


In this paper, we present the development and initial psycho-

metric analysis of the Assessment of Computing for Elementary

Students (ACES), which seeks to help fill this gap in the computing

education field. We address the following research questions: How

can we design a CT assessment for upper elementary students? What

are the implications of using the assessment based on its psychometric

properties?

In the following section, we discuss existing CT assessments

for elementary and middle school students and the challenge in

adapting an assessment intended for middle school students to be

used with upper elementary students. In Section 3, we provide in-

formation on the curriculum our assessment is designed to be used

with and how that influenced our design of the assessment. Then,

we discuss the development of the ACES, including the constructs

it measures and how the items were created. In Sections 5 and 6,

we present findings from our initial analysis of the ACES, from

cognitive interviews and a pilot study with 57 4th grade students.

We discuss the implications of these findings in Section 7. We con-

clude in Section 8, including steps for future work and discussing

limitations.

2 ASSESSING K-12 CS AND CT

2.1 Assessments for Elementary Students

The CSEdResearch.org database is regularly updated with new in-

struments that are published in the research literature. As of this

writing, there are only two records for elementary school instru-

ments that measure CS or CT knowledge. One record is for Project

Quantum, which is a crowd-sourced bank of computing quizzes

rather than a validated instrument [20]. The other instrument was

developed by Project TREES and measures student performance

on the six dimensions of CT jointly developed by the International

Society for Technology in Education (ISTE) and the Computer Sci-

ence Teachers Association (CSTA) [10]. This assessment contains a

mix of multiple-choice and open-ended items and was field-tested

with 5th grade robotics students [2]. Though a valid instrument, the

Project TREES assessment did not align well with our constructs of

interest.

2.2 Assessments for Middle School Students

There are more, but still a limited number, of validated assessments

developed for middle school students (grades 6-8). The Computa-

tional Thinking test (CTt) [16, 23] consists of 28 multiple-choice

items. The CTt assesses sequences, loops, interaction, conditionals,

functions, and variables. All test items present students with a char-

acter that must complete a specific task (i.e., follow a path or draw

a specific shape). Students must identify which set of instructions,

sometimes written in block-based pseudocode, would accomplish

the given task. The CTt requires approximately 45 minutes to com-

plete.

The Computational Thinking Abilities - Middle Grades Assess-

ment (CTA-M) [31] contains a mix of 19 items from the CTt and

six multiple-choice tasks from the Bebras International Contest on

Informatics and Computer Fluency [6, 7, 29]. The Bebras tasks do

not require any programming background. Instead, computational

concepts are presented in a story context. For example, students

might be asked to sequence a series of pictures to create a smooth

animation [19]. The CTA-M is designed to be completed within a

50-minute class period.

The Middle Grades Computer Science Concept Inventory (MG-

CSCI) Assessment [21] is a 24-item multiple-choice assessment of

CS concepts. The MG-CSCI uses the Scratch block-based program-

ming language and is based on the Commutative Assessment [30].

It measures student understanding of variables, conditionals, loops,

and algorithms.

2.3 Challenges of Adapting Middle School

Assessments for Upper Elementary

At first glance, it seems reasonable to try to adapt a middle school

CT or CS assessment for use in the elementary context. We consid-

ered this option to create a 4th grade CS assessment for our study

of the IMPACT curriculum, described further below. However, this

approach is not necessarily more straightforward than developing

a new assessment. Middle school assessments have many items

that are too difficult even for upper elementary students. Using a

subset of the easiest items does not necessarily result in an appro-

priate distribution of items by content or by difficulty. It would have

been necessary to develop new items to ensure adequate content

coverage and to capture the lower end of 4th grade CS perfor-

mance, especially on a pre-test. Thus, we opted to develop a new

assessment, the Assessment of Computing for Elementary Students

(ACES).

3 THE IMPACT CURRICULUM

The ACES was designed to be used in a randomized controlled trial

comparing the CT performance of students who participated in a

CT curriculum integrated into their English language arts classes

with students with business-as-usual instruction. The curriculum

to be tested is the IMPACT curriculum. The IMPACT curriculum

is an adaptation of the Creative Computing curriculum that was

developed by the ScratchEd Team at Harvard Graduate School of

Education and Code.org. The IMPACT curriculum aims to intro-

duce multi-lingual students in grades 3-5 to foundational CT con-

cepts and practices. The curriculum provides engaging exploration

and practice through inquiry-based processes, such as Use-Modify-

Create[14] and TIPP&SEE [24]. The content is organized into the

following five units:

• Unit 1: Introduction to CS and Scratch interface

• Unit 2: Algorithm, program, and sequence

• Unit 3: Events

• Unit 4: Loops

• Unit 5: Synchronization

In the first unit, students learn definitions of łcomputer science"

and łprogram," as well as how to use the Scratch interface and run

a program. In Unit 2, students learn about algorithms and learn to

create scripts with several actions that must be run in the proper

order. Students learn about events-based programming in Unit 3,

such as that scripts are triggered when specific events occur (e.g. a

button pressed or the mouse is clicked). In Unit 4, students learn

how to use loops and compare scripts with and without loops to

evaluate similarity; students are not, however, taught about nested

Paper Session: Assessments SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

