective mapping B̂n+1 and a simple inequality 1
2
(a2 − b2) ≤ a(a − b), we have

Re(̃En+1
k

− Enk) =
1

2
Re(

1

2
|̃un+1|2 − |un

�|
2 Jn+1,1) ≤ Re(̃un+1 − un

��, ũ
n+1). (4.15)

Taking the inner product of (4.2) with ũn+1δt , we obtain

Re(̃un+1 − un
��, ũ

n+1) ≤ I1 + I2 + I3 (4.16)

where

I1 = −δtRe(((̃un+1 − un+1
) · ∇ )̃un+1, ũn+1) −

1

2
δtRe(∇ · (̃un+1 − un+1

), |̃un+1|2),

I2 = δt(∇ · σ̃ n+1, ũn+1), I3 = δt(fn+1, ũn+1).

Using Green’s formula and boundary conditions (4.5), (4.6) and (4.1), we obtain

I1 = δt <
1

2
|̃un+1|2, (̃un+1 − un+1

) · n >∂� +δt <
1

2
|̃un+1|2, (̃un+1 − un+1

) · n >∂ P (t)= 0.

Using Green’s formula we also have

I2 = − δt(σ̃ n+1,∇ũn+1) + δt < σ̃ n+1 · n, ũn+1 >∂� +δt < σ̃ n+1 · n, ũn+1 >∂ P (t)

= − δt||∇ũn+1||2 + δt < σ n+1 · n, ũn+1 >∂� +δt < σ n+1 · n, ũn+1 >∂ P (t) .

Plugging the above two equalities in (4.16) and using (4.15), we obtain

Re(̃En+1
k

− Enk) ≤ −δt||∇ũn+1||2 + (fn+1, ũn+1) + δt < σ n+1 · n, ũn+1 >∂� +δt < σ n+1 · n, ũn+1 >∂ P (t) . (4.17)

11
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Taking the inner product of (4.3) with Ũn+1
s δt and the inner product of (4.4) with ωn+1

s δt , then summing these two equa-
tions, we obtain

ReMs (̃E
n+1
pm − Enpm) +ReIs (̃E

n+1
pr − Enpr) ≤ −δt < σ̃ n+1 · n, ũn+1

s >∂ P (tn+1) +Fn+1
s · Ũn+1

s . (4.18)

Similar to the proof of the continuous case, summing (4.17) and (4.18) and using boundary conditions (4.5) and (4.6), we 
obtain

Ẽn+1 − En ≤ − δt||∇ũn+1||2 + δt(fn+1, ũn+1) + δtFn+1
s · Ũn+1

s (4.19)

− δt
1

Ls
||̃un+1 · τ ||2∂� − δt

1

Ls
||(̃un+1 − ũn+1

s ) · τ ||2
∂ P (tn+1)

.

For the pressure correction step, taking the inner product of (4.7) with δtun+1 , and using the inequality 1
2
(a2 − b2) ≤

a(a − b), we have

Re(En+1
k

− Ẽn+1
k

) ≤ Re(un+1 − ũn+1,un+1) = −(∇pn+1,un+1).

Using Green’s formula and boundary conditions (4.11) and (4.12), we have

Re(En+1
k

− Ẽn+1
k

) ≤ −δt < pn+1,un+1 · n >∂ P (tn+1) . (4.20)

Taking the inner product of (4.9) with Un+1
s δt and the inner product of (4.10) with ωn+1

s δt , then summing up the two 
identities, we obtain

En+1 − Ẽn+1 ≤ 0. (4.21)

Energy law (4.14) is then straightforward combining (4.19) and (4.21) �

Remark 4.2. When the wall velocity uw �= 0, define W n as the accumulated work done by the wall:

W n :=

n∑

i=0

w i, w i :=

∫

∂�

δt((σ̃ n+1(x, t i) · n) · τ )(uw · τ )ds,

and we have

(En+1 + W n+1) − (En + W n) ≤ − δt||∇ũn+1||2 + δt(fn+1, ũn+1) + δtFn+1
s · Ũn+1

s

− δt
1

Ls
||(̃un+1 − uw) · τ ||2∂� − δt

1

Ls
||(̃un+1 − ũn+1

s ) · τ ||2
∂ P (tn+1)

.

