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Abstract

How much energy does it take to stamp a thin elastic shell flat? Motivated
by recent experiments on the wrinkling patterns of floating shells, we develop a
rigorous method via �-convergence for answering this question to leading order
in the shell’s thickness and other small parameters. The observed patterns involve
“ordered” regions of well-defined wrinkles alongside “disordered” regions whose
local features are less robust; as little to no tension is applied, the preference for
order is not a priori clear. Rescaling by the energy of a typical pattern, we derive
a limiting variational problem for the effective displacement of the shell. It asks,
in a linearized way, to cover up a maximum area with a length-shortening map
to the plane. Convex analysis yields a boundary value problem characterizing the
accompanying patterns via their defect measures. Partial uniqueness and regularity
theorems follow from the method of characteristics on the ordered part of the shell.
In this way, we can deduce from the principle of minimum energy the leading order
features of stamped elastic shells.
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1. Introduction

Thin elastic sheets subject to compressive boundary conditions or loads readily
take on shapes far from their own. Sometimes such changes in shape lead to the
development of fine-scale wrinkling patterns, indicating the presence of residual
strain or excess material that is “wrinkled away”. Other times, crumpling patterns
occur such as those seen in everyday, crumpled paper sheets [83]. An intriguing
and widely open problem is to devise a method for predicting the features of the
often disordered network of creases or “minimal ridges” [53] that forms. This and
other simplified versions of the crumpling problem, which ask for sharp a priori
lower bounds on the energy required to crumple [19,80], remain far from being
understood (despite some striking recent phenomenological progress identifying
as a possible state variable the total length of the plastically damaged set [32]).

A cousin of the crumpling problem is the stamping one studied here, named
after the manufacturing process of the same name. In stamping, a thin elastic sheet
is pressed into a target shape. If the mid-surface of the sheet embeds isometrically
into the target, the sheet may simply take on the imposed shape. If no such embed-
ding exists, a pattern can instead appear [41]. The situation is reminiscent of the
isometric embedding theorem of Nash and Kuiper, which guarantees the existence
of a sequence of continuously differentiable isometric embeddings converging u-
niformly to any length-shortening map [48,57]. However, in this paper we will not
be concerned with such “pure” isometries, but rather with maps exhibiting small
amounts of strain.

Our motivation to study stamping stems from our desire to understand the pat-
terns that form when a thin elastic shell is placed onto an otherwise planar water
bath [1,2]. The water adheres to the underside of the shell, and capillary and gravi-
tational forces act to stamp it flat. Stretching forces prefer isometric deformations,
while bending forces limit the curvature that results. The authors in [1,2] report on
the striking formation of “wrinkle domains” made up of sinusoidal oscillations in
a piecewise constant or otherwise slowly-varying direction. A typical floating shell
divides into finitely many domains. At the interfaces are “walls”, across which the
direction of wrinkling changes rapidly, or “folds”, wherein material is lost beneath
the surface. The particular arrangement of wrinkles into domains is observed to
depend strongly on the initial features of the shell—namely, its Gaussian curvature
and boundary shape—and the authors wonder about the possibility of designing
patterns at will.

The appearance of wrinkle domains in floating elastic shells is remarkable.
It reminds of a key feature of other, more well-studied pattern forming systems
such as shape memory alloys [12], micromagnets [27], and liquid crystals [7]. The
authors in [1] highlight in particular a connection between wrinkles and the layers
of a smectic liquid crystal. They describe a coarse-graining procedure in which
the wrinkle direction plays the role of a director field, and the wrinkle peaks and
troughs are encoded in the level sets of a phase field function ϕ. Setting an ansatz
into the total energy E , the authors extract a coarse-grained or “effective” energy
Eeff(ϕ). Carrying over known results on liquid crystals, the authors make scaling
predictions for various quantities such as the size of a typical domain and the width
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of its walls. It remains unclear, however, whether the overall layout of the wrinkles,
i.e., their particular arrangement into domains, can be recovered by this approach.
There is reason to doubt it can be done. Careful examination of the ansatz in [1]
shows it assumes the shell deforms by an oscillatory perturbation of some leading
order deformation which is implicitly defined. As such, it and the corresponding
phase field function ϕ may be prohibitively difficult to recover.

The situation becomes evenmore complicated as the thickness of the shell tends
to zero. Forthcoming experiments on ultrathin shells [78], having
thicknesses several orders of magnitude less than those in [1,2], show that some-
times no coherent wrinkling pattern occurs. In particular, spherical caps produce a
“disordered”, crumpling-like response whose local features are sensitive to pertur-
bation and vary between trials. Other less-symmetric spherical shells (e.g., triangles
cut from spheres) display a mixed ordered–disordered response, in which one part
remains ordered—being covered with wrinkle domains—while another part ex-
hibits the crumpling-like response. Upon perturbation, the local features of the
disordered parts tend to rearrange while their overall layout remains the same. In
contrast, the ordered parts remain more or less unchanged. Notably, the opposite
response occurs for saddle-shaped shells: ultrathin negatively curved shells exhibit
the same ordered wrinkle domains as do their thicker counterparts.

The task of determining the features of wrinkled thin elastic sheets has been the
subject ofmuch research.Whenwrinkles occur in response to applied tensile forces,
certain directions are stabilized and onemay deduce the direction of wrinkling from
tension-field theory [67,70,82], also known as the relaxed energy approach [62–
64]. The relaxed energy densityWrel for a sheet with zero thickness (a “membrane”)
is a function of its effective strain, which vanishes on bi-axially compressed states
and is otherwise strictly positive. When applied to the tension-driven wrinkling
of thin elastic sheets [9,23], one finds that the extent of the un-wrinkled region is
determined, as well as the direction of the wrinkles, by solving a relaxed problem
of the form

min
�eff

ˆ
S
Wrel(D�eff) d A (1.1)

subject to boundary conditions and loads.Here,�eff denotes the limiting or effective
deformation of the mid-sheet S that arises in the vanishing thickness limit. A recent
focus in tension-driven problems has been on identifying the scaling behavior(s)
with respect to thickness (and other parameters) of the higher order terms in the
expansion

min E = C0 + higher order terms (1.2)

as the thickness tends to zero. The constant C0 is given by the minimum value of
(1.1) and it amounts to thework done at leading order to stretch the sheet. Evaluating
the higher order terms requires identifying the lengthscale and amplitude of the
wrinkleswhose existence is implied. In general these quantities can vary throughout
the sheet, making their analysis rather involved. Examples include the “wrinkling
cascades” seen in uni-axially compressed floating sheets pulled taught by surface
tension [38], as well as in hanging drapes pulled taught by gravity [10].

Wrinkling patterns also occur in situations devoid of strong tensile loads or
even lacking them altogether. This is the case for the stamped and floating shells
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introduced above. The hallmarks of such curvature-driven wrinkling are the pres-
ence of geometric incompatibilities driving the patterned response, and a lack of
coherence in certain parameter regimes. The transition from ordered wrinkle do-
mains in moderately thin floating shells [1] to an ordered wrinkling–disordered
crumpling-like response in the ultrathin limit [78] is an example of this phe-
nomenon. Other examples include the ordered “herringbone” patterns and their
disordered “labyrinthine” counterparts occurring in bi-axially compressed sheets
on a planar substrate [15,17,39,40], as well as the hexagonal tiling and labyrinthine
patterns occurring in compressed thin elastic spheres bonded to a spherical core
[72,77].

In any case where tension fails to dominate, the relaxed problem (1.1) offers
little guidance as to the patterns that occur (we refer to a situation where C0 = 0).
Various authors working on problems for which surface tension is a small but
non-negligible effect have suggested [60,61,84] that the shell’s response can be
determined instead at leading order by solving a limiting or effective area problem
of the form

max
�eff

Area(�eff(S)). (1.3)

In analogy to (1.2), the minimum energy is expected to expand as

min E = C1 · γ + higher order terms (1.4)

as the surface tension coefficient γ of the exposed interface tends to zero, and
the shell is predicted to maximize the area it covers at leading order. A natural
question is regarding constraints: in [84] where a flat disc is confined to a liquid
saddle surface, the perimeter of the sheet is taken to be fixed; in [60] where a flat
disc wraps a water droplet, the effective deformation �eff is understood to be a
length-shortening map.

In this paper, we take the first step towards amathematical analysis of curvature-
driven wrinkling. We adopt the viewpoint of energy minimization (even global
minimization to simplify) and set ourselves the following tasks: prove the validity
of an effective area problem such as (1.3) for the leading order behavior of (almost)
minimizers, and deduce from its solutions the patterns that form. We achieve these
goals for a class of weakly curved or shallow shells whose intrinsic geometries are
close to flat. This simplifying assumption facilitates analysis since it allows the use
of a geometrically linear, von Karman-like energy. Geometrically linear models
are standard in the literature on elastic pattern formation, though they have yet to
enjoy the same level of rigorous derivation from fully nonlinear elasticity as have
plate and shell models for finite bending deformations (for a recent review, see
[56]). Motivated by a recent suggestion [24] that there exists a “bending-induced”
tension proportional to the geometric mean of the shell’s bending modulus B and
the substrate stiffness K , we rescale our energy functionals by

γeff = 2
√
BK + γ

and obtain their �-limit as γeff → 0 in a topology well-suited to the formation of
patterns. A linearized version of (1.3) and (1.4) results, in which γ is replaced by



Curvature-driven wrinkling

the “effective surface tension” γeff. In proving these results, we will not assume that
minimizers obey any particular ansatz, or even that they exhibit ordered wrinkle
domains.

This brings us to what may be the most important contribution of this pa-
per: via convex analysis of the limiting, linearized area problem, we derive a new
and far-reaching method for proving that almost minimizers must tend towards an
ordered–possibly disordered state, one whose ordered part consists of known wrin-
kle domains, and whose possibly disordered part is left unconstrained. Our method
consists of two steps: first, we solve for a set of stable lines along which any os-
cillations (and concentrations) are ruled out; second, we recover the amplitude of
the oscillations that do occur via a second order linear partial differential equation
(PDE) for which the stable lines are characteristic curves. Thus, we have found a
way to treat wrinkles as the characteristic curves of a family of differential opera-
tors, rather than as the level sets of some unknown phase field function as proposed
in [1]. The upcoming Fig. 1 presents various arrangements of our stable lines. We
were pleased to learn that the predicted ordered parts where they exist (shown as
striped) compare favorably with the experiments that motivated our work. Even the
leftover, possibly disordered parts (shown in blank) look to align. A separate paper
is currently in preparation, where we plan to report on experimental and numerical
tests of our predictions [78]. We turn to introduce the model we use and to state
our main results.

1.1. Preliminaries

Section 1.1.1 introduces a geometrically linear model of elastic shells. Sec-
tion 1.1.2 passes to its non-dimensional form and identifies the parameter regime
of our results. Finally, in Section 1.1.3 we recall some basic facts about functions
of bounded deformation and bounded Hessian. The formal statement of our results
is in Section 1.2.

1.1.1. Weakly Curved Floating Shells We consider the model problem of a thin
elastic shell floating on an otherwise planar liquid bath. Let the undeformed mid-
shell S be the graph of a function p over some planar reference domain � ⊂ R

2,
so that

S = {(x1, x2, p(x)) : x ∈ �} .

Given a deformation � : S → R
3 of the shell, introduce its in- and out-of-plane

displacements u : � → R
2 and w : � → R according to

�(x1, x2, p(x)) = (x1 + u1(x), x2 + u2(x), w(x)), x ∈ �.

The plane being referenced is that of the undeformed liquid bath. So long as the
shell is weakly curved, meaning that its typical “slope” |∇ p| � 1, its deformation
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can be modeled as a minimizer of the energy1

E = Y

2

ˆ
�

|e(u)+ 1

2
∇w ⊗∇w − 1

2
∇ p ⊗∇ p|2 dx + B

2

ˆ
�

|∇∇w −∇∇ p|2 dx

+ K

2

ˆ
�

|w|2 dx + γlv

(ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

u · ν̂ ds
)
.