11







Table 2: Preliminary Validation Results of the ACES, using three different scoring methods

Each Item (𝛼 = 0.686) Each Question (𝛼 = 0.489) E.I. Normalized (𝛼 = 0.549)

Item Diff. DI PBC Drop 𝛼 Diff. DI PBC Drop 𝛼 Diff. DI PBC Drop 𝛼

Q1 I1 0.89 0.05 0.08 0.693 0.89 0.05 0.06 0.532 0.89 0.20 0.10 0.592

Q2 I2 0.61 0.44 0.44 0.668 0.61 0.54 0.56 0.412 0.61 0.54 0.57 0.498

I3 0.73 0.45 0.32 0.680

I4 0.82 0.24 0.38 0.673Q3

I5 0.70 0.24 0.34 0.679

0.50 0.44 0.43 0.475 0.75 0.24 0.36 0.537

Q4 I6 0.68 0.50 0.44 0.668 0.68 0.45 0.49 0.445 0.68 0.45 0.50 0.524

I7 0.98 0.05 0.18 0.684

I8 0.96 0.10 0.20 0.683

I9 0.82 0.40 0.60 0.652

I10 0.34 0.48 0.48 0.664

Q5

I11 0.70 0.54 0.49 0.662

0.32 0.42 0.49 0.445 0.76 0.26 0.58 0.490

Q6 I12 0.46 0.43 0.42 0.671 0.46 0.59 0.53 0.429 0.46 0.69 0.58 0.493

I13 0.50 0.59 0.44 0.669

I14 0.89 0.05 0.16 0.688

I15 0.20 -0.14 -0.05 0.709
Q7

I16 0.59 0.49 0.44 0.669

0.04 0.00 0.05 0.507 0.54 0.18 0.42 0.520

I17 0.79 0.50 0.65 0.645

I18 0.86 0.30 0.47 0.666Q8

I19 0.89 0.30 0.53 0.662

0.79 0.55 0.62 0.381 0.85 0.37 0.61 0.471

Q9 I20 0.57 0.49 0.45 0.667 0.57 0.54 0.42 0.480 0.57 0.49 0.49 0.534

I21 0.36 0.18 0.03 0.710

I22 0.91 0.15 0.23 0.683

I23 0.61 0.34 0.33 0.681
Q10

I24 0.73 0.19 0.22 0.690

0.14 0.32 0.31 0.484 0.65 0.17 0.26 0.548

Diff. = Difficulty, DI = Discrimination index, PBC = Point-biserial correlation, Drop 𝛼 = the resulting 𝛼 if item were removed

of the assessment overall and if each item were removed. The re-

sults of these analyses can be found in Table 2. Results that are of

concern (difficulty more than 0.8 or less than 0.2, discrimination

and point-biserial correlation between -0.2 and 0.2, or a reliability

increase if the item were dropped) are highlighted in the table. A

difficulty of more than 0.8 indicates the item is easy, and can be read

as łmore than 80% of students answered this question correctly."

Contrarily, a difficulty of less than 0.2 indicates the item is difficult,

and can be read as łless than 20% of students answered this question

correctly." The discrimination index (DI) is calculated by subtract-

ing the average score of the lowest-performing third of students

from the average score of the highest-performing third of students.

A discrimination value between -0.2 and 0.2 indicates that perfor-

mance on this question does not correspond with performance on

the assessment overall, as there is not a large difference between

the average score of the highest-performing and lowest-performing

students. The point-biserial correlation (PBC) is a Pearson Product-

Moment Correlation Coefficient between the scores on the question

and the scores on the assessment overall. The PBC is a different way

to assess discrimination. Cronbach’s alpha (𝛼) measures internal

consistency of the assessment, or how closely related the items are.

An 𝛼 of 0.7 is sufficient for early-stage research, which is the case

here, but an alpha of at least 0.8 would be necessary for use in a

program evaluation or efficacy study [13, 18].

7 DISCUSSION

Based on our results in Table 2, Question 1 (Item 1), Question 7

(Items 14 and 15), and Question 10 (Item 21) were of particular

interest and concern when considering revisions to the ACES.

Question 1 is a multiple-choice question on sequences. The ques-

tion presents students with three connected code blocks, each łsay-

ing" a different part of a conversation. The question asks students

to select what will be said last. In the cognitive interviews, one

student did not answer this correctly. In the interview, the student

noted that they answered what they would say last łin real life" if

they were having that conversation, which was different from what

the code says last. This indicated that the question might be easily

confounded with social norms. Our analysis confirmed concerns

with this question, as Question 1 is consistently highlighted in Ta-

ble 2 for being relatively easy and having low discrimination. The

reliability of the assessment also increases if that question were

removed. All of these indicate that Question 1 needs to be improved.

Question 7 is a multiple-select question on sequences and loops.

The question shows students an animation of a ladybug on a grid

moving towards a star. The question also includes a looping (repeat)

code block with code blocks to move the ladybug inside the looping

block. The question asks students to complete the code to move the

ladybug on top of the star. In the cognitive interviews, one student

read the answer choices incorrectly, mistaking a łmove left" block

as a łmove right" block. Move blocks are relative to the direction in
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