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Abstract

A tidal disruption event (TDE) occurs when a star plunges through a supermassive black hole’s tidal radius, at
which point the star’s self-gravity is overwhelmed by the tidal gravity of the black hole. In a partial TDE, where the
star does not reach the full disruption radius, only a fraction of the star’s mass is tidally stripped while the rest
remains intact in the form of a surviving core. Analytical arguments have recently suggested that the temporal
scaling of the fallback rate of debris to the black hole asymptotes to /% for partial disruptions, effectively
independently of the mass of the intact core. We present hydrodynamical simulations that verify the existence of
this E)}sdicted, o4 scaling. We also define a break timescale—the time at which the fallback rate transitions from
at 7"

scaling to the characteristic o4

scaling—and measure this break timescale as a function of the impact

parameter and the surviving core mass. These results deepen our understanding of the properties and breadth of
possible fallback curves expected from TDEs and will therefore facilitate more accurate interpretation of data from

wide-field surveys.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Hydrodynamics (1963); Galaxy nuclei (609)

1. Introduction

Supermassive black holes (SMBHs) are believed to reside at
the centers of nearly every galaxy (Kormendy & Richstone
1995). Some actively consume surrounding gas through
viscous accretion, whereby angular momentum in an accretion
disk is transported outward in exchange for material being
transported inward (Lynden-Bell & Pringle 1974). The
viscous dissipation of energy is thought to be responsible for
the extreme luminosities of these active galactic nuclei
(Salpeter 1964; Lynden-Bell 1969).

Most SMBHs, however, emit little to no light (Ho 2008) and
their darkness can only occasionally be punctuated by a sudden
flare that brightens and fades over months to years. These
flashes are often attributed to tidal disruption events (TDEs;
Rees 1988), in which a star is ripped apart by the tidal field of a
black hole. In a full disruption the star is completely destroyed,
roughly half of the stellar debris stream remains gravitationally
bound to the black hole, forms an accretion disk, and generates
a bright flare. Partial disruptions may also occur in which only
a fraction of the star’s mass is tidally stripped by the SMBH,
leaving behind a stellar core that survives the encounter. Both
full (and, to a lesser extent, partial) TDEs have been the subject
of extensive numerical study (e.g., Lacy et al. 1982; Bicknell &
Gingold 1983; Evans & Kochanek 1989; Laguna et al. 1993;
Lodato et al. 2009; Guillochon & Ramirez-Ruiz 2013;
Hayasaki et al. 2013, 2016; Tejeda & Rosswog 2013;
Guillochon et al. 2014; Coughlin & Nixon 2015; Gafton
et al. 2015; Shiokawa et al. 2015; Bonnerot et al. 2016;
Sadowski et al. 2016; Coughlin et al. 2017; Wu et al. 2018;
Gafton & Rosswog 2019; Golightly et al. 2019a, 2019b),
and observations of their resulting flares have been used
to characterize otherwise-quiescent galactic nuclei (e.g.,
Komossa 2015; Alexander et al. 2017; Hung et al. 2017;
Komossa 2017; van Velzen et al. 2018, 2019; Holoien et al.
2019, 2020).

Many characteristics of the light curves from TDEs are
determined by the accretion rate of debris onto the black hole

(e.g., Lodato & Rossi 2011; Roth et al. 2016). This accretion
rate is closely approximated by the rate at which debris returns
to pericenter, known as the fallback rate, if (1) the kinetic
energy of the returning debris is dissipated efficiently, (2) the
material rapidly circularizes, and (3) the viscous timescale in
the formed disk is short compared to the fallback time
(Cannizzo et al. 1990; the results of Mockler et al. 2019 also
suggest that viscous delays are very small—at least for UV/
optical TDEs—over timescales of hundreds of days). One can
estimate the fallback rate from a full disruption of a star of mass
M, and radius R, by an SMBH of mass M. by assuming that
the star is “disrupted” once it crosses the tidal radius
n=R,(M./M,)'/? of the black hole, whereafter the gas
parcels comprising the debris stream orbit purely in the (static)
Keplerian potential of the SMBH. The early behavior of the
fallback rate, and in particular the rise and the peak, can be
influenced by stellar properties (Lodato et al. 2009; Guillochon
& Ramirez-Ruiz 2013); however, the fallback rate for these full
disruptions will always asymptote to £ > /3 at late enough times
provided that there is some mass at the marginally bound radius
(Coughlin & Nixon 2019).