(1.5)
The notation e(u) = 1

2 (∇u + ∇uT ) stands for the symmetrized gradient of the
displacement u. We use x ⊗ y to denote the outer product of x and y, and ν̂ for the
outwards-pointing unit normal vector at ∂�. Our formula for the energy is directly
analogous to the one used in [74] to study the wrinkling of an internally pressurized
spherical shell, as well as the one used in [11,24,34] to study the wrinkling of a flat
disc on a spherical substrate; it is a geometrically linearized version of the energy
used in [1] for general floating shells. Here, to fix ideas, we focus on the setup
of a weakly curved shell on a planar liquid substrate, noting that our analysis can
be adapted to the more general setup of a weakly curved shell on a weakly curved
substrate. Underlying the energy E is a certain “geometric linearization” procedure
we shall describe. But first, let us introduce each of the terms in (1.5).

The formula (1.5) accounts for the potential energy of the shell and liquid
bath. The first two terms are the “stretching” and “bending” terms. They comprise
the elastic energy of the shell. The parameters Y = Est and B = 1

12 Est3 are
its stretching and bending moduli, where Es is its Young’s modulus and t is its
dimensional thickness. For simplicity, and as it contains the essential mathematical
details, we treat the case of an isotropic Hooke’s law with Poisson ratio ν = 0. That
is, we take | · | to denote either the standard Euclidean or Frobenius matrix norm.
With this choice, the stretching energy is proportional to the sum of the squares of
the components of the geometrically linear strain

ε = e(u)+ 1

2
∇w ⊗∇w − 1

2
∇ p ⊗∇ p, (1.6)

which it prefers to remain small. The bending energy is proportional to the sum
of the squares of the components of ∇∇w − ∇∇ p. It limits the curvature that
develops. The remaining terms in (1.5) account for the energy of the liquid bath.
The parameter K = ρg sets its “stiffness” to out-of-plane displacements (ρ is
the density of the liquid and g is the gravitational acceleration), while γlv sets the
strength of the liquid–vapor surface tension pulling at the shell’s edge. Note in
treating only the surface tension of the liquid–vapor interface, we assume the shell
adheres completely to the surface of the bath (see [34] for more on this point).

Before non-dimensionalizing, we pause to discuss the fact that (1.5) does not
report the true energy of the shell and liquid bath, but only approximates it to leading
order in a “geometrically linear” setting where

1 We picked up the term “weakly curved” from [37]. It indicates a family of shells also
referred to as “shallow”, the deformations of which can be modeled using the Donnel–
Mushtari–Vlasov theory [58,81] orMarguerre’s theory of shallow shells [68]. Our stretching
and bending terms become the ones from [68] under the substitution w → w + p, and the
ones from [58,81] under the further substitution u → u − w∇ p.
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|∇u| ∼ |∇w|2 ∼ |∇ p|2 � 1. (1.7)

The use of a more nonlinear model (“geometrically nonlinear” as in [1] or “fully
nonlinear” as in [9]) would of course yield more accurate results, but would re-
quire several significant mathematical advances beyond the ones achieved here.
As remarked above, we are not the first to make such a simplification in the study
of elastic patterns: other authors including those of [11,24,34,74] have used geo-
metrically linear models as well. The picture that has emerged is that, whereas the
quantitative predictions of such models can only be asymptotically correct, their
qualitative predictions often reflect those of a more nonlinear model. So while we
expect the analysis of (1.5) to reveal much about the experiments that motivated
this work, we warn that it may fail to capture the parts of those experiments that are
not weakly curved. The analysis of general floating shells is the subject of current
research.

To illustrate this point further, let us briefly indicate how the geometrically
linear energy (1.5) arises, informally, from a more nonlinear one. We focus on the
stretching term, as the rest can be explained similarly. As in [1,28], we note that
the (geometrically) nonlinear stretching energy of the shell is given by

Estretch = Y

2

ˆ
S
|εNL|2S d A, (1.8)

where εNL is the strain of �, d A is the area element of S, and | · |S is a suitable
matrix norm. Pulling back to �, we introduce the deformed and reference metrics
g = D�T D� and g0 = D�T

0 D�0 where �0(x) = (x1, x2, p(x)), and write

εNL = 1

2
(g − g0), d A = √

det g0 dx, | · |S = |g−1
0 · |.

Taylor expanding about the trivial displacements (u, w) = (0, 0) and the trivial
shell p = 0 yields

εNL = ε + h.o.t., d A = dx + h.o.t., | · |S = | · | + h.o.t.,

where we have neglected higher order terms per (1.7). Replacing εNL, d A, and
| · |S in (1.8) with their leading order approximations ε, dx , and | · | results in the
stretching energy from (1.5).

1.1.2. Bendability, Deformability, and Confinement We are interested in the
minimizers of the energy (1.5), and especially in their dependence on its param-
eters. Here, we collapse these into three non-dimensional groups whose inverses
are known as “bendability”, “deformability”, and “confinement”. Similar groups
appear whenever elastic, surface tension, and substrate forces interact, as has been
shown in many other works including [23,34,43,74].

Let L be a representative lengthscale of the reference domain �, and let R be
a representative radius of curvature for the shell. Consider the change of variables

u(x) = ε2Lû
( x
L

)
, w(x) = εLŵ

( x
L

)
, p(x) = εL p̂

( x
L

)
(1.9)
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where ε = L/R. Hats denote dimensionless variables defined on the unit domain
�̂ = L−1�. That the shell is weakly curved corresponds to taking ε � 1. Setting
(1.9) into (1.5) and changing variables, we find that

Ê(û, ŵ) = 1

Y L2

1

ε4
E(u, w)

satisfies

Ê = 1

2

ˆ
�̂

|e(û)+ 1

2
∇ŵ ⊗∇ŵ − 1

2
∇ p̂ ⊗∇ p̂|2 + 1

2

B

Y L2

1

ε2

ˆ
�̂

|∇∇ŵ − ∇∇ p̂|2

+ 1

2

K L2

Y

1

ε2

ˆ
�̂

|ŵ|2 + γlv

Y

1

ε2

(ˆ
�̂

1

2
|∇ p̂|2 −

ˆ
∂�̂

û · ν̂
)
.

Evidently, minimizing E is equivalent to minimizing Ê , but the latter version has
the benefit of collapsing the six original parameters Y , B, K , γlv, L , and R into
three non-dimensional groups:

b = B

Y L2 · R
2

L2 (bendability−1), k = K R2

Y
(deformability−1),

γ = γlv

Y
· R

2

L2 (confinement−1).

Henceforth, we drop the hats and consider the non-dimensionalized energy

Eb,k,γ (u, w) = 1

2

ˆ
�

|e(u)+ 1

2
∇w ⊗∇w − 1

2
∇ p ⊗∇ p|2 dx

+ b

2

ˆ
�

|∇∇w − ∇∇ p|2 dx + k

2

ˆ
�

|w|2 dx

+ γ

(ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

u · ν̂ ds
)

(1.10)

with its parameters b, k > 0 and γ ≥ 0.
Having non-dimensionalized, we can now introduce the asymptotic regime of

our results. This paper studies the asymptotics of Eb,k,γ and its minimizers in any
limit b → 0, k → ∞, γ → 0 such that

b

k
,
γ

k
, 2

√
bk + γ � 1 and

(
b

k

)1/10

� 2
√
bk + γ. (1.11)

These conditions arise from the search for a parameter regime where minimizers
satisfy

ε ≈ 0 and w ≈ 0 (1.12)

so that they are nearly strain-free and nearly flat. One expects this to hold if stretch-
ing and substrate forces dominate the response. As with isometric embeddings,
there exist infinitely many nearly strain-free displacements to any neighborhood
of the plane. (We will construct such displacements later on. See also [49] for the
case ε = 0.) With so much freedom, it is reasonable to think of minimizing the
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bending, substrate, and surface energies while treating (1.12) as a “constraint”; this
is an instance of the “Gauss–Euler elastica” variational principle proposed recently
in [24]. Following the line of reasoning there, one predicts the minimum energy to
scale ∼ 2

√
bk or γ , whichever is the larger. The typical values of the stretching

and substrate forces are ∼ 1 and k, so we are lead to take 2
√
bk + γ � 1 and k as

in the first part of (1.11).
The last part of (1.11) is harder to explain. It comes from the fact that in order

to justify the claim that minimizers satisfy (1.12), we must be able to prove the
existence of in- and out-of-plane displacements satisfying

ˆ
�

|ε|2 � min Eb,k,γ and k
ˆ
�

|w|2 � min Eb,k,γ

in a regime where the minimum energy is expected to scale∼ 2
√
bk + γ . Further-

more, as we intend to prove a �-convergence result, we must accomplish this
for any possible limiting in-plane displacement ueff. This is not a straightfor-
ward task, and it becomes all the more difficult (perhaps eventually impossible)
as 2

√
bk + γ → 0. Our choice to impose the second part of (1.11) arises from the

details of our herringbone-based recovery sequences. See the discussion following
Theorem 1.1 for more on this and Section 3 for the details.

1.1.3. Functions of Bounded Deformation and BoundedHessian The goals of
this paper are to obtain and analyze the �-limit of 1

2
√
bk+γ

Eb,k,γ in the parameter

regime (1.11). To this end, we make use of the spaces of bounded deformation and
bounded Hessian functions

BD(�) =
{
u ∈ L1(�;R

2) : e(u) ∈ M(�;Sym2)
}
,

HB(�) =
{
ϕ ∈ L1(�) : ∇∇ϕ ∈ M(�;Sym2)

}

where M(�;Sym2) is the space of finite, symmetric 2-by-2 matrix-valued Radon
measures on the reference domain� ⊂ R

2.As these spacesmaynot be immediately
familiar to all, we recall their basic properties and refer to [26,75,76] for more
details. The reader wishing to skip forward to our results should go to Section 1.2.

The spaces BD(�) and HB(�) are Banach spaces under the norms

||u||BD(�) = ||u||L1(�) +
´
�
|e(u)|1,

||ϕ||HB(�) = ||ϕ||L1(�) +
´
�
|∇∇ϕ|1

respectively, where we define
ˆ
�

|μ|1 = sup
σ∈Cc(�;Sym2)|σ(x)|∞≤1 ∀ x∈�

ˆ
�

〈σ,μ〉

for μ ∈ M(�;Sym2). Although the norm
´
�
|μ|1 is equivalent to the more

commonly used total variation one
∑

i j |μi j |(�), we use the former as it ap-
pears in our results. Note

´
�
|μ|1 = trμ(�) if μ ≥ 0. The natural injections
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BD(�) ↪→ L2(�;R
2) and HB(�) ↪→ C(�) are continuous in the strong topolo-

gies induced by the given norms. As it turns out, BD(�) and HB(�) are dual
spaces and possess weak-∗ topologies. Between these and the strong topologies lie
the so-called intermediate topologies metrized respectively by the distances

||u − v||L1(�) + ∣∣´
�
|e(u)|1 −

´
�
|e(v)|1

∣∣ ,
||ϕ − ψ ||L1(�) +

∣∣´
�
|∇∇ϕ|1 −

´
�
|∇∇ψ |1

∣∣ .
The trace maps BD(�) → L1(∂�,H1), u �→ u|∂� and HB(�) → (C(∂�), L1

(∂�,H1)), ϕ �→ (ϕ|∂�,∇ϕ|∂�) are intermediately continuous, and are defined by
continuous extension from the intermediately dense setC∞(�;R

2). We often drop
the notation ·|∂� when the meaning is clear, as in the integration-by-parts identities

ˆ
�

〈σ, e(u)〉 = −
ˆ
�

div σ · u dx +
ˆ
∂�

〈
σ, u ⊗ ν̂

〉
ds,

ˆ
�

〈σ,∇∇ϕ〉 = −
ˆ
�

div σ · ∇ϕ dx +
ˆ
∂�

〈
σ,∇ϕ ⊗ ν̂

〉
ds

(1.13)

for all σ ∈ C1(�;Sym2).
Finally, we introduce the quotient space BD(�)/R. Setting σ = I d into the

first identity in (1.13) shows that
´
∂�

u · ν̂ is unchanged under the replacement
u → u + r if e(r) = 0. By definition,

R = {r ∈ BD(�) : e(r) = 0}
is the space of linearly strain-freemaps. It consists of all maps x �→ Rx + b where
R is anti-symmetric and b ∈ R

2. Although Korn’s inequality fails on BD(�), the
Poincaré-type inequality

min
r∈R ||u − r ||L1(�) ��

ˆ
�

|e(u)|1 ∀ u ∈ BD(�)

holds. Thus,
´
�
|e(u)|1 defines a norm on the quotient space

BD(�)/R = {u + r : u ∈ BD(�), r ∈ R}
under which it becomes a Banach space. By Banach–Alaoglu, norm-bounded sub-

sets of BD(�)/R are weakly-∗ precompact. Note un
∗
⇀ u weakly-∗ in BD(�)/R

if and only if e(un)
∗
⇀ e(u) weakly-∗ inM(�;Sym2). In such a case, there exists

{rn}n∈N ⊂ R so that un + rn → u strongly in L1(�;R
2).