Remark 4.3. Since we use the bijective mapping for fluid domains, the volume of the fluid domain remains constant at 
each time step, thus time discretization in Algorithm 4.1 conserves mass. Conservation of mass is also true for the fully 
discrete scheme since we use a level-set function to describe the particle surface. The time discretization does not conserve 
momentum. The fully discrete scheme introduced in the next section does not conserve momentum either.

Using techniques introduced elsewhere [19], we may also obtain an equivalent form of Algorithm 4.1 by eliminating un+1

in the numerical scheme and view ̃un+1 as the solution at time step tn+1 . Such equivalent algorithm is given in Appendix A.

5. Numerical implementation

In this section, we describe the implementation of Algorithm 4.1. We solve the coupled system by iteration, and use the 
XFEM method to handle variable discontinuities across the particle surface.

5.1. The extended finite element method

The XFEM method [12,40] is widely used for handling the jump in unknowns across elements. In order to handle the 
discontinuities across ∂ P (tn+1), we enrich the FEM basis functions by adding Heaviside function H(s), which is defined by 
a scalar level set function s:

H(s) =

{
1, s ≥ 0,

0, s < 0,
where s(x)

⎧
⎨
⎩

> 0, x ∈ � \ P (tn),

< 0, x ∈ P (tn),

= 0, x ∈ ∂ P (tn).

(5.1)

12
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Fig. 8. Standard, virtual, and removed DOFs in XFEM.

Fig. 9. Element subdivisions near the particle surface.

We choose s(x) as a signed distance function to the particle boundary. For example, for an ellipse with major radius a, 
minor radius b located at (x0, y0) and with the major axis parallel to the x axis, the level-set function s(x) for x = (x, y) is 
defined by

s(x) := (
(x − x0)

2

a2
+

(y − y0)
2

b2
)
1
2 − 1.

Denote by {φi} a standard set of FEM basis functions in an element T . In XFEM we use basis functions {H(s)φi} instead of 
the standard FEM basis.

A simple interpretation of the XFEM enrichment procedure for the fluid-particle interaction system is shown in Fig. 8. 
We classify the degrees of freedom (DOFs) into standard DOFs, virtual DOFs, and removed DOFs by the relationship between 
the element and the particle surface. For the elements intersected by the interface ∂ P (tn), we mark the DOFs inside the 
fluid region as standard DOFs and the DOFs inside the particle region P (t) as virtual DOFs. For the remaining DOFs, if the 
DOFs lie in an element entirely inside the fluid domain, then the DOFs are standard DOFs. Otherwise, the element is entirely 
inside the particle region, and the DOFs in that element are removed since they do not have any contribution to the system.

It is well known that the accuracy of a numerical quadrature is crucial for the robustness of XFEM [10]. To achieve better 
approximation, we perform local mesh subdivisions near the interface to calculate the weights of the numerical quadrature. 
The local mesh subdivisions are only used in calculating the numerical quadrature and do not add extra DOFs to the system 
of equations. An example of the subdivision near the interface is shown in Fig. 9.

13
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5.2. The iteration scheme

In this section, we discuss how to apply step I in Algorithm A.1 in practice. We discuss Algorithm A.1 since it is the 
algorithm we use in the real calculation. Implementation of Algorithm 4.1 is similar. Since equations (a)-(c) in the numerical 
scheme are strongly coupled, we solve the equations (a)-(c) by iterating over the particle velocity Un+1

s and angular velocity 
ω̃n+1

s . The iteration proceeds are as follows:

Algorithm 5.1 (Nonlinear iteration).

1. Given an initial guess of Un+1
s and ωn+1

s , let Ũn+1
s,old

, ω̃n+1
s,old

be equal to the initial guess of Un+1
s and ωn+1

s . For example, 

we may choose the initial guess as Ũn+1
s,old

= Un
s and ω̃n+1

s,old
= ωn

s .

