
Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

Compressive Neural Representations of Volumetric Scalar Fields

Y. Lu1, K. Jiang2, J. A. Levine2 , and M. Berger1

1Department of Electrical Engineering and Computer Science, Vanderbilt University, USA
2Department of Computer Science, University of Arizona, USA

Figure 1: Our approach represents a scalar field as a neural network that conditions on a point in the field’s domain and produces a scalar
value. We obtain highly compressive volume representations in this manner, here showing two levels of compression (middle, right) for the
jet volume (left), where even for extreme compression ratios (right, 1307 : 1), predominant features of the volume are preserved.

Abstract
We present an approach for compressing volumetric scalar fields using implicit neural representations. Our approach represents
a scalar field as a learned function, wherein a neural network maps a point in the domain to an output scalar value. By setting the
number of weights of the neural network to be smaller than the input size, we achieve compressed representations of scalar fields,
thus framing compression as a type of function approximation. Combined with carefully quantizing network weights, we show
that this approach yields highly compact representations that outperform state-of-the-art volume compression approaches. The
conceptual simplicity of our approach enables a number of benefits, such as support for time-varying scalar fields, optimizing to
preserve spatial gradients, and random-access field evaluation. We study the impact of network design choices on compression
performance, highlighting how simple network architectures are effective for a broad range of volumes.

CCS Concepts
• Human-centered computing → Visualization; • Computing methodologies → Neural networks; Image compression;

1. Introduction

The visualization of large-scale field-based data is a fundamental
component to many post hoc analyses. Field data, in particular
scalar fields, often arise from numerical simulations of scientific
phenomena, which require high (3D) spatial and temporal resolu-
tion to accurately resolve domain-specific features of interest. The
size of such large-scale data presents a number of challenges for vi-
sualization, ranging from bandwidth constraints, disk storage, data
accessibility, and interactivity. Compression of volumetric scalar
fields remains an important tool that can help mitigate these chal-
lenges. For visualization purposes, the data is often so large that
lossy compression methods are required to enable analysis. The
main purpose of lossy methods is to obtain compact volumetric

representations in which features of the data remain visually per-
ceptible, at the cost of sacrificing some data precision.

Within the visualization community, the lossy compression of
volumetric scalar fields has largely been based on transforms
that admit compressive representations, where transform coeffi-
cients can be discarded and/or aggressively quantized with mini-
mal loss in data fidelity. A commonality to these methods is the
reliance on a rectilinear grid for which predefined bases may be
constructed, e.g. Fourier [YL95] or Wavelet bases [WMB∗11],
or where data-dependent bases may be derived [SMP13, BRP16].
However, the success of these methods heavily depends on whether
a provided scalar field is a good match for the assumptions
made by the transform, e.g. the field is largely composed of low-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-4302-1704

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

frequencies for Fourier bases, or admits a low-rank decomposition
for factorization-based transforms [BRLP19]. In practice, these as-
sumptions are satisfied to varying degrees, leading to variability
in compression ratios and approximation quality amongst existing
methods.

In this work we propose a learning-based method for compress-
ing scalar fields. We leverage neural networks that are designed to
map a continuously-defined position from the domain to a scalar
value in the range [PFS∗19,MON∗19]. The use of neural networks
places little assumptions on data characteristics; instead, the net-
work learns what is necessary to approximate the given field. In par-
ticular, by limiting the capacity of the network, such that the num-
ber of weights of the network is less than the volume resolution,
we obtain compressive volume representations that are optimized
to best approximate the field at its sampled values. Hence, the neu-
ral network is the compressed volume representation – the level of
compression, in part, follows from the number of network weights,
and the original sampled field can be reconstructed by evaluating
the neural network at the given positions.

Our neural network design is conceptually straightforward.
We build on the approach of SIREN [SMB∗20], wherein fully-
connected layers and periodic activation functions (using sinu-
soids) comprise the network architecture. Periodic activation func-
tions, coupled with careful initialization for stable optimization,
have been recently shown to outperform more advanced archi-
tectures, e.g. frequency-based embeddings with ReLU activa-
tions [MST∗20], for a variety of representation tasks. We illustrate
how residual connections that preserve SIREN activation distribu-
tions lead to networks that are robust across architecture choices.
Further, we observe that the learned, per-layer, weights of SIREN
are distributed in such a manner that they may be quantized to a
small number of bits, with minimal impact on performance.

By limiting network capacity, and performing weight quantiza-
tion, we obtain highly compact representations of scalar fields, as
demonstrated in Fig. 1. Further, the conceptual simplicity of our
approach provides a number of benefits. Due to the use of periodic
activation functions, we can target the optimization of higher-order
derivatives, as studied in Sitzmann et al. [SMB∗20]. In particular,
when spatial gradients are available, we can use this information
to regularize the network. This leads to better-behaved scalar fields
whose isosurfaces are less noisy under high compression ratios. We
also show how it is straightforward to adapt our approach to com-
pressing time-varying scalar fields simply by adjusting the network
inputs. Furthermore, the networks enable field access at arbitrary
points in the domain, eschewing the reconstruction of the entire
volume at once – we show how this can benefit visualization appli-
cations such as volume rendering.

Summarizing, the main contributions of our approach are:

1. A compression technique for volumetric scalar fields based on
implicit neural representations.

2. An evaluation of this compression approach, directly comparing
it to a recent state-of-the-art technique (tthresh [BRLP19]) as
well as exploring implementation design choices; and

3. Experimental results on compressing volumes, including study-
ing gradient preservation and preserving time-varying data.

2. Related Work

2.1. Compression of Volumetric Data

Lossy compression of large scale volumes has been an important
topic in recent years, particularly as our ability to simulate and
acquire data grows. Many of the early works in this area focused
on using discrete cosine transforms [YL95] or wavelet-based com-
pression [GWGS02, IP99,Mur93,WMB∗11], often specifically fo-
cusing on interactive rendering applications [RGG∗13, SW03]. By
using such transforms, these techniques enable compression by al-
lowing the end user to separate features within a transformed space
(i.e. removing high frequencies while preserving low frequencies)
and ultimately sparsify the data representation. ZFP performs trans-
formations customized at the block level to achieve compression
with fast I/O access [Lin14]. More recent techniques, such as TAM-
RESH [SMP13] and TTHRESH [BRLP19] employ tensor decom-
position [BRP16]. TTHRESH is particularly notable as a recent
state-of-the-art compression technique that we directly compare
our results against in this work.

