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Abstract: Submarine groundwater discharge (SGD) is an important component of many coastal
environments and hydrologic processes, providing sources of nutrients to marine ecosystems, and
potentially, an important source of fresh water for human populations. Here, we use a combination
of unpiloted aerial systems (UAS) thermal infrared (TIR) imaging and salinity measurements to
characterize SGD on the remote East Polynesian island of Rapa Nui (Easter Island, Chile). Previous
research has shown that coastal freshwater seeps are abundant on Rapa Nui and strongly associated
with the locations of ancient settlement sites. We currently lack, however, information on the
differential magnitude or quality of these sources of fresh water. Our UAS-based TIR results from
four locations on Rapa Nui suggest that locations of variably-sized SGD plumes are associated with
many ancient settlement sites on the island and that these water sources are resilient to drought events.
These findings support previous work indicating that ancient Rapa Nui communities responded to
the inherent and climate-induced hydrological challenges of the island by focusing on these abundant
and resilient freshwater sources. Our results highlight the efficacy of using UAS-based TIR for
detecting relatively small SGD locations and provide key insights on the potential uses of these water
sources for past and current Rapa Nui communities.
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1. Introduction

Submarine groundwater discharge (SGD) represents an important factor in coastal
environments and hydrologic processes [1]. SGD consists of the flow of fresh and brackish
groundwater from inland aquifers into the ocean. These flows serve as a significant
source of nutrients to marine ecosystems [2]. SGD can also be exploited by humans for
drinking water and thus potentially offer an important source of fresh water for human
populations [1,34].

Researchers have used a range of methods to identify, map and quantify SGD [1,5].
Among the available options, thermal imagery offers a particularly powerful tool for
mapping SGD given its ability to quickly isolate the spatial extent of groundwater flows
that are revealed as temperature differences relative to those of ocean waters. While satellite
imagery is useful for large-scale occurrences of SGD (e.g., [6,7]), the large pixel resolution
of most satellite imagery limits their applicability to isolate smaller and more localized
areas of groundwater seepage. Here, we explore the use of relatively inexpensive unpiloted
aerial systems (UAS) with small thermal imagers as a way of systematically exploring
coastal features for SGD. The use of UAS for SGD detection has grown in popularity given
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the ability of these platforms to rapidly and inexpensively produce high-resolution maps of
freshwater discharge sources (e.g., [8-14]). Here, we further demonstrate the utility of this
approach in a study conducted on Rapa Nui (Easter Island, Chile, Figure 1), a small island
in the southeastern Pacific where freshwater access has shown to be vital for understanding
past and future communities [15-19]. Our research adds to the results of recent studies
showing that SGD is plentiful on Rapa Nui and strongly associated with the locations
of ancient settlements, and we hypothesize that the use of SGD by past communities
represents a solution to the inherent and climate-induced surface freshwater scarcity on
the island.
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Figure 1. Rapa Nui (Easter Island) with locations mentioned in the text.

1.1. Rapa Nui Hydrogeology

Rapa Nui is a mid-plate volcanic high island situated at 27°07’ S, 109°27' W, approx-
imately 3700 km from South America. The island is relatively small (164 km?) and low
in maximum elevation (~500 m asl), with a roughly triangular shape measuring roughly
23 km by 11 km in its longest dimensions. The island is composed of three main basaltic
shield volcanoes (Maunga Terevaka, Rano Kau, Poike) and numerous smaller cinder, sco-
ria and tuff cones, all of which are relatively young and range in age from ca. 0.78 to
0.11 Ma [20-25]. Terevaka forms the central dominant geologic feature, whose summit is
the highest portion of the island at ca. 500 m asl. Poike forms the eastern point and is ca.
370 m asl with Rano Kau in the southwest corner at ca. 320 m asl. While coastal areas
around Rano Kau, Poike and the northwestern coast of Terevaka are dominated by steep
cliffs, the majority of the southwestern, northern and southern coasts are gently sloping.