1.2. Statement and Discussion of Results

Having introduced the (non-dimensionalized) energies Eb,k,γ in (1.10), we
proceed to state our results. We start in Section 1.2.1 by deriving the sought after
effective energy Eeff of the floating shell as the �-limit of the rescaled energies

1
2
√
bk+γ

Eb,k,γ . There we produce a first statement of the limiting problem in terms
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of the effective in-plane displacement ueff. A second statement appears in Sec-
tion 1.2.2 in terms of a new variable called the “defect measure” μ. We think of
it as encoding the patterns. Section 1.2.3 obtains a dual description via an “Airy
potential” function ϕ, and produces a boundary value problem for optimalμwhose
coefficients depend on an optimal choice of ϕ. Finally, Section 1.2.4 presents our
method of stable lines. For a short list of open questions, see Section 1.2.5.
Assumptions. Here we collect for the reader’s convenience a list of assumptions
that will reappear throughout. The following assumptions are basic to what we do:

� ⊂ R
2 is a bounded, Lipschitz domain, p ∈ W 2,2(�), (1.14a)

{(bn, kn, γn)}n∈N ⊂ (0, 1] × (0,∞)× [0, 1] satisfies

bn
kn

,
γn

kn
, 2

√
bnkn + γn → 0 as n → ∞.

(1.14b)

Certain of our results require the following additional assumptions to hold:

� is strictly star-shaped, p ∈ W 2,∞(�), (1.15a)

(bn/kn)1/10

2
√
bnkn + γn

→ 0 as n → ∞. (1.15b)

Unless otherwise stated, any asymptotic statement involving b, k, or γ is understood
to hold on a sequence satisfying (1.14b) and (1.15b). We often mute the subscript
n. Recall � is said to be strictly star-shaped if there exists x ∈ � so that for all
y ∈ ∂� the open line segment from x to y belongs to �. Sometimes, we make use
of the hypothesis that � is simply connected to simplify the statements of certain
results.

These and other assumptions enter at various steps in our analysis. Briefly,
the situation is as follows: while for our complete �-convergence result we must
impose all of the assumptions in (1.14) and (1.15), each of its components hold in
greater generality; so do our results regarding the analysis of the limiting problems.
To help the reader navigate, we have included a statement at the top of each of
Sections 2–6 clarifying which assumptions are needed there.

1.2.1. The Limiting Area Problem Our first result is a formula for the effective
energy Eeff of a weakly curved, floating shell, along with the limiting (linearized)
area problem it implies. Anticipating theminimum energy to scale∼ 2

√
bk+γ , we

divide by this and pass to the limit in the sense of�-convergence.As usual,wefix the
admissible set and extend the energies Eb,k,γ : BD(�)× W 1,2(�) → (−∞,∞]
by taking

Eb,k,γ (u, w) =
{
(1.10) (u, w) ∈ W 1,2(�)×W 2,2(�)

∞ otherwise
.

Define Eeff : BD(�)×W 1,2(�) → (−∞,∞] by

Eeff(u, w) =
{ ´

�
1
2 |∇ p|2 dx − ´

∂�
u · ν̂ ds e(u) ≤ 1

2∇ p ⊗∇ p dx, w = 0
∞ otherwise



I. Tobasco

where μ ≤ μ̃ if μ̃− μ ∈ M+(�;Sym2), the space of finite, non-negative, Sym2-
valued Radon measures on �.

Theorem 1.1. Let �, p, and {(b, k, γ )} satisfy the assumptions (1.14) and (1.15).
The �-convergence

1

2
√
bk + γ

Eb,k,γ
�−→ Eeff

holds with respect to the weak-* BD(�)/R×W 1,2(�) topology, and the rescaled
energies are equi-coercive on that space. More precisely, we have the following
results:

1. (�-liminf inequality) Given any weakly-∗ converging sequence

(ub,k,γ , wb,k,γ )
∗
⇀(u, w) weakly-∗ in BD(�)/R×W 1,2(�),

there holds

lim inf
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

≥ Eeff(u, w);

2. (recovery sequences) Given any (u, w) ∈ BD(�) × W 1,2(�), there exists a
sequence

(ub,k,γ , wb,k,γ )
∗
⇀(u, w) weakly-∗ in BD(�)/R×W 1,2(�)

such that

lim
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

= Eeff(u, w);

3. (equi-coercivity) Any sequence {(ub,k,γ , wb,k,γ )} that satisfies

lim sup
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

< ∞

admits a sub-sequence that converges weakly-∗ in BD(�)/R×W 1,2(�).

Remark 1.1. At first glance, it may seem surprising that the space BD, which was
originally introduced in connection with plasticity (see, e.g., [75]), should arise in
a problem devoid of plastic effects. It can, however, be anticipated on the grounds
that our energies are geometrically linear. For reasons that will become clear, ∇w

will be bounded a priori in L2. The scaling |e(u)| ∼ |∇w|2 then indicates a bound
on e(u) in L1, implying weak-∗ pre-compactness in BD up to a linearly strain-
free map. The equi-coercivity result justifies these claims. A similar observation
was made in [20] where BD appeared in a �-limit analysis of clamped elastic
membranes.
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It is well-known that �-convergence combined with equi-coercivity implies the
convergence of minimum values along with minimizers [22,25]. Here, we deduce
that

lim
min Eb,k,γ

2
√
bk + γ

= min
(ueff,weff)∈BD(�)×W 1,2(�)

Eeff(ueff, weff).

Furthermore, the displacements (ueff, weff) on the righthand side are optimal if and
only if they are theweak-∗ limit of a sequenceofalmostminimizers {(ub,k,γ , wb,k,γ )}
of Eb,k,γ . Such sequences satisfy

Eb,k,γ (ub,k,γ , wb,k,γ ) = min Eb,k,γ + o(2
√
bk + γ )

by definition. Reducing to the finite part of Eeff yields the following result:

Corollary 1.1. Given the assumptions (1.14) and (1.15), the rescaled minimum
energies satisfy

lim
min Eb,k,γ

2
√
bk + γ

= min
ueff∈BD(�)

e(ueff)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds. (1.16)

Furthermore, (ueff, weff) arises as the weak-∗ BD(�)/R×W 1,2(�) limit of almost
minimizers of Eb,k,γ if and only if ueff solves the limiting problem on the righthand
side, and weff = 0.

We wish to make two remarks, on the geometric meaning of the limiting problem,
and on the proof of the�-convergence result. First, we demonstrate how the limiting
problem in Corollary 1.1 can be recovered by linearizing the proposed area problem
(1.3). Just as we may associate to a deformation � : S → R

3 the in- and out-
of-plane displacements u and w, we may associate to the limiting or effective
displacements ueff andweff = 0 the effective deformation�eff : S → R

3 given by

�eff (x, p(x)) = (x + ueff(x), 0) , x ∈ �.

Whereas the area of the undeformed mid-shell S satisfies

A(S) =
ˆ
�

√
1+ |∇ p|2 dx = |�| +

ˆ
�

1

2
|∇ p|2 dx + h.o.t.,

the area of its image under �eff satisfies

A(�eff(S)) =
ˆ
S

√
det D�T

effD�eff d A = |�| +
ˆ
�

div ueff dx + h.o.t.

to leading order in ∇ p and ∇ueff. (This ignores the possibility that�eff may not be
one-to-one.) Subtracting and applying the divergence theorem yields the expansion

A(S)− A(�eff(S)) =
ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds + h.o.t. (1.17)
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Similarly, the one-sided constraint

e(ueff) ≤ 1

2
∇ p ⊗∇ p dx

from (1.16)—which we refer to henceforth as the statement that ueff is (linearly)
tension-free—can be recovered by linearizing the statement that�eff is short, i.e.,

dR2 (�eff(x),�eff(y)) ≤ dS (x, y) ∀ x, y ∈ S.

In this way, the limiting problem from Corollary 1.1 manifests as the leading order
part of the geometric variational problem

min
�eff:S→R

2

that are short

A(S)− A(�eff(S))

which asks to cover up as much area as possible with a length-shortening map of
S to the plane.

We turn to discuss the key ingredients in the proof of Theorem 1.1. It requires
establishing a priori lower bounds on Eb,k,γ , and verifying that they are asymptoti-
cally sharp.Behind the�-liminf part is a sort of “geometric interpolation inequality”
that quantifies the fact that two regular enough embedded surfaces cannot be both
extrinsically close and intrinsically far. Here, the surfaces in question are those of
the nearly isometrically deformedmid-shell�(S) and of its projection to the plane.
In terms of the displacements u and w, the inequality states that

(ˆ
�

|1
2
�w|2

)1/2 (ˆ
�

|w|2
)1/2

≥
ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

u · ν̂ + h.o.t. (1.18)

whenever ε ≈ 0 and w ≈ 0. On the lefthand side we see a trade-off between the
linearized mean curvature H ≈ 1

2�w and the out-of-plane displacementw. On the
righthand side we recognize from (1.17) the difference between the intrinsic and
planar projected areas of the shell. Taking the trace of the statement that ε ≈ 0 we
see from (1.6) that

div u + 1

2
|∇w|2 ≈ 1

2
|∇ p|2.

Thus, (1.18) reminds of the classic Gagliardo–Nirenberg interpolation inequality

C

(ˆ
�

|∇∇w|2
)1/2 (ˆ

�

|w|2
)1/2

≥
ˆ
�

|∇w|2 + h.o.t. (1.19)

which holds forw ≈ 0 and independently of the strain (see, e.g., [31]).While (1.19)
implies the equi-coercivity part of Theorem 1.1, it is not strong enough to establish
its �-liminf part. Thinking of replacing the full Hessian ∇∇w with �w, which is
justified when ε ≈ 0, we were led to its sharpened form (1.18). Though we are
certainly not the first to apply a Gagliardo–Nirenberg interpolation inequality to
the study of elastic patterns—such inequalities play an organizing role throughout
the subject of energy-driven pattern formation [46]—we know of only one other
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analysis of wrinkling in which an optimal prefactor is known [8]. The suggestion
that the geometric interpolation inequality (1.18) should be used in place of (1.19)
appears to be new; see Section 2 for more details.

Much of ourwork is devoted to the construction of recovery sequences verifying
the optimality of our lower bounds. Given any candidate tension-free displacement
ueff, we construct in Section 3 an admissible sequence {(ub,k,γ , wb,k,γ )} converging
weakly-∗ to (ueff, 0) and whose energy satisfies

Eb,k,γ (ub,k,γ , wb,k,γ ) = (2
√
bk + γ )

(ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

u · ν̂
)
+ O

((
b

k

)1/10
)
.

The out-of-plane parts of three such constructions are depicted in Fig. 1. Their
essential character is given by

w(x) = √
2tr 〈εeff〉 · lwr cos

(
x · η̂herr(x)

lwr

)
(1.20)

where we denote the effective strain of ueff by

εeff = e(ueff)− 1

2
∇ p ⊗∇ p dx . (1.21)

We envision a “piecewise herringbone” pattern consisting ofmultiple herringbones,
one of which appears in each bold square in Panel (a) of Fig. 1. Herringbones are
made of twinned uni-directional wrinkles superimposed on alternating bands of
in-plane shear. We select them as our basic building blocks as they are highly
effective at accommodating constant bi-axial compressive strains [47]. Simply put,
our idea is that with enough herringbones, one should be able accommodate any
non-constant εeff—even the measure-valued ones in Theorem 1.1.

