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Abstract

Moral outrage shapes fundamental aspects of human social life and is now widespread in
online social networks. Here, we show how social learning processes amplify online moral
outrage expressions over time. In two pre-registered observational studies on Twitter
(7,331 users and 12.7 million total tweets) and two pre-registered behavioral experiments
(N = 240), we find that positive social feedback for outrage expressions increases the
likelihood of future outrage expressions, consistent with principles of reinforcement
learning. We also find that outrage expressions are sensitive to expressive norms in users’
social networks, over and above users’ own preferences, suggesting that norm learning
processes guide online outrage expressions. Moreover, expressive norms moderate social
reinforcement of outrage: in ideologically extreme networks, where outrage expression is
more common, users are less sensitive to social feedback when deciding whether to
express outrage. Our findings highlight how platform design interacts with human
learning mechanisms to impact moral discourse in digital public spaces.
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Introduction

Moral outrage is a powerful emotion with important consequences for society (/-3): it
motivates punishment of moral transgressions (4), promotes social cooperation (5) and catalyzes
collective action for social change (6). At the same time, moral outrage has recently been blamed
for a host of social ills, including the rise of political polarization (7, §), the chilling of public
speech (9), the spreading of disinformation (/0), and the erosion of democracy (/7). Some have
speculated that social media can exacerbate these problems by amplifying moral outrage (/7).
However, evidence to support such claims remains scarce. Our current understanding of moral
outrage is largely based on studies examining its function in small group settings (2, /2), which
impose very different constraints on behavior than online environments (/3, /4). There is
therefore a pressing need to understand the nature of moral outrage as it unfolds in online social
networks.

Foundational research shows that people experience moral outrage when they perceive a
moral norm has been violated (2, 15-17), and express outrage when they believe it will prevent
future violations (5, /8) or promote social justice more broadly (6). At the same time, however,
outrage expressions may be sensitive to factors that have less to do with individual moral
convictions, particularly in the context of social media. More specifically, we suggest that online
outrage expressions are shaped by two distinct forms of learning. First, people may change their
outrage expressions over time through reinforcement learning, altering expressive behaviors in
response to positive or negative social feedback (13, 19, 20). Second, people may adjust their
outrage expressions through norm learning, matching their expressions to what they infer is
normative among their peers through observation (2/-25). Social media platforms have specific
design features that can impact both forms of learning: they deliver highly salient, quantifiable
social feedback (in the form of ‘likes’ and ‘shares’), a central component of reinforcement
learning; and they enable users to self-organize into homophilic social networks with their own
local norms of expression displayed in newsfeeds (26, 27), which should guide norm learning.

Supporting these hypotheses, recent work demonstrates that social media users post more
frequently after receiving positive social feedback (28), consistent with a reinforcement learning
account. These observations lead to a straightforward prediction that social media users’ current
moral outrage expressions should be positively predicted by the social feedback (‘likes’ and
‘shares’) they received when they expressed moral outrage in the past. Furthermore, because
moral and emotional expressions like outrage receive especially high levels of social feedback
(29-31), moral outrage expressions may be especially likely to increase over time via social
reinforcement learning. Finding evidence for this would contradict the idea that social media
platforms provide neutral channels for social expressions and do not alter those expressions.

However, reinforcement learning alone is unlikely to fully explain the dynamics of online
moral outrage expression. Social media users interact with others in large social networks, each
with its own norms of expression (27). Every time a user logs onto a platform, their newsfeed
immediately provides a snapshot of the communication norms currently present in their network
(26). This information is likely to guide norm learning, where users adjust their behavior by
following what others do, rather than responding to reinforcement (27, 22, 32—36). Crucially,
reinforcement learning and norm learning processes might interact with one another: when
individuals can directly observe which actions are most valuable, they rely less on reinforcement
learning (22, 37). Thus, moral outrage expressions might be guided more by norm learning than
reinforcement learning when normative information is readily observable in a network.

We tested our hypotheses across two pre-registered observational studies of Twitter users,
and two pre-registered behavioral experiments in a simulated Twitter environment. Collectively,
this work demonstrates that social media users’ moral outrage expressions are sensitive to both
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direct social feedback and network-level norms of expression. These findings illustrate how the
interaction of human psychology and digital platform design can impact moral behavior in the
digital age (26, 35, 38, 39).

Results

Studies 1 and 2
Measuring moral outrage

To test our hypotheses, we developed a method for measuring moral outrage expressions
at scale in social media text, focusing on Twitter as our data source. This platform is appropriate
for testing our hypotheses due to the occurrence of several high-profile, rapid swells of outrage on
this platform (40) and the fact that many important public figures use it to communicate with their
audiences, frequently expressing and provoking outrage both online and offline. We used
supervised machine learning to develop a Digital Outrage Classifier (DOC; Materials and
Methods) that can classify tweets as containing moral outrage or not. To train DOC, we collected
a set of 26,000 tweets from a variety of episodes that sparked widespread public outrage (see
Materials and Methods and Table 1), and used theoretical insights from social psychology to
annotate those tweets according to whether they expressed moral outrage. The key definition of
moral outrage included the following three components (7, 2, 47): a person can be viewed as
expressing moral outrage if (a) they have feelings in response to a perceived violation of their
personal morals, (b) their feelings are comprised of emotions such as anger, disgust and contempt,
and (c) the feelings are associated with specific reactions including blaming people/events/things,
holding them responsible, or wanting to punish them. The full instructions including examples
given to participants and distinctions between moral outrage and other related concepts (e.g.,
“pure trolling”) can be viewed in SOM, Section 1.2.

To enhance generalizability of our classifier, our annotated dataset contained episodes that
spanned diverse topics, ideologies and timepoints. Table 2 provides examples of classifications
made by DOC. Extensive evaluation demonstrated that DOC classified moral outrage in tweets
with reliability comparable to expert human annotators (see Materials and Methods). DOC is
freely available for academic researchers via a Python package at the following link:
https://github.com/CrockettlLab/outrage classifier.

Topic Description Tweet Political Tweets N
Date Ideology of containing
Range Users outrage
T T T T T T
Kavanaugh  During the confirmation process for the Sep 15— Mixed 52.00% 16,000
Supreme Court, nominee Brett Oct 18,
Kavanaugh was accused of sexually 2018
assaulting Dr. Christine Blasey Ford.
Both parties testified to the Senate
Judiciary Committee, and Kavanaugh
was ultimately confirmed.
Covington White high school students wearing Jan 22 - Mixed 26.36% 2,500
“Make America Great Again” hats were Feb 1,
filmed appearing to harass a Native 2019
American man in Washington, D.C.
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After the video went viral, subsequent
footage suggested that the interaction
was more complicated. Several media
outlets issued retractions.