The geology of the island is basaltic, composed mainly of hawaiites, basalts, mugearites,
trachytes, and rhyolites [20,21,25,26]. These volcanic flows are highly permeable, and the ex-
istence and characteristics of a low-permeability volcanic core are poorly understood [20,27].
These geologic attributes result in an island with limited surface freshwater. The only per-
sistent water bodies are three relatively small crater lakes. Rano Kau and Rano Raraku are
precipitation-fed lakes, whereas Rano Aroi is also fed from a perched spring [27]. Rano Kau
is the largest at ca. 1 km in diameter and ca. 6 m deep and is surrounded by steep slopes.
Rano Raraku on the southeastern slopes of Terevaka is ca. 300 m in diameter and Rano Aroi
near the Terevaka summit is ca. 200 m in diameter. Both Rano Raraku and Rano Aroi are
shallow, with Rano Raraku periodically going dry and Rano Aroi frequently reverting to a
bog during drought events (e.g., [28,29]). Both Rano Raraku and Rano Kau are believed to
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be closed basins, whereas Rano Aroi likely represents a dike-perched spring [20,27]. Except
for short-lived and ephemeral surface runoff and overflow out of Rano Aroi, there are no
permanent streams on the island.

Rainfall on Rapa Nui is seasonal and varies unpredictably between highs of ca.
2200 mm/year to lows of ca. 600 mm/year [30-33]. Annual mean precipitation is es-
timated to be around 2050-2200 mm/year at the summit of Terevaka and ca. 1000-1150
along the coast, and rain shadows on the western coast and western slopes of Poike result in
values as low as 630-850 mm/year [33]. Analyses of historical rainfall patterns and climate
proxies demonstrate high temporal variability from year to year with frequent drought
events (e.g., [31,34]). The climate of the island is driven by a complex pattern of air masses,
ocean dynamics, precipitation processes, air temperature factors and wind variability that
are also intensified during strong El Nifio-Southern Oscillation (ENSO) events [35]. With
this combination of climate, permeability of the island surface, and evapotranspiration
rates estimated at 850-950 mm /year [17,27], rainwater can be unpredictable and limited
during most parts of the year.

Given the highly permeable surface, the majority of Rapa Nui's fresh water exists in
a fairly large groundwater aquifer fed by precipitation recharge [17,27] (Figure 2). While
finer-scale spatial variability is poorly understood, water levels measured in a set of
boreholes demonstrate that the water table is hundreds of meters deep near the center of
the island and becomes shallower near the coast [27]. Based on data from field surveys
and hydrological modeling, Herrera and Custodio [27] estimate recharge rates for the
groundwater aquifer of ca. 300400 mm/year along the coast and ca. 800 mm/year at
high elevations of Terevaka. Except for the relatively small volume of freshwater pumped
from wells by the island’s current population and some groundwater pooling in lava tubes,
the vast majority of the island’s freshwater emerges along the coast as SGD [17,20,27].
This water is most accessible during low tide when the fresh water flows out as a thin
Ghyben-Herzberg lens. These locations are not ubiquitous but depend on the permeability
of the subsurface rock and sediments. Recent geochemical surveys around the southern
and northeastern coast of Rapa Nui identified numerous SGD locations where salinity and
conductivity values are significantly lower than surrounding seawater [15,17]. Based on
their hydrological models, Herrera and Custodio [27] (p. 1346) estimate the total volume of
SGD along the coast at 50-60 M m3/year and the turnover time of the island’s groundwater
aquifer to be between 10-50 years. In summary, while surface freshwater is scarce, the
available data indicate that fresh water is relatively plentiful in the groundwater aquifer.
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Figure 2. Rapa Nui hydrological model. Adapted with permission from ref [27]. Copyright© 2008,
Springer-Verlag.