This model, in which the energies of the fluid elements of the
star are “frozen-in” at the tidal radius, is a reasonable
approximation for full TDEs (Lodato et al. 2009). However,
the surviving stellar core present in a partial TDE interacts
gravitationally with the returning debris, and thereby introduces
a time dependence to the gravitational potential experienced by
the debris. The very existence of a conserved, Lagrangian
energy for each individual gas parcel within the stream is thus
violated in partial TDEs, and this approach cannot be used to
self-consistently recover the late-time scaling of the fallback
rate in such encounters. In addition, the core of the star in a
partial TDE never actually reaches the tidal radius and it is
therefore unclear how to define the radius at which the energy
of the star is frozen-in.

Recently, Coughlin & Nixon (2019) developed a distinct model
for analytically calculating the asymptotic temporal scaling of the
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fallback rate at late times from a partial TDE. By using only the
conservation of mass and the Lagrangian equation of motion of the
fluid elements within the stream, they concluded that the fallback
rate from a partial TDE asymptotically scales approximately as
fg/ “_effectively independent of the mass of the core that
survives the encounter (see Figure 1 of Coughlin & Nixon 2019,
which shows the asymptotic temporal power-law index of the
fallback rate as a function of the mass of the surviving core). This
model, however, makes a number of approximations, and ignores
the pressure and self-gravity of the debris stream and the fact that
the surviving core may not exactly follow a parabolic trajectory.

Here we test the validity of these approximations with
hydrodynamical simulations of partial TDEs; overall we find
excellent agreement between the predictions of Coughlin & Nixon
(2019) and our simulations. We also define a “break timescale,” at
which the fallback rate transitions from a /3 scaling to a o4
scaling, and describe how this break timescale depends on the
impact parameter 3 = 1 /r, (Where r;, is the pericenter distance of
the star to the black hole), and the mass of the surviving core. We
describe our simulations in Section 2, present our results in
Section 3, and summarize and conclude in Section 4.

2. Simulations

Using the smoothed particle hydrodynamics code PHANTOM
(Price et al. 2018), we ran 13 simulations of the disruption of a
1M, v = 5/3 polytropic star by a 105M, SMBH. Each star is set
on a parabolic orbit with an impact parameter (3 between 0.55 and
0.9; these constraints were found by Guillochon & Ramirez-Ruiz
(2013) and Mainetti et al. (2017) to be the approximate lower and
upper bounds on g, respectively, for which partial disruptions
occur for y=5/3 polytropes (i.e., 8 2 0.9 results in a full
disruption, while 5 < 0.55 results in no mass loss). Simulations
with 3=0.55 through 0.85 were run to ~10yr post-disruption;
simulations with G = 0.65, 0.7, 0.75, and 0.8 were run with 10°
particles, while those with 0.55, 0.6, 0.85, and 0.90 were run with
107 particles. For reasons described below, the 5 = 0.9 simulation
ran to 5000 yr post-disruption.

As described in more detail in Section 4.1 of Coughlin et al.
(2016), the polytropic star is initially “relaxed” in isolation (i.e.,
without the gravitational influence of the SMBH) for 10 sound
crossing times over the radius of the star, which smooths out
density fluctuations that arise from the numerical method. The
center of mass of the relaxed polytrope is then placed at 51 with a
velocity appropriate to the Keplerian orbit that has a pericenter
distance of 7, and each particle within the star is given that same
linear velocity. After the star and all of the disrupted material have
passed through pericenter and subsequently reached a radius > 5,
we excise the inner 57 of the computational domain, and any
particles that fall through this “accretion” radius are “accreted”
and contribute to the fallback rate (i.e., the rate at which particles
enter this radius as a function of time); we therefore do not attempt
to capture the circularization and disk formation that physically
occurs. The additional numerical methodologies and physical
parameters included in each simulation (e.g., the implementation
of self-gravity) are identical to those in Coughlin & Nixon (2015).