Other techniques focus on data fitting as the workhorse for
compression. For example, ISABELA [LSE∗11] and SZ [DC16,
TDCC17] use curve fitting to approximate the input data. Liang
et al. outperform SZ and ZFP using an improved Lorenzo predic-
tion [LDT∗18]. Data fitting is related to our neural network based
approach, although the method to achieve the fit is different. Using
data models can be a powerful mechanism for providing a compres-
sion technique. Peterka et al. [PNG∗18] study the use of nonuni-
form rational B-spline functions (NURBS) for compressive vol-
ume representations via adaptive refinement of control points. This
work shows the benefit of smooth representations for analytically-
defined gradients, however an important distinction in our approach
is that we can directly optimize for gradients. Other examples fo-
cus on models that preserve specific aspects of the data, e.g. topo-
logical features [SPCT18], graph-based models like SQ [IKK12],
and dictionaries [DMG20]. COVRA uses an octree decomposi-
tion to model data blocks which are compressed at multiple res-
olutions [GIGM12]. Data fitting broadly considers the tradeoff be-
tween how many samples are used and how much precision is de-
voted to each sample. Recently, Hoang et al. provide a precision-
resolution tree that is used for efficient selection of either fewer data
samples or data samples encoded with fewer bits [HSB∗20].

2.2. Deep Learning for Volume Representation

Recently, numerous researchers have deployed deep learning and
used neural networks to enable a variety of visualization tasks.
Berger et al. utilize generative adversarial networks (GANs) to an-
alyzing the space of visual parameters in a volume renderer, pro-
viding a new interface for transfer function design [BLL18]. He et
al. generalize the idea of learning conditioned on parameter spaces
to include ensembles of volumes with InSituNet [HWG∗19]. Han
et al. encode multivariate volume data for variable-to-variable
translation [HZX∗20]. Jakob et al. consider the problem of inter-
polation using neural networks defined on a large ensemble of vec-
tor fields [JGG20]. While the applications are different, all of these
works share a common thread in that they construct representa-
tions that blend visualization tasks (e.g. rendering, interpolation)
with data representations.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

i
j

k

X[i,j,k]

x
y

z

f(x,y,z)

Encode f(x,y,z)

Decode

f(x,y,z)

Figure 2: An overview of our compression method, split into the steps of encoding (left) and decoding (right). We encode a provided scalar
field with a coordinate-based neural network, where the network f is tasked with predicting the field’s value X[i, j,k] given coordinates
(x,y,z). In the network diagram, red arrows represent fully-connected layers whose weights are quantized, blue arrows are unquantized
fully-connected layers, and dashed black arrows represent residual connections. Decoding amounts to function evaluation, where we may
reconstruct the field at grid vertices, or arbitrary positions, and thus perform volume rendering with the network in lieu of the sampled field.

Closely related to compression is the task of super-resolution,
for which many techniques have been developed in the computer
vision communities. More recently, researchers have shown that
deep learning can be used to achieve super-resolution on volumet-
ric data. Xie et al. developed tempoGAN for super-resolution of
volumetric fluids in computer graphics [XFCT18]. Weiss et al. de-
veloped new techniques for isosurface rendering that similarly used
deep learning for super-resolution [WCTW19]. Han and Wang de-
veloped neural networks for super-resolution in temporal [HW19]
and spatial [HW20] super-resolution, and Guo et al. achieved spa-
tial super-resolution in vector fields [GYH∗20]. Notably, many
of these techniques are tested against possible compression tech-
niques, but none of the above were specifically designed for com-
pression. Thus, while they are compressive, their main strengths lie
elsewhere.

Recently, the machine learning community has explored using
deep learning to construct implicit representations, which can be
used to model a variety of data. We utilize a similar approach in
our network design, and as seen in recent works this can achieve
superior performance. Park et al. developed DeepSDF for repre-
senting shape using signed distance fields [PFS∗19]. Recent ex-
tensions to this work include overfit neural networks [DNJ20] and
DualSDF [HAESB20] that allow for tradeoffs in the representa-
tion precision and flexbility. Similarly, Chen and Zhang use im-
plicit fields for generative shape modeling [CZ19]. Alternatively,
instead of training to produce a signed distance field, Mescheder
et al. propose to construct occupancy fields [MON∗19]. Besides
just representing shape, other recent applications include texture
synthesis [OMN∗19] and view synthesis [MST∗20]. As this is an
emerging area, we are still discovering new ways to improve these
networks. Notable recent works that informed our network design
include using periodic activations [SMB∗20] and Fourier feature
mappings [TSM∗20]. Our approach is distinct from prior works
in that we investigate how to make implicit neural representations
compressive for arbitrary scalar fields [DNJ20,SMB∗20,TSM∗20].

3. Compression Method

The basic idea behind our compression approach is to represent
a provided scalar field as a learned function, one that is parame-
terized by a set of weights whose size is smaller than the field’s

size. Fig. 2 shows an overview. Specifically, we assume the input
to our method is a scalar field sampled on a regular grid, which
we treat as a d-tensor X ∈ Rs1×s2×···×sd . When d = 3 this rep-
resents a scalar field whose domain is a 3D Cartesian coordinate
system, while d = 4 may represent a time-varying scalar field in 4
dimensions. We associate each sample of the field with an indexing
tuple of integers i = (i1, i2, · · · , id), an integer for each dimension,
such that X[i1, i2, · · · , id] returns the value of the field at this sam-
ple, and further, assume this index is associated with a real-valued
d-dimensional point from the field’s domain, pi ∈ Rd .

Our goal is to learn a function fΘ : Rd→R, such that for a given
sample i = (i1, i2, · · · , id) and corresponding point pi, we would
like fΘ(pi) to be as close to X[i1, i2, · · · , id] as possible. The vector
Θ ∈Rm denotes the function’s set of parameters. Assuming its size
m is less than the size of the field, defined as C = ∏

d
j=1 s j, then

we can obtain a representation of the field that (a) serves as a good
approximation to X, and (b) requires smaller storage.

What specific form should the function take? In order to handle
complex volumetric fields typically produced in numerical simula-
tions, we require functions that place as few assumptions as pos-
sible on the characteristics of the fields, e.g. smoothness, spectral
properties, or sampling rate. To this end, we define the functions as
deep neural networks, building off of recent work in implicit neural
representations for shape modeling [PFS∗19, MON∗19, SMB∗20].
Notably, these methods can model fine-grained details, e.g. intri-
cate geometric structures of shapes, only limited by the capacity of
the network rather than the resolution of some underlying regular
grid, as is commonly used with convolutional networks [HW19].
We argue that such coordinate-based neural networks are a good fit
for arbitrary volumetric fields, not just shape-based data. By fram-
ing compression as optimization, we allow the network to learn
what is necessary for approximating the sampled field under a com-
pression budget. In this paper we study how to effectively construct
such functions, considering the trade-offs in approximation quality
and level of compression. At a high-level, our approach follows a
standard compression setup, comprised of 2 steps: an encode step
to find the function, and a decode step that allows us to reconstruct
the sampled field.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

36

38

40

42

44

46

48

50

4 6 8 10 12 14 16 18 20

PS
N

R

Number of layers

residual
no residual

original
quantized

(a) Asteroid

50

52

54

56

58

60

62

64

66

68

70

4 6 8 10 12 14 16 18 20

PS
N

R

Number of layers

residual
no residual

original
quantized

(b) Ionization

Figure 3: We show the impact of residual connections (green) vs.
non-residual connections (red) as a function of network depth, as
well as the impact of network weight quantization (dashed lines),
fixing the number of network weights m to be C

50 . We find that resid-
ual connections are more robust to depth and improve performance,
while weight quantization leads to a small drop in performance, but
is volume-dependent.