1.2. Ancient Rapa Nui Water Management

Rapa Nui was initially settled by Polynesian voyagers around 1150-1280 cal AD [36-39].
Pre-contact populations grew to a maximum size of a few thousand individuals, who
lived in relatively small, semi-autonomous, dispersed communities mostly around the
coastline [31,40-42]. Over the course of human occupation, the island’s ecology was trans-
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formed from a palm forest to an anthropogenic landscape largely devoid of large stands of
trees. The process of deforestation took centuries and was the cumulative result of land
clearance for crop cultivation and the impacts of the invasive commensal Pacific rat (R.
exulans) [43-45]. The present-day island is dominated by non-native grasses (Poaceae)
with patches of non-native trees (e.g., Eucalyptus) planted in the 20th-century [46]. The
island is most famous for the spectacular achievements of Rapa Nui people in megalithic
construction, who over five centuries carved and transported hundreds of multi-ton stone
statues (moai) that were erected on similarly massive platforms (ahu), which were the focal
points of traditional settlements [36,47-49]. The achievements of the islanders are often
contrasted with the limited natural resources on their small and isolated island, which
has relatively poor soil nutrients, no large coral reefs or lagoons and, as discussed above,
limited surface freshwater [50].

Archaeological research and ethnohistoric accounts document the use of a range of
freshwater sources by Rapa Nui people [15-17,51]. Rainwater was collected in small (i.e.,
<1 m) carved stone basins called taheta. While taheta occur throughout the island, higher
densities are found away from the coast on the interior slopes of Terevaka [31]. Analyses by
Brosnan et al. [17] indicate taheta were unreliable as permanent water sources given rainfall
variability and evapotranspiration rates. Traditionally, people also accessed drinking water
that collected in caves, from a few inland springs, and at coastal seeps where SGD flows
into the ocean. While surveyed coastal seeps are mildly to strongly brackish, archaeological
and historical evidence demonstrates the use of water management techniques to trap
or impound discharging groundwater prior to it mixing with seawater [16,17]. This is
best documented through the construction of ‘wells” known as puna, which are excavated,
paved and sometimes walled features, that intersected the subsurface groundwater before
it flowed into the ocean [16,17]. A series of European accounts collected in the 18th and
19th-centuries document cases where Rapa Nui people appeared to drink directly from
the sea, likely at particularly concentrated SGD locations [16,17]. Moreover, analysis of
freshwater diatoms extracted from dental calculus of pre-contact skeletal remains included
many species that prefer brackish water [51,52].

Rapa Nui people also used inland water sources such as the crater lakes and places
where fresh water could be impounded. A unique inland water feature occurs at Ava Ranga
Uka a Toroke Hau, where Rapa Nui people constructed a relatively large stone-lined basin
likely used to trap surface runoff and overflow from Rano Aroi [18,19]. Given the sparse
evidence of settlements near this location, frequent droughts and high evapotranspiration
rates, however, it is unlikely this location served as a long-term water source. Both Rano
Kau and Rano Raraku were locations of agricultural activity (e.g., [53-55]), and notably,
the summit of Rano Kau is the site of the post-contact ceremonial village of Orongo [56,57],
and Rano Raraku was the quarry for the vast majority of moai statues [48]. Despite this
evidence of ritual and agricultural activity, the crater lakes do not appear to have been
primary sources of drinking water for most of the island’s population [16].

The vast majority of communities lived in coastal settlements in both pre-contact and
early historic times, pointing to the fact that rainwater and especially coastal seeps served
most communities as their primary source of drinking water [16,58]. Analyses of pre-
contact settlement patterns support this conclusion (e.g., [15,31,59,60])—spatial modeling
of the locations of ahu platforms, around which traditional communities were organized,
shows a strong spatial association with SGD locations, which likely reflects intra-community
cooperation and inter-community competition over these water sources [15,40,50]. While a
few scholars doubt the dependability or preeminence of SGD as a key resource for Rapa
Nui communities, especially during times of drought and on the northwest coast where
steep cliffs potentially made the shoreline difficult to access (e.g., [61]), based on the coastal
nature of ancient settlements and ethnohistoric information, SGD likely represented the
only viable source of water for the vast majority of Rapa Nui’s human population [16,17].
While there is much archaeological, historical, and geochemical evidence for the location
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and use of SGD sources, however, we lack detailed characterizations of the amount of
discharging groundwater at specific locations.