The presence of the surviving core in partial TDEs significantly
increases the computational strain of the simulations: the
hydrostatic nature of the surviving core limits the time step to
small values relative to the dynamical time of the most bound
debris. Since we are interested in the fallback rate onto the black
hole, rather than the hydrodynamics of the core itself, we replace
the surviving core with a point mass to make our simulations more
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Figure 1. Mass of the surviving core as a function of time for the 5 = 0.80

simulation. The core mass is essentially constant for the entire simulation,
increasing by less than 0.25% over 10 yr.

Table 1
Impact Parameters for Our Simulations with Corresponding Core Mass
Fractions, Dimensionless Break Times, and Raw Break Times

B = rl/ » n = Meore / M, Threak Toreak (yr)
0.550 0.994

0.600 0.962

0.650 0.889
0.700 0.779 0.799 0.263
0.725 0.712 1.633 0.352
0.750 0.641 2.954 0.497
0.775 0.565 5.357 0.763
0.800 0.485 10.14 1.300
0.825 0.402 18.83 2.269
0.850 0.320 44.63 5.166
0.860 0.280 68.37 7.822
0.865 0.262 80.88 9.225
0.900 0.135

Note. 3 = r;/r, where r is the tidal radius and r, is the pericenter distance,
1= Mcore /My where M. is the mass of the surviving core and M, is the
initial stellar mass, Tyreak 1S the dimensionless break time at which the fallback
rate transitions from a ~ >/ decline to a r—°/* decline, and feq is the break
time measured from the simulation in units of years

numerically tractable. We make this replacement after a distinct
core has formed, being roughly 1 day post-disruption for all but the
(8 = 0.9 simulation. Since the 3 = 0.9 simulation straddles the line
between full and partial TDE, we replaced the core with a sink
particle after ~50 days post-disruption. Additional details of how
this replacement is done numerically can be found in Golightly
et al. (2019b); we have also verified that the time at which we
introduce the sink particle does not in any way affect the fallback
curve, which is consistent with the fact that higher order moments
of the potential of the core are negligible for parts of the stream that
are not bound to the core.

After the sink particle is created, its mass asymptotes quickly
to a constant value. This behavior is illustrated in Figure 1, in
which we plot the core mass M, as a function of time for the
0 = 0.80 simulation: the core mass changes by only 0.0025
M., in 10 yr after creation. The core masses listed in Table 1
(note that g is the ratio of the mass of the surviving core to the
initial mass of the star) are taken at the end of each simulation.
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Figure 2. Top: fallback rate vs. time for eight tidal disruptions of a 1M, v = 5/3 polytrope by a 10°M; SMBH. These simulations span a range of 3 from 0.55

(bottom, purple) to 0.9 (top, red) as shown, and were run directly out to 15 yr. 5 = 0.55 through 0.85 clearly asymptote to ¢

to /3 by ¢ ~ 10 yr. For 3 between 0.55 and 0.85 we indicate the o4

—9/4 while (= 0.9 appears to asymptote

scaling via the colored dashed lines; a 7~>/? scaling is indicated for 3 = 0.9 by the red dotted—

dashed line. Bottom: fallback rate for the 5 = 0.9 TDE, run to 5000 yr post-disruption. We see that at 1 ~ 30 yr the fallback rate begins to steepen, eventually
approaching a temporal scaling of about 2 (dashed orange line), but later returns to 33 scaling (dotted—dashed blue line) at very late times.

In the Appendix, we present the results of g = 0.55 and
B =0.90 simulations that are identical aside from particle
number, and show that numerical resolution has effectively no
impact on our results.

3. Results
3.1. Asymptotic Temporal Scaling of the Fallback Rate

The top panel of Figure 2 shows the fallback rate as a function
of time for the 3 given in the legend (solid lines re;)resent the
rates from the simulations, dashed lines give the r~/* scaling,
and the dotted—dashed line is the canonical /3 scaling). The
fallback rates for simulations with 3 < 0.65 fall off slightly
steeper than /4 just after peak, but then asymptote back to
/% at later times. For deeper encounters in which 3 is between
0.70 and 0.85, the fallback rates post-peak first exhibit an
approximately 33 scaling before eventually steepening to a

o4 scaling where they remain. We therefore observe clear
adherence of all but the = 0.9 simulation to the 4
asymptotic fallback rate temporal scaling predicted by Coughlin
& Nixon (2019). Moreover, this plot demonstrates that the
asymptotic temporal scaling of the fallback rate is effectively
independent of the core mass; different 3 produce surviving
cores of different masses (see Table 1), yet all simulations of
8 < 0.85 asymptote to o4 scaling, as also suggested by the
analysis in Coughlin & Nixon (2019).