United A United Airlines passenger was forcibly ~ Apr 10 - Mixed 20.08% 2,500
removed from an overbooked plane. 14, 2017
Footage of the event showed the
passenger being injured. The video
went viral and elicited backlash against

the airline.
Smollett In January 2019, actor Jussie Smollett Feb 22 - Conservative 23.00% 2,500
claimed to have been the victim of a 26, 2019

violent hate crime perpetrated by
supporters of President Trump.
Investigating officers later alleged in
February that Smollett had staged the

attack.
Transgender The Trump administration’s ban on Jan 22 - Liberal 52.60% 2,500
Ban transgender individuals serving in the 25,2019

military was upheld by the US Supreme
Court, reversing the 2016 decision by
President Obama to open the military to
transgender service members.

Table 1. Characteristics of all training datasets. DOC was first trained on 16,000 tweets
collected during the Brett Kavanaugh confirmation hearings. We then tested generalizability and
re-trained on the combination of Kavanaugh and all other topics (26,000 total tweets).

Our measurement of moral outrage is based on a theoretical assumption that it is a specific
subcategory of the broader category of negative sentiment, which in addition to moral outrage
includes other negative emotion expressions such as fear and sadness (2, 42). In other words, we
expected that expressions of negative sentiment are necessary but not sufficient for positive
classifications by DOC. We examined this expectation by testing DOC’s discriminant validity
against a negative sentiment classifier (NSC) trained on the widely-used Sentiment140 dataset
(43). We predicted that DOC’s and the NSC’s classifications would be correlated but would also
have many cases of non-overlap. To test this prediction, we analyzed our 26,000-tweet dataset
used to train DOC (described in Table 1) to compare moral outrage classifications by DOC and
negative sentiment classifications by the NSC. As expected, we found a weak correlation between
the two classifiers’ outputs using Kendall’s rank correlation test, t=.11, p <.001. Thus, we
demonstrate discriminant validity: DOC’s classifications and the NSC’s classifications are
correlated, but not identical. See SI Appendix, Section 1.7 for more details.
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Reinforcement learning hypothesis

Our first hypothesis was that positive social feedback for previous outrage expressions
should predict subsequent outrage expressions. To test this, we used Twitter’s standard and
premium APIs to collect the full tweet histories of 3669 “politically engaged” users who tweeted
at least once about the Brett Kavanaugh confirmation hearings in October, 2018 (Study 1). We
choose this population because we expected these users’ tweet histories to contain a sufficient
amount of outrage to examine reinforcement learning effects. To test how results generalized to
less politically engaged users, we also collected the same number of users (3669 tweet histories)
who tweeted at least once about the United Airlines passenger mistreatment incident (Study 2).
Across both studies we collected 7,331 users and 12.7 million total tweets. See Materials and
Methods and Fig. 1 for further details about data collection and validation of characteristics of
the two samples. Data collection and analysis parameters were preregistered at https://osf.io/dsj6a
(Study 1) and https://osf.io/nte3y (Study 2).

In each dataset, we ran time-lagged regression models to examine the association between
the previous day’s social feedback for outrage expressions and a given day’s amount of outrage
expression. We used generalized estimating equations (GEE) with robust standard errors (44) to
estimate population-level effects treating tweets nested within users. Daily amounts of outrage
tweets were modeled using a negative binomial distribution (45). Our main model estimated the
effect of a previous day’s outrage-specific feedback on the current day’s outrage expression while
statistically adjusting for the following variables: daily tweeting frequency; the users’ number of
followers; the presence of URLs or media in each tweet; the past week’s amount of outrage
expressions and outrage-specific feedback (to account for autocorrelation effects between past
and present outrage expressions and the feedback those receive); and feedback that was not
specific to outrage (to account for the fact that people tend to tweet everything more when they
receive more feedback, and to demonstrate specificity in the effect of outrage-specific feedback
on subsequent outrage expression). These model parameters were preregistered for both Study 1
and Study 2 (see Materials and Methods). We also show that results reported below are robust
to models that treat time as a fixed and random factor, which measure how the population-average
effect of social feedback changes over time, and account for variation in day-specific events
(“exogenous shocks”™) that could impact outrage expression, respectively (see SOM, Section 2.0).

Supporting our hypotheses, we found that daily outrage expression was significantly and
positively associated with the amount of social feedback received for the previous day’s outrage
expression (Study 1: b= 0.03, p <.001, 95% CI=[0.03, 0.03]; Study 2: b =0.02, p <.001, 95% CI
=10.02, 0.03]). For our model, this effect size translates to an expected 2-3% increase in outrage
expression on the following day of tweeting if a user received a 100% increase in feedback for
expressing outrage on a given day. For instance, a user who averaged 5 likes/shares per tweet, and
then received 10 likes/shares when they expressed outrage, would be expected to increase their
outrage expression on the next day by 2-3%. While this effect size is small, it can easily scale on
social media over time, become notable at scale at the network level, or for users who maintain a
larger followership and could experience much higher than 100% increases in social feedback for
tweeting outrage content (e.g., political leaders). For other model specifications to test the
robustness of the effect, see SOM, Section 2.0.

A classical finding in the reinforcement learning literature is that reinforcement effects on
behavior tend to diminish over time as the relationships between actions and outcomes are learned
(46, 47). Accordingly, we next considered the possibility that our model is underestimating the
magnitude of the effect of social reinforcement on outrage expression because we are studying
users who already have a long history of tweeting and receiving feedback (a minimum of 1 month
up to many years of tweeting). Users with longer reinforcement histories may be less sensitive to
recent feedback after larger earlier adjustments of their behavior. To test this possibility, we ran a
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model where the length of users’ learning histories (i.e., the more days they had tweeted and
received feedback) was allowed to interact with the recent effects of social reinforcement. This
model demonstrated a significant negative interaction between previous social feedback and days
tweeted when predicting current outrage expression, indicating that the longer a users’
reinforcement history, the smaller the effect of recent social feedback on outrage expression
(Study 1: b=-0.02, p <.001, 95% CI =[-0.02, -0.01]; Study 2: b=-0.02, p <.001, 95% CI = [-
0.03, -0.01].

Our observation that outrage expression on a given day increases in tandem with social
feedback for the previous day’s outrage expression is broadly consistent with the principles of
reinforcement learning (/9). However, reinforcement learning theory also suggests a more
specific hypothesis: increases in current outrage expression should be related to previous outrage-
specific social feedback that is higher or lower than expected, i.e., that generates a prediction error
(48). To test this hypothesis, we created positive and negative prediction error variables by
computing positive and negative differences between the mean of the previous 7 days’ outrage-
specific social feedback and the previous day’s outrage-specific social feedback (see SOM,
Section 2.3 for more details). This analysis revealed a significant, positive relationship between
positive prediction errors from previous tweeting and current outrage expression in both studies.
In this case, greater positive prediction errors on the previous day were associated with greater
outrage expression on a given day, (Study 1: »=0.01, p =<.001, 95% CI=[0.01, 0.02], Study 2:
b=0.02, p=<.001, 95% CI=[0.02, 0.03]). Meanwhile, negative prediction errors were
negatively associated with outrage expression on the next day in Study 1 (b =-0.03, p = <.001,
95% CI =1[-0.03, -0.02]). However, this effect was not replicated in Study 2 as there was no
reliable effect of negative prediction error on subsequent outrage expression (b = 0.05, p = .325,
95% CI=1[-0.04, 0.15]).