At the smallest scales, the ansatz (1.20) features uni-directional wrinkles at a
lengthscale lwr and in the direction of η̂herr. Other larger lengthscales include one
associated with the size of the individual herringbones (also with the “averaging”
operator 〈·〉 through which εeff will be approximated as piecewise constant), and
one associated with the oscillations in η̂herr representing the wrinkle twins. Before
moving on, we would like to motivate the locally sinusoidal character of our piece-
wise herringbones—which are closer to the herringbones treated in [5,47] than, say,
the origami-based ones in [6]—on the grounds of energy minimization. Consider
what it takes for the two sides of the geometric interpolation inequality (1.18) to
be nearly the same: in its additive form, the inequality can be improved to say that

b

2

ˆ
�

|�w|2+k

2

ˆ
�

|w|2−2
√
bk

(ˆ
�

1

2
|∇ p|2−

ˆ
∂�

u · ν̂
)

≥ 1

2

ˆ
�

|b1/2�w+k1/2w|2+h.o.t.

so long as ε ≈ 0 and w ≈ 0. Hence, minimizers must satisfy

−�w ≈
√
k

b
w
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Fig. 1. Three possible patterns formed by a floating triangular shell. Panel (a) depicts the
“piecewise herringbone” pattern we use to construct arbitrary recovery sequences. It consists
of multiple herringbones, one per square, each of which is made up of twinned wrinkles and
alternating in-plane shear. Panel (b) depicts an almost minimal pattern in the positively
curved case, consisting of ordered, uni-directional wrinkles and a piecewise herringbone
to model its disordered part. Panel (c) depicts an almost minimal pattern in the negatively
curved case. The emergence of ordered “wrinkle domains” such as in (b) and (c) will be
shown to follow from the principle of minimum energy

consistent with the locally sinusoidal character of (1.20). Note this also explains
the choice lwr = (b/k)1/4 we will eventually make. It is well-appreciated in the
literature on elastic pattern formation that such a lengthscale should emerge from
a competition between bending and substrate effects (see, e.g., [16]). We refer to
Section 2 for more on the geometric interpolation inequality and Section 3 for the
details of our piecewise herringbones.

1.2.2. Defect Measures Thus far, our results have focused on the effective dis-
placements that arise as limits of almost minimizers of Eb,k,γ . As explained in
Corollary 1.1, these can be found by solving the (linearized) area problem

min
ueff∈BD(�)

e(ueff)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds (1.22)
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for the effective in-plane displacement ueff, and recalling that weff = 0. In light
of our previous discussion of the experiments on floating shells from [1,2,78], the
reader may wonder whether solving (1.22) actually recovers the observed wrinkle
domains and possibly disordered parts. Indeed, deducing these is the goal of the
rest of our results, which culminate in Section 1.2.4 with our method of stable lines.
We start by rewriting (1.22) as a minimization over the effective strain εeff from
(1.21) or, as we prefer to think of it, over a quantity called the “defect measure”.

Defect measures are a basic tool for encoding the properties of high-frequency
oscillations (and concentrations) governed by PDEs [51,52]. We define them in the
present context as follows.Whenever a sequence {(un, wn)}n∈N converges weakly-
∗ in BD(�)/R×W 1,2(�) to (ueff, 0) and satisfies

e(un)+ 1

2
∇wn ⊗∇wn → 1

2
∇ p ⊗∇ p strongly in L2(�) (1.23)

so that it is asymptotically strain-free, we may associate to it a non-negative Sym2-
valued defect measure

μ = weak-∗ lim ∇wn ⊗∇wn dx inM(�;Sym2). (1.24)

Taking limits, we deduce the important identity

e(ueff)+ 1

2
μ = 1

2
∇ p ⊗∇ p dx (1.25)

which couples μ back to ueff thus guaranteeing it is well-defined. In particular, the
limit in (1.24) holds a posteriori since any converging sub-sequence must yield
the same result (for a complete proof, see Lemma 2.2). Combining this with (1.21)
yields that

μ = −2εeff where εeff = e(ueff)− 1

2
∇ p ⊗∇ p dx .

Evidently, solving for the defect measure of a given sequence is tantamount to
finding its effective strain.

Some examples are in order. Consider a uni-directional wrinkling pattern with
lengthscale lwr � 1 and constant direction η̂. Thinking that the out-of-plane part
should satisfy

w(x) = √
2lwr cos

(
x · η̂
lwr

)
yields μ = η̂ ⊗ η̂ dx

as lwr → 0. The same measure results for non-constant η̂, so long as its variations
are sufficiently mild. If η̂ varies rapidly, as it does for the piecewise herringbone
patterns in (1.20), μ can end up being rank two. Folds with various profiles can
also be handled. Let lf � 1 and fix η̂. Taking

w(x) = l
1
2
f

(2π)
1
4

e
− 1

2

(
x ·η̂
lf

)2
yields μ = η̂ ⊗ η̂H1�{x : x · η̂ = 0}
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as lf → 0. The notation on the right indicates the restriction of the one-dimensional
Hausdorff measure H1 to the given line. The motifs of wrinkles and folds are
ubiquitous in thin elastic sheets [13,65]. We propose to model them using defect
measures in the vanishing thickness limit.

Returning to the context of weakly curved, floating shells, we now change
variables from ueff to μ. We do so by identifying the set of defect measures asso-
ciated to the recovery sequences from Theorem 1.1. In fact, all recovery sequences
are asymptotically strain-free (see Section 2). Hence, μ ∈ M(�;Sym2) arises as
the defect measure of a recovery sequence if and only if (1.25) holds for some
tension-free ueff ∈ BD(�). That ueff is tension-free is equivalent to the statement
that μ ≥ 0. Recall the Saint-Venant compatibility conditions which state, for sim-
ply connected domains, that a Sym2-valued matrix field m is a linear strain, i.e.,
m = e(u) for some u if and only if

∂11m22 + ∂22m11 − 2∂12m12 = 0. (1.26)

That this holds in the smooth setting appears in standard references on elasticity
(e.g., [54]). By a straightforward approximation argument, it also holds when
m ∈ M and u ∈ BD. Denote

curlcurlm = ∂11m22 + ∂22m11 − 2∂12m12 (1.27)

and observe the “very weak Hessian” identity

−1

2
curlcurl∇w ⊗∇w = det∇∇w, (1.28)

so named as it allows to define det∇∇w for w ∈ W 1,2 [42,49]. Combining (1.26)
and (1.28) yields the following fact: provided � is simply connected, there exists
u ∈ BD(�) satisfying (1.25) if and only if μ ∈ M(�;Sym2) satisfies

−1

2
curlcurlμ = det∇∇ p (1.29)

in the sense of distributions. Therefore, we may exchange the set of admissible ueff
from (1.22) with the new set of admissible defect measuresμ characterized by their
non-negativity and the PDE (1.29). To finish the exchange, note the identity

1

2

ˆ
�

|μ|1 =
ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds,

which follows from (1.25) upon integrating its trace. The following result is proved:

Corollary 1.2. Given the assumptions (1.14) and (1.15), the rescaled minimum
energies satisfy

lim
min Eb,k,γ

2
√
bk + γ

= min
μ∈M+(�;Sym2)

− 1
2 curlcurlμ=det∇∇ p

1

2

ˆ
�

|μ|1. (1.30)

Furthermore, μ arises as the defect measure of almost minimizers of Eb,k,γ if and
only if it solves the limiting problem on the righthand side.
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The limiting problems in Corollaries 1.1 and 1.2 are two sides of the same coin:
Corollary 1.1 determines the limiting displacement of the shell via optimal ueff, and
Corollary 1.2 determines the limiting features of its patterns via optimal μ. Defect
measures play a similar role for curvature-driven wrinkling to that of the “wrinkling
strain” identified in [64] for tension-driven wrinkling. Both quantities specify how
much material must be “gotten rid of” in an appropriate limit. However, μ does not
derive from the relaxation of a fixed energy density, but rather from the �-limit of
a sequence of rescaled energies.

Before proceeding to discuss the optimizers of the limiting problems in detail,
we pause to answer the question of whether the minimum energy actually scales
∼ 2

√
bk + γ , under the assumptions given at the start of Section 1.2. Rearranging

(1.16) or (1.30) yields the expansion

min Eb,k,γ = C1 · (2
√
bk + γ )+ o(2

√
bk + γ )

where C1 is the minimum value of the limiting problems. As (1.30) makes clear,

C1 = 0 ⇐⇒ det∇∇ p = 0 a.e. on �.

Thus, the minimum energy scales ∼ 2
√
bk + γ if and only if the initial Gaussian

curvature of the shell, which is proportional to det∇∇ p, is other than zero.

1.2.3. Convex Analysis of the Limiting Problems The previous results, in par-
ticular Corollaries 1.1 and 1.2, established the role of the limiting problems

min
ueff∈BD(�)

e(ueff)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds and min
μ∈M+(�;Sym2)

− 1
2 curlcurlμ=det∇∇ p

1

2

ˆ
�

|μ|1

(1.31)
for the leading order response of weakly curved, floating elastic shells. We turn
to study their minimizers. Each of the problems in (1.31) is convex. On general
grounds, such “primal” minimization problems should admit “dual” maximization
problems, the solutions of which are paired via “complementary slackness” condi-
tions. What distinguishes the present discussion of convex duality from the typical
example (as in, e.g., [29]) is that, here, the natural pairing will turn out to require
an “inner product” between matrix-valued measures. The situation reminds of the
duality between stress and strain in Hencky plasticity, where similar issues arise
[45] (see also [4]).

Let ρ ∈ C∞
c (B1) be non-negative and supported on the open unit disc B1 =

B(0, 1) ⊂ R
2, and let

´
B1

ρ dx = 1. Given μ ∈ M(�;Sym2), we define its

mollifications {μδ}δ>0 ⊂ C∞(�;Sym2) by

μδ(x) =
ˆ
�

1

δ2
ρ

(
x − y

δ

)
dμ(y), x ∈ �. (1.32)

Denote

∇⊥∇⊥ = cof∇∇ =
(

∂22 −∂12
−∂12 ∂11

)
. (1.33)
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Theorem 1.2. Let � and p satisfy the assumption (1.14a) and suppose that �
is simply connected. The minimization problems in (1.31) are each dual to the
maximization problem

max
ϕ:R2→R

ϕ is convex
ϕ= 1

2 |x |2 on R2\�

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p dx . (1.34)

In particular, the optimal values in (1.31) and (1.34) are the same, and admissible
μ and ϕ are optimal if and only if the complementary slackness conditions

0 = lim
δ→0

ˆ
�

∣∣∣〈μδ,∇⊥∇⊥ϕ
〉∣∣∣ and 0 = lim

δ→0

ˆ
∂�

|ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μδ

〉 | ds
(1.35)

hold; the same is true for admissible ueff with ∇ p ⊗∇ p dx − 2e(ueff) in place of
μ. Here, [∇ϕ] denotes the jump in ∇ϕ across ∂� in the direction of ν̂. It equals to
x − ∇ϕ|∂� where the trace is taken from �.

Remark 1.2. The admissible set in (1.34) consists of all convex extensions of 1
2 |x |2

from R
2\� into �. The use of R

2 is immaterial, and it can be replaced by any
convex neighborhood of �. In fact, ϕ can be shown to be admissible if and only if
it restricts to � as an element of HB with ∇∇ϕ ≥ 0 and such that the boundary
conditions

ϕ = 1

2
|x |2 and ν̂ · ∇ϕ ≤ ν̂ · x at ∂� (1.36)

hold in the sense of trace. See Lemma 4.5. Regarding traces at ∂�, our convention
will be that whenever we refer to the values of a quantity there, we mean those of
its trace from � unless otherwise explicitly specified.

Remark 1.3. The complementary slackness conditions (1.35) hold regardless of the
choice of the kernel ρ in (1.32), so long as it belongs to C∞

c (B1), is non-negative,
and integrates to one. Other equivalent statements hold using the approximating
sequences in Proposition 4.1. The freedom to approximate μ as needed will come
in handy later on in Section 5 when it comes time to justify the upcoming assertions
of our method of stable lines. Even more equivalent statements of complementary
slackness can be obtained by approximating ϕ. We leave these to the reader.

Remark 1.4. Other, more general versions of the dual problem appear in Section 4,
including ones that apply when � is multiply connected. See Proposition 4.1 and
the discussion immediately thereafter.