On the other hand, the 5 = 0.9 does not seem to approach a
o4 scaling by ~10 yr, despite having a distinct core of about
13% of the mass of the original star, and instead appears to
asymptote to the canonical /3 decline. Investigating the
behavior of this simulation on longer timescales, however,
reveals rather interesting behavior: the bottom panel of Figure 2
shows the fallback rate of the 3 = 0.9 run out to ~5000 yr
post-disruption. We see that between 10 and 30 yr the fallback
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rate roughly tracks a /% decline. It then begins to steepen,
ostensibly confirming the predictions of Coughlin & Nixon
(2019), but only reaches approximately a > decline, which it
maintains for roughly 200 yr. The fallback rate then flattens
again and eventually returns to a /3 decay by ¢ ~ 1000 yr.

The origin of this somewhat perplexing behavior can be
understood as follows: in the model of Coughlin & Nixon (2019)
the surviving stellar core follows exactly a parabolic orbit. With
this assumption, both the position of the core and the marginally
bound radius within the stream scale identically with time
asymptotically (i.e., as oz2/3), and therefore the late-time
temporal power-law index of the fallback rate is independent of
time and equal to ~—9/4 (see the analysis in Section 2.1 of
Coughlin & Nixon 2019). In general, however, the energy of the
center of mass is slightly modified by nonlinearities that are not
contained in the tidal approximation; for mild disruptions (i.e.,
small ) these modifications are extremely small and leave the
binding energy of the core effectively unaltered, but they become
more substantial as the encounter becomes increasingly dis-
ruptive, with the surviving core being placed on a slightly
hyperbolic trajectory (Manukian et al. 2013; Gafton et al. 2015).

For the 8 = 0.9 encounter, the core is initially completely
disrupted by the black hole and re-forms post-disruption, which
indicates that the binding energy of the core may be more
substantially modified from its parabolic value in this case.
Figure 3 illustrates the Keplerian energy of the sink particle
(i.e., the orbital energy of the sink in the potential of the SMBH)
as a function of time normalized by the canonical spread in the
energy imparted by the tidal force, Ae = GM.R, /R?; Ae is the
energy that the most unbound debris would have under the
impulse approximation if the star were completely disrupted at
the tidal radius (Lacy et al. 1982; Lodato et al. 2009; Stone et al.
2013), and thus gives a relevant energy scale by which to
normalize the binding energy of the core. This figure
demonstrates that while the energy of the core is small relative
to the most unbound debris and approximately equal to zero, the
core is nonetheless placed on a hyperbolic orbit.

Because of the slightly hyperbolic nature of the orbit of the
core, its influence on the dynamics of the marginally bound
material within the stream—which ultimately yields the
deviation from the >/ power law—decreases over time. In
particular, the initial spatial proximity of the marginally bound
radius and the core (and the fact that they both approximately
follow ~2/3) induces the break in the fallback rate exhibited
around ~30yr in the bottom panel of Figure 2, and the
gravitational field of the core does have an effect on the stream
dynamics. However, the unbound nature of the core implies
that the distance between the marginally bound radius within
the stream and the core gradually increases relative to the
position of the marginally bound radius itself. For this reason,
the power-law decline following the break never quite steepens
to the predicted value of £/ 4, and instead reaches a maximum
decline rate that is closer to oz >. The additional distancing
between the core and the marginally bound radius further
flattens the fallback rate, and at sufficiently late times the core
no longer influences the marginally bound material within the
stream, resulting in the return to a /3 scaling by ~10° yr.*

4 Ttis clear that these times are all so late that we do not expect the accretion
rate onto the black hole to track the fallback rate (e.g., Cannizzo et al. 1990),
and hence these findings are not immediately observationally relevant; this
discussion merely provides physical understanding as to the enigmatic behavior
of this fallback rate.
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Figure 3. Specific energy of the core in the 5 = 0.9 simulation, normalized by
the canonical energy spread Ae = GM.R, / rlz. The energy of the core is
slightly positive and effectively constant for the duration of the simulation, and
for this reason the extremely late-time fallback rate for this simulation (see the
bottom panel of Figure 2) returns to a /3 decay.
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Figure 4. Fallback rate of debris to the surviving stellar core for simulations
with 3 = 0.55-0.80, showing clear o4 temporal scaling.