Above, we found that DOC shows discriminant validity against classifications of the
broader category of negative sentiment. Here, we explored whether we observe similar effects of
social reinforcement on negative sentiment expressions as we do for moral outrage expressions.
Toward this end, we re-ran our main model replacing the outrage expression variable with a
negative sentiment expression variable, as determined by the NSC described above. In this case,
we conducted a conservative test by tuning the NSC so that its classifications of negative
sentiment matched the distribution of negative sentiment extremity in tweets classified as outrage
by DOC (see SI Appendix, Section 2.4). Thus, any differences observed cannot be explained by
differences in sentiment extremity, but rather are from differences in the specificity of moral
outrage relative to the broader category of negative sentiment. The dependent variable was a
given day’s negative sentiment expression and the main predictor variable was the lagged
negative-sentiment-specific social feedback (see SI Appendix, Section 2.4). These models showed
inconsistent results across datasets: in politically engaged users, we observed a significant
positive effect of social reinforcement on subsequent negative sentiment expressions, albeit with a
smaller effect size than was observed for moral outrage expressions in the same users (Study 1: b
=0.01, p <.001, 95% CI=10.01, 0.01]). For less politically engaged users, however, the effect of
social reinforcement on subsequent negative sentiment expressions was null (Study 2: 5 =-0.00, p
=.338, 95% CI =[-0.01, 0.00]). These findings provide preliminary evidence that outrage
expressions are more readily predicted by previous social feedback than expressions of negative
sentiment more broadly.

Norm learning hypothesis
Next, we tested a hypothesis that norm learning processes impact online outrage

expressions. We approached this question in two steps. First, we reasoned that in the context of
the political topics we study here, outrage expressions should be more prevalent in social
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networks populated by more ideologically extreme users. This logic is based on evidence that
ideological extremity predicts outrage expression (30, 49, 50). More specifically, we predicted
that individual users who are embedded within more ideologically extreme networks should be
more likely to express outrage, over and above their own political ideology. In other words, if
norm learning guides outrage expression, individual users should be more likely to express
outrage when they are surrounded by others expressing outrage, regardless of their personal
ideology.

To test this, we gathered data about the social network composition of the users in our
datasets (‘egos’), including the full list of users who follow each ego (‘followers’) and the full list
of users followed by each ego (‘friends’). This yielded a total of 6.28 million friends and
followers for egos in the Kavanaugh dataset, and a total of 21 million friends and followers for
egos in the United dataset. We used these data to estimate the ideological extremity of each ego in
our dataset (51), as well as all of each ego’s friends and followers, yielding estimates of each
ego’s network-level ideological extremity (see Fig. 1).

As expected, we observed higher network-extremity in our politically engaged users
(Kavanaugh dataset, Study 1) than in our less politically engaged users (United dataset, Study 2;
Fig. 1). However, there was substantial variation in network-extremity in both datasets. We
exploited this variability to test whether egos were more likely to express outrage in networks
with more ideologically extreme members, statistically adjusting for users’ own ideological
extremity. We confirmed this was the case (Study 1: »=0.13, p <.001, 95% CI =[0.10, 0.15];
Study 2, 5 =0.31, p <.001, 95% CI =[0.26, 0.36]; Fig. 1). As can be seen in Fig. 1, network-
extremity impacts outrage expression both between and within datasets: users in the Kavanaugh
dataset, who on average are embedded in more extreme networks than users in the United dataset,
show higher levels of outrage expression than users in the United dataset. In addition, within each
dataset, users embedded within more extreme networks show higher levels of outrage expression.

Testing the difference between moral outrage expression and the broader category of
negative sentiment, we found that users embedded within more ideologically extreme networks
also expressed significantly more negative sentiment for Study 1, b =0.03, p <.001, 95% CI =
[0.01, 0.04] but not for Study 2, b=-0.01, p =679, 95% CI = [-0.06, 0.04]. Furthermore, the
effect of network-extremity in Study 1 showed a substantially weaker relationship with negative
sentiment than with moral outrage (with the size of the negative sentiment effect being less than
half the size of the moral outrage effect). This finding suggests that moral outrage expressions are
more closely related to a social network’s ideological extremity than voicing negative emotions
more broadly. This is expected from a functionalist perspective of emotion expression, since
moral outrage is more specifically tied to the domain of political ideology than the broader
category of negative sentiment (42).
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Fig. 1. Distributions of ideological extremity of user networks and levels of outrage
expression. Panel A displays density plots of the ideological extremity of user networks for the
Kavanaugh dataset (Study 1) and United dataset (Study 2). The x axis represents a continuous
estimate of the mean ideological extremity of a user’s network, greater values represent greater
extremity. Panel B displays each user’s median probability of expressing outrage in their tweets
as a function of the ideological extremity of their network.
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Second, we built on previous work demonstrating that individuals rely less on
reinforcement learning to guide behavior when they are directly instructed which actions are
valuable (22). One key prediction from recent theories of social learning is that information about
social norms may be ‘internalized’ by learners (27), making them less responsive to local
feedback from peers. Simply put, if a user can glean the appropriateness of outrage expression in
their network by observing their newsfeed, they have less of a need to rely on reinforcement
learning. This suggests that egos embedded in more ideologically extreme networks will be less
sensitive to peer feedback in adjusting their outrage expressions.