While we explain in Section 4 how one can anticipate the form of the dual prob-
lem (1.34) on general grounds—it follows from a minimax procedure using the
divergence-free “stress” σ = ∇⊥∇⊥ϕ as a Lagrange multiplier for the tension-
free constraint—herewe demonstrate how the complementary slackness conditions
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(1.35) arise. As the primal problems (1.31) are convex, their solutions are complete-
ly characterized by first order optimality. The key is an integration by parts identity
that says, roughly speaking, that

1

2

ˆ
�

|μ|1 −
ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p

= 1

2

ˆ
�

〈
∇⊥∇⊥ϕ,μ

〉
+ 1

2

ˆ
∂�

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μ
〉

(1.37)

whenever μ and ϕ are admissible for (1.31) and (1.34). The integrands on the
righthand side of the equals sign are non-negative, while the difference on the
lefthand side vanishes if and only if μ and ϕ are optimal. Hence, optimality should
be equivalent to the complementary slackness conditions〈

∇⊥∇⊥ϕ,μ
〉
= 0 on � and ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μ

〉 = 0 at ∂�. (1.38)

The only problem with this is that the terms appearing in (1.38) are not obviously
well-defined: evaluating the first one requires making sense of an “inner product”
between the matrix-valued measures μ and ∇⊥∇⊥ϕ; evaluating the second one
requires assigning boundary values to the τ̂ τ̂ -component of μ. While it may be
possible to take advantage of the relationship between the formally adjoint opera-
tors ∇⊥∇⊥ and curlcurl to treat (1.38) in some more intrinsic way, we choose to
regularize instead. Integrating by parts with the mollifications {μδ} from (1.32), we
obtain (1.37) upon sending δ → 0. The asserted complementary slackness condi-
tions follow. See Section 4 for the complete proof of Theorem 1.2, as well as for a
discussion of duality for general �.

Theorem 1.2 separates the problem of determining the overall layout of the
patterns encoded by optimal μ from that of determining their amplitude. We en-
vision a two-step procedure, where in the first step an optimal Airy potential ϕ is
found by solving the dual problem (1.34), and in the second step the complemen-
tary slackness conditions are systematically applied. To lighten the notation, we
use (1.38) from now on to refer to the complementary slackness conditions (1.35)
with a remark that they hold in the regularized sense. Note the meaning of this is
independent of the choice of the mollifying kernel ρ.

Corollary 1.3. Let �, p, and {(b, k, γ )} satisfy the assumptions (1.14) and (1.15),
and let ϕ solve the dual problem (1.34). Then μ ∈ M+(�;Sym2) arises as the
defect measure of a sequence of almost minimizers {(ub,k,γ , wb,k,γ )} of Eb,k,γ , i.e.,

μ = weak-∗ lim ∇wb,k,γ ⊗∇wb,k,γ dx inM(�;Sym2) (1.39)

if and only if ⎧⎪⎨
⎪⎩
− 1

2 curlcurlμ = det∇∇ p on �〈∇⊥∇⊥ϕ,μ
〉 = 0 on �

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μ
〉 = 0 at ∂�

. (1.40)

The first equation holds in the sense of distributions, while the second and third
equations hold in the regularized sense.
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1.2.4. Stable Lines We come at last to our method of stable lines. This is a way
to deduce from knowledge of an optimal ϕ solving the dual problem (1.34) that
optimal μ solving the primal problem (1.31) are rank one, absolutely continuous,
and uniquely determined on a subset of �. In other words, the method asserts the
existence of an “ordered” part, where stable lines exist and the convergence of al-
most minimizers towards known patterns is implied. (As usual, any reference to the
almost minimizers of Eb,k,γ is contingent on the �-convergence in Theorem 1.1.)
At its heart is an analysis of (1.40) as a boundary value problem for μ via the
method of characteristics. As such, it is a bit difficult to describe the method in a
manner that is both general and precise. The following contains only the essence
of what we achieve in Section 5 and Section 6. See Section 1.2.5 for a list of open
questions that remain.

The first task is to explain what we mean by the “stable lines” and the “ordered
part” of the shell. The definitions we present here are only preliminary, as they
require more regularity than generally holds. More general definitions appear in
Section 5. Suppose, for the sake of argument, that μ and ϕ are not only optimal
in (1.31) and (1.34) but are also smooth, at least off of some small (say, Hausdorff
one-dimensional) set. Then, the first complementary slackness condition in (1.40)
gives that

∇⊥∇⊥ϕ ⊥ μ

in the pointwise sense. Since ∇∇ϕ and μ are non-negative, it follows that the sum
of their ranks is at most two. Where rank∇∇ϕ = 2, it must be that μ = 0. On the
other hand, where rankμ = 2 we see that ϕ is affine. The part where rank∇∇ϕ = 1
can be said to be ordered, as there

μ = λη̂ ⊗ η̂ for some λ ≥ 0 and η̂ ∈ R(∇∇ϕ). (1.41)

Given the interpretation of μ as a defect measure of almost minimizers in (1.39),
we see that

η̂⊥ · ∇wb,k,γ → 0 strongly in L2 on the ordered part.

Put another way, the peaks and troughs of any wrinkles that persist must become
asymptotically perpendicular to the unit vector field η̂ throughout the ordered part.
To help keep track of this, we propose the following geometric construction: given
an optimal ϕ, plot its

stable lines—curves parallel to N (∇∇ϕ) where rank∇∇ϕ = 1. (1.42)

In an asymptotic sense, these are thewrinkle peaks and troughs. They formdomains,
as is apparent in Fig. 2. Naturally, one wonders if their geometry can be described.
First, let us give an argument for their existence.

It is a well-known fact of differential geometry that any smooth enough devel-
opable surface—which by definition has vanishing Gaussian curvature throughout
its extent—is the disjoint union of planar regions and an otherwise ruled part con-
sisting of line segments that extend between boundary points. Such segments define
the generators or ruling lines of the given surface (see, e.g., [71,73]). Now where
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Fig. 2. Optimal wrinkle patterns arrange themselves according to the plotted “stable lines”.
Panel (a) depicts the stable lines of various positively curved shells, and Panel (b) does
the same for negatively curved shells. By definition, stable lines fill out the ordered part
of the shell; any disordered response is confined to regions absent these lines (shown as
blank). Stable lines are also the characteristic curves of a certain second order, linear PDE
governing the defect measures of almost minimizers. When combined with appropriate
boundary conditions, uniqueness and regularity theorems can be proved throughout the
ordered part

det∇∇ϕ = 0 the Gaussian curvature of the graph of ϕ vanishes, so that it describes
a developable surface. Where rank∇∇ϕ = 1, it consists of ruling lines. Upon pro-
jection to the plane we recover the desired stable lines. In fact, this argument shows
a little more: any smooth curve picked out by (1.42) is the planar projection of a
ruling line.

Evidently the layout of the stable lines, and that of the ordered wrinkle domain-
s they describe, is tied up with the geometry of developable surfaces. The ruled
part of any (piecewise) smooth developable surface can be decomposed into de-
velopable pieces of the following three elementary types: cylinders, whose ruling
lines are parallel; cones, whose ruling lines intersect at a point; and “tangential
developables”, whose ruling lines are tangent to a space curve. Upon projection,
we deduce the following classification scheme for stable lines: we say that

• a family of stable lines is of the cylindrical type if it consists of parallel segments;
• a family of stable lines is of the conical type if its segments, when extended,
meet at a point; and

• a family of stable lines is of the tangential type if its segments, when extended,
meet along a curve.

General arrangements of stable lines are built from these. From the twelve shells
depicted in Fig. 2 we count seven consisting of only the cylindrical type; two with
only the conical type (the positively curved half-disc and the negatively curved
disc); one featuring both cylindrical and conical types (the negative half-disc); and
one with only the tangential type (the negative ellipse).
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The following result is the key to the stable lines shown in Fig. 2. It contains
recipes for solving the dual problem when the initial Gaussian curvature is of one
sign.

Proposition 1.1. Let � and p satisfy the assumption (1.14a) and suppose that �
is simply connected. If det∇∇ p ≥ 0 a.e., the dual problem (1.34) is solved by the
largest convex extension ϕ+ of 1

2 |x |2 into �. It satisfies

ϕ+(x) = min{yi }⊂∂�

3∑
i=1

θi
1

2
|yi |2 for x ∈ �, (1.43)

where the minimization is taken over all pairs and triples {yi } ⊂ ∂� such that

x =
∑
i

θi yi where {θi } ⊂ (0, 1) satisfies
∑
i

θi = 1.

If instead det∇∇ p ≤ 0 a.e., the dual problem is solved by the smallest convex
extension ϕ− of 1

2 |x |2 into �. It satisfies

ϕ−(x) = 1

2
|x |2 − 1

2
d2∂�(x) where d∂�(x) = min

y∈∂� |x − y| for x ∈ �. (1.44)

Remark 1.5. Optimalϕ solving (1.34) are not in general unique.However, if det∇∇ p
is strictly positive or strictly negative a.e., then ϕ+ or ϕ− is the unique solution of
(1.34). See Section 6.1.

We just finished describing how stable lines dictate the geometry of optimal μ,
and how we were able to solve for the ones in Fig. 2. There is a second, equally
as important role played by the stable lines. We claim that they are characteristic
curves along which the PDE in (1.40) becomes an ordinary differential equation
(ODE) for the only possibly non-zero eigenvalue λ of μ on the ordered part. Going
back to our previous assumptions of smoothness forμ and ϕ, and again postponing
precise statements to Section 5, we note the existence of a function � > 0 such that

−1

2
curlcurl(η̂ ⊗ η̂·) = − 1

2�
∂2
η̂⊥(�·)

where ∂η̂⊥ = η̂⊥ · ∇ and where η̂ is a unit eigenvector associated to λ. Since η̂

points perpendicularly to the stable lines, we recognize this operator as a directional
derivative along their extent. Setting (1.41) into the first part of (1.40), we deduce
that

− 1

2�
∂2
η̂⊥(�λ) = det∇∇ p along the stable lines. (1.45)

Thus, we have arrived at a second order linear ODE for λ. Boundary data can be
extracted from (1.40), after which integration yields uniqueness, regularity, and
even explicit solution formulas across the ordered part.

Let us briefly comment on the sort of boundary data that can be deduced. In
some cases, stable lines pass between boundary points, such as for the positively
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curved shells in Panel (a) of Fig. 2. Provided ϕ is suitably non-degenerate, the last
part of (1.40) can be shown to imply the Dirichlet-type condition

�λ = 0 where stable lines meet ∂�. (1.46)

Our proof of this assumes in particular that the coefficient ν̂ · [∇ϕ] is non-zero,
and also that the stable lines in question meet ∂� transversely. Together, (1.45) and
(1.46) constitute a family of two-point boundary value problems indexed by the
stable lines. See Corollary 5.1 for a precise statement of this result.

In other cases, stable lines meet in the interior. This happens for the negatively
curved shells in Panel (b) of Fig. 2. Since we expect ∇∇ϕ to explode where stable
lines meet, the second equation in (1.40) should provide Dirichlet data. The first
equation should yield matching conditions. Altogether we will show that

�λ = 0 and ∂η̂⊥(�λ) = 0 where stable lines meet, (1.47)

again subject to non-degeneracy conditions on ϕ (e.g., if the stable lines meet along
a curve, we assume they meet it transversely). Combining (1.45) and (1.47) yields
a family of Cauchy problems indexed by the stable lines. See Corollary 5.2 and
Corollary 5.3 for precise statements of this result.

The preceding observations suggest a significantly more general result: optimal
μ should be uniquely determined wherever stable lines exist. While we do not yet
know how to prove this for general shells, we will show in Section 6 that it holds
for each the shells in Fig. 2, along with other related ones as well. That section
also contains the proof of Proposition 1.1. We hope our general description of the
method of stable lines here and in Section 5 helps the reader see the bigger picture
behind what it implies at the level of the examples in Section 6.

1.2.5. Open Questions We close this introduction with a few open questions.
Besides the obvious ones regarding the extension of our results beyond the as-
sumptions given at the start of Section 1.2 and beyond the realm of weakly curved
shells, there are some important issues that remain regarding the method of stable
lines.