2. Materials and Methods

To map the locations and begin to document the relative amount of SGD around the
island, between May and June 2019 we collected thermal infrared (TIR) imagery at four
locations on Rapa Nui: (1) Hanga Te’e on the south coast; (2) Te Ipu Pu; (3) areas adjacent
to Hanga Ho’onu and Te Pito Kura (also known as the La Perouse region) on the north
coast; (4) near Ahu Te Peu located on the island’s northwest coast (Figure 1).

Thermal images were collected with FLIR Vue Pro R radiometric long-wave infrared
(LWIR) sensor (640 x 512 pixel resolution) mounted with a TeAx ThermalCapture record-
ing module and flown aboard a DJI Matrice 600 hexacopter. All images were captured
with clear skies and relatively low wind speed. We post-processed the TIR imagery in
ThermoViewer v.3.0.7. We compensated for a ‘cold corners’ effect using ThermoViewer’s
motion-based non-uniformity correction (NUC) and drift compensation using flat-field
correction (FFC) events. Individual frames were extracted from the raw data (TMC files)
as radiometric RJPG files and processed into orthomosaics using Pix4D Desktop v4.5.6
thermal map workflow. Thermal rasters were exported as GeoTIFFs using Pix4D’s index
calculator. Images were then clipped to the coastline in QGIS 3.14 using Google Earth
imagery as a base map.

At Hanga Te’e, Te Ipu Pu, and Hanga Ho’onu, we measured water salinity using
a Vernier salinity sensor attached to a Vernier LabQuest data logger. GPS points were
collected at each sampling location using a Bad Elf GNSS Surveyor. Prior to each measure-
ment session, we calibrated the salinity probe with a 35 ppt salinity calibration fluid. These
measurements serve to verify the results of previous studies that identified significantly
reduced salinity in these sampling locations [15,17]. We did not measure salinity at Te Peu
due to the steep cliffs at this location.

3. Results

Figures 3-6 show the thermal IR orthomosaics from Rapa Nui (see also Supplementary
Information). Figure 3 shows Hanga Te’e, with a concentrated area of cooler water (shown
in blue) in the northeastern sector of the bay with increasing temperatures trending south-
southwest towards the warmer open ocean (shown in red). The salinity measurements we
generated along the shoreline support the interpretation that this cooler water is a result
of SGD (see Appendix A). Salinity values in the eastern portion of the bay range from
3.7-11.6 ppt whereas the northwestern portion of the bay ranged from 16.2-21.3 ppt, and
the southwestern portion was saline (ca. 34 ppt).

Figure 4 shows the area directly adjacent to Ahu Te Ipu Pu. The thermal data reveal
the presence of a highly localized lens of cooler water that is emerging from the shore of
this small bay. Salinity measurements taken from points along the shore confirm this cooler
water reflects the presence of SGD, with salinity values within the bay as low as 2.8 ppt
(values within the bay range from 2.8-10.2 ppt). Figure 4 also shows the location of a small
modern well that is currently being used to pump water for horses.

Figure 5 shows areas adjacent to Hanga Ho’onu, also known as the La Perouse region.
In this location, we identified two localized lenses of cooler water, one directly adjacent to
Ahu Te Pito Kura and another directly behind Ahu Heki‘i. While the images provide clear
patterns of relative water temperature, the TIR data at this location were affected by the
abundance of aluminum roofs and a bonfire that appeared in the camera’s initial imagery
when we launched the UAS. The presence of aluminum, which has very low thermal
emissivity but in this case was relatively warm, and very high emissivity fire caused
the absolute temperature values to be inaccurately scaled. As a result, Figure 5 shows
relative temperature differences. Despite challenges with the quantitative temperature
measures, the images clearly show specific areas where relatively cooler groundwater water
is discharging into the warmer ocean. Our salinity measurements from Hanga Ho‘onu bay
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(Appendix A) confirm that these cooler lenses of water are a result of seeping groundwater,
with values as low as 3.4 ppt.

0 2550 75m

Ahu Tarakiu

Figure 3. Thermal image of submarine groundwater discharge at Hange Te’e, showing the locations
of two large ahu (ceremonial statue platforms), Ahu Vaihu and Ahu Tarakiu.

