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Figure 1: PRAGMA is an interactive tool for constructing scan-specific brain parcellations from mainstream atlases. Its interface
incorporates five complementary visuals: (A) a node-link diagram as an abstract view of hierarchical structures in the brain, (B1) a
line plot with confidence intervals representing similarity of fMRI signal time-courses, (B2) homogeneity glyphs within nodes, (C1) a
chord diagram depicting functional connectivity, and (C2) an orthographic template showing anatomical locations of parcels.

ABSTRACT

A prominent goal of neuroimaging studies is mapping the human
brain, in order to identify and delineate functionally-meaningful
regions and elucidate their roles in cognitive behaviors. These brain
regions are typically represented by atlases that capture general
trends over large populations. Despite being indispensable to neu-
roimaging experts, population-level atlases do not capture individual
differences in functional organization. In this work, we present an
interactive visualization method, PRAGMA, that allows domain
experts to derive scan-specific parcellations from established atlases.
PRAGMA features a user-driven, hierarchical clustering scheme for
defining temporally correlated parcels in varying granularity. The
visualization design supports the user in making decisions on how
to perform clustering, namely when to expand, collapse, or merge
parcels. This is accomplished through a set of linked and coordi-
nated views for understanding the user’s current hierarchy, assessing
intra-cluster variation, and relating parcellations to an established
atlas. We assess the effectiveness of PRAGMA through a user study
with four neuroimaging domain experts, where our results show that
PRAGMA shows the potential to enable exploration of individual-
ized and state-specific brain parcellations and to offer interesting
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insights into functional brain networks.

Index Terms: Human-centered modeling—neuroimage analysis—
functional parcellation—brain mapping

1 INTRODUCTION

Brain mapping research aspires to capture the complexity of brain
organization and the functional roles of brain regions and networks.
Atlases are often used by neuroimaging researchers to partition the
brain into functionally meaningful units, typically referred to as par-
cellations. Atlases extracted using functional magnetic resonance
imaging (fMRI) data are widely used to define nodes for network
and functional connectivity (FC) analyses, to simplify a large set
of voxels into a small set of regions that are easy to comprehend,
and to boost signal-to-noise ratio by averaging across voxels that
share temporally homogeneous activity. When derived at the popu-
lation level, atlas regions are designed to correspond across subjects,
thus capturing functional brain patterns that are shared in common
across individuals (e.g. we can say that the hippocampus reflects
memory-related activity for a large number of individuals). However,
there can often be considerable variability in the functional subdivi-
sions of different individuals [7, 10, 23]. Recent research suggests
that obtaining neurobiologically meaningful functional regions at
the level of the individual might serve as a fingerprint of human
cognition or behavior and allow for the investigation of individual-
ized structure-function relationships, psychological traits, or genetic
variations [1, 6, 18, 27, 32].

A range of automated fMRI parcellation techniques have been



developed for deriving individual parcellations [4, 11, 12, 18, 32].
However, by returning only the end-result of the parcellation, valu-
able information about relationships between brain regions, and how
they are embedded into larger functional networks, is not readily
accessible to the user. The ability to interactively parcellate a dataset,
while engaging with local and long-range information at multiple
spatial granularities, would provide users with richer information
about individual differences in functional organization and allow
for tailoring the parcellation to the specific research goals. Because
the goal behind parcellating fMRI data changes between neuroimag-
ing studies (i.e. clustering voxels based on some shared temporal
behavior), there is no one formalism for clustering. To this end,
we introduce PRAGMA, a visual analytics tool for interactively
deriving parcellations of brain regions from fMRI data. PRAGMA
depicts fMRI time-courses, and correlations between these signals,
to support the user in interactively constructing brain parcellations.
PRAGMA is inspired by studies that analyze submodularity of estab-
lished atlases [11,12,32], while following the conceptual framework
proposed by Sacha et al. [26] for model steering.