3.1. Neural Encoder

The purpose of the encode step is to train the neural network to ac-
curately model the field at its provided samples. More specifically,
we aim to minimize the following mean-squared error loss:

min
Θ

∑
i
(fΘ(pi)−X[i1, i2, · · · , id])2 . (1)

In practice, the loss function is optimized by performing stochastic
gradient descent, assembling minibatches at each iteration of train-
ing by randomly selecting samples from the provided field.

What remains is the design of the network. We opt for simplicity
in network architectures, to avoid the brittleness of hyperparameter
tuning and support a diverse set of volumetric fields. To this end,
we build off of the approach of SIREN [SMB∗20], where a neural
network is defined by a sequence of fully-connected layers that use
sinusoidal activation functions – no normalization, e.g. batch nor-
malization [IS15], is necessary for successful training. SIREN has
several benefits. First, as demonstrated by Sitzmann et al., train-
ing is ensured stable through a principled initialization scheme that
controls for the distribution of activations at layers, namely that all
layers are arcsine-distributed. Secondly, the use of sinusoidal acti-
vations admits functions that are C∞ differentiable. Our approach
takes advantage of both of these properties.

Given the network design of SIREN, to setup the network we
need only define the fully-connected layers. To this end, our method
accepts two inputs: the number of layers l, and the total number of
network weights m. We derive an integer k such that the first weight
matrix has size k×d, the last weight matrix has size d×1, and all
intermediary weight matrices are of size k× k, such that the total
number of weights of the network is approximately m. Bias vec-
tors are similarly derived from inputs m and l. All weights are of
32-bit floating-point precision. The resulting set of weight matrices
and bias vectors, collectively, represents our vector of parameters
Θ, e.g. the compressed representation. Note that it is also possible
to vary the sizes of the weight matrices, e.g. to gradually increase
the number of hidden units as a function of layer depth. Experi-

0
10
20
30
40
50
60
70
80
90

100
110
120

-0.02 0.00 0.02

D
en

si
ty

Weight value

(a) Layer 3

0
10
20
30
40
50
60
70
80
90

100
110
120

-0.02 0.00 0.02

D
en

si
ty

Weight value

(b) Layer 9

0
10
20
30
40
50
60
70
80
90

100
110
120

-0.02 0.00 0.02

D
en

si
ty

Weight value

(c) Layer 15

46
48
50
52
54
56
58
60
62
64
66
68
70

5 6 7 8 9 10

PS
N

R

Bits per Weight

residual original
quantized

(d) Quantization v. Depth

Figure 4: In (a-c) we show the distribution of weights for our net-
work trained on the Ionization volume for layers 3, 9, and 15, num-
ber of weights m = C

50 . We find that the distribution is approxi-
mately zero-mean normal, with slight variations, hence amenable
to quantization. In (d) we vary the number of bits used for quantiza-
tion, adjusting the number of weights m to ensure an approximately
equal compression ratio. We find that 9 bits is a good trade-off be-
tween number of network weights, and level of quantization.

mentally, we found this made little difference, thus for simplicity
we chose a fixed number of hidden units in intermediary layers.

The number of layers, l, should be large enough to handle the
modeling of arbitrarily complex fields. In practice, however, setting
l too large can be detrimental, posing challenges for training due
to vanishing gradients. As an example, we show results for two
different volumes in Fig. 3 (red solid lines), varying the number of
layers, where the quality of the volume is measured through peak
signal-to-noise ratio (PSNR), the mean-squared error normalized
by the data range. Note that, at a certain point, as the model depth
increases performance decreases. Further, the network depth that
leads to highest PSNR varies between the two volumes.

In order to ensure our models are robust with respect to the num-
ber of layers across different volumes, we enrich SIREN with resid-
ual connections [HZRS16]. Specifically, we modify the identity
mappings of He et al. [HZRS16] to ensure that the distribution of
activations in each layer are within the range [−1,1], in accordance
with the assumptions of SIREN [SMB∗20]. Each residual block
in our network takes the following form, omitting bias vectors for
clarity (c.f. Fig. 2 dashed black arrows):

ai+1 =
1
2

(
ai + sin

(
M2

i+1 sin(M1
i+1ai)

))
, (2)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

where ai represents a vector of activations from a previous block i,
ai+1 is a vector of activations at the next block i+1, and M1

i+1 and
M2

i+1 are a pair of learnable matrices associated with block i+ 1.
In Fig. 3 (green solid lines) we show the effect of residual connec-
tions – note we treat each block as containing 2 layers. Note that
(a) training is more stable as the network depth increases, and (b)
we obtain a boost in performance over non-residual connections.
Consequently, unless otherwise stated, all of our networks employ
8 residual blocks.

3.1.1. Network Weight Quantization

Thus far, the compression ratio of our method can be expressed as
C
m , assuming the network weights and volume are of the same pre-
cision. However, further compression can be gained through quan-
tizing the network weights. Weight quantization has been consid-
ered for classification-based convolutional networks [HMD15], but
to the best of our knowledge, not yet studied for coordinate-based
MLPs. For our SIREN-based network, we make several observa-
tions:

1. The first and last layers of the network are parameterized by
small weight matrices, as discussed above. Experimentally, we
found that they require high precision for good performance and
thus we do not quantize the matrices (c.f. Fig. 2 blue arrows).

2. Instead, most of the parameters of our network exist in inter-
mediary layers, parameterized by matrices of k× k. It is these
matrices that we quantize (c.f. Fig. 2 red arrows).

3. Since the distribution of activations in SIREN take a specific
form, we find that the distribution of weights in each layer take
on, approximately, a normal distribution, with some small vari-
ations. Fig. 4(a)-(c) demonstrates this for three different layers,
where empirically, we find that deeper layers have lower spread,
and a higher concentration of values around zero.