2. Solve the following decoupled equations in (a)-(c) respectively:
(a) Calculate particle position and angular orientation by

{
Xn+1
s = Xn

s + Ũn+1
s,old

δt,

θn+1
s = θn

s + ω̃n+1
s,old,z

δt,

where ω̃n+1
s,old

= (0, 0, ̃ωn+1
s,old,z

).

(b) Given Ũn+1
s,old

and ω̃n+1
s,old

, solve the tALE mesh velocity in � \ P (tn+1):

⎧
⎨
⎩

−	un+1 = 0, in � \ P (tn+1),

un+1 = ũn+1
s , on ∂ P (tn+1),

un+1 = 0, on ∂�,

(5.2)

where

ũn+1
s = Ũn+1

s,old
+ ω̃n+1

s,old
× rn+1

f
,

rn+1
f

= (ω̃n+1
s,old,z

dt)−1|rn+1|(sin θn+1 − sin(θn+1 − ω̃n+1
s,old,z

δt),−(cos θn+1 − cos(θn+1 − ω̃n+1
s,old,z

δt)),0).

(c) Solve the NS equations and Newton’s law in � \ P (tn+1) with the tALE mesh velocity in (b):

Re[
ũn+1 − ũn

� J
1
2

δt
+ ((̃un+1 − un+1

) · ∇ )̃un+1] = −(∇pn)� J
1
2 + ∇ · σ̃ n+1 −

1

2
Re(∇ · (̃un+1 − un+1

))̃un+1, (5.3)

ReMs
Ũn+1
s − Ũn

s

δt
= −

∫

∂ P (tn)

−pnI · nds −

∫

∂ P (tn+1)

σ̃ n+1 · nds, (5.4)

ReIs
ω̃n+1

s − ω̃n
s

δt
= −

∫

∂ P (tn)

rnf × (−pnI · n)ds −

∫

∂ P (tn+1)

rn+1
f ,old

× (σ̃ n+1 · n)ds. (5.5)

The boundary conditions on ∂� are

ũn+1 · n = 0,
1

Ls
(̃un+1 − uw) · τ = −(σ̃ n+1 · n) · τ . (5.6)

The boundary conditions on ∂ P (tn+1) are

(̃un+1 − ũn+1
s ) · n = 0,

1

Ls
(̃un+1 − ũn+1

s ) · τ = −(σ̃ n+1 · n) · τ . (5.7)

3. Let Ũn+1
s,new = Ũn+1

s , ω̃n+1
s,new = ω̃n+1

s . If

|Ũn+1
s,new − Ũn+1

s,old
|/|Ũn+1

s,old
| < tol and |ω̃n+1

s,new − ω̃n+1
s,old

|/|ω̃n+1
s,old

| < tol,

then output (̃un+1, ̃Un+1
s , ̃ωn+1

s , Xn+1
s , θn+1

s ) as the solution at time tn+1 , else set

Ũn+1
s,old

= Ũn+1
s,new , ω̃n+1

s,old
= ω̃n+1

s,new ,

then repeat step 2.

14
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We can see that if Ũn+1
s,new = Ũn+1

s,old
and ω̃n+1

s,new = ω̃n+1
s,old

hold exactly after step 2, then we obtain exactly the solution of 
the tALE step I in Algorithm A.1, i.e. solution of step I in Algorithm A.1 is the fixed point of the above iteration.

We also introduce the FEM weak form that we use in practical implementation for (c). Penalty terms with parameter εp

are introduced to deal with the essential boundary conditions on ∂ P (tn+1) and ∂�. For example, we apply a Robin type 
boundary condition on ∂ P (tn+1),

(̃un+1 − ũn+1
s ) · n+ εp(σ̃ · n) · n = 0,

instead of the Dirichlet boundary condition on ∂ P (tn+1):

(̃un+1 − ũn+1
s ) · n = 0.

Similar Robin-type boundary conditions are applied on ∂�.