First, it is an admittedly awkward point throughout that ∇∇ϕ is only a priori
a measure. For this reason, we do not yet have a generally useful definition of
stable lines. What we lack is a regularity theory for optimal ϕ solving (1.34) or,
failing that, a classification of developable surfaces of regularity HB. For now,
we note that each of the examples in Section 6 enjoys the following additional
regularity: optimal ϕ are smooth off of a singular set of finite length. This is more
than enough to justify our approach. More generally, building off of the theory of
W 2,2 developable surfaces in [35,36,59] we show how to make sense of it where
ϕ is (locally) W 2,2. See Section 5.

Second, we wonder if optimal μ solving (1.31) are unique under the condition
that there exists an optimal ϕ that is nowhere affine. Conjecture 6.1 at the very end
gives a concrete version of this question for negatively curved shells. Our reasoning
is simply that stable lines (suitably defined) should be characteristic curves for the
boundary value problem (1.40), and that the given hypothesis on ϕ should imply
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their density in �. This should lead to the uniqueness of μ. Though we do not
have a general theorem to this effect, we have achieved it in the context of several
examples, including the positively curved ellipse and half-disc in Panel (a) of Fig. 2,
as well as each of the negatively curved shells in Panel (b). See Section 6.2 and
Section 6.3.

Conversely, we wonder if there must exist infinitely many optimal μ provided
there exists a region on which optimal ϕ are affine. Only when ϕ is affine on all
of � have we shown this to be true—see Example 6.2 for the highly degenerate
case of a positively curved disc. When combined with our �-convergence results,
the existence of infinitely many optimal μ implies the existence of infinitely many
almost minimizing sequences for Eb,k,γ , a situation that could perhaps explain the
disorder seen in ultrathin shells [78]. Whether this disorder arises from an overall
flatness of the energy landscape, or instead to a prevalence of local minimizers
remains to be understood.

1.3. Outline of the Paper

The remainder of the paper establishes the results outlined above. Section 2
covers the �-liminf and equi-coercivity parts of Theorem 1.1, while Section 3
handles the recovery sequence part. Section 4 establishes Theorem 1.2. Section 5
discusses the method of stable lines. Finally, Section 6 proves Proposition 1.1 and
presents the details behind the patterns sketched in Fig. 2. Since Corollary 1.1-
Corollary 1.3 follow more or less immediately from the theorems as above, we do
not repeat their proofs below.

1.4. Notation

We use big O and little o notation as well as their abbreviations � and �. We
write f = o(g) and f � g to mean that the functions f and g satisfy f

g → 0 in a
relevant limit, and f = O(g) and f � g to mean that there exists a constantC > 0
such that f ≤ Cg. If C = C(α) we indicate this using a subscript, as in f �α g.
We write f ∼ g to mean that f � g and g � f . We abbreviate f ∨ g = max{ f, g}
and f ∧ g = min{ f, g}.

Dots and angle brackets denote the Euclidean vector and Frobeniusmatrix inner
products x · y = ∑

i xi yi and 〈A, B〉 =
∑

i j Ai j Bi j . Single lines without subscripts
denote Eucidean and Frobenius norms. The open Euclidean ball centered at x with
radius r is Br (x) = B(x, r) = {y : |x − y| < r}. We abbreviate Br = Br (0). The
shortest Euclidean distance from x to a set S is dS(x) = d(x, S) = infy∈S|x − y|.
We use the matrix norms

|A| = |A|2 =
√∑

i j

|Ai j |2, |A|1 =
∑
i j

|Ai j |, |A|∞ = max
i j

|Ai j |

throughout. Double lines || · || are reserved for function space norms.
Regarding function spaces, we use Ck(X) and Lip(X) to mean the spaces of

real-valued, k-times differentiable and Lipschitz continuous functions on some
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appropriate domain or metric space X . Subscripts are used as normal, with b for
uniformly bounded functions and c for compactly supported ones. Semi-colons
indicate ranges other than R. For instance, Cb(�;Symd) indicates the space of
continuous, uniformly bounded, symmetric d-by-d matrix-valued functions on �.
The Sobolev spacesWk,r (�) and their local versionsWk,r

loc (�) are defined as usual.
We take the convention of referring to the (unique) continuous representative of a
function that is a.e. defined, if it exists. See Section 1.1.3 for BD(�) and HB(�).

Regarding measures, we write M(X) to mean the space of finite, real-valued
Radonmeasures on some locally compact Hausdorff space X . Semi-colons indicate
values in vector spaces other than R. The subscript + indicates non-negativity.
Given σ ∈ Cb(X;Symd) and μ ∈ M(X;Symd), we denote their Frobenius inner
product and its integral on X by

〈σ,μ〉 =
∑
i j

σi jμi j and
ˆ
X
〈σ,μ〉 = 〈σ,μ〉 (X).

Given a Borel measurable set S, we write μ�S to mean the restriction of μ to S
defined byμ�S(·) = μ(S∩·). The two-dimensional Lebesgue and one-dimensional
Hausdorff measures L2 and H1 appear throughout. We also use the notations dx
and ds. If a property is stated simply as holding “a.e.”, we mean that it holds with
respect to Lebesgue unless the situation dictates otherwise.We denote |S| = L2(S).

Finally, by a “curve” wemean a homeomorphic copy of an open interval I ⊂ R,
i.e., its image under a continuous and one-to-one map. Such a map “parameterizes”
the given curve. Any further regularity will be specified, e.g., a smooth curve is one
that admits a C∞ parameterization. Given a Lipschitz curve � ⊂ R

2, its tangent
lines Ts� are defined for H1-a.e. s ∈ �, along with a choice of unit tangent and
unit normal vector τ̂� and ν̂� satisfying

τ̂�(s)||Ts� and ν̂�(s) ⊥ Ts� forH1-a.e. s ∈ �.

We refer to the unit tangent and outwards-pointing unit normal at ∂� simply as τ̂
and ν̂. By convention, τ̂ = ν̂⊥ where⊥ denotes counterclockwise rotation by π/2.

2. A priori Lower Bounds and Tension-Free Limits

This section establishes the equi-coercivity and �-liminf parts of Theorem 1.1.
These results do not rely on the full set of assumptions listed at the start of Sec-
tion 1.2, andmake use of only the basic ones in (1.14). For the reader’s convenience,
we recall these assumptions in the formal statement of what we prove.

Proposition 2.1. (equi-coercivity and �-liminf inequality) Suppose

� is bounded and Lipschitz, p ∈ W 2,2(�),
b

k
,
γ

k
, 2

√
bk + γ � 1 (2.1)

and let the sequence {(ub,k,γ , wb,k,γ )} satisfy

lim sup
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

< ∞. (2.2)

Then the following statements hold:
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1. {(ub,k,γ , wb,k,γ )} is weakly-∗ pre-compact in BD(�)/R×W 1,2(�);
2. each of its weak-∗ limit points are of the form (ueff, 0)where ueff is tension-free,

i.e.,

e(ueff) ≤ 1

2
∇ p ⊗∇ p dx .

Moreover, if

(ub,k,γ , wb,k,γ )
∗
⇀ (ueff, 0) weakly- ∗ in BD(�)/R×W 1,2(�)

then

lim inf
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

≥
ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds.

Remark 2.1. In the course of proving this result, we will show that any sequence
that obeys (2.2) is asymptotically strain-free in that (1.23) holds—this follows in
particular from the first inequality in Lemma 2.1. Lemma 2.2 then explains how a
unique defect measure μ can be associated to any asymptotically strain-free and
weakly-∗ converging sequence. Together, these facts justify the introduction of
defect measures in Section 1.2.2.

We begin with a list of a priori bounds. Recall the definition of the strain ε in
(1.6).

Lemma 2.1. The inequalities
ˆ
�

|ε|2 �� Eb,k,γ + γ 2,

ˆ
�

|e(u)| ��,p 1+√
Eb,k,γ + Eb,k,γ√

bk ∨ γ
,

ˆ
�

|w|2 ��

Eb,k,γ + γ 2

k
,

ˆ
�

|∇w|2 ��,p 1+ Eb,k,γ√
bk ∨ γ

,

ˆ
�

|∇∇w|2 ��,p 1+ Eb,k,γ + γ 2

b

hold for all 0 < b ≤ k and 0 ≤ γ ≤ 1.

Proof. First, we add a suitable constant to Eb,k,γ to make the result non-negative.
Integrating the pointwise identity

1

2
|ε − γ I d|2 = 1

2
|ε|2 − 〈ε, γ I d〉 + 1

2
|γ I d|2 = 1

2
|ε|2 − γ tr ε + γ 2

= 1

2
|ε|2 + γ

(
1

2
|∇ p|2 − div u

)
− γ

2
|∇w|2 + γ 2

and applying the divergence theorem, there results

1

2

ˆ
�

|ε − γ I d|2 + γ

2

ˆ
�

|∇w|2 = 1

2

ˆ
�

|ε|2 + γ

(ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

u · ν̂
)

+γ 2|�|.
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Therefore,

Ẽb,k,γ = Eb,k,γ + γ 2|�|
= 1

2

ˆ
�

|ε − γ I d|2 + γ

2

ˆ
�

|∇w|2

+b

2

ˆ
�

|∇∇w − ∇∇ p|2 + k

2

ˆ
�

|w|2 ≥ 0.

(2.3)

Being a sum of squares, Ẽb,k,γ easily admits lower bounds. Bounds on the original
energy follow.

We proceed to prove the inequalities from the claim. It follows from (2.3) that

ˆ
�

|w|2 � Ẽb,k,γ

k

and so the third inequality holds. The first and last inequalities are just as easily
shown. Using the triangle inequality and (2.3) we see that

ˆ
�

|ε|2 �
ˆ
�

|ε − γ I d|2 + γ 2|�| � Ẽb,k,γ + γ 2|�|, (2.4)

ˆ
�

|∇∇w|2 �
ˆ
�

|∇∇w − ∇∇ p|2 +
ˆ
�

|∇∇ p|2 � Ẽb,k,γ

b
+ ||∇∇ p||2L2 . (2.5)

The first and last inequalities follow. We turn now to control ∇w and e(u).
Two separate arguments yield bounds on ∇w, depending on whether γ ≥ √

bk
or not. The inequality

||∇w||2L2 � Ẽb,k,γ

γ
(2.6)

follows directly from (2.3) in any case. At the same time, we can interpolate be-
tween the bending and substrate terms to obtain another bound. Using the triangle
inequality with (2.3) as we did in the proof of (2.5), we note that

Ẽb,k,γ+b||∇∇ p||2L2 � b||∇∇w||2L2+k||w||2L2 �
√
bk||∇∇w||L2 ||w||L2+k||w||2L2

(2.7)
by an elementary Young’s inequality. Recall the Gagliardo–Nirenberg interpolation
inequality

||∇w||L2(�) � ||∇∇w||1/2
L2(�)

||w||1/2
L2(�)

+ C(�)||w||L2(�), (2.8)

which holds for all w ∈ W 2,2(�) [31]. Since by hypothesis b ≤ k, it follows from
(2.7) and (2.8) that

||∇w||2L2 ��

√
bk||∇∇w||L2 ||w||L2 + k||w||2

L2√
bk

� Ẽb,k,γ√
bk

+ ||∇∇ p||2L2 . (2.9)

Combining (2.6) and (2.9) yields the fourth inequality from the claim.
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Finally, we handle e(u). By the definition of ε and Hölder’s inequality,

ˆ
�

|e(u)| ≤
ˆ
�

|ε| +
ˆ
�

∣∣∣∣12∇w ⊗∇w

∣∣∣∣+
ˆ
�

∣∣∣∣12∇ p ⊗∇ p

∣∣∣∣
� |�|1/2||ε||L2 + ||∇w||2L2 + ||∇ p||2L2

��

√
Ẽb,k,γ + γ 2 + Ẽb,k,γ√

bk ∨ γ
+ ||∇∇ p||2L2 + ||∇ p||2L2 ,

where in the last line we used (2.4), (2.6), and (2.9). The remaining inequality
follows. ��
Next, we verify that the weak-∗ limits of asymptotically strain-free sequences are
tension-free. At the same time, we justify the notion of defect measures introduced
in Section 1.2.2.

Lemma 2.2. Let

(un, wn)
∗
⇀ (u, 0) weakly- ∗ in BD(�)/R×W 1,2(�)

and suppose it is asymptotically strain-free in that

e(un)+ 1

2
∇wn ⊗∇wn → 1

2
∇ p ⊗∇ p stongly in L2(�;Sym2).