To test this, we added ego-level and network-level ideological extremity as predictors to
our time-lagged regression models examining social reinforcement of outrage, allowing both ego-
extremity and network-extremity to interact with the social feedback effect. This analysis revealed
that network-extremity significantly moderated the impact of social feedback on outrage
expression, such that users embedded within more extreme networks showed weaker effects of
social feedback on outrage expression (Study 1: & = -0.02, p =.004, 95% CI =[-0.03, -0.01];
Study 2: b =-0.05, p <.001, 95% CI = [-0.08, -0.02]), see Fig. 2. Meanwhile, ego-extremity did
not moderate the impact of social feedback on outrage expression (Study 1: b = 0.01, p = .167,
95% CI=10.00, 0.03]; Study 2: b =-0.02, p =.147, 95% CI = [-0.04, 0.01]). These results
suggest that network-level norms of outrage expression moderate reinforcement learning over and
above individual variation in ideology. More broadly, this finding supports the idea that to
understand variation in users’ outrage expression, it is important to consider both reinforcement
learning and the frequency of outrage present in a network that users can observe to learn norms
in their network. Users who infer that outrage is normative from its frequency in their network
have less of a need to exclusively rely on reinforcement learning from social feedback to guide
their outrage expressions. For negative sentiment expression, we found inconsistent results for
the interaction of sentiment-specific feedback and network ideological extremity (Study 1: b = -
0.01, p =.060, 95% CI = [-0.02, 0.00]; Study 2: b =-0.04, p =.018, 95% CI =[-0.08, -0.01]).
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322
323 Fig. 2. Network-level ideological extremity moderates the effect of social feedback on

324  outrage expressions. Each point displays the effect size estimate of previous social feedback
325  predicting current outrage expression. Error bars were calculated based on standard errors of the
326  estimate. The X axis represents quantile breaks from 20 to 80 percent. The blue color represents
327  the Kavanaugh dataset users (Study 1), and the orange color represents the United dataset users
328 (Study 2).

329 In summary, Studies 1 and 2 demonstrated three key findings: (1) outrage expression on
330  Twitter can be explained in part by variation in social feedback that people receive via the

331  platform; (2) users are more likely to express outrage in more ideologically extreme social

332 networks; and (3) in more ideologically extreme social networks, users’ outrage expression

333 behavior is less sensitive to social feedback. These findings support our hypothesis that outrage
334 expression on social media is shaped by both reinforcement learning and norm learning.

335 However, our observational approach in Studies 1 and 2 has several limitations. First, we
336  cannot draw causal inferences about how social feedback or network-level norms shape outrage
337  expressions, which limits the claims we can make about reinforcement learning and norm

338 learning processes. Relatedly, we cannot rule out the possibility that social network composition
339  might be endogenous to individuals’ outrage expression. In other words, the effects we

340  documented might also reflect the possibility that users who express more outrage may be more
341  likely to follow more ideologically extreme users. This would suggest a different causal story than
342 users learning to express outrage based on norms established by more extreme users. There is a
343 high likelihood that both processes occur in tandem and feed into one another, as the joint

344  influence of learning and self-selection into networks or social media platforms has been

3{45 examined in recent work (35, 52).

346 Finally, while we demonstrated a relationship between network-level ideological

347  extremity and individual outrage expressions, it was computationally intractable to measure levels
348 of outrage expression in the full tweet histories of >27 million users, which meant we could not
349  directly measure network-level norms of outrage expression. We addressed these limitations with
350  behavioral experiments in Studies 3 and 4.
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Study 3

Study 3 directly manipulated social feedback and network-level norms of outrage
expression in a simulated Twitter environment. The study was pre-registered at
https://osf.io/rh2jk. Participants (N = 120) were randomly assigned to either an “outrage norm” or
a “neutral norm” condition where they could scroll through a “newsfeed” containing 12 tweets
from their “new” social network (Fig. 3, “Scrolling Stage”). Stimuli consisted of real tweets
sampled from four contentious political topics, and outrage tweets were those classified as
containing outrage expression by DOC (see Materials and Methods). In the outrage norm
condition, 75% of the tweets contained outrage expressions and 25% contained neutral
expressions. The outrage tweets displayed more likes and shares than the neutral tweets, in line
with actual Twitter data (29, 30). In the neutral norm condition, all tweets contained neutral
expressions and displayed likes and shares in line with the 25% of neutral tweets displayed in the
outrage norm condition. Participants were instructed to try and learn the content preferences of
their new network (see SOM Appendix E for full instructions).

Participants then completed 30 trials of a learning task (Fig. 3, “Learning Stage”) where
they were incentivized to maximize social feedback (likes) from their network that were
ostensibly provided by previous participants. On each trial, participants chose between two
political tweets to “post” to the network (1 outrage, 1 neutral) and subsequently received
feedback. Choosing an outrage tweet yielded greater social feedback on average. Our task design
therefore allowed us to test the causal impact of social reinforcement on subsequent outrage
expressions. Because the learning task was identical for participants in both the outrage norm and
neutral norm conditions, we were also able to test the causal impact of norm information on
subsequent reinforcement learning. We operationalized norm learning as a tendency to select the
normative stimulus on the first trial of the learning task (outrage tweet in the outrage norm
condition; neutral tweet in the neutral norm condition). We operationalized reinforcement
learning as a tendency to increase selection of the positively reinforced stimulus over time
(outrage tweets in both norm conditions).
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Fig. 3. Depiction of social media learning task (Studies 3 and 4). Participants first viewed
what types of expressions were normative in their network by scrolling through 12 tweets. Next,
they participated in a learning task where their goal was to maximize feedback.

Results confirmed that both reinforcement learning and norm learning shape outrage

expression. As evidence of norm learning, on the first trial participants in the outrage norm
condition were significantly more likely to select an outrage tweet than a neutral tweet, Odds
Ratio (OR) =4.94, p <.001, 95% CI =[3.10, 7.89], and participants in the neutral norm condition
were significantly more likely to select a neutral tweet than an outrage tweet, OR = 1.73, p <.001,
95% CI=[1.11, 2.69]. In addition, we found evidence for reinforcement learning across both
norm conditions, OR = 1.10, p <.001, 95% CI =[1.08, 1.12]. That is, participants learned to
select more outrage tweets over time as a result of the trial-wise social feedback, see Fig. 4A.
Simple effects revealed that participants in both the outrage norm condition (OR = 1.04, p <.001,
95% CI =[1.03, 1.08]) and the neutral norm condition (OR = 1.10, p <.001, 95% CI =[1.08,
1.12]) learned from social feedback to express more outrage over the course of the experiment.

However, the reinforcement learning effect was significantly smaller in the outrage norm

condition than the neutral norm condition, as indicated by a significant negative interaction
between the reinforcement learning effect and norm condition, OR = 0.95, p <.001, 95% CI =
[0.92, 0.97], see Fig. 4A. This suggests that participants in the outrage norm condition relied on
social feedback less to guide their outrage expressions, consistent with the findings of Studies 1
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and 2.

Study 4

Study 4 (N = 120) replicated and extended Study 3 by testing whether the relative reliance
on norm learning vs. reinforcement learning is similar for outrage expressions compared to
neutral expressions. The study was pre-registered at https://osf.io/9hed4n/. We used the same
paradigm as in Study 3, with one critical difference: in the learning stage, participants received
greater social feedback on average for the norm-congruent expression. That is, participants in the
outrage norm condition received more positive feedback for selecting outrage tweets, while
participants in the neutral norm condition received more positive feedback for selecting neutral
tweets. This design allowed us to directly compare participants’ reliance on norm learning versus
reinforcement learning, for outrage expressions versus neutral expressions._As in Study 3, we
operationalized norm learning as a tendency to select the normative stimulus on the first trial of
the learning task (outrage tweet in the outrage norm condition; neutral tweet in the neutral norm
condition). We operationalized reinforcement learning as a tendency to increase selection of the
positively reinforced stimulus over time (outrage tweets in the outrage norm condition; neutral
tweets in the neutral norm condition).