Denote by �h the set of FEM elements that we use in computation, i.e. the set of elements with only standard/virtual 
DOFs. Denote by ∂ Ph(t

n+1) the approximated particle boundary ∂ P (tn+1). Define (·, ·) as the L2 inner products in �h . 
Denote < ·, · >∂ Ph(t

n+1) and < ·, · >∂� as the L2 inner product on ∂ Ph(t
n+1) and ∂� respectively. We use a Q1-Q1 element 

to discretize ũn+1 and denote the corresponding FEM discrete space by (Q 1(�h))
2 . Define R001 := span{(0, 0, 1)}. The FEM 

weak form of step (c) is as follows:

Find (̃un+1, ̃Un+1
s , ̃ωn+1

s ) ∈ (Q 1(�h))
2 × R × R001 , such that for all

(v, Vs, φs) ∈ (Q 1(�h))
2 × R × R001 ,

Re(̃un+1,v) + δtRe((̃un+1 − un+1
) · ∇)un

�,v) + δt(σ̃ n+1,∇v)

+ δtε−1
p < ũn+1 · n,v · n >∂� +δt <

1

Ls
ũn+1 · τ ,v · τ >∂�

+ δtε−1
p < (̃un+1 − ũn+1

s ) · n, (v − Vs) · n >∂ Ph(t
n+1)

+ δt <
1

Ls
(̃un+1 − ũn+1

s ) · τ , (v − Vs) · τ >∂ Ph(t
n+1)

+
1

2
δtRe((∇ · (̃un+1

s − un+1
))un

�,v) +ReMsŨ
n+1
s · Vs +ReIsω̃

n+1
s · φs

=Re(un
� J

1
2 ,v) − δt((∇pn)u J

1
2 ,v) + δt <

1

Ls
uw · τ ,v · τ >∂�

− δt < −pnI · n,Vs + φs × rn+1
f

>∂ Ph(t
n) +ReMsU

n
s · Vs +ReIsω

n
s · φs

+ δtFn+1
s · V+ δt(fn+1,v).

6. Numerical experiments

We test the accuracy and stability of our numerical scheme with two numerical experiments. In the first example, we 
simulate the Jeffery orbit of a fixed ellipse rotating in a shear flow and compare the results with those obtained from the 
standard tALE-XFEM method. In the second example, we simulate the dynamic behavior of an elliptical free-falling particle 
in water.

6.1. The Jeffery orbits

The phenomena of suspension and dynamics of a particle in a viscous flow have attracted intense interest in the scientific 
community. In this numerical example, we simulate a fixed ellipse rotating in a shear flow, as shown in Fig. 10. It has been 
shown experimentally that the ellipse undergoes a periodic revolution [37]. The particle motion consists of a spin about the 
axis of symmetry and a precession of this axis about the vorticity of the undisturbed flow. The rate of spin is equal to the 
component of the vorticity in the direction of the axis of symmetry. In the well-known paper of Jeffery [24], the spin rate 
of the ellipse is described in terms of polar angles. Bretherton [9] demonstrated the general validity of the Jeffery orbit for 
particles with rotational symmetry. The effect of the boundary slip on the Jeffery orbit has also been studied in [48]. In this 
section, we simulate a Jeffery orbit with our energy-stable scheme.

The computational domain � is [−1, 1] × [−1, 1]. Boundary conditions on the top and bottom wall are Navier-slip 
boundary conditions with the wall speeds uw = 2 and uw = −2 respectively. A periodic boundary condition is applied on 
the left and right boundaries of �. The center of the ellipse is set at (0, 0) with zero initial velocity. Major and minor axes 
of the ellipse are a = 0.25, b = 0.15. In the absence of gravity and slip on the particle surface, Jeffery [24] showed that for 
a two-dimensional ellipse in the Stokes flow, the ellipse undergoes a periodic tumbling which is determined by the Jeffery 
orbit equation
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Fig. 10. An illustration of the Jeffery Orbit.