Then {∇wn ⊗ ∇wn dx} converges weakly-∗ in M(�;Sym2) to a non-negative,
Sym2-valued Radon measure μ called the defect measure of the given sequence.
The defect measure satisfies

e(u)+ 1

2
μ = 1

2
∇ p ⊗∇ p dx . (2.10)

As a result, the limiting in-plane displacement u must be tension-free.

Proof. Evidently,

∇wn ⊗∇wn dx = 2

(
e(un)+ 1

2
∇wn ⊗∇wn dx

)
− 2e(un) ∀ n.

On the righthand side,we see the difference between a sequence converging strongly
to∇ p⊗∇ p dx , and another converging weakly-∗ to 2e(u). Therefore, the lefthand
side converges weakly-∗. Passing to the limit and rearranging yields (2.10). Non-
negativity is preserved by weak-∗ convergence. Therefore, μ ≥ 0. ��

At this point, we have enough to deduce the first part of Proposition 2.1 on
compactness. In order to prove the second part on a priori lower bounds, we must
identify the optimal prefactor in the bound on ∇w from Lemma 2.1. That bound
was a consequence of the Gagliardo–Nirenberg interpolation inequality (2.8) so,
naturally, we seek a sharpened version of it now.
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Lemma 2.3. Let χ ∈ C∞
c (�) have 0 ≤ χ ≤ 1. If b, k > 0 and w ∈ W 2,2(�),

b
ˆ
�

|∇∇w|2 + k
ˆ
�

|w|2 ≥ 2
√
bk

ˆ
�

|∇w|2χ +
ˆ
�

|b1/2�w + k1/2w|2χ
− 2

√
bk||∇χ ||L∞(�)||w||L2(�)||∇w||L2(�)

− b||∇∇χ ||L∞(�)||∇w||2L2(�)
.

Remark 2.2. Below, we shall apply this to sequences {wn} converging weakly-∗ to
zero in W 1,2(�), under the condition that b � k. Dividing by

√
bk we see that the

terms appearing on the second line above behave as errors. These arise, respectively,
from estimates on div(w∇w) and det∇∇w in negative norms.

Remark 2.3. Following up on the previous remark, we note that if ε ≈ 0 then
det∇∇w ≈ det∇∇ p as a result of the very weak Hessian identity (1.28), the
Saint-Venant compatibility conditions (1.26), and the definition of the strain.Hence,
|∇∇w| ≈ |�w| explaining the appearance of the mean curvature H ≈ 1

2�w on
the lefthand side of the geometric interpolation inequality (1.18).

Proof. Note the pointwise identities

|∇∇w|2 = |�w|2 − 2 det∇∇w (2.11)

b|�w|2 + k|w|2 = 2
√
bk

(
|∇w|2 − div(w∇w)

)
+ |b1/2�w + k1/2w|2 (2.12)

as well as the very weak Hessian identity (1.28). Now let χ be as in the statement.
Testing the first identity (2.11) against χ and integrating by parts using (1.28), we
obtain that

ˆ
�

|∇∇w|2χ =
ˆ
�

|�w|2χ − 2 det∇∇wχ

=
ˆ
�

|�w|2χ +
〈
∇w ⊗∇w,∇⊥∇⊥χ

〉

≥
ˆ
�

|�w|2χ − ||∇∇χ ||L∞||∇w||2L2 .

Testing the second identity (2.12) against χ and integrating by parts, there follows

ˆ
�

(
b|�w|2 + k|w|2

)
χ = 2

√
bk

ˆ
�

|∇w|2χ + w∇w · ∇χ

+
ˆ
�

|b1/2�w + k1/2w|2χ

≥ 2
√
bk

ˆ
�

|∇w|2χ +
ˆ
�

|b1/2�w + k1/2w|2χ
− 2

√
bk||∇χ ||L∞||w||L2 ||∇w||L2 .
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Combining these and using that 0 ≤ χ ≤ 1, we deduce that

b
ˆ
�

|∇∇w|2 + k
ˆ
�

|w|2 ≥
ˆ
�

(
b|∇∇w|2 + k|w|2

)
χ

≥
ˆ
�

(
b|�w|2 + k|w|2

)
χ − b||∇∇χ ||L∞||∇w||2L2

≥ 2
√
bk

ˆ
�

|∇w|2χ +
ˆ
�

|b1/2�w − k1/2w|2χ
− 2

√
bk||∇χ ||L∞||w||L2 ||∇w||L2

− b||∇∇χ ||L∞||∇w||2L2 .

This completes the proof. ��
We are ready to prove the �-liminf and equi-coercivity parts of Theorem 1.1.

Proof of Proposition 2.1. First, consider an admissible sequence {(ub,k,γ , wb,k,γ )}
whose energy satisfies

Eb,k,γ (ub,k,γ , wb,k,γ ) �
√
bk ∨ γ � 1 (2.13)

but is otherwise arbitrary. We must prove that it is weakly-∗ pre-compact and
identify its limit points. According to Lemma 2.1 and the assumptions on the
parameters in (2.1), any sequence satisfying (2.13) enjoys the estimatesˆ

�

|e(ub,k,γ )+ 1

2
∇wb,k,γ ⊗∇wb,k,γ − 1

2
∇ p ⊗∇ p|2 ��

√
bk ∨ γ + γ 2 � 1,

(2.14)ˆ
�

|e(ub,k,γ )| ��,p 1+
√√

bk ∨ γ +
√
bk ∨ γ√
bk ∨ γ

� 1, (2.15)

ˆ
�

|wb,k,γ |2 ��

√
bk ∨ γ + γ 2

k
�
√
b

k
∨ γ

k
� 1, (2.16)

ˆ
�

|∇wb,k,γ |2 ��,p 1+
√
bk ∨ γ√
bk ∨ γ

� 1, (2.17)

ˆ
�

|∇∇wb,k,γ |2 ��,p 1+
√
bk ∨ γ + γ 2

b
�
√
k

b
∨ γ

b
. (2.18)

The first estimate shows that {(ub,k,γ , wb,k,γ )} is asymptotically strain-free. The
secondproves thatub,k,γ remains uniformlybounded in BD/R. The third and fourth
estimates show that wb,k,γ remains uniformly bounded in W 1,2 and converges
to zero strongly in L2. In combination with the Banach–Alaoglu theorem, these
imply that {(ub,k,γ , wb,k,γ )} is weakly-∗ pre-compact in BD/R×W 1,2. Applying
Lemma 2.2 we learn that its limit points are of the form (ueff, 0)where the in-plane
part ueff is tension-free. The first part of Proposition 2.1 is proved.

Now consider an admissible sequence satisfying

(ub,k,γ , wb,k,γ )
∗
⇀ (ueff, 0) weakly- ∗ in BD/R×W 1,2



Curvature-driven wrinkling

and for which the bound (2.13) holds. In terms of the defect measure μ from
Lemma 2.2, we must prove that

lim inf
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

≥ 1

2

ˆ
�

|μ|1. (2.19)

Indeed, according to (2.10) and the first integration by parts identity in (1.13),

1

2

ˆ
�

|μ|1 = 1

2

ˆ
�

〈I d, μ〉 =
ˆ
�

〈
I d,

1

2
∇ p ⊗∇ p dx − e(ueff)

〉

=
ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

ueff · ν̂ ds.

Our plan is to pass to the limit in the bending and substrate terms from Eb,k,γ using
the sharp Gagliardo–Nirenberg inequality from Lemma 2.3. Passing to the limit in
the surface energy presents no additional difficulties.

Consider the bending term. Due to (2.18) and our assumption from (2.1) that
b � k, it satisfies

b
ˆ
�

|∇∇wb,k,γ − ∇∇ p|2 ≥ b
ˆ
�

|∇∇wb,k,γ |2 − 2b||∇∇wb,k,γ ||L2 ||∇∇ p||L2

− b||∇∇ p||2L2

≥ b
ˆ
�

|∇∇wb,k,γ |2 − o(
√
bk).

Fix a cutoff functionχ ∈ C∞
c (�) that satisfies 0 ≤ χ ≤ 1 but is otherwise arbitrary.

Using the sharp Gagliardo–Nirenberg inequality from Lemma 2.3 and the bound
just obtained, we conclude that

b
ˆ
�

|∇∇wb,k,γ −∇∇ p|2 + k
ˆ
�

|wb,k,γ |2

≥ 2
√
bk

ˆ
�

|∇wb,k,γ |2χ − 2
√
bk||∇χ ||L∞||w||L2 ||∇w||L2

− b||∇∇χ ||L∞||∇w||2L2 − o(
√
bk)

≥ 2
√
bk

ˆ
�

|∇wb,k,γ |2χ − o(
√
bk)

by (2.16) and (2.17). Combining this with the definition (1.10) of the energy and
(2.14), there results

Eb,k,γ (ub,k,γ , wb,k,γ ) ≥ b

2

ˆ
�

|∇∇wb,k,γ −∇∇ p|2 + k

2

ˆ
�

|wb,k,γ |2

+ γ

ˆ
�

1

2
|∇ p|2 − div ub,k,γ

≥ (2
√
bk + γ )

ˆ
�

〈
χ I d,

1

2
∇wb,k,γ ⊗∇wb,k,γ

〉

− o(
√
bk ∨ γ ).
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Dividing by 2
√
bk + γ and passing to the limit via the defect measure μ from

Lemma 2.2 yields

lim inf
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

≥ lim
ˆ
�

〈
χ I d,

1

2
∇wb,k,γ ⊗∇wb,k,γ

〉

= 1

2

ˆ
�

〈χ I d, μ〉 .

Letting χ ↑ 1 and noting that μ ≥ 0 we obtain (2.19). ��

3. The Piecewise Herringbone Construction

The previous section established the�-liminf and equi-coercivity parts of Theo-
rem 1.1. Here, we complete its proof by producing the required recovery sequences.
To do so we will make use of all but one of the assumptions present in Section 1.2.
The main result of this section is as follows:

Proposition 3.1. (recovery sequences) Suppose

� is bounded, Lipschitz, and strictly star-shaped,

p ∈ W 2,∞(�), and

(
b

k

)1/10

� 2
√
bk + γ � 1 (3.1)

and let ueff ∈ BD(�) be tension-free, meaning that

e(ueff) ≤ 1

2
∇ p ⊗∇ p dx .

Then there exists a sequence

(ub,k,γ , wb,k,γ )
∗
⇀ (ueff, 0) weakly- ∗ in BD(�)×W 1,2(�)

such that

lim
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

=
ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds. (3.2)

Remark 3.1. The missing hypothesis is that γ � k (see (1.14b)). While the form of
the �-limit depends on this hypothesis—as can be anticipated from the discussion
surrounding (1.12)—it is not necessary here as the recovery sequences we describe
do not depend on γ . Nevertheless, we include γ as a subscript to keep the notation
consistent, and also to remind that other recovery sequences may very well depend
on all three parameters.

Our proof of Proposition 3.1 centers around the notion of the target defect measure
μ specified by ueff. Following the discussion in Section 1.2.2 in the introduction,
we note that any recovery sequence must satisfy

∇wb,k,γ ⊗∇wb,k,γ dx
∗
⇀ μ weakly- ∗ inM(�;Sym2)

where μ = −2εeff and εeff = e(ueff)− 1

2
∇ p ⊗∇ p dx .
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Fig. 3. A “piecewise herringbone” pattern representative of the ones we use to construc-
t recovery sequences. Herringbones adapted to constant target defects occupy individual
squares. Each herringbone consists of twinned uni-directional wrinkles and bands of in-
plane shear. Wrinkles are indicated by thin lines, and dashed lines indicate “internal walls”
across which their direction rapidly varies. Bold lines indicate “external walls” separating
the herringbones. The number of squares, the number of twins, and the width of the walls
will be optimized

We think of 1
2μ as a “misfit” to be alleviated by some well-chosen pattern. Note

μ ≥ 0 as ueff is tension-free.
The proof proceeds in three steps. First, we reduce to the case where μ is

Lipschitz and strictly positive. The key lemma is in Section 3.1, where we show
how to approximate tension-free u ∈ BD with u ∈ C∞ that are uniformly tension-
free, meaning that

e(u) ≤ 1

2
∇ p ⊗∇ p − λI d for some λ > 0. (3.3)

Though our proof of this relies crucially on the supposed strict star-shapedness of
�, we wonder whether it holds in greater generality. It is not difficult to understand
why we would likeμ to be Lipschitz, as then it can be approximated by a piecewise
constant target defect 〈μ〉 obtained from averagingμ on a lattice of squares (shown
in Fig. 3 in bold). On the other hand, we pass from μ ≥ 0 to μ > 0 simply because
it shortens the proof. Of course this does not preclude the possibility that optimal
μ—i.e., those minimizing the righthand side of (3.2), see also (1.30)—may turn
out to be rank one or even to vanish somewhere.