Motivated by these observations, we employ the technique of Han
et al. [HMD15] and cluster the weights, individually, for each in-
termediary layer using k-means. We set the number of clusters to
be the precision at which we would like to represent the weights,
namely if we wish to represent the weights with a precision of b
bits, then the number of clusters will be set to 2b. After cluster-
ing, we assign each weight its corresponding b-bit index, and store
these, alongside the corresponding floating point-precision cluster
centers, as the quantized weight representation.

What should the number of bits, b, be set to in practice? In Fig. 3
we show the two network options with their corresponding quan-
tized representations (as dashed lines), setting b to 8. We find that
the drop in performance in quantization is dependent on the specific
volume, with the ionization volume most impacted. Thus, we can-
not be too aggressive in quantization, yet there exists a size trade-
off in the precision at which to represent weights, and the number
of weights to assign to the network. Based on this, in Fig. 4(d) we
plot the PSNR for a sequence of networks that all have approxi-
mately the same size, but consider both the number of weights and
weight quantization. We increase the number of bits used for quan-
tization along the x-axis, and compensate by decreasing the number
of weights of the network. We observe that at 9 bits, e.g. 512 clus-
ters, the network takes a minimal drop in PSNR – similar results

Table 1: We compare the impact of gradient regularization
(“grad”) without using such regularization (“no grad”) for the jet
volume, for a compression ratio of 677 : 1. We find this regulariza-
tion yields gradients closer to the target (Grad PSNR) with minimal
drop in field approximation (PSNR).

Loss PSNR FD-Grad PSNR Net-Grad PSNR
no grad 51.8 52.0 50.3

grad 51.6 54.7 55.5

(a) ground truth (b) no gradient reg. (c) gradient reg.

Figure 5: We show isosurfaces for the reconstructed jet volume,
comparing with, and without, gradient regularization (c.f. Table 1)
in the loss. Note that gradient regularization helps to suppress er-
roneous high-frequency details.

are observed in different volumes. Consequently, all networks in
the paper represent weights of intermediary layers with 9 bits.

3.1.2. Gradient Regularization

As previously mentioned, the use of sinusoidal activation functions
in our network implies that we can take arbitrary-order derivatives
of the function. Thus we can optimize for the derivatives of the
function, in addition to just the provided field values. This allows
us to obtain compressed fields whose higher-order information is
preserved. Specifically, we modify our loss in Eq. 1 to ensure that
the spatial gradient of the function is close to provided gradients of
the original scalar field:

min
Θ

∑
i
(fΘ(pi)−X[i1, i2, · · · , id])2+

λ‖∇ fΘ(pi)−X
′
[i1, i2, · · · , id]‖2

2,

(3)

where X
′

denotes the (provided) scalar field gradient, and we set
λ = 0.05, which we found to give a good balance between the gra-
dient and scalar value fit. In some cases, X

′
may be accompanied by

the field, e.g. within FEM numerical simulations gradients are often
computed from the finite element basis. In other cases, we may nu-
merically approximate gradients using finite differencing schemes,
however for certain volumes, e.g. acquired medical images, the es-
timated gradients may not be reliable for regularization.

To show the benefit of gradient regularization we train 2 net-
works – one with gradient regularization and one without – to
compress the jet volume, under a compression ratio of 677 : 1 for
each. Namely, each network is trained with number of weights
m = C

200 , along with weight quantization. We use central differ-
encing to numerically estimate gradients from the provided field.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

(a) Direct Neural Rendering (b) Gradient-based Shading

Figure 6: Our neural network can be directly used for volume ren-
dering, rather than reconstructing the volume, shown here for as-
teroid for (a) a basic volume renderer where our network is evalu-
ated on-demand during ray marching, and (b) the computation of
network gradients to enable direct illumination.

We compare the compression results in terms of the PSNR of the
original field, as well as PSNR of the gradient field, following Han
et al. [HTZ∗19]. The numerically estimated gradient from the pro-
vided scalar field is taken as the target gradient field, while we com-
pare to 2 forms of gradients from the decompressed volumes: cen-
tral differencing of the reconstructed volume (denoted FD-Grad),
as well as the analytical gradients obtained by differentiating the
network (denoted Net-Grad).

Table 1 summarizes the results. We find that incorporating gra-
dient regularization leads to a small decrease in PSNR of the scalar
field, but leads to a boost in performance in capturing the target gra-
dient. Interestingly, without gradient regularization, analytical gra-
dients from the network (Net-Grad PSNR) suffer quite a bit relative
to numerically-estimated gradients (FD-Grad PSNR). From a visu-
alization perspective, inaccurate gradients can have a large impact
on isosurfaces of the scalar field, whose normals point in the same
direction as the gradients. We highlight this phenomenon in Fig. 5.
Note that without gradient regularization, we obtain surfaces with
erroneous high-frequency details, whereas gradient regularization
leads to smoother surfaces, reflective of ground truth.

3.2. Neural Decoder

Once the network has been trained, and the volume encoded, de-
coding is rather straightforward, as it amounts to evaluating the
neural network. To reconstruct the scalar field we simply evaluate
our network at all grid vertices within the volume. This evaluation
is relatively efficient given the data parallelism of the network, e.g.
a sequence of matrix multiplications and sin function evaluations.

Beyond reconstruction, a key advantage of neural scalar field
representations is the support for random access function evalua-
tion. We may evaluate our function at any position, not just grid ver-
tices, hence the network serves as an interpolant. Furthermore, we
can compute higher-order information from the network directly,
eliminating the need to numerically estimate derivatives. These fea-
tures allow us to use the network directly for visualization purposes,
rather than reconstructing the full volume a priori. As an illustra-

tion, we have developed a neural volume renderer with our net-
work, where at each step of ray marching, we evaluate our network
at all current ray positions to obtain function values, see Fig. 6a for
an illustration. Moreover, it is trivial to support direct illumination
via the computation of function gradients as we ray march, subse-
quently normalized for shading purposes. We highlight this feature
in Fig. 6b. The quality of the volume-rendered images suggests that
our network serves as a good interpolant, not merely overfitting to
the sampled field’s values.

4. Experiments

To evaluate our approach we have run our method on a variety of
datasets under different levels of compression; Table 2 summarizes
them. Specifically, from the Johns Hopkins Turbulence Database
(JHTD) [LPW∗08], mhd_p and mhd_bx are respectively pressure
and x-coordinate magnetic fields from a magneto-hydrodynamic
isotropic turbulence simulation, and isotropic_p is a pressure field
from a forced isotropic turbulence simulation. The ionization vol-
ume is a temperature field from an ionization front instability sim-
ulation [WN], the jet volume is mixture fraction from a simula-
tion of jet flames [GBG∗14], the magnetic volume is from a mag-
netic reconnection simulation [GLDL14], and rt is from a Rayleigh-
Taylor instability simulation [CCM04]. Volumes for JHTD and rt
are formed by taking centered spatial crops to access the original
field values where the central portion of the simulations take place.