Table 1

Fitted k and γ solved by the 
energy-stable scheme.

mesh k γ

50× 50 0.4723 1.9624

100× 100 0.4700 1.9627

200× 200 0.4695 1.9625

Theoretical 0.4706 2

Table 2

L2 norm of the error and convergence rate for x-velocity component u, y-velocity component v
and pressure p at T = 0.2 with different grids.

mesh u rate v rate p rate

(50 × 50) − (800× 800) 5.94e-02 7.59e-04 8.84e-04

(100× 100) − (800× 800) 1.20e-02 2.307 3.25e-04 1.223 3.01e-04 1.554

(200× 200) − (800× 800) 4.68e-03 1.358 1.05e-04 1.630 1.05e-04 1.519

(400× 400) − (800× 800) 1.83e-03 1.354 3.56e-05 1.761 3.43e-05 1.614

ωs =
γ

2
(−1+ k cos2θs), (6.1)

where γ = 2uw/H and k = 1−e2

1+e2
. H = 2 is the distance between walls, and e = b/a = 0.6. When the inertial effect is 

considered, Ding et al. [11] showed that the system approximates the Jeffery orbits for a sufficiently small Reynolds number.

In this numerical experiment, we choose ρs = ρ . Other parameters in our numerical experiments are

Re = 1, Ls = 0.0025, εp = 10−10.

We compute the solution with three different grids, 50 ×50, 100 ×100 and 200 ×200 with the same time step δt = 0.001. 
Best fitted k and γ are calculated by linear regression. A comparison with the theoretical result is given in Table 1.

To check the accuracy of the numerical scheme, we simulate the Jeffery orbit problem with different grids and a suffi-

ciently small time step size δt = 5 × 10−5 . The meshes used are 50 × 50, 100 × 100, 200 × 200, 400 × 400, and 800 × 800, 
all of which are uniform rectangular meshes. We use bilinear FEM elements for all the variables in the fluid domain. Denote 
by T N the set of all mesh points of an N × N mesh. We compute the error at t0 = 0.2 by taking the difference between 
the numerical solutions using the N × N mesh and a reference solution using an 800 × 800 mesh for N = 50, 100, 200, 
and 400. The L2 errors EN of the fluid field unknowns are approximated by numerical integration in the fluid region with 
an 800 × 800 mesh via the following steps: first, interpolate FEM solutions on the N × N mesh into a piecewise bilinear 
function space defined on an 800 × 800 mesh. Such interpolations are identical since the 800 × 800 mesh can be viewed as 
a refined mesh from N × N , where N = 50, 100, 200, and 400. Next, compute the error by calculating

EN = [
∑

x∈�\P (t0)∩T 1600

|(·)N(x) − (·)800(x)|
2δx2]

1
2 , (6.2)

where (·)N is the numerical solution calculated using the N × N mesh. The convergence rate is calculated by log2(EN/E2N). 
Table 2 shows the results using the energy-stable scheme. Numerical results show that the velocity and pressure are con-
vergent. Accuracy of velocity and pressure is of first order.
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Fig. 11. Fitted curve with different time steps in the energy-stable scheme using a 200× 200 mesh.

Fig. 12. Total energy of the system with a 200× 200 mesh, δt = 5× 10−3 .

To see if the energy-stable time discretization improves numerical stability in practical implementation, a comparison 
is made between our energy-stable scheme and the standard explicit tALE scheme with XFEM (see section 3). We use the 
same model and parameters with a fixed 200 × 200 mesh and run the code with increasing the time step size δt . For the 
standard tALE method, the numerical calculation blows up when we increase time steps to δt = 3 ×10−3 , while our energy-
stable scheme is still stable for time steps as large as δt = 10−2 (δt = δx). Fig. 11 shows ωs − θs fitted curves obtained from 
the energy-stable scheme with different time steps. We show the total energy over time for the energy-stable scheme in 
Fig. 12 using time step size δt = 5 ×10−3 and on a 200 ×200 mesh. The energy of the entire system undergoes a periodical 
change, thus remains stable for 5,000 steps of calculation (25 seconds for the simulated problem). For the momentum of 
the continuous system, the total momentum of the solution is zero in both x and y directions due to symmetry. For the 
numerical results, we show the history of total momentum in the x-direction with different time step sizes in Fig. 13. It can 
be seen that total momentum is stably controlled in a small region and approaches to zero as the time step size becomes 
smaller.