While it was not mentioned explicitly in Coughlin & Nixon
(2019), the accretion rate onto the core itself should also scale
as oct~9/4 within their model, which follows mathematically
and straightforwardly from the analysis in Section 2.1 of
Coughlin & Nixon (2019).” Figure 4 shows the fallback rates
of debris to the core in simulations with 3 = 0.55-0.80, all of
which are well-fit by a o/ decay. At times later than ¢t =
0.1 yr there is very little mass remaining within the Hill sphere
of the core owing to its proximity to the core itself, which is
responsible for the somewhat noisy behavior of the curves at
later times in this figure.

5 This can also be understood physically by noting that at late times the rate at
which a fluid element leaves the marginally bound radius (in either the bound
or unbound segment of the stream) cannot depend on whether it is initially
slightly bound or unbound to the core. In other words, the late-time fallback
rate can be thought of as accretion from a Hill sphere onto a point mass, and it
does not matter which point mass we consider.
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Figure 5. Example of the procedure used to calculate the break timescale: the
orange solid curve illustrates the fallback rate from the § = 0.8 simulation, the
dotted—dashed line is a +>/3 curve scaled in magnitude by the peak in
the fallback rate and extended forward in time, and the dotted line is a o4
curve scaled to the late-time fallback rate and extended backward in time from
the latest data point. The intersection between the ¢ 5/3 and t °/* lines delimits
the break timescale.

3.2. Break Timescale

We see in the top panel of Figure 2 that the fallback rate for
partial TDEs with 3 < 0.85 always asymptotes to —9/4
temporal scaling effectively independently of the core mass.
The core mass does, however, influence the time at which the
fallback rate transitions from a decline more closely matched
by a /3 scaling toar 4 scaling; clearly partial TDEs with
more massive cores, corresponding to lower [, transition more
rapidly to a ¢ —9/4 asymptotic scaling. We define this transition
time—the “break timescale” fyeac—as follows: for a given
fallback curve, extend a t—>/* line forward in time from the
peak, and extend a ¢ ~9/% line backwards from the late-time,

o4 portion of the curve. The break timescale .. is then the
tlme at which these two lines intersect. An example of this
procedure for the § = 0.8 data is shown in Figure 5.

In Figures 6 and 7 and Table 1, we study the dimensionless
break timescale Tyeak, Which we calculate by subtracting the
time to peak of the fallback rate from 7y, and dividing by the
return time of the most bound debris under the impulse
approximation, Ty, given by (e.g., Lodato et al. 2009)

R*)S/2 27M. W

T, = (B M
P ( M, JGM.

2

Tmp, Which for our simulation parameters is ~41 days,
encapsulates the overall dependence of any specific timescale
associated with a TDE (e.g., the time to peak) on the bulk
stellar properties (for a given stellar structure, e.g., a y = 5/3
polytrope) and black hole mass. Thus, as argued by Lodato
et al. (2009), Guillochon & Ramirez-Ruiz (2013), Mockler
et al. (2019), and Golightly et al. (2019b), dividing the break
timescale measured from the simulation by Ty, should remove
the bulk dependence on the black hole mass and the stellar
properties (again, for a given stellar structure; this was also
shown directly by Wu et al. 2018 for the black hole mass
dependence). We therefore expect that the ratio fyear /Tinp 1S
only a function of the impact parameter 3 and the mass of the
stellar core M q. If a physical break timescale fyre.c 1S
observed, we can infer the 3 of the encounter if we assume a set
of stellar properties and the black hole mass is known by other
means (e.g., through a black hole mass scaling relationship).
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Figure 7. Log-linear plot of Ty as a function of the fractional core mass
1t = Mcore/M,. Partial TDEs with more massive cores approach their

asymptotic fallback rate temporal scaling more quickly than those with less
massive cores.