However, reliably knowing what patterns to detect in order to
make decisions on clustering is a non-trivial problem. To address
this challenge, PRAGMA contextualizes the user’s clustering with
respect to an established atlas, in order to ensure their clustering
decisions lead to anatomically and functionally consistent parcella-
tions (see Fig. 1). PRAGMA initializes the parcellation scheme from
such an atlas, based on a user-specified Pearson correlation distance,
and visually encodes the parcellation as a hierarchical node-link dia-
gram (A). The user can modify their parcellation through this view
by expanding, merging, and collapsing nodes, where the decisions
that they make are supported by a set of linked and coordinated
views that support: time-course data analysis for understanding the
variability of time-series data (B1); homogeneity of parcels (B2);
a functional connectivity chord diagram to investigate inter-parcel
relations (C1); and an orthographic, slice-based view of their current
parcellation to locate unique parcels (C2).

To evaluate PRAGMA, we performed a qualitative assessment
with four domain experts. Our results demonstrate that PRAGMA
could potentially leverage subject-specific analyses by allowing ex-
perts interactively identify imprecise regions and reconstruct unique
functional brain parcellations.

2 RELATED WORK

In this section, we review visualization methods designed for inter-
active clustering, and visual analysis methods for neuroimaging.

2.1 Interactive Clustering
There is rich literature on visual exploration of clustering [5, 19,
21, 29, 34] and methods that leverage unsupervised clustering
[2, 3, 17, 25]. More recent methods demonstrate the advantage of
providing a feedback loop to the domain expert, making clustering
human-centered. Hierarchical Clustering Explorer [30] is a pioneer-
ing bio-informatics system for the interactive discovery of patterns.
Since then, many approaches have been proposed for augmenting
interactive clustering, by the means of finding the right clustering
algorithm and parameters, and supporting exploratory clustering
with visual and statistical analysis [3, 19, 21, 24].

Akin to PRAGMA, in the aforementioned work, views and com-
putational techniques are combined to help users interactively reach
satisfactory clustering results. In order to use the aforementioned
methods, experts need to translate their analytic goals into supported
analysis techniques. In contrast, PRAGMA offers the ability to build
upon an existing atlas and is equipped with domain-focused cluster
analysis techniques that inform the iterative process of parcellating
fMRI data into functionally consistent regions. The visualization
design supports the user in making decisions on how to perform
parcellation, through a set of linked and coordinated views.

2.2 Visual Analytics in Neuroimaging
Similarly, a wealth of systems have been proposed to visualize
and analyse anatomical and functional relationships between brain
networks. Network-based neuroscience visualization tools have
demonstrated how to gain insight from connectome datasets, some
at the level of functional modules, e.g. NeuroCave [16] and Tem-
poCave [33], and some at the level of individual neurons, e.g. Brain-
Trawler [8]. A different approach to analyzing functional modules
using NodeTrix [14] representations is proposed by Yang et al. [35].
VisualNeuro [15] offers a tool for hypothesis formation and reason-
ing about cohort study data. Brain Modulyzer [22] is an interactive
visual exploration tool for investigating regional correlation and
hierarchical network structures.

PRAGMA takes inspiration from the above visual analytics meth-
ods, but differs in task. While many methods focus on analysis
of pre-defined nodes, PRAGMA focuses on redefining nodes and
helping domain experts make parcellation decisions.

3 DESIGN OBJECTIVES AND TASKS

Functional magnetic resonance imaging (fMRI) detects time-varying
changes associated with blood flow and captures volumetric time-
courses of brain activity. As fMRI data is often noisy and of high
spatial and temporal resolution, deriving individual parcellations
that reflect meaningful functional information is challenging for
domain experts. Automatic clustering methods, e.g. k-means, might
yield results that are inconsistent with their prior knowledge, while
manually creating parcellations can be a tedious process. Thus, the
main objective of PRAGMA is to support domain experts in the
analysis, and creation, of scan-specific parcellations.