Comparing between the fitted curve of the standard tALE scheme and that of our energy-stable scheme, it can be shown 
that the energy-stable scheme gives a less oscillative θs − ωs curve. The fitted curves for the standard tALE scheme and our 
energy-stable scheme with a 100 × 100 mesh are shown in Fig. 14. Time step size for both methods is chosen as δt = 10−3 . 
According to the numerical results, both numerical schemes fit well with the theoretical result. Meanwhile, the standard 
tALE scheme produces oscillations in the simulation results (similar oscillations also appear in the numerical results in e.g. 
[48]), while the energy-stable scheme still produces a near-perfect cosine curve. We show in Fig. 15 a comparison of the 
error of ωs between the numerical result and the fitted curve calculated by the standard tALE scheme and our energy-stable 
scheme.
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Fig. 13. Total momentum in the x direction for different time step sizes, using 200× 200 mesh.

Fig. 14. Fitted curves of ωs and θs by the standard tALE method (left) and our energy-stable scheme (right), using a 100 × 100 mesh, δt = 1e − 3. Both 
results are well-fitted by a cosine curve, while the standard tALE produces more oscillations.

Fig. 15. Error between the fitted curve and numerical simulation, where the latter is performed using the standard tALE scheme and our energy-stable 
scheme with a 100 × 100 mesh, δt = 1e − 3.

6.2. Elliptical particle free falling in water

In this experiment, we simulate the dynamics of an free-falling elliptical particle inside water (see Fig. 16). Under the 
action of gravity, the free-falling elliptical particle turns, flutters, and tumbles, and therefore its downward trajectory is 
complicated. The dynamical behavior of the particle is highly sensitive to the initial position and velocity of the particle, 
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Fig. 16. Illustration of a falling elliptical particle inside water.

Fig. 17. Trajectory of the free-falling ellipse. Hollow circle indicates the center while the line segment indicates the long axis of the ellipse, as shown on 
the left.

as well as the boundary conditions on the boundary of the region. The behavior of objects free-falling in fluids has been 
studied extensively both experimentally and numerically [7,29,33,2,1,25]. We carry out a numerical experiment to simulate 
this problem using our energy-stable scheme. The computational domain is (−3, 1) × (−11, 1) with a 200 ×600 rectangular 
mesh. The ellipse is released at (0, 0), with angular orientation θs = π/4. Major and minor axes of the ellipse are chosen as 
ra = 0.25, rb = 0.1. The gravity is g = (0, −9.8) and the external force terms are

f = Reg, Fs = ReMsg.

Densities of the fluid and the ellipse are ρ = 1 and ρs = 2.7. In the previous numerical experiments, for simulations for 
the problem of a leaf or business card falling in air [33,25], the particle Reynolds number are around 1000 (for example 
as Re = 837, 1100 in [25]). In the numerical experiment in this section, we simulate a problem with Reynolds number 
Re = 600. Other parameters in the system of equations are

Ls = 0.005, εp = 10−10.

Fig. 17 shows the trajectory of the falling ellipse. We draw a hollow circle to represent the center, and a line segment to 
represent the long axis of the ellipse (see the left of Fig. 17 for a simple illustration). It is shown in Fig. 17 that the ellipse 
flutters for a while, then starts to tumble when it is near the bottom of the water. According to Theorem 4.2, the discrete 
system satisfies the following energy law:

En+1 − En ≤ − δt

∫

�\P (tn+1)

1

2
||σ̃ n+1||2Fdx− δt

∫

∂�

1

Ls
|(̃un+1 − uw) · τ |2ds (6.3)

− δt

∫

∂ P (tn+1)