Figure 6 shows Ty as a function of 3. To fit our data we
impose two physical constraints: from the lower (upper) bound
on (3 for which a core will survive a TDE (Mainetti et al. 2017),
We require Tyrear 10 g0 to zero (infinity) at 3 = 0.55 (0.92). We
find that the relationship Tpreax = 1.9(.55 — 3)%/(0.92 — 3)?!
provides a simple and reasonable interpolation of the data, as
shown by the black curve in this figure. In general, partial
TDEs in which the star dives deeper into the tidal field of the
SMBH yield fallback rates that more slowly reach their
asymptotic, o4 scaling than those from more grazing
encounters.
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Figure 7 shows T as a function of p, where it = Meore /M,
is the ratio of the surviving core mass (at the end of the
simulation) to the initial stellar mass,® alongside the fit
Toreak = 7(1 — )2/ 123, As for the constraints on the relation-
ship between Ty« and [, this simple functional form is
consistent with the notions that the break timescale should go
to infinity when there is no surviving core (¢ = 0) and should
be small when there is little mass lost from the core (1 >~ 1). In
general, the fallback rate for partial TDEs with more massive
cores reaches an asymptotic r~°/* scaling more quickly than
those with less massive cores, which is consistent with the
predictions of Coughlin & Nixon (2019; see their Figure 2).

We include our data for 3, i, Tpreak> aNd fyeac in Table 1. The
simulations for which 3 < 0.7 do not follow a r /3 scaling for
any significant length of time, and therefore do not exhibit an
associated break timescale. The simulations for which
B > 0.865, except 3 = 0.9, ran for only 10 yr post-disruption;
this was not long enough for the fallback rate to reach a stable
asymptotic temporal scaling, so we could not measure T,k for
these simulations. The # = 0.9 simulation ran to over 5000 yr
—plenty of time for the fallback rate to exhibit a clear break in
the temporal scaling from /> —but the fallback rate only
steepens to approximately a 1> temporal scaling, not /% as
our definition of the break time requires (see the text for further
discussion). We therefore do not give a break time for the
£ = 0.9 simulation.

4. Summary and Conclusions

In this paper we presented the results of a set of SPH
simulations of partial tidal disruptions of a 1My, v=5/3
polytrope by a 10°M; SMBH. We observed that partial TDEs
with 3 between 0.55 and 0.85—mnearly the entire range of (3 for
which partial TDEs can occur for v = 5/3 polytropes (Guillochon
& Ramirez-Ruiz 2013; Mainetti et al. 2017)—asymptote to a £ ~/+
temporal scaling. Since each (3 corresponds to a unique core mass
for a given star (see Table 1), these results suggest that the
asymptotic temporal scaling of partial TDE fallback rates is
effectively independent of the mass of the surviving core.

We also defined a “break timescale,” the time at which the
fallback rate transitions from /3 scaling to o/ scaling. We
found that the dimensionless break timescale Ty, (defined as
the ratio of physical time to the return time of the most bound
debris Ty, given in Equation (1)) relates to (5 as Tpreax =
1.9(0.55 — 3)2/(0.92 — 3)%!, and relates to the core mass
fraction jt as Tpreqx = 7(1 — p)?/p?3. If such a break in the
power law is observed, it can be used to infer properties of
partial TDEs such as impact parameter and surviving core mass
once a given stellar structure is assumed.

We emphasize that for grazing encounters in which only a
small fraction of the star’s mass is successfully removed, the
fallback rate will never conform to a /3 temporal scaling. This
result has significant implications for the interpretation of
observational data from partial TDEs. For example, Gomez
et al. (2020) analyze data from AT 2018hyz, a recently observed
TDE. They find an impact parameter of 3= 0.6 and a surviving

© Note that, in the analytic model of Coughlin & Nixon (2019), the quantity

that manifestly determines the asymptotic fallback rate is the ratio of the mass
of the core to the mass of the SMBH. For this reason, Coughlin & Nixon
(2019) introduced (1 g = Meore /M. x 10°, which is identical to the ratio of the
core mass to the initial stellar mass (for this setup) but maintains the physicality
of the black hole dependence; to avoid unnecessarily cumbersome notation
here, we simply define ;1 = Mo, /M, without reference to the black hole mass.
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core mass of roughly 90% the mass of the undisrupted star, yet
their light-curve fit yields a 3 temporal scaling. If the
estimated # and core mass fraction are accurate, then AT
2018hyz is a partial disruption and, given the results presented
here (and in particular Figure 2), its light curve should follow a
o4 temporal scaling if the accretion luminosity is tracking the
fallback rate; this conclusion is clearly discrepant with the
interpretation in Gomez et al. (2020).