Figure 4. Thermal image of submarine groundwater discharge at Te Ipu Pu, showing the locations of
the ahu (ceremonial statue platform) and a modern well that is being used to pump groundwater out
for livestock.

Figure 6 shows TIR imagery near Ahu Te Peu on the northwest coast. The thermal
data show a relatively small area of cool groundwater seeping into the ocean directly below
the steep cliffs adjacent to the ahu.
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Ahu Te Pito Kura

L Ahu Heki'i

Figure 5. Thermal image of submarine groundwater discharge in the Hanga Ho’onu area, showing
Ahu Heki‘i and Ahu Te Pito Kura.

manavai

Figure 6. Thermal image of submarine groundwater discharge at Te Peu on the northwest coast.

4. Discussion

Our results demonstrate that relatively inexpensive UAS with small thermal imagers
provide a useful way of systematically exploring relatively small SGD locations. Hanga
Te’e is approximately 300 m across, Hanga Ho’onu is ca. 190 m across, the seep directly
below Te Peu is ca. 80 m across and the bay adjacent to Te Ipu Pu is only 25 m across.

Each of the SGD plumes reported here occur directly adjacent to ancient settlements.
On either side of Hanga Te’e (Figure 3) are two megalithic ahu platforms, with multiple moai
(statues), Ahu Vaihu and Ahu Tarakiu. This location is also surrounded by archaeological
settlement evidence, including domestic structures and gardens (e.g., [60,62,63]). In his
early ethnographic work, Englert [58] (p. 221) notes the existence of a large water retention
feature, now destroyed, within Hanga Te’e that served to block fresh water from mixing
with saltwater. The same pattern of association between ritual and domestic features and
SGD occurs at Te Ipu Pu and Te Peu. A large house feature (hare paenga) and walled gardens
(manavai) can be seen in the aerial imagery from Te Peu (Figure 6). The Hanga Ho‘onu
region also has two impressive ahu, Ahu Heki‘i and Ahu Te Pito Kura, both surrounded by
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extensive human settlements. If we measure the surface area of the natural breakpoint in
these SGD lenses, such as the line of approximately 20 °C at Vaihu, Te Peu, and Te Ipu Pu,
the size of the lens at Vaihu is approximately 26,000 m?, Te Peu is ca. 2600 m?, and at Te
Ipu Pu is ca. 1200 m?. Applying the same criteria, the area covered by the Heki’i lens is ca.
18,000 m? and the lens behind Te Pito Kura is 32,000 m?.

It is interesting to note that Ahu Te Pito Kura is the location of the largest moai
transported to an ahu as well as the largest pukao (red scoria ‘hat’). The moai is nearly
10 m tall and likely weighs about 80 tons. The pukao is equally impressive in size at
2 m tall and a possible weight of 11.5 tons [64]. Moreover, Heki‘i is one the largest ahu
on the island (ca. 80 m long and 5 m tall), and is one of the few ahu with a robust
radiocarbon chronology [65,66]. Bayesian chronological modeling indicates that Ahu
Heki‘i was initially constructed between 1320-1445 cal. AD, as early as 70 years after the
initial human settlement of Rapa Nui [36], and settlement pattern analyses demonstrate
continuous occupation of the Hanga Ho’onu region throughout the pre-contact and early
historic period (e.g., [62,67-70]), strongly suggesting a long temporal association between
domestic and ritual activity adjacent to this freshwater source.

While the locations of SGD along the southern and northern shoreline of Rapa Nui
are relatively accessible, access to the sea along many parts of the island is difficult given
substantial cliffs. Communities along the northwest coast, for example, were perched on
cliff edges as much as 30 m above sea level. While there likely were ancient pathways that
offered people access to the ocean, historic erosion due to sheep ranching combined with
storm surge events has possibly obscured their presence. Present-day access to the sea is
hazardous for exploration for fresh water using shore-based conductivity measures. Our
UAS-based TIR surveys at one such location on the northwest coast—Te Peu—show the
presence of fresh water emerging directly behind ahu features (Figure 6). In his discussion
of the ethnohistoric and ethnographic evidence for use of coastal seeps, Métraux [59] (p. 11)
noted, “Ruins of ancient settlements are always thick around water holes. The most famous
are the water pools near Ahu-te-peu”. While the specific nature of these pools is somewhat
ambiguous in Métraux’s account, our findings suggest this refers to SGD. Together, the
ethnohistoric and remote sensing evidence suggest that SGD was likely accessible and
used by communities in areas of the island with steep cliffs, such as the northwest coast, in
addition to locations with easier coastal access (cf. [61]).