To derive design objectives for PRAGMA, we initially conducted
multiple group discussions with three experts from the fields of
neuroimaging, network and cognitive neuroscience. We started our
discussions by asking them about the current practices, needs, and
challenges of delineating functional regions for their work. The
general direction of the questions were: Do you currently use any
established atlases or voxel clustering methods in your analyses?
What are the pitfalls and challenges of these processes? How do
you evaluate the parcels obtained by clustering? Based on responses
from the experts, we identified a set of high-level design objectives,
and refined them as we iteratively received feedback during differ-
ent stages of development. Our discussions led to the following
objectives:

(DO1) Leverage established atlases in the creation of scan-
specific parcellations: Due to the difficulties of clustering fMRI
data, the use of established, meaningful atlases can help domain
experts avoid spurious clustering decisions that the clustering algo-
rithm can impose on the data.

(DO2) Provide an intuitive approach for modifying the gran-
ularity of parcels: Domain experts should be able to decide the
granularity of parcels based on the need of the study, and apply their
domain knowledge for merging similar regions together and splitting
inhomogeneous regions further into smaller regions.

(DO3) Provide useful within- and between- parcel information
that supports parcellation decisions: The design should provide
access to information about the current parcel properties, so that
modifications are justifiable.

From these objectives, we list the following tasks that our visual-
ization design aims to support:

(T1) Steer parcellations using a population-based atlas (DO1)
The design should support the use of established atlases, both for
initializing the clustering, and as a guide for steering clustering.

(T2) Support inter-parcel comparisons (DO3) The design should
support the user in understanding the relationship between two
parcels in their current parcellation.

(T3) Support intra-parcel comparisons (DO3) Users should be
able to assess the homogeneity of a given parcel, e.g. how similar



are a set of time-courses that belong to a single parcel.
(T4) Steering parcellation (DO2) Our design should allow the

user to interactively modify the parcellation, where we identify three
basic operations for steering: (1) splitting a parcel, (2) collapsing a
set of parcels into one, and (3) merging two parcels.

We emphasize that tasks T1-3 are intended to provide guidance
for the user in making decisions on steering (T4). Namely, a parcel
should be split if the user does not consider it homogeneous, two
parcels should be merged if they are sufficiently similar, and likewise,
a set of parcels should be collapsed into one if they are all considered
similar.

4 VISUALIZATION DESIGN

In this section, we describe the visual encodings of the PRAGMA
interface and their interactions. The interface is composed of a
Hierarchical Node-Link Diagram (A), two Parcel Specific Views
(B), and two Current Parcellation Views (C) (see Fig. 1).

4.1 Hierarchical Node-Link Diagram (A)
The diagram represents the full hierarchy of the parcellation, and it
is the main functional visual in the tool (see Fig. 1). The parcels are
grouped by functional networks in the left and right hemispheres.
Each network is represented by a unique color, and this coloring
is consistent across the node-link diagram, chord diagram, and or-
thographic views. Furthermore, lighter and darker hues represent
networks in the left and right hemispheres respectively. While the
root node represents the whole brain, each leaf node in the hierarchy
represents a parcel from the current parcellation.

The user selects a distance threshold to initialize the hierarchical
node-link diagram. Pearson’s correlation is used to form a precom-
puted distance matrix based on this threshold. The initial node-link
diagram is formed by applying complete-linkage agglomerative clus-
tering to this precomputed matrix, done on a network-by-network
basis. Afterwards, the user may explore parcels by selecting nodes,
which updates the remaining views with parcel-specific information
(see Fig. 2). Selecting a node will return the aggregated time-course
data encoded as mean +/- standard error, functional connectivity of
the selected parcel(s) to the other parcels, and anatomical locations
of these regions in the orthographic view.

In case two or more clusters are found to be similar, we support
a merge action (T4) (see Fig. 3). To investigate such regions, a
user can double click on a leaf node of interest. This will lock the
parcel-specific information, and it will persist in view unless the
node is released. Users can then continue exploring other parcels
in reference to this selected parcel by single click selecting other
nodes. Once the user finds another parcel that they want to merge
into the initially selected node, they select it with a double click
on this second leaf node. The user may then click on the MERGE
button to perform the merging of these nodes, and parcel-specific
views are subsequently updated to show the newly merged region.