We again find evidence for norm learning: on the first trial participants in the outrage
norm condition were more likely to select an outrage tweet than a neutral tweet, OR = 5.38, p <
.001, 95% CI = [3.48, 8.31], while participants in the neutral norm condition were more likely to
select a neutral tweet than an outrage tweet, OR = 1.54, p <.001, 95% CI=[1.03, 2.28]. We also
find evidence for reinforcement learning: social feedback impacted participants’ posting of
outrage expressions, OR = 1.03, p <.001, 95% CI =[1.01, 1.05] as well as neutral expressions,
OR =1.06, p <.001, 95% CI =[1.05, 1.08]. Finally, we found that the reinforcement learning
effect was smaller in the outrage norm condition compared to the neutral norm condition, as
indicated by a significant interaction between the reinforcement learning effect and norm
condition, Odds Ratio (OR) = 0.97, p <.001, 95% CI =1[0.95, 0.99], see Fig. 4. In other words,
participants in the outrage norm condition relied less on social feedback to guide their outrage
expression compared to participants in the neutral norm condition.
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435  Fig. 4. Reinforcement learning and norm learning shape outrage expressions in a simulated
436  social media environment. The y axis represents the percentage of participants on each trial that
437  selected outrage tweets to post. The x axis represents the trial number. The red line represents
438  participants in the outrage norm condition while the grey line represents participants in the neutral
439  norm condition. Error bands represent the standard errors produced by fitting with a GAM
440  function in R 3.6.1. The dotted line represents a 50% selection rate for participants in a given trial.
441 Panel A displays results for Study 1, Panel B displays results for Study 2.
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Discussion

Across two observational studies analyzing the tweet histories of 7,331 total users (12.7
million total tweets) and with two behavioral experiments (total N = 240), we investigated how
reinforcement learning and norm learning shape moral outrage expressions on social media. Our
findings revealed three key discoveries about moral outrage in the digital age. First, social
feedback specific to moral outrage expression significantly predicts future outrage expressions,
suggesting that reinforcement learning shapes users’ online outrage expressions. Second, moral
outrage expressions are sensitive to expressive norms in users’ social networks, over and above
users’ own preferences, suggesting that norm learning processes guide moral expressions online.
Third, network-level norms of expression moderate the social reinforcement of outrage: in
networks that are more ideologically extreme, where outrage expression is more common, users
are less sensitive to social feedback when deciding whether to express outrage. These findings
underscore the importance of considering the interaction between human psychological
tendencies and new affordances created by the specific design of social media platforms (26, 38,
39) to explain moral behavior in the digital age. This perspective dovetails with recent work in
human-computer interaction research suggesting that consequential moral and political social
media phenomena (e.g. the spread of disinformation) are best understood as a combination of top-
down, orchestrated influence from powerful actors and bottom-up, participatory action from
unwitting users (35, 53).

At first blush, documenting the role of reinforcement learning in online outrage
expressions may seem trivial. Of course, we should expect that a fundamental principle of human
behavior, extensively observed in offline settings, will similarly describe behavior in online
settings (28). However, reinforcement learning of moral behaviors online, combined with the
design of social media platforms, may have especially important social implications. Social media
newsfeed algorithms can directly impact how much social feedback a given post receives by
determining how many other users are exposed to that post. Because we show here that social
feedback impacts users’ outrage expressions over time, this suggests newsfeed algorithms can
influence users’ moral behaviors by exploiting their natural tendencies for reinforcement learning.
In this way, reinforcement learning on social media differs from reinforcement learning in other
environments because crucial inputs to the learning process are shaped by corporate interests (26,
54). Even if platform designers do not intend to amplify moral outrage, design choices aimed at
satisfying other goals -- such as profit maximization via user engagement -- can indirectly impact
moral behavior because outrage-provoking content draws high engagement (29—317). Given that
moral outrage plays a critical role in collective action and social change (42, 55), our data suggest
that platform designers have the ability to influence the success or failure of social and political
movements, as well as informational campaigns designed to influence users’ moral and political
attitudes (35, 53) . Future research is required to understand whether users are aware of this, and
whether making such knowledge salient can impact their online behavior.

Our findings also highlight other aspects of reinforcement learning that may be unique to
the context of online social networks. First, we find consistent effects of positive prediction errors
on reinforcement learning, but inconsistent effects of negative prediction errors. This may be due
to the fact that social media platform design makes positive feedback (‘likes’ and ‘shares’) highly
salient, while negative feedback (the absence of ‘likes’ and ‘shares’) is less salient. This design
feature could make it much more difficult to learn from negative than positive feedback in online
environments. Second, because users can self-organize into homophilic networks with easily
observable communicative norms (56), following those norms might sometimes supersede
reinforcement learning. We observe that in ideologically extreme networks where outrage
expressions are more common, individual users are less sensitive to the social feedback they do
receive, perhaps because the social feedback is redundant with information they gleaned from
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observation, or because they have internalized network-level norms of expression (27). Crucially,
our experimental data suggest that the context of social media makes the interaction of network
norms and reinforcement learning especially likely to affect learning of expressions that convey
reputational information to one’s social group, like moral outrage (57). Future work may
investigate how other properties of social networks impacts the balance between norm learning
and reinforcement learning.

It is important to note that all of our conclusions concern the expression of moral outrage
in social media text, and not the emotion itself, which we were unable to measure directly.
Although in theory the experience and expression of moral outrage should be highly correlated,
one intriguing possibility is that the design of social media platforms decouples expressions of
outrage from experiencing the emotion itself (/3, 26). Such decoupling has implications for
accounts of “outrage fatigue” — the notion that experiencing outrage is exhausting and thus
diminishes over time. If expression becomes decoupled from experience, then outrage online may
appear immune to fatigue even when experiencing it is not. Determining the extent to which
expressions of emotion online represent actual emotional experiences is critical because if the
social media environment decouples outrage expressions from experience, this could result in a
form of pluralistic ignorance (58) whereby people falsely believe their peers are more outraged
than they actually are (26).

This possibility is especially relevant in the context of political discourse (59, 60), which
has become increasingly polarized in recent years (67). Our findings may shed light on the rise of
affective polarization -- intense, negative emotions felt toward political outgroups (8, 62) that
have erupted into violent clashes in the U.S. (63) and have been linked with inaccurate meta-
perceptions of intergroup bias (60, 64). In the current studies, we show that users conform to the
expressive norms of their social network, expressing more outrage when they are embedded in
ideologically extreme networks where outrage expressions are more widespread — regardless of
their personal ideology. Such norm learning processes, combined with social reinforcement
learning, might encourage more moderate users to become less moderate over time, as they are
repeatedly reinforced by their peers for expressing outrage. Further studies that measure
polarization longitudinally alongside social reinforcement and norm learning of outrage
expressions will be required to test this prediction.