1

Ls
|(̃un+1 − ũn+1

s ) · τ |2ds + δtRe

∫

�\P (tn+1)

g · un+1dx+ δtReMsg ·Un+1
s ,
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Fig. 18. History of S(t) over time. S(t) stands for the total energy minus the total work done by external forces at time t .

where yn+1
s and yns are the y-coordinates of the center of the ellipse at tn+1 and tn respectively. Since there are external 

forces in this problem, by the energy law of the discrete system, total energy minus total work should decay over time. 
Define

S(tn) = En − δtRe

n∑

k=1

∫

�\P (tk)

g · ukdx− δtReMsg ·Uk
s ,

which is the total energy minus the total work done by external forces. It is shown in Fig. 18 that S decays over time 
throughout the calculation, which is consistent with the theoretical analysis.

7. Conclusions

We have developed an energy-stable time discretization scheme for the fluid-particle interaction problems. Theoretical 
analysis shows that the time discretization satisfies an energy law similar to that of the continuous system. The fully-discrete 
algorithm uses the XFEM method to solve the coupled system on a fixed mesh. The numerical method is first order accurate 
in time and space without being momentum conservative. Numerical experiments show that the algorithm is energy-stable 
and allows large time steps in practical application.

CRediT authorship contribution statement

Xiang Li: Conceptualization, Methodology, Software, Writing - review & editing. Qiang Du: Conceptualization, Method-

ology, Writing - review & editing. Li Luo: Methodology, Writing - review & editing. Xiao-Ping Wang: Conceptualization, 
Methodology, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Appendix A. An equivalent numerical scheme by elimination

Applying mapping B̂n+1 to both sides of the equation (4.7) in tn , then multiplying both sides by ( Jn+1)
1
2 , we have

Re
un

�� − ũn
��

δt
= Re

un
� − ũn

�

δt
( Jn+1)

1
2 = −(∇pn)�( J

n+1)
1
2 in � \ P (tn+1). (A.1)

From (4.9) and (4.10) we have

ReMs
Un
s − Ũn

s

δt
= −

∫

∂ P (tn)

−pnI · nds, (A.2)
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ReIs
ωn

s − ω̃n
s

δt
= −

∫

�\P (tn)

rnf × (−pnI · n)ds. (A.3)

Summing (A.1) and (4.2), (A.2) and (4.3) and (A.3) and (4.4) respectively, we can eliminate un+1 in the NS equations and 
Newton’s law:

Re[
ũn+1 − ũn

��

δt
+ ((̃un+1 − un+1

) · ∇ )̃un+1]

= − (∇pn)�( J
n+1)

1
2 + ∇ · σ̃ n+1 −

1

2
Re(∇ · (̃un+1 − un+1

))̃un+1 + fn+1,

ReMs
Ũn+1
s − Ũn

s

δt
= −

∫

∂ P (tn)

−pnI · nds −

∫

∂ P (tn+1)

σ̃ n+1 · nds + Fn+1
s ,

ReIs
ω̃n+1

s − ω̃n
s

δt
= −

∫

∂ P (tn)

rnf × (−pnI · n)ds −

∫

∂ P (tn+1)

rn+1
f

× (σ̃ n+1 · n)ds.

Similarly, we can eliminate un+1 in step II of Algorithm 4.1. Apply a divergence operator to both sides of (4.7). Since 
un+1 is incompressible, we have

−	pn+1 = −
Re

δt
∇ · ũn+1.

Multiplying equation (4.7) by n on ∂ P (tn+1) yields the following boundary condition of the above Poisson’s equation:

−
∂pn+1

∂n
=

Re

δt
(un+1 − ũn+1) · n on ∂ P (tn+1).

According to the boundary conditions (4.6) and (4.12), and equations (4.9) and (4.10), we can derive the boundary condition 
of pn+1 on ∂ P (tn+1):

−
∂pn+1

∂n
=
Re

δt
(un+1 − ũn+1) · n =

Re

δt
(un+1

s − ũn+1
s ) · n

= −
1

Ms

(

∫

∂ P (tn+1)

−pn+1I · nds) · n (A.4)

−
1

Is
((

∫

∂ P (tn+1)

rn+1
f

× (−pn+1I · n)ds × rn+1
f

) · n).