It is also important to note that these settlements are far from each of the crater lakes.
Hanga Ho’onu is ca. 4 km from Rano Raraku, ca. 7.5 km from Rano Aroi, and ca. 17 km
from Rano Kau. Te Ipu Pu is ca. 5 km from Rano Aroi, 6.5 km from Rano Raraku, and ca.
16 km from Rano Kau. Vaihu is ca. 7 km from Rano Kau, 8.5 km from Rano Raraku, and
ca. 8 km from Rano Aroi. Ahu Te Peu is ca. 4 km from Rano Aroi, ca. 9 km from Rano
Kau, and ca. 12.5 km from Rano Raraku. These are straight-line distances not accounting
for topography to be traversed if these lakes were the primary water sources for these
communities, which would add significant travel time, especially to climb to the rim and
descend into the crater lake at Rano Kau.

In 2014 and 2015, Brosnan et al. [17] documented that Rano Raraku held water though
they were unable to confidently state whether the coastal seeps they identified were still
active during drought events. An important finding of the present study is that our
surveys were conducted while the island was experiencing a multi-year drought. Due
to the drought, Rano Raraku and Rano Aroi were desiccated. While Rano Kau still held
freshwater, water levels were several meters lower than those in recent islander memory.
Figure 7 shows an image of Rano Raraku lake in May 2019 when the lake was nearly
completely dry, a condition also noted by Sherwood et al. [55] during their 2018 fieldwork.
These results indicate that during prolonged drought events, the crater lakes become dry
before coastal groundwater locations. Our results support two previous claims: (1) Herrera
and Custodio’s [27] estimate of a relatively long turnover time for the island’s groundwater
aquifer ca. (10-50 years), and (2) the hypothesis proposed by Brosnan et al. [17] that SGD
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would have continued to serve as potential sources of freshwater for pre-contact Rapa Nui
communities during times of drought.

Figure 7. Rano Raraku crater lake, completely dry in May 2019.

Based on these results, we hypothesize that ancient Rapa Nui communities responded
to the inherent and climate-induced hydrological challenges of the island by focusing
on abundant and resilient SGD as freshwater sources. Future work should focus on
building a radiocarbon chronology for the use of coastal freshwater management features
(puna) used to trap and collect SGD. While ethnohistoric data and historical accounts
confirm the use of the features at the time of initial European contact and into the historic
period [16], we currently lack absolute chronological information on when they were
initially constructed. Although we lack chronological information on these pre-contact
freshwater management features, the settlements associated with them are relatively well-
dated and show continuous occupation from early pre-contact times into the historic era
(e.g., [31,36,60,68,71]).

5. Conclusions

Our results demonstrate the utility of UAS-based thermal imaging to provide rapid
identification of SGD along the coast of Rapa Nui. These data add to a growing body of
research indicating the importance of SGD as a source of fresh water for communities living
on the island throughout its history. Despite the fact that we conducted these surveys
during the Southern Hemisphere winter when the ocean temperature was the coldest and
offshore wave action raised concerns about the viability of the technique, the differences in
temperature in areas where groundwater emerged from the surface were clearly visible.

Future work will expand on these initial findings with the goal of systematically
mapping the entire Rapa Nui coastline. We expect to be able to achieve improved results
by conducting future surveys during the summer months when ocean temperatures are
highest and the differences between saltwater and freshwater temperatures are the greatest.
Future work will also acquire additional information from the identified locations of SGD
including radium and radium isotopes in order to characterize the sources of groundwater
and estimate discharge rates [1,72]. In this way, we will create spatially explicit SGD
estimates for each sector of the island.