Because our main aim here was to assess the sensitivity of
the predicted, +~9/4 scaling on more realistic sets of physical
conditions (than those adopted in Coughlin & Nixon 2019; see
Section 1), we only studied the disruption of stars with a single
stellar profile, being a v=5/3 polytrope. We plan to
investigate the dependence of various physical properties of
the fallback curve identified here (e.g., the break timescale and
the asymptotic power-law rate) on stellar structure in future
investigations.
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Appendix

As noted in Section 2, the fallback rates were calculated with
either 10° or 107 particles. 107 particles were used for
simulations with ( close to the critical value for full disruption
(B =~ 0.9) or no mass loss (3 =~ 0.55), as in these cases the
fallback rate either transitioned to its asymptotic decline at late
times (when there were relatively few particles being accreted)
or the stellar debris stream was composed of only a small
percentage of the stellar mass and hence very few particles.
Therefore, to obtain reasonable estimates of the fallback rate
and to remove excessive levels of Poisson noise associated
with the return of discrete particles, the particle number was
augmented for these disruptions.

The fallback curves in this paper were created by binning the
incremental changes in the mass accreted over time as particles
cross the accretion radius. At early times (typically within
roughly half of the time to peak fallback rate) there is a very
large flux of particles on timescales that are much shorter than
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Figure Al. Fallback rates from simulations of 3 = 0.55 and 3 = 0.90, v = 5/3 partial TDE. The dashed black curve is 5 = 0.90 with 10° particles; the solid red
curve is 3 = 0.90 with 10 particles; the dashed blue curve is 3 = 0.55 with 106 particles; and the solid orange curve is 3 = 0.55 with 10 particles. There are clearly
only very small differences between the two solutions for the fallback rate, which directly demonstrates the insensitivity of our results to numerical resolution.

the dynamical time of the most bound debris; at these early
times, therefore, binning the incremental mass changes in linear
time steps is sufficient to reduce the Poisson noise in the
fallback rate that arises from the finite number of particles.
Here the plots use a time step on the order of ~0.5 days, but
changing this number by factors of a few does not change the
result. At late times, however, the relatively low number of
particles that have yet to be accreted implies that employing
this same fixed time step induces significant noise, i.e.,
substantial variation in the number of particles accreted from
one time step to the next, in the calculated fallback rate.
Therefore, at late times the temporal bin width over which the
mass changes incrementally is calculated by requiring that a
fixed number of particles be accreted, which ensures that we
are consistently averaging over the same number of particles.
We adopted 30 for this number in all plots presented in this
paper except for the 10° particle 3 = 0.55 simulation shown
above, for which we chose 10 to ensure that the curve extended
past 10 years despite so few particles being accreted by this
time. Changing this number by modest factors (e.g., in going
from 30 to 10 or from 30 to 60) only increases the level of
noise (by significantly reducing this number below 30) or
reduces the level of detail (by significantly increasing this
number above 30).

To assess the sensitivity of our results to the particle number
employed, Figure Al illustrates the fallback rates for simula-
tions identical in their physical setup—a vy = 5/3 polytrope
disrupted by a 10° black hole with § = 0.90 or 0.55—but with
either 10° (dashed curves) or 107 (solid curves) particles. For
the # = 0.90 data, the two fallback rates differ slightly in their
pre-peak behavior, with the 10° simulation yielding a slightly
earlier return time of the most bound debris and a larger
fallback rate overall compared to the 10’ simulation. While
some noise appears in the 10° simulation at late times, the post-
peak behavior, including the asymptotic fallback rate and its
temporal scaling, is effectively identical at every point. Due to

the minuscule amount of mass liberated in the 3 = 0.55
disruption, both the 10° and 107 curves exhibit more noise than
the 0 = 0.90 simulations. However, the time-to-peak and the
post-peak behavior are again effectively identical at every point
between the two simulations with different numerical resolu-
tion, but with a systematically larger amount of noise present in
the 10° particle simulation; for this simulation, since the core
contains ~99.4% of the mass, there are only ~3000 particles
contained in the returning debris stream, which is the origin of
this greater degree of noise. This figure demonstrates that the
results of our study are not dependent on numerical resolution.
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