The boundary condition of pn+1 on ∂� can be similarly derived:

∂pn+1

∂n
= 0.

Collecting the above equations, we have an equivalent algorithm to Algorithm 4.1.

Algorithm A.1 (Modified energy-stable scheme with un+1 eliminated).

Step I: Given (̃un, pn, ̃Un
s , ̃ω

n
s , X

n
s , θ

n
s ) at time step tn , solve the following coupled system (a)-(c) simultaneously to obtain 

(̃un+1, ̃Un+1
s , ̃ωn+1

s , Xn+1
s , θn+1

s ) at tn+1:

(a) Calculate particle position and angular orientation by
{
Xn+1
s = Xn

s + Ũn+1
s δt,

θn+1
s = θn

s + ω̃n+1
s,z δt.

(b) Calculate the tALE velocity field in � \ P (tn+1):

⎧
⎨
⎩

−	un+1 = 0, in � \ P (tn+1),

un+1 = ũn+1
s , on ∂ P (tn+1),

un+1 = 0, on ∂�.

(A.5)
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Bijective mapping B̂ : � \ P (tn+1) → � \ P (tn), and functions ũn
� and ũn

�� are defined in the same way as they are in 
Algorithm 4.1.

(c) Solve the NS equations and Newton’s law:

Re[
ũn+1 − ũn

��

δt
+ ((̃un+1 − un+1

) · ∇ )̃un+1]

= − (∇pn)� J
1
2 + ∇ · σ̃ n+1 −

1

2
Re(∇ · (̃un+1 − un+1

))̃un+1 + fn+1, (A.6)

ReMs
Ũn+1
s − Ũn

s

δt
= −

∫

∂ P (tn)

−pnI · nds −

∫

∂ P (tn+1)

σ̃ n+1 · nds + Fn+1
s , (A.7)

ReIs
ω̃n+1

s − ω̃n
s

δt
= −

∫

∂ P (tn)

rnf × (−pnI · n)ds −

∫

∂ P (tn+1)

rn+1
f

× (σ̃ n+1 · n)ds. (A.8)

Boundary conditions on ∂� are

ũn+1 · n = 0,
1

Ls
(̃un+1 − uw) · τ = −(σ̃ n+1 · n) · τ . (A.9)

Boundary conditions on ∂ P (tn+1) are

(̃un+1 − ũn+1
s ) · n = 0,

1

Ls
(̃un+1 − ũn+1

s ) · τ = −(σ̃ n+1 · n) · τ . (A.10)

Step II: Given (̃un+1, ̃Un+1
s , ̃ωn+1

s , Xn+1
s , θn+1

s ), solve pn+1 in � \ P (tn+1):

− 	pn+1 = −
Re

δt
∇ · ũn+1. (A.11)

The boundary condition on ∂� is

∂pn+1

∂n
= 0. (A.12)

The boundary condition on ∂ P (tn+1) is

−
∂pn+1

∂n
= −

1

Ms

(

∫

∂ P (tn+1)

−pn+1I · nds) · n (A.13)

−
1

Is
((

∫

∂ P (tn+1)

rn+1
f

× (−pn+1I · n)ds) × rn+1
f

) · n.

Remark A.1. For an arbitrary test function q, boundary condition (A.4) yields
∫

∂ P (tn+1)

−
∂pn+1

∂n
qds =

1

Ms

(

∫

∂ P (tn+1)

−pn+1I · nds) · (

∫

∂ P (tn+1)

−qn+1I · nds)

+
1

Is
(

∫

∂ P (tn+1)

rn+1
f

× (−pn+1I · n)ds) · (

∫

∂ P (tn+1)

rn+1
f

× (−qn+1I · n)ds).

Thus the Robin-like boundary condition (A.4) may be applied using the above symmetric inner product in the FEM weak 
form.
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