The preliminary results reported here suggest that Rapa Nui people’s reliance on
SGD in pre-contact and early historic times may have been a response to the inherent and
climate-induced water scarcity on the island. In the present time, climate change poses
an existential challenge for islands such as Rapa Nui. These locations will be among the
first to experience some of the most severe impacts that will come with a rising sea level,
storm surges, and alterations to rainfall patterns—all of which affect the availability of
freshwater. In addition, the demand for freshwater has grown significantly with the rapid
increase in tourism and population on the island over the past 20 years [27]. Generating
knowledge about the sources of fresh water, therefore, is central to long-term community
sustainability. As has been demonstrated through work conducted in Hawai‘i [4], SGD
may provide new and potentially more resilient sources of fresh water for islanders as they
face future challenges with increased demand for water and a changing climate.
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Supplementary Materials: Thermal images are available online at http://github.com/clipo/RapaN
ui_TIR/.

Author Contributions: Conceptualization, R.J.D. and C.P.L.; methodology, R.J.D., CPL. and T.5.d.S,;
software, R.J.D., C.PL. and T.5.d.S.; validation, RJ.D., C.PL. and T.5.d.S.; formal analysis, R.].D.
and C.PL,; investigation, R.J.D., C.P.L., T.S.d.S. and T.L.H.; resources, R.J.D., C.PL., T.S.d.S. and
T.L.H,; data curation, RJ.D., C.PL. and T.S.d.S.; writing—original draft preparation, R.J.D. and C.PL.;
writing—review and editing, R.J.D., C.PL., T.5.d.S. and T.L.H.; visualization, R.J.D.; supervision,
R].D., CPL, T.S.d.S. and T.L.H.; project administration, R.J.D.; funding acquisition, R.J.D. and T.L.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation grant number 1841420 to
R.J.D. and T.L.H. and the American Philosophical Society’s Lewis and Clark Fund for Exploration
and Field Research to R.J.D.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Thermal imagery used in this study is available at http://github.com
/clipo/RapaNui_TIR/, accessed on 6 June 2021. Salinity measurements are available in Appendix A.

Acknowledgments: This project was conducted in collaboration with Comunidad Indigena Polinésica
Ma’'u Henua, and we thank them for their support for this project and for all of their assistance with
the fieldwork. Gina Pakarati and Hetereki Huke contributed significantly to the practical aspects of
conducting these surveys and their efforts are greatly appreciated. The work in this project began
with preliminary attempts to map freshwater using thermal cameras on Rapa Nui in 2014 with
Chris Lee, Suzanne Wechsler, Matthew Becker and Tanya Brosnan from California State University
Long Beach.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Salinity values from study areas.

Table A1. Salinity values from study areas. Coordinates use WGS 1984 UTM Zone 12 S projection.

Location Salinity (ppt) Easting Northing
Hanga Te’e * 3.7 662,164 6,994,219
Hanga Te‘e * 5.3 662,248 6,994,204
Hanga Te’e * 6.2 662,217 6,994,224
Hanga Te’e * 9.3 662,238 6,994,166

Hanga Te‘e 11.6 662,192.5 6,994,234
Hanga Te’e 16.2 662,035 6,994,140
Hanga Te‘e 21.3 662,011.9 6,994,112

Te Ipu Pu 2.8 665,982.7 7,004,547

Te Ipu Pu 6.4 665,982.6 7,004,550

Te IpuPu 8.1 666,003.5 7,004,557

Te Ipu Pu 9.7 665,995.8 7,004,530

Te Ipu Pu 10.2 666,020.6 7,004,545

Hanga Ho’onu 3.4 668,728.9 7,002,617
Hanga Ho’onu 9 668,732.9 7,002,616
Hanga Ho’onu 10.1 668,712.9 7,002,644
Hanga Ho’onu 13.5 668,740.9 7,002,614
Hanga Ho’onu 21.8 668,710.9 7,002,638
Hanga Ho‘onu 25.5 668,660 7,002,753

* Values also reported in [17].
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