Our studies have several limitations. First, we note that all the users in our observational
analyses were identified by having tweeted at least once during an episode of public outrage
(though not all users necessarily expressed outrage during these episodes). This approach allowed
us to ensure we collected a sample with a measurable signal of moral outrage, but it remains
unclear whether these findings generalize to a broader population, other social media platforms,
or outside the U.S. political context. Relatedly, Twitter users are not representative of the general
population (65). However, they do comprise a high proportion of journalists and public figures
who have an outsized influence on public affairs and the narratives surrounding them.
Furthermore, our observational studies were unable to establish causal relationships between
feedback, norms and outrage expression. We therefore chose to replicate the findings and
demonstrate the causal relationship in tightly controlled experiments using mock social media
environments (Studies 3 and 4). Although it would be scientifically interesting in future research
to manipulate social feedback given to Twitter users, we caution that experimentally inducing
changes in moral and political behavior in real online social networks raises a number of ethical
concerns, especially considering that the majority of Twitter users are unaware their public data
can be used for scientific study (66, 67). An alternative possibility for future research is to recruit
social media users who consent to participating in experiments where they are randomly assigned
to conditions in which their social feedback experience is potentially modified.

There are also several limitations with our method for classification of moral outrage in
social media text (DOC). As with all machine learning methods, DOC is not 100% accurate,
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although we achieve performance on par with existing sentiment analysis methods that aim to
classify more broad affective phenomena such as whether an expression is “positive” vs.
“negative” (68). For this reason, within-sample estimates in changes of outrage over time might
be more accurate than any single point-estimate for the purposes of generalizing out of sample.
Furthermore, we note that we observed modest overlap between DOC’s classifications of moral
outrage and broader classifications of negative sentiment using existing classifiers (69), although
social learning effects were stronger and more consistent for moral outrage expressions than
negative sentiment. Although moral outrage is interesting to study due to its specific functional
ties to morality and politics and the consequences it can bring about for individuals and
organizations, more research is required to understand the extent to which our findings regarding
moral outrage extend to other emotional expressions that are similarly tied to ideological
extremity in politics such as fear (70). We also note that DOC is trained specifically on moral and
political discourse in Twitter text, and therefore may have limited generalizability when applied
to other social media platforms or other topics. As with all text classifiers, it is essential that
researchers perform validity tests when applying DOC to a new sample before drawing
conclusions from its results. Finally, we note that DOC was trained based on consensus
judgments of tweets from trained annotators, which is useful for detecting broad linguistic
features of outrage across individuals. However, specific social networks and even individuals
may have diverse ways of expressing outrage, which suggests that future research should test
whether incorporating individual-level or group-level contextual features can lead to greater
accuracy in moral outrage classification (71).

Broadly, our results imply that social media platform design has the potential to amplify or
diminish moral outrage expressions over time. Ultimately, whether it is “good” or “bad” to
amplify moral outrage is a question that is beyond the scope of empirical studies, although
leaders, policy-makers and social movements might assess whether online outrage achieves
group-specific goals effectively (6, 72). While our studies were not designed to assess the
effectiveness of online outrage, we note that significant asymmetries have been documented along
ideological and demographic lines, including the political right gaining far more political power
from outrage in the media than the left (73), men gaining more status from anger than women
(74), and anger mobilizing White people more than Black people in politics (75). These
asymmetries might be exacerbated by social media platform design, in light of the growing
impact of online discourse on political events and awareness (76, 77). Future work is required to
determine how online amplification of moral outrage might also spill over into offline social
interactions, consumer decisions, and civic engagement.

Materials and Methods

Studies 1 and 2

Measuring moral outrage expressions in social media text. For our social media studies,
we developed DOC using supervised machine learning. We trained DOC on a total of 26,000
tweets labeled as containing an expression of outrage or not, collected during a variety of
episodes that sparked widespread public outrage (see Table 1 for sources of training data and
SOM, Section 1.0 for details of classifier development). Extensive evaluation demonstrated that
DOC classified moral outrage expressions with accuracy and reliability comparable to extensively
trained (‘expert’) human annotators (see SOM section 1.4 for details and Table 2 for examples of
tweets classified as containing moral outrage expression by DOC). DOC is available for academic
researchers via a Python package at the following link:
https://github.com/Crockettl ab/outrage classifier.
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To develop DOC, we leveraged the Global Vectors for Word Representation (78) to
encode tweets into vector space, and then input these word embeddings into a deep gated
recurrent unit (79) neural network architecture (for tests of alternative models, see SOM, Section
1.0). The GRU model was trained on an initial data set of 16,000 tweets collected during a
contentious political episode in American politics: the confirmation hearings of Supreme Court
nominee Brett Kavanaugh (SOM, Section 1.1). Crucially, this episode sparked outrage from both
liberals and conservatives, which made it ideal for training a classifier to detect aspects of outrage
expressions that are not specific to a particular political ideology. We collected these tweets by
gathering data on public mentions of politicians who were embroiled in controversy over
statements about the confirmation hearings (see SOM, Section 1.1). We then trained
‘crowdsourced’ annotators to identify moral outrage expressions in these tweets based on social
psychological theory (see SOM, Appendix A for full training instructions). Each tweet in the data
set was rated as containing outrage or not by an ideologically heterogeneous group of 10
annotators (5 liberals and 5 conservatives). Annotators demonstrated excellent reliability in
applying our criteria for identifying moral outrage expressions as assessed by an intraclass
correlation: ICC(3,10) = .82, 95% CI = [0.82, 0.83]. Importantly, we found that when holding the
number of annotators constant at 5, politically heterogenous groups (ICC(3,5) =.69) showed
similar reliability as politically homogenous groups (mean ICC(3,5) =.70), justifying the
combined use of liberal and conservative annotators to determine outrage ratings (for more details
see SOM, Section 1.2).

We then collected a secondary set of various political topics and had them labeled by
expert human annotators (N = 10,000) to order to enhance the domain-generalizability of DOC.
We selected these topics to represent diverse moral transgressions that violated both liberal and
conservative values, as well as a non-political moral transgression (see Table 2 and SOM, Section
1.5). To test DOC’s performance, we trained and tested on the 26,000-tweet labeled data set using
5-fold cross-validation and found that our GRU model achieved an accuracy of 75% and F-1
score of .71 in classification of moral outrage (see SOM, Section 1.0 for more details).
Importantly, DOC applied outrage labels similarly to the expert annotators in a sample of 500
tweets: the reliability applying outrage labels for the group of 8 expert annotators (ICC(2,8) = .88,
95% CI =[.86, .89]), was statistically indistinguishable from the mean reliability of all possible
groups comprising 7 expert annotators and DOC (ICC(2,8) = .87, 95% CI =[.86, .89]). In short,
DOC classified moral outrage in a manner consistent with expert human annotators.