While merge only allows two regions to form into one, collapse
can combine all the leaf nodes into a non-leaf node. A user can first
select a non-leaf node and then click on the COLLAPSE button to
demonstrate that this is the intended action. The parcels can not be
collapsed into the root, hemisphere, or network nodes, in order to
keep the hierarchy intact. However, parcels can be identified and
merged into different networks.

If users deem that within-parcel similarity is low, they can further
split this parcel into smaller regions. Subsequent clustering requires
a more constricting distance threshold. After this threshold is se-
lected, users click on the EXPAND button to demonstrate that this is
the intended action.

4.2 Parcel-Specific Views (B)
This portion of the visualization is designed to provide real-time
analysis of within-parcel properties, as a means of evaluating parcels

Figure 2: Iterative process of creating scan-specific parcellations from
mainstream atlases. Each view provides some useful information to
support and facilitate the decision on parcellation.

and supporting parcellation decisions.

4.2.1 Intra-Parcel Time-Series Similarity (B1).
We designed a mean time-course line plot with a standard error
confidence interval. This visual encoding demonstrates the similarity
of the aggregated time-courses of all super-voxels grouped in a
selected parcel. The main use of this analysis is to evaluate if a
parcel should be further expanded. Additionally, the user can overlay
the time-courses of two parcels for comparison. Brush selection is
also supported to allow the user to zoom in on the time axis.

4.2.2 Parcellation Homogeneity (B2).
Homogeneity is defined as average pairwise temporal correlation,
calculated using Pearson’s correlation. This quantitative information
is useful for making decisions about whether a parcel needs to be
further divided into finer parcels. We carry this information within
the node-link diagram, encoding homogeneity within the inner circle
of each node. The homogeneity is normalized to the radius of the
circle, where a more homogeneous parcel is represented by a bigger
circle. Homogeneity is calculated for the entire hierarchy, allowing
the user to compare each parcel in relation to the parcels it is linked
to.

4.3 Current-Parcellation Views (C)
This portion of the visualization is designed to support analysis of
inter-parcel properties for the current set of non-leaf nodes.

4.3.1 Functional Connectivity (C1).
The chord diagram communicates functional connectivity (FC) pat-
terns between the current set of leaf nodes. Functional connectivity
describes co-activity of discrete regions in the brain and is calcu-
lated as the correlation between every pair of regions in the current
parcellation. The inner arcs represent the parcels, and the chords
encode the presence of connectivity between parcels. Each inner
arc is accompanied by a bar plot encoding the strength of connec-
tivity between its corresponding parcel and the other parcels. The
connectivity strength is normalized to the height of each arc, where
a stronger FC is represented by a higher bar. The width of the arc
represents how connected a parcel is to other parcels in the current
scheme. In the chord diagram, the parcels are nested under the
functional networks, which are labelled in the outer arcs. When a
node is selected from within the node-link diagram or an inner arc is
hovered over, the chord diagram illuminates the connections of just



Figure 3: To merge two parcels together, a user selects node (M1)
followed by node (M2). The top time-courses plot shows the two
signals overlaid on top of each other for comparison. After the merge
is applied, the super-voxels from the second node (M2) are merged
with the first node (M1). The time-courses plot is updated to reflect
the merge, along with the orthographic view.

the corresponding parcel. To reduce visual clutter arising from the
large number of connections, we allow the user to filter out chords
within a prescribed range of FC strength.

4.3.2 Orthographic Parcellation View (C2).
The orthographic view shows the current parcellation scheme
mapped onto a template image and highlights the corresponding
physical locations of these parcels (see Fig. 1). Every parcel is out-
lined by the color representing its functional network. The provided
sliders allow users to view the current functional parcellation at
different sagittal (yz), coronal (xz), and axial (xy) planes. When a
parcel is selected in the node-link diagram, the corresponding parcel
contour in the orthographic view is outlined in black.

5 USER STUDY

A user study was performed to investigate the effectiveness of the
tool. Four domain experts (two faculty, two post-docs) who have
expertise in the understanding of functional networks evaluated the
tool. Prior to the study, at different stages of development, three of
these domain experts provided feedback that was used in the iterative
process to improve the tool and one is a co-author in the paper. The
participants received no compensation for taking part in the study.