Furthermore, we have evaluated our method on two time-varying
volumes isabel and asteroid (Section 4.2). The dataset isabel cor-
responds to hurricane Isabel’s “QVapor” field [WBK04] of its first
twelve time steps. Note that we cropped out the ten lowest planes
in the z-coordinate to remove the NaNs in the data that correspond
to land. The dataset asteroid uses the first ten timesteps from the
field “v02” from a deep water asteroid impact simulation [PG18].

Fig. 7 shows a gallery of compression results on our approach,
which we refer to as neurcomp. We also compare our method to the
state-of-the-art compression technique tthresh [BRLP19], a method
for compressing arbitrary tensor data. We limit our comparisons to
only tthresh as Ballester et al. have already demonstrated superior
results to a wide variety of existing compression methods. Unless
otherwise stated, we use OSPRay [WJA∗16] for rendering and iso-
surfacing for visual comparisons.

Implementation Details. We use Adam [KB14] to optimize our
networks, where we found the best results by setting the learning
rate to be inversely proportional to the number of weights of the
network. Specifically, the learning rate is set as a linear function,
varying from 2 ·10−5 for 5M parameters, to 10−4 for 800K param-
eters. We ensure that our network makes a prescribed number of
passes over the entire volume, where we found 75 iterations to be
more than enough for convergence, decaying the learning rate by
a factor of 5 every 20 iterations. At each iteration we set the batch
size to fill up the GPU memory, in practice ranging from 16K to
64K grid points from the volume sampled uniformly at random.

4.1. 3D Scalar Fields

We first compare our method with tthresh for 3D scalar fields. We
run our method over a sequence of compression levels, and plot the

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

Figure 7: Compression results for our approach, neurcomp. Left-to-right: asteroid (timestep 0), ionization, isotropic_p, magnetic, and rt. Top
row: original volumes. Middle row: medium compression. Bottom row: high levels of compression.

50

55

60

65

70

0 200 400 600 800

PS
N

R

Compression ratio

ionization

neurcomp
tthresh

35

40

45

50

0 200 400 600 800

PS
N

R

Compression ratio

mhd_p

neurcomp
tthresh

45

50

55

60

65

70

0 200 400 600 800

PS
N

R

Compression ratio

jet

neurcomp
tthresh

55

60

65

70

0 200 400 600 800

PS
N

R

Compression ratio

isotropic_p

neurcomp
tthresh

48

50

52

54

56

58

60

0 200 400 600 800

PS
N

R

Compression ratio

magnetic

neurcomp
tthresh

40

45

50

55

60

0 200 400 600 800

PS
N

R

Compression ratio

mhd_bx

neurcomp
tthresh

40

45

50

55

60

65

0 200 400 600 800

PS
N

R

Compression ratio

rt

neurcomp
tthresh

Figure 8: A comparison of our method with tthresh [BRLP19] for 3D scalar fields, plotting compression ratio against PSNR.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

Table 2: Name, resolution, precision in bits, and file size in MB for
the datasets in our experiments. For time-varying datasets asteroid
and isabel, the 4-th dimension of the resolution is the number of
timesteps.

Dataset Resolution Precision Size (MB)
mhd_p 255×255×255 float32 63
ionization 248×248×600 float32 141
jet 512×336×768 float32 504
mhd_bx 512×512×512 float32 512
isotropic_p 512×512×512 float32 512
magnetic 512×512×512 float32 512
rt 512×512×512 float32 512
asteroid 300×300×300×10 float32 1030
isabel 500×500×90×12 float32 1030

resulting compression ratio against PSNR. For these experiments
we do not use gradient regularization, but rather, delegate this to
Section 4.4. As tthresh accepts an error/accuracy tolerance (e.g.
PSNR) as input parameter, rather than compression ratio, we run
tthresh for a sequence of PSNR values such that they give com-
pression ratios that are roughly in the range of what we consider.

Fig. 8 shows the quantitative results. We find that our method is,
largely, an improvement over tthresh, with the only exception be-
ing the jet volume for low compression ratios. In particular, we find
that our method obtains larger gains in performance the higher the
compression ratio. This suggests that when our networks are un-
derparameterized (e.g. much fewer parameters than the resolution
of the data), they remain robust, and can still obtain good approxi-
mations to the given scalar field.

To further qualitatively assess this robustness in high com-
pression regimes, we visually compare volume renderings of our
method with tthresh for the magneto-hydrodynamic simulation,
namely its magnetic field (mhd_bx) and pressure field (mhd_p) in
Fig. 9. We find that our method is able to reproduce smoother sur-
faces in the rendering, as shown in the magnetic field plot (a), while
in the pressure field (b), we find that components of the volume,
corresponding to the chosen transfer function, are better retained
through our method. Indeed, we find that our method gracefully
degrades for extreme compression ratios, unlike block-based meth-
ods [Lin14, DC16] that produce visible artifacts at block bound-
aries. Global decomposition-based methods [BRP16,BRLP19] also
do not suffer from locality issues, but we find that they can produce
high-frequency noise in high compression regimes. We demon-
strate this in Fig. 10 for the rt dataset, comparing our method
with tthresh under approximately the same PSNR values. We first
note that our method produces compressed representations approx-
imately half the size of tthresh. Further, we find that our method
produces smoother scalar fields, more reflective of the ground truth
as shown on top, unlike the high frequencies reproduced by tthresh.

4.2. Time-varying Scalar Fields

We evaluate our approach’s capability to compress time-varying
data by comparing our method with tthresh on isabel and asteroid,

(a) Magnetic field (x) (b) Pressure field

Figure 9: We show visual comparisons between our method and
tthresh for the magneto-hydrodynamic simulation. For high com-
pression ratios, we find that our method produces smoother results
(a) and can better retain features in the volume (b).

Figure 10: Evaluation of our method under extreme compression
ratios for the rt dataset. We find our method gracefully degrades in
performance, whereas tthresh tends to reproduce high frequencies.

assembling the first twelve time steps from isabel and ten consec-
utive time steps towards the beginning of the asteroid simulation.
While we show results per time-step, we note that both methods
treat the data as 4D volumes.