As moral outrage is a specific type of negative sentiment, we expected outrage expression
and negative sentiment to be correlated, but not identical. Supporting this prediction, DOC
showed discriminant validity comparing its classifications to the classifications of a model trained
to identify the broader category of negative sentiment. When examining the classifications made
by the two models in the 26,000-tweet labeled dataset, we observed a weak correlation, T =.11, p
<.001. Descriptively, we observed that outrage and negative sentiment classifications showed
agreement in only 29% of cases. See SOM Section 1.7 and Table S15 for more details and
examples of tweets containing negative sentiment but not moral outrage expression.

Topic Text Classification

Kavanaugh @SenGillibrand you are a DISGRACE. Shut your lying mouth. There is Outrage
no evidence of assault
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Kavanaugh @JeffFlake thank you for stepping up. Don’t let them do a poor job in the Non-Outrage
investigation

Covington I cannot with the “Stand with Covington” gofundme? WTF? People are Outrage
giving these brats money? Unbelievable!

Covington There are good people on both sides of the #Covington debate. Let’s all Non-Outrage
slow down

United I’'m in total disgust and madness because of what #united did. Totally Outrage
Unacceptable.

United Here’s the latest ad from @united. #united #advertising https://... Non-Outrage

Smollett Hey @JussieSmolett you are a worthless piece of shit. A greedy, corrupt Outrage
liar.

Smollett We need some more @JussieSmolett memes. Where are they? Non-Outrage

Transgender This is a disgusting display of hatred and oppression. Outrage

Ban #FUCKYOUTRUMP and your criminal cabinet!

Transgender Hillary Clinton said some thoughtful words about the ban: https://... Non-Outrage

Ban

Table 2. Example outrage and non-outrage tweets as classified by the Digital Outrage
Classifier. The table shows example tweets from five political topics appearing in our training set
that were classified as containing outrage vs. not containing outrage by DOC. To protect Twitter
user privacy from reverse text searches, for figure display purposes only some words from each
original tweet have been edited while maintaining salient features of the message.

Hypothesis testing. To test our research questions regarding the social learning of outrage
expressions, we first used metadata from our training dataset to select a group of Twitter users
who were identifiable as authors of tweets in the Kavanaugh dataset, and who maintained public
profiles for at least 3 months after the original data collection (3,669 users). We connected to
Twitter’s standard and premium APIs, and collected these users’ full tweet histories yielding 6.1
million tweets available for analysis (see SOM, Section 2.0 for more details). We used the same
method to collect a second group of less politically engaged users, who were identified as authors
of tweets in the United Airlines dataset (3,669 Twitter users with 6.6 million tweets available for
analysis). Since tweets in the United dataset did not concern a politically partisan issue, we
expected that users identified from this dataset would be less ideologically extreme than the
Kavanaugh users. Estimating the ideology of users in both the Kavanaugh and United datasets
confirmed this (see SOM, Section 2.2). This analysis strategy enabled us to test to what extent our
findings generalize across different levels of political engagement and ideological extremity.

To test the association between outrage and previously received social feedback, we used
generalized estimating equations (44)) with robust standard errors (observations, or tweets, were
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clustered by user) to estimate the population-level association between moral outrage expression
and the amount of social feedback received on the previous day, with data aggregated at the level
of days. We modeled the sum of outrage expression as a negative binomial distribution with a log
link function and an independent correlation structure using PROC GENMOD in S4S 9.4.
Decisions for modeling the outcome variable and correlation structure were based on the fact the
outcome variable was overdispersed count data, and also on QIC model fit statistics (80) available
in PROC GENMOD. To replicate the analyses in R 3.6.1 in a computationally efficient manner,
we used the ‘bam’ function in the package ‘mgcv’ v1.8. SAS and R scripts used for data
organization and model estimation described in this section are available at: https://osf.io/9he4n/.
Model specifications and variable formations listed below were pre-registered at
https://osf.io/dsj6a (Study 1) and https://osf.io/nte3y (Study 2).

The model predicting outrage expression from previous social feedback included as
predictors the sum of feedback received when outrage was expressed for 7 lagged days, previous
outrage tweeting for 7 lagged days, previous sums of non-outrage feedback for 7 lagged days,
user-level tweet history total, number of tweets containing URLS per day, number of tweets
containing media per day, and the user follower count. Results were robust to various model
specifications including a model that included one 1 previous day of outrage feedback, previous
tweeting, and feedback for non-outrage tweets (i.e., including only 1 lag for each variable).
Results were also robust when modeling the main lagged predictor variable as the difference
between feedback received for outrage tweets vs. non-outrage tweets (i.e., what is the effect of
receiving more feedback for outrage expression compared to other tweets a user sent?). SOM
Section 2.0 presents full model details and tabulated results.

We created positive and negative prediction error variables by computing the difference
between the previous day’s outrage-specific social feedback and the feedback from 7 days
previous to the first lag. For example, if a user received an average of 5 likes/shares across days t-
2 —t-8, and on day t-1 they received 8 likes and shares, that observation would be recorded as a
+3 for the positive prediction error variable and a 0 for the negative prediction error variable. If
on day t-1 they received 3 likes and shares, the observation would be recorded as a -2 for the
negative prediction variable and a 0 for the positive prediction error variable. Further details are
presented in SOM, Section 2.3.

To test norm learning hypotheses in the Kavanaugh and United Airlines datasets, we
defined the social network of each ‘ego’ (a user in a dataset) as all friends and followers of the
ego, and estimated the political ideology of each user in the ego’s network (57). We defined
ideological extremity as the absolute value of the mean political ideology of all users in an ego’s
social network (thus, higher values represent more extreme users, see SOM, Section 2.0 for more
details). To test how network ideological extremity moderated the social reinforcement effects,
we regressed daily outrage expression on the two-way interaction of the previous day’s outrage-
specific feedback and each ego’s network ideological extremity while also adjusting for daily
tweet frequency and covariates included in above models. SOM Section 2.0 presents full model
details and tabulated results.