Data. We used a single subject resting-state (rs-fMRI) scan from
the Human Connectome Project [31] and Schaefer cortical brain
atlas derived from rs-fMRI data [28]. The rs-fMRI scan has been pre-
processed with the “FIX” de-noising pipeline [13] and has undergone
the HCP “minimal preprocessing pipeline” [9]. A Schaefer atlas is
applied to this subject scan to initialize super-voxels by extracting
averaged time courses within parcels. The latter process reduces the
spatial dimension from 200K voxels to 400 super-voxels.

Implementation Details. The front-end of our tool was devel-
oped as an Observable notebook, enabling ease of access for our
study, alongside a Python server that supports real-time analyses
and computation. We have made PRAGMA publicly available at:
https://github.com/neurdylab/PRAGMA.

Zoom-proceedings. The domain experts were invited to indi-
vidual Zoom-meetings. They had been provided a user guide that
included (1) instructions to install PRAGMA, (2) pre-/post- study

surveys, and (3) written/animated instructions on how to use the tool.
First, they were asked to fill the pre-study survey. Then the experts
were explained the basic actions that they can take to use the inter-
face (brush, hover over, etc.), as well as the visual encodings and
their interactions. They were provided the pre-processed scan and
asked to explore the data. The exploration of the tool was recorded
via screen-record over Zoom. During this meeting they were in-
formed that they could ask design/functionality related questions to
the visual analytics researchers. There were no restrictions on how
they could use the tool, nor any time restrictions. For the group of
experts who were more familiar with fMRI data parcellation, this
freeform exploration took about an hour; for the other group, less
than half an hour. Lastly, they were asked to fill a post-study survey
to finalize their evaluation.

Findings. The findings are categorized into three main sections:
design choices, intuitiveness, and scope. Design choices: Four
experts rated the design choices (linked highlighting, spatial arrange-
ments, etc.) as 7.5/10 on average. One expert commented that
the arrangement of the parcels in the chord diagram (grouped by
network) being different than the node-link diagram” (grouped by
hemisphere), increased the cognitive load. On another note, the
users observed that being able to compare two parcels on multiple
views at the same time and interact with them (i.e. brush to zoom)
was helpful. Intuitiveness: The average rating of all four experts
for ease of use is 6.5/10. Two of the experts commented that they
initially struggled with how to engage efficiently with the tool but
they quickly picked up even though ”there are a lot of features”
to support their analyses. While the chord diagram and 2D ortho-
graphic views were found to be the most useful, the users suggested
that rather than using a slider, they would prefer to be able to click
on the image to navigate it. Scope: Two post-docs rated 8/10 that
they would use PRAGMA to support subject-specific analyses. On
the other hand, one expert suggested that a search for valid cogni-
tive relations through single-scan analysis was likely to result in
inconsistencies, mainly because fMRI data is very noisy. One of the
experts suggested that a tool like PRAGMA could also be used for
population-level exploration and clustering. Two of the experts who
explored the tool used a similar sequence of actions: they located a
region that they are familiar with in the orthographic view, found this
region on the node-link diagram, and then compared the time-series
signal and functional connectivity of the corresponding parcel to
nearby parcels. The set of actions taken by these users suggested
that the prior atlas was helpful.

6 DISCUSSION AND CONCLUSION

Forming precise and meaningful definitions of brain regions is an
open and pressing research question. Our approach, PRAGMA,
addresses these issues by supporting users in the customization of
existing atlases to create individualized parcellations based on their
domain needs. Our parcel-by-parcel analysis allows unique parcella-
tions, while ensuring the results remain coherent with established
atlases. The user study has shown that PRAGMA offers an intuitive
way to understand individual-level depictions of brain activity that
are not possible to resolve in group-level atlases. For future work,
we plan on addressing issues related to common sources of noise
in fMRI data [20, 36] through visually conveying uncertainty as
part of our design. Furthermore, we plan on making our system
more extensible, handling various atlases, clustering algorithms, and
similarity measures, in order to better address demands from domain
experts.
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