The second step zooms into the squares whereμ ≈ 〈μ〉. Section 3.2 produces a
two-scale wrinkling pattern known alternatively as the “herringbone”, “chevron”,
or “zigzag” one, and which can be adapted to any constant target defect (e.g., the
ones prescribed by 〈μ〉). Such patterns occur naturally in bi-axially compressed
sheets whose displacements are suppressed [15,17,39,40]. We were inspired by
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their analyses in [5,6,47], the last of which comes the closest to what we do here.
That reference identifies the scaling law of the minimum energy in a setup favoring
herringbones. In Section 3.2,we sharpen this resultwith a version of the herringbone
ansatz whose energy is optimal at leading order.

Finally, Section 3.3 assembles the individually herringboned squares into the
“piecewise herringbone” pattern depicted in Fig. 3, and estimates its energy. We
discuss “walls” of two types where the direction of wrinkling can rapidly change:
“internal walls” that reside within the squares, and “external walls” at the interfaces
between neighboring squares. The total cost of the walls increases in proportion to
their area. It scales with the total number of squares. On the other hand, the cost
associated with the approximation μ ≈ 〈μ〉 decays with an increasing number of
squares. Balancing these, we eventually deduce that the excess energy implicit in
(3.2) can be made � (b/k)1/10 by using ∼ (k/b)1/10 squares—see Corollary 3.1
for the details. Section 3.4 concludes with the formal proof of Proposition 3.1.

3.1. Smooth Approximation of Tension-Free Displacements

We start by showing how to approximate tension-free displacements by smooth
and uniformly tension-free ones. It will be important later on that we work in a
topology for which the functional on the righthand side of (3.2) is continuous.
Although the trace map u �→ u|∂� fails to be continuous in the weak-∗ topology on
BD, it is continuous in the intermediate topology. See Section 1.1.3 for the relevant
definitions.

Lemma 3.1. Let � ⊂ R
2 be bounded, Lipschitz, and strictly star-shaped, and

let p ∈ W 2,∞(�). The set of smooth and uniformly tension-free displacements
is intermediately dense in the tension-free ones. That is, given any tension-free
u ∈ BD(�), there exists {un}n∈N ⊂ C∞(�;R

2) satisfying (3.3) such that

un → u strongly in L1(�) and
ˆ
�

|e(un)|1 →
ˆ
�

|e(u)|1 as n → ∞.

Proof. After a translation we can take � to be strictly star-shaped with respect to
the origin. Also, since u is the intermediate limit of uλ = u − λx as λ → 0, it
suffices to prove the result for displacements that are uniformly tension-free. So let
u ∈ BD(�) be uniformly tension-free and let λ > 0 be as in (3.3). We construct
the desired approximations {un} in a two step process of dilation and mollification.

First, we dilate: given τ ∈ (0, 1), set �τ = 1
τ
� and let uτ : �τ → R

2 and
pτ : �τ → R be given by

uτ (x) = 1

τ
u(τ x) and pτ (x) = 1

τ
p(τ x) for x ∈ �τ . (3.4)

Since e(uτ ) = e(u)(τ ·) it follows from (3.3) that

e(uτ ) ≤
(
1

2
∇ pτ ⊗∇ pτ − λI d

)
dx on �τ . (3.5)
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Next, we mollify: fix ρ ∈ C∞
c (B1) with ρ ≥ 0 and

´
B1

ρ dx = 1, and denote by
(·)δ the standard mollification

( f )δ(x) =
ˆ
R2

1

δ2
ρ

(
x − y

δ

)
f (y) dy for δ > 0.

Recall � was taken to be strictly star-shaped with respect to 0. Thus, there exists
c0(�) > 0 such that

0 < δ < c0(�)(1− τ) �⇒ �+ Bδ ⊂ �τ . (3.6)

So long as τ and δ satisfy (3.6), we may define uτ,δ : � → R
2 by writing

uτ,δ(x) = (uτ )δ(x), x ∈ �.

Evidently, these are smooth. We proceed to take δ → 0 and τ → 1.
We claim that uτ,δ is uniformly tension-free so long as τ is close enough to one

and δ is sufficiently small. To see this, note it follows from (3.5) and our choice to
take ρ ≥ 0 that

e(uτ,δ) = (e(uτ ))δ ≤
(
1

2
∇ pτ ⊗∇ pτ − λI d

)
δ

= 1

2
(∇ pτ ⊗∇ pτ )δ − λI d on �.

Recalling the definition of pτ from (3.4), we see that∣∣(∇ pτ ⊗∇ pτ )δ (x)− ∇ p ⊗∇ p(x)
∣∣

≤
ˆ

ρ(y) |∇ p ⊗∇ p(τ (x − δy))− ∇ p ⊗∇ p(x)| dy
≤ ||∇ p||L∞(�)||∇∇ p||L∞(�)(|τ − 1||x | + |τ ||δ|) ��,p |τ − 1| + |δ|

for x ∈ �. Taking τ close enough to one and δ sufficiently small ensures that

e(uτ,δ) ≤ 1

2
∇ p ⊗∇ p − λ

2
I d on �,

as desired.
It remains to choose sequences τn → 1 and δn → 0 such that

uτn ,δn → u strongly in L1(�) and
ˆ
�

|e(uτn ,δn )|1 →
ˆ
�

|e(u)|1 as n → ∞.

The L1-convergence holds in any case. For the second convergence, note that

e(uτ,δ)
∗
⇀ e(uτ ) weakly- ∗ inM(�τ ;Sym2) as δ → 0

for each fixed τ ∈ (0, 1). As |e(u)|(�) < ∞, there exist at most countably many τ
for which |e(uτ )|(∂�)  = 0. Therefore, we can find τn → 1 and δn → 0 such that

lim
n→∞

ˆ
�

|e(uτn ,δn )|1 = lim
n→∞ lim

δ→0

ˆ
�

|e(uτn ,δ)|1 = lim
n→∞

ˆ
�

|e(uτn )|1 =
ˆ
�

|e(u)|1.

Taking n large enough and setting un = uτn ,δn proves the result. ��
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Lemma 3.1 allows us to restrict the proof of Proposition 3.1 to ueff that are
smooth and uniformly tension-free, in which case the target defect can be given the
pointwise definition

μ(x) = ∇ p ⊗∇ p(x)− 2e(ueff)(x) ∀ x ∈ �. (3.7)

Note μ > 0 uniformly on �. Thanks to our assumption that p ∈ W 2,∞ so that
∇ p ∈ Lip, we see that μ ∈ Lip.

We now begin the process of constructing admissible displacements satisfying

u ≈ ueff, w ≈ 0, e(u)+ 1

2
∇w ⊗∇w ≈ 1

2
∇ p ⊗∇ p

with nearly minimal energy. Consider the change of variables u → ueff + v. Since
e(·) is linear, the energy depends on (v,w) as

Eb,k,γ (ueff + v,w) = 1

2

ˆ
�

|e(v)+ 1

2
∇w ⊗∇w − 1

2
μ|2

+ b

2

ˆ
�

|∇∇w −∇∇ p|2 + k

2

ˆ
�

|w|2

+ γ

(ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

ueff · ν̂
)
− γ

ˆ
∂�

v · ν̂

where we have introduced μ from (3.7) into the stretching term. We treat the
simplest case where μ is constant in Section 3.2, and then proceed to discuss more
general μ in Section 3.3.

3.2. Herringbone Patterns Adapted to Constant Defect

Let Q ⊂ R
2 be a square and consider a constant target defect μ ∈ Sym2 where

μ > 0. Here, we describe a family of displacements

{(vherr, wherr)} ⊂ W 1,∞(Q;R
2)×W 2,∞(Q)

adapted to μ in that

vherr ≈ 0, wherr ≈ 0, e(vherr)+ 1

2
∇wherr ⊗∇wherr ≈ 1

2
μ

and that have nearly minimal energy. Fig. 4 depicts the herringbone patterns we
intend to construct. Solid lines indicate wrinkle peaks and troughs. Their direction
alternates in twin pairs, in tandem with bands of alternating in-plane shear. The
“area fraction” referred to there is set by the parameter

θ = λ1

λ1 + λ2
∈ (0,

1

2
] where 0 < λ1 ≤ λ2 are the eigenvalues of μ. (3.8)

Panel (a) depicts the isotropic case θ = 1
2 in which μ is a multiple of the identity.

Panel (b) shows an anisotropic case where θ ∈ (0, 1
2 ). Sending θ → 0 recovers

uni-directional wrinkles as in Panel (c).
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Fig. 4. Herringbone patterns with variable area fractions adapted to constant defects. Solid
lines depict wrinkle peaks and troughs, while dashed lines indicate the presence of “internal
walls” across which the wrinkling direction changes. Panel (a) depicts an “isotropic” her-
ringbone for isotropic defect. Panel (b) shows an “anisotropic” herringbone for anisotropic
defect. Panel (c) depicts uni-directional wrinkles arising for defect of rank one

Our herringbones will be parameterized by

lwr ∈ (0,∞), lsh ∈ (0,∞), δint ∈
(
0,

1

2
θlsh

)
. (3.9)

The first parameter lwr sets the lengthscale of the wrinkles. The second parameter
lsh sets the magnitude of the in-plane shear. There is an energetic cost associated
to changing the direction of wrinkling, and δint sets the thickness of the associated
“internal walls”. (Such walls are internal in the sense that they lie within the her-
ringbone, as opposed to the “external walls” introduced in Section 3.3.) The energy
estimates obtained in this section apply so long as (3.9) holds. However, it will be
convenient going forward to keep in mind the special case where

(
b

k

)1/4

= lwr � lsh � diam Q and lwr � δint �μ lsh

in which case there holds

Eb,k,γ (vherr, wherr) = (2
√
bk + γ ) · 1

2
trμ|Q| + O

(
δint

lsh

)
.

The error term is due to the internal walls. Combining this estimate with the a priori
lower bounds from Section 2, we see that herringbones for which δint

lsh
� 2

√
bk+γ

are optimal at leading order. We turn to construct a general herringbone now, and
to estimate its energy.

3.2.1. Constructing the Herringbone Decompose the target defect as

μ = λ1η̂1 ⊗ η̂1 + λ2η̂2 ⊗ η̂2

where η̂1 and η̂2 are orthonormal eigenvectors corresponding to the eigenvalues λ1
and λ2.
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Step 1: produce bands of alternating in-plane shear at scale lsh.We start by intro-
ducing an in-plane displacement to transform the target defect from rank two to
rank one. Define vsh : R

2 → R
2 by

vsh(x) =
√
2lshA

(
x · (η̂2 − η̂1)√

2lsh

)
(η̂2 + η̂1), x ∈ R

2 (3.10)

where A : R → R is the one-periodic extension of

A(t) =
{

λ2
2 t 0 ≤ t < θ
λ2
2 θ − λ1

2 (t − θ) θ ≤ t ≤ 1
, t ∈ [0, 1].

It follows from the definition of θ in (3.8) that A is Lipschitz. Indeed, A′(t) equals
to λ2

2 for t ∈ (0, θ) and −λ1
2 for t ∈ (θ, 1), so that it integrates to zero.

Now, as

∇vsh = A′
(
x · (η̂2 − η̂1)√

2lsh

)
(η̂2 + η̂1)⊗ (η̂2 − η̂1), (3.11)

we see that

e(vsh)− 1

2
μ =

[
A′
(
x · (η̂2 − η̂1)√

2lsh

)
− λ2

2

]
η̂2 ⊗ η̂2

−
[
A′
(
x · (η̂2 − η̂1)√

2lsh

)
+