Study 3

Participants. We recruited 120 participants via the Prolific participant recruitment
platform. We report how we determined our sample size, all data exclusions (if any), all
manipulations, and all measures in the study in our preregistration at https://osf.io/rh2jk.
Participants were all liberal as our Twitter stimuli express left-leaning opinions about contentious
political topics.
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Procedure. Participants were recruited to participate in a simulated Twitter environment
and told they were a new member of an ostensible network of platform users. They were
explicitly instructed to learn the content preferences of their “new” network (For full instructions
see SOM, Section 3.0. Participants were randomly assigned to either an ‘outrage norm’ or ‘neutral
norm’ condition. Both conditions consisted of two stages: a scrolling stage and a learning stage
(Fig. 3Fig. 3). In the scrolling stage, participants passively viewed 12 tweets that were sent from
their new network by scrolling through a simulated Twitter “newsfeed”. Each tweet commented
on one of four contentious political topics: (1) the first impeachment of Donald Trump as US
president, (2) Medicare for All, (3) US immigration policy, and (4) the ‘extinction rebellion’
climate change movement. Each tweet discussed one of these issues from a liberal perspective.
Three tweets from each of the topics were selected and combined to make the 12 tweets
participants viewed.

The tweet stimuli were collected from publicly available tweets (no usernames were
displayed for the tweet stimuli), and outrage expression was determined using DOC. In the
outrage norm condition, 75% of the tweets that participants saw contained an expression of
outrage, while the remaining 25% did not. None of the tweets seen by participants in the neutral
norm condition contained outrage. Whether a tweet contained outrage or not was determined by
using DOC to classify the tweets and then checking for validity of classification.

In addition to manipulating the prevalence of outrage in each condition, the amount of
positive social feedback (i.e., ‘likes”) displayed under each tweet was also varied. In the outrage
norm condition, tweets that contained expressions of outrage displayed an amount of likes
randomly drawn from a ‘high reward distribution’ (M = 250, SD = 50). Non-outrage tweets in this
condition were assigned a number of likes sampled from a much lower distribution (M =25, SD =
6). In the neutral norm condition, a random selection of 75% of the tweets in the neutral condition
had high feedback, 25% had low feedback as determined by the same distributions in the outrage
norm condition.

After completing the scrolling stage, participants completed a learning stage where their
goal was to maximize the social feedback they received for ‘retweeting’ content (i.e., re-posting a
tweet to their network). Participants were incentivized to maximize their feedback via potential
bonus payment related to total likes accumulated during the experiment. Social feedback was
operationalized as Twitter ‘likes’, also known as ‘favorites’, which were ostensibly awarded by
participants who previously completed the task and who shared the views of the network. On each
of 30 trials, participants were presented with two new tweets discussing the same political topics
that were used in the scrolling stage. As before, these tweets were classified for outrage
expression using DOC. Thus, while both tweets in a pair discussed the same topic, one tweet
contained outrage while the other did not. The position of the tweets when presented (left or right
side of the screen) was randomized. Participants responded on each trial by clicking a ‘retweet
button’ that corresponded to the member of the pair of tweets they wished to share. Once they
clicked the retweet button, participants were immediately presented with the feedback awarded to
the selected tweet.

The social feedback awarded on each trial was drawn from either of two predetermined
‘reward trajectories’ with the trajectory used determined by the participants retweet choice. For
example, if a participant chose to retweet the outraged content in the n™ trail, then the feedback
they were awarded corresponded to the n™ integer in an array of values. Of these values, 80%
were randomly drawn from the high reward distribution used in the scroll task. The remaining
20% of reward values were sampled from the low distribution. These reward contingencies were
the same for all participants, irrespective of the norm condition they were assigned in the scrolling
task. The 80/20 split was used to add noise to the feedback and thus make it more difficult for
participants to quickly infer the underlying reward structure.
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Data Analysis. We modeled participants’ binary tweet choices over trials using a
generalized linear mixed model with the ‘/me4’ package in R 3.6.1. Norm condition, trial number
and their interaction were entered as fixed effects, and we entered a random intercept for
participants. Results were robust to modeling stimulus as a random factor (87), see SOM, Section
3.0.

Study 4

Participants. We recruited 120 participants via the Prolific participant recruitment
platform. We report how we determined our sample size, all data exclusions (if any), all
manipulations, and all measures in the study in our preregistration at https://osf.io/jc9tq.
Participants were all liberal as our Twitter stimuli express left-leaning opinions about contentious
political topics.

Procedure. As in Study 3, participants completed a simulated Twitter task with a scrolling
stage and a learning stage (Fig. 3). The scrolling stage was identical to that in Study 3. The
learning stage was similar to that in Study 3, with one exception: participants in the neutral norm
condition received more likes for selecting neutral tweets, while participants in the outrage norm
condition received more likes for selecting outrage tweets. This design allowed us to directly
compare learning rates in environments where outrage versus neutral tweets receive more positive
feedback.

Data Analysis. We modeled participants’ binary tweet choices over trials using a
generalized linear mixed model with the ‘/me4’ package in R 3.6.1. Norm condition, trial number
and their interaction were entered as fixed effects, and we entered a random intercept for
participants. Results were robust to modeling stimulus as a random factor (87), see SOM, Section
3.0
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Figures and Tables

Fig. 1. Distributions of ideological extremity of user networks and levels of outrage
expression. Panel A displays density plots of the ideological extremity of user
networks for the Kavanaugh dataset (Study 1) and United dataset (Study 2). The x
axis represents a continuous estimate of the mean ideological extremity of a user’s
network, greater values represent greater extremity. Panel B displays each user’s
median probability of expressing outrage in their tweets as a function of the
ideological extremity of their network.

Fig. 2. Network-level ideological extremity moderates the effect of social feedback on
outrage expressions. Each point displays the effect size estimate of previous
social feedback predicting current outrage expression. Error bars were calculated
based on standard errors of the estimate. The X axis represents quantile breaks
from 20 to 80 percent. The blue color represents the Kavanaugh dataset users
(Study 1), and the orange color represents the United dataset users (Study 2).

Fig. 3. Depiction of social media learning task (Studies 3 and 4). Participants first
viewed what types of expressions were normative in their network by scrolling
through 12 tweets. Next, they participated in a learning task where their goal was
to maximize feedback.

Fig. 4. Reinforcement learning and norm learning shape outrage expressions in a
simulated social media environment. The y axis represents the percentage of
participants on each trial that selected outrage tweets to post. The x axis represents
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the trial number. The red line represents participants in the outrage norm condition
while the grey line represents participants in the neutral norm condition. Error
bands represent the standard errors produced by fitting with a GAM function in R
3.6.1.

Table 1. Characteristics of all training datasets. DOC was first trained on 16,000 tweets

collected during the Brett Kavanaugh confirmation hearings. We then tested
generalizability and re-trained on the combination of Kavanaugh and all other
topics (26,000 total tweets).

Table 2. Example outrage and non-outrage tweets as classified by the Digital Outrage

Classifier. The table shows two example tweets from five political topics
appearing in our training set that were classified as containing outrage vs. not
containing outrage by DOC. To protect Twitter user privacy from reverse text
searches, for figure display purposes only some words from each original tweet
have been edited while maintaining salient features of the message.

Supplementary Materials

Supplementary Materials are attached in a separate document.
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