Fig. 11 show comparisons between our method and tthresh over
multiple timesteps with regard to 3 different compression ratios.
Note that the compression ratios for our method and tthresh are
slightly different, since it is difficult to precisely set the compres-
sion ratio for tthresh. As the top of Fig. 11 shows, our approach

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

45

50

55

60

65

70

0 2 4 6 8 10

PS
N

R

Time step

Compression ratio: 556/529

neurcomp
tthresh

45

50

55

60

65

70

0 2 4 6 8 10

PS
N

R

Time step

Compression ratio: 1095/1047

neurcomp
tthresh

45

50

55

60

65

70

0 2 4 6 8 10

PS
N

R

Time step

Compression ratio: 2123/2176

neurcomp
tthresh

Figure 11: Comparison against tthresh of our approach’s per-
formance on the time-varying datasets. Top row: asteroid, bottom
row: isabel. From left-to-right we vary compression ratios, denot-
ing them as X/Y where X is the compression ratio of neurcomp and
Y is the compression ratio of tthresh.

Figure 12: We assess the effect of spatial resolution on perfor-
mance, evaluating our method on spatial crops of different size for
the 5123 isotropic_p volume.

achieves superior results on asteroid dataset when compared with
tthresh, with more stability on both ends. In part, this is due to the
fine resolution of sampling in time, where the simulation evolves
slowly. For the isabel dataset, our method performs comparable
to tthresh at low compression ratio, except for the start and end
timesteps where we outperform, as shown in the bottom of Fig. 11.
For higher compression levels, however, our method gains larger
boosts in performance over tthresh at all timesteps, showing the
preference of our method for high-compression ratio scenarios.

Table 3: A comparison of tthresh to our gradient-regularized net-
work.

Method Compression PSNR Gradient PSNR
neurcomp 545:1 47.9 50.7

tthresh 258:1 47.6 46.6

(a) ground truth (b) neurcomp (c) tthresh

Figure 13: We show isosurfaces for the rt dataset with our gradient-
regularized network and tthresh. Though both have roughly the
same PSNR, our method suppresses high-frequency details.

4.3. Spatial Resolution

Here we examine the impact of spatial resolution on the quality
of our compression method. In particular, we wish to gain insight
on the following question: do coordinate-based MLPs benefit from
high spatial resolution? To test this, we took the isotropic_p 5123

volume, and grabbed centered crops of size 2563 and 1283. We ex-
pect this volume to contain similar statistics for sufficiently large
spatial crops, since it corresponds to isotropic turbulence at rela-
tively small scales. We then ran our method on the volumes, setting
the network size-to-volume ratio (C

m) constant, namely 50, 100,
150, 200, and quantize the network weights to 9 bits. Note that
for larger volumes, the storage of the cluster centers leads to over-
all higher compression ratios, thus for equivalent C

m values lower
resolution volumes are given the benefit of the doubt.

Fig. 12 (top) shows the results, plotting performance as PSNR
with respect to ground truth. We can see that the higher the spatial
resolution, the better the performance, despite (a) the network sizes
setup in the same manner, and (b) the higher compression ratios
for the larger volumes. We view this as an encouraging property,
namely that network capacity is not strictly tied with the spatial
resolution. On the bottom of the figure we show volume renderings
from low and high-end compression ratios, illustrating that our ap-
proach captures the predominant features of the volume even for
high levels of compression.

4.4. Gradient Regularization

Last, we show how gradient regularization can be used to produce
better-behaved scalar fields in comparison to prior works. Specif-
ically, for the rt dataset we obtain target gradients through central
finite differencing, and train our method using the loss of Eq. 3. We
provide our resulting PSNR as a target accuracy for tthresh, yield-
ing comparable PSNR values as shown in Table 3. However, a gap
exists between the methods in terms of the Gradient-based PSNR.
As discussed in Sec. 3.1.2, the effect of gradient regularization will

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

1e+2

2e+2

1e+3

2e+3

1e+4

2e+4

100 200 300 400 500 600 700

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Compression ratio

mhd_p
ionization
rt

Figure 14: We plot training times for three scalar fields, as a func-
tion of compression ratio.

be prominent when isosurfacing the volume, and we can observe in
Fig. 13 that tthresh indeed produces isosurfaces that contain con-
siderable noise – this corroborates findings in Fig. 9(a) and Fig. 10.
Indeed, the preservation of higher-order information is nontrivial
through existing compression methods, whereas our method can
incorporate gradient preservation as part of optimization.

5. Discussion

Although our method can achieve state-of-the-art results for com-
pressing scalar fields, we acknowledge several limitations. The pri-
mary drawback is the high computation time for training. In Fig. 14
we plot training times, as a function of compression ratio, for three
scalar fields of different spatial resolution – we observe similar
times for different volumes with equivalent resolution. These times
were computed on a single node using an NVIDIA V100 GPU with
16GB of memory. We foresee our method as being suitable for
large simulations running on supercomputers, where as the simula-
tion completes one could run a deep learning job for compression.

We also note that the training times are rather pessimistic – we
find that our network converges to comparable PSNR values in,
roughly, 2

3 the reported times, and so there are opportunities to
speed up training. However, as shown, for large volumes training
can be quite slow (requiring a few hours per volume). Interestingly,
and perhaps counter-intuitively, as the compression ratio increases
it takes less time to compress the data, due to the fact that higher
compression ratios utilize smaller network architectures. So, unlike
many standard techniques that start from a lossless perspective and
work harder to compress, we control this at the architecture level.

We will address this limitation in future work by investigating
multiresolution methods for training [JJHZ20], adapting our net-
work to take spatial locality into account. A major benefit of our
approach to compression is that we do not need to store the entire
volume in memory at once, since during training we need only ac-
cess random samples of the field. Addressing limitations in the time
required to train will enable us to realize this benefit.

Another limitation related to high computation time is the lack
of generalization: the function that is learned is specific to a single
volume. We argue that tailoring a neural network to a single vol-
ume is precisely what gives us such good performance, as similarly
demonstrated in recent work within shape representations [DNJ20].
Nevertheless, we have also shown the efficacy of our method for

(a) ground truth (b) 25:1 compression; PSNR: 35

Figure 15: We show our method’s performance for a medical im-
age, here in the case of foot (2563, 8-bit precision).

time-varying scalar fields, and so for future work, we plan to in-
corporate other factors common to simulation-based data, e.g. data
composed of multiple fields and associated with simulation param-
eters, within our network design. Indeed the notion of generaliza-
tion is limited for volumetric data within the visualization com-
munity, often restricted to fields/time steps produced from a sin-
gle simulation [HW19,HZX∗20] or fixing these parameters and in-
stead considering multiple simulation parameters [HWG∗19]. Our
approach is general enough to accommodate these factors.

The use of neural networks for representing volumetric data
places some limitations on the types of volumes that we can sup-
port. In particular, our method faces limitations in handling noisy
volumes, e.g. those produced from medical imaging. The main is-
sue is not in capturing the predominant features of the volume – our
method performs well on this matter, please see Fig. 15 for an ex-
ample on the foot volume. Rather, the use of neural networks makes
it challenging to preserve the noise itself. This is also problematic
for gradient regularization, where it is challenging to extract use-
ful gradient signal for our network if noise is present. On the other
hand, we demonstrated that simple finite difference schemes for
simulation data proves helpful for regularization, and we expect
higher-order numerical schemes for derivative estimation should
also prove useful. Beyond gradients, we can also regularize the
learned function with any type of differential expression, and this
can lead the way to preserving the physics associated with a given
simulation as part of our compression approach.

Despite the limitations, we are optimistic about the use of neural
networks for scientific data compression. Besides the clear advan-
tages shown over other architectures [SMB∗20], coordinate-based
MLPs offer significant flexibility in designing constraints for data
preservation. Future work may show that such networks can better
preserve a variety of features in volumetric data.

Acknowledgements

This work is supported in part by the National Science Foundation
(NSF) under grant numbers IIS-2007444 and IIS-2006710, and by
the U.S. Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, under Award Number(s)
DE-SC-0019039.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

References
[BLL18] BERGER M., LI J., LEVINE J. A.: A generative model for vol-

ume rendering. IEEE transactions on visualization and computer graph-
ics 25, 4 (2018), 1636–1650. 2

[BRLP19] BALLESTER-RIPOLL R., LINDSTROM P., PAJAROLA R.:
TTHRESH: Tensor compression for multidimensional visual data. IEEE
transactions on visualization and computer graphics (2019). 2, 6, 7, 8

[BRP16] BALLESTER-RIPOLL R., PAJAROLA R.: Lossy volume com-
pression using Tucker truncation and thresholding. The Visual Computer
32, 11 (2016), 1433–1446. 1, 2, 8

[CCM04] COOK A. W., CABOT W., MILLER P. L.: The mixing tran-
sition in Rayleigh-Taylor instability. Journal of Fluid Mechanics 511
(2004), 333–362. doi:10.1017/S0022112004009681. 6

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), pp. 5939–5948. 3

[DC16] DI S., CAPPELLO F.: Fast error-bounded lossy HPC data com-
pression with SZ. In 2016 ieee international parallel and distributed
processing symposium (ipdps) (2016), IEEE, pp. 730–739. 2, 8

[DMG20] DÍAZ J., MARTON F., GOBBETTI E.: Interactive spatio-
temporal exploration of massive time-varying rectilinear scalar volumes
based on a variable bit-rate sparse representation over learned dictionar-
ies. Computers & Graphics (2020). 2

[DNJ20] DAVIES T., NOWROUZEZAHRAI D., JACOBSON A.: Over-
fit neural networks as a compact shape representation. arXiv preprint
arXiv:2009.09808 (2020). 3, 10

[GBG∗14] GYULASSY A., BREMER P.-T., GROUT R., KOLLA H.,
CHEN J., PASCUCCI V.: Stability of dissipation elements: A case study
in combustion. Computer Graphics Forum 33, 3 (2014), 51–60. 6

[GIGM12] GOBBETTI E., IGLESIAS GUITIÁN J. A., MARTON F.:
COVRA: A compression-domain output-sensitive volume rendering ar-
chitecture based on a sparse representation of voxel blocks. Computer
Graphics Forum 31, 3pt4 (2012), 1315–1324. 2

[GLDL14] GUO F., LI H., DAUGHTON W., LIU Y.-H.: Formation of
hard power laws in the energetic particle spectra resulting from relativis-
tic magnetic reconnection. Phys. Rev. Lett. 113 (Oct. 2014), 155005.
doi:10.1103/PhysRevLett.113.155005. 6

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.: Inter-
active rendering of large volume data sets. In IEEE Visualization, 2002.
VIS 2002. (2002), IEEE, pp. 53–60. 2

[GYH∗20] GUO L., YE S., HAN J., ZHENG H., GAO H., CHEN D. Z.,
WANG J.-X., WANG C.: SSR-VFD: Spatial super-resolution for vector
field data analysis and visualization. In 2020 IEEE Pacific Visualization
Symposium (PacificVis) (2020), IEEE Computer Society, pp. 71–80. 3

[HAESB20] HAO Z., AVERBUCH-ELOR H., SNAVELY N., BELONGIE
S.: DualSDF: Semantic shape manipulation using a two-level represen-
tation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2020), pp. 7631–7641. 3

[HMD15] HAN S., MAO H., DALLY W. J.: Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149 (2015). 5

[HSB∗20] HOANG D., SUMMA B., BHATIA H., LINDSTROM P., KLA-
CANSKY P., USHER W., BREMER P.-T., PASCUCCI V.: Efficient and
flexible hierarchical data layouts for a unified encoding of scalar field
precision and resolution. IEEE Transactions on Visualization and Com-
puter Graphics (2020). 2

[HTZ∗19] HAN J., TAO J., ZHENG H., GUO H., CHEN D. Z., WANG
C.: Flow field reduction via reconstructing vector data from 3-d stream-
lines using deep learning. IEEE computer graphics and applications 39,
4 (2019), 54–67. 6

[HW19] HAN J., WANG C.: TSR-TVD: Temporal super-resolution for
time-varying data analysis and visualization. IEEE Transactions on Vi-
sualization and Computer Graphics 26, 1 (2019), 205–215. 3, 10

[HW20] HAN J., WANG C.: SSR-TVD: Spatial super-resolution for
time-varying data analysis and visualization. IEEE Transactions on Vi-
sualization and Computer Graphics (2020). 3

[HWG∗19] HE W., WANG J., GUO H., WANG K.-C., SHEN H.-W.,
RAJ M., NASHED Y. S., PETERKA T.: InSituNet deep image synthesis
for parameter space exploration of ensemble simulations. IEEE trans-
actions on visualization and computer graphics 26, 1 (2019), 23–33. 2,
10

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Identity mappings in
deep residual networks. In European conference on computer vision
(2016), Springer, pp. 630–645. 4

[HZX∗20] HAN J., ZHENG H., XING Y., CHEN D. Z., WANG C.: V2V:
A deep learning approach to variable-to-variable selection and transla-
tion for multivariate time-varying data. IEEE Transactions on Visualiza-
tion and Computer Graphics (2020). 2, 10

[IKK12] IVERSON J., KAMATH C., KARYPIS G.: Fast and effective
lossy compression algorithms for scientific datasets. In European Con-
ference on Parallel Processing (2012), Springer, pp. 843–856. 2

[IP99] IHM I., PARK S.: Wavelet-based 3D compression scheme for in-
teractive visualization of very large volume data. Computer graphics
forum 18, 1 (1999), 3–15. 2

[IS15] IOFFE S., SZEGEDY C.: Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
Conference on Machine Learning (2015), pp. 448–456. 4

[JGG20] JAKOB J., GROSS M., GÜNTHER T.: A fluid flow data set for
machine learning and its application to neural flow map interpolation.
IEEE Transactions on Visualization and Computer Graphics (2020). 2

[JJHZ20] JIANG Y., JI D., HAN Z., ZWICKER M.: Sdfdiff: Differen-
tiable rendering of signed distance fields for 3d shape optimization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (2020), pp. 1251–1261. 10

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 6

[LDT∗18] LIANG X., DI S., TAO D., LI S., LI S., GUO H., CHEN Z.,
CAPPELLO F.: Error-controlled lossy compression optimized for high
compression ratios of scientific datasets. In 2018 IEEE International
Conference on Big Data (Big Data) (2018), IEEE, pp. 438–447. 2

[Lin14] LINDSTROM P.: Fixed-rate compressed floating-point arrays.
IEEE transactions on visualization and computer graphics 20, 12 (2014),
2674–2683. 2, 8

[LPW∗08] LI Y., PERLMAN E., WAN M., YANG Y., MENEVEAU C.,
BURNS R., CHEN S., SZALAY A., EYINK G.: A public turbulence
database cluster and applications to study lagrangian evolution of veloc-
ity increments in turbulence. Journal of Turbulence, 9 (2008), N31. 6

[LSE∗11] LAKSHMINARASIMHAN S., SHAH N., ETHIER S., KLASKY
S., LATHAM R., ROSS R., SAMATOVA N. F.: Compressing the incom-
pressible with ISABELA: In-situ reduction of spatio-temporal data. In
European Conference on Parallel Processing (2011), Springer, pp. 366–
379. 2

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), pp. 4460–4470. 2, 3

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: NeRF: Representing scenes as neural
radiance fields for view synthesis. In ECCV (2020). 2, 3

[Mur93] MURAKI S.: Volume data and wavelet transforms. IEEE Com-
puter Graphics and applications 13, 4 (1993), 50–56. 2

[OMN∗19] OECHSLE M., MESCHEDER L., NIEMEYER M., STRAUSS
T., GEIGER A.: Texture fields: Learning texture representations in func-
tion space. In Proceedings of the IEEE International Conference on
Computer Vision (2019), pp. 4531–4540. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1017/S0022112004009681
https://doi.org/10.1103/PhysRevLett.113.155005

Y. Lu & K. Jiang & J. A. Levine & M. Berger / Compressive Neural Representations

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: DeepSDF: Learning continuous signed distance func-
tions for shape representation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2019), pp. 165–174. 2, 3

[PG18] PATCHETT J. M., GISLER G. R.: Deep water impact ensemble
data set in 2018 ieee scivis contest, 2018. 6

[PNG∗18] PETERKA T., NASHED Y. S., GRINDEANU I., MAHADEVAN
V. S., YEH R., TRICOCHE X.: Foundations of multivariate functional
approximation for scientific data. In 2018 IEEE 8th Symposium on Large
Data Analysis and Visualization (LDAV) (2018), IEEE, pp. 61–71. 2

[RGG∗13] RODRIGUEZ M. B., GOBBETTI E., GUITIÁN J. A. I.,
MAKHINYA M., MARTON F., PAJAROLA R., SUTER S. K.: A survey
of compressed GPU-based direct volume rendering. In Eurographics
(STARs) (2013), pp. 117–136. 2

[SMB∗20] SITZMANN V., MARTEL J., BERGMAN A., LINDELL D.,
WETZSTEIN G.: Implicit neural representations with periodic activa-
tion functions. Advances in Neural Information Processing Systems 33
(2020). 2, 3, 4, 10

[SMP13] SUTER S. K., MAKHYNIA M., PAJAROLA R.: TAMRESH
- tensor approximation multiresolution hierarchy for interactive volume
visualization. Computer Graphics Forum 32, 3pt2 (2013), 151–160. 1, 2

[SPCT18] SOLER M., PLAINCHAULT M., CONCHE B., TIERNY J.:
Topologically controlled lossy compression. In 2018 IEEE Pacific Vi-
sualization Symposium (PacificVis) (2018), IEEE, pp. 46–55. 2

[SW03] SCHNEIDER J., WESTERMANN R.: Compression domain vol-
ume rendering. In IEEE Visualization, 2003. VIS 2003. (2003), IEEE,
pp. 293–300. 2

[TDCC17] TAO D., DI S., CHEN Z., CAPPELLO F.: Significantly im-
proving lossy compression for scientific data sets based on multidi-
mensional prediction and error-controlled quantization. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS)
(2017), IEEE, pp. 1129–1139. 2

[TSM∗20] TANCIK M., SRINIVASAN P., MILDENHALL B.,
FRIDOVICH-KEIL S., RAGHAVAN N., SINGHAL U., RAMAMOORTHI
R., BARRON J., NG R.: Fourier features let networks learn high
frequency functions in low dimensional domains. Advances in Neural
Information Processing Systems 33 (2020). 3

[WBK04] WANG W., BRUYERE C., KUO B.: Competition data set and
description in 2004 ieee visualization design contest, 2004. 6

[WCTW19] WEISS S., CHU M., THUEREY N., WESTERMANN R.: Vol-
umetric isosurface rendering with deep learning-based super-resolution.
arXiv preprint arXiv:1906.06520 (2019). 3

[WJA∗16] WALD I., JOHNSON G. P., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRÁTIL P.: Ospray-a cpu
ray tracing framework for scientific visualization. IEEE transactions on
visualization and computer graphics 23, 1 (2016), 931–940. 6

[WMB∗11] WOODRING J., MNISZEWSKI S., BRISLAWN C., DE-
MARLE D., AHRENS J.: Revisiting wavelet compression for large-
scale climate data using JPEG 2000 and ensuring data precision. In
2011 IEEE Symposium on Large Data Analysis and Visualization (2011),
IEEE, pp. 31–38. 1, 2

[WN] WHALEN D., NORMAN M. L.: Competition data set and descrip-
tion. in 2008 ieee visualization design contest (2008). 6

[XFCT18] XIE Y., FRANZ E., CHU M., THUEREY N.: tempoGAN:
A temporally coherent, volumetric GAN for super-resolution fluid flow.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–15. 3

[YL95] YEO B.-L., LIU B.: Volume rendering of DCT-based com-
pressed 3D scalar data. IEEE Transactions on Visualization and Com-
puter Graphics 1, 1 (1995), 29–43. 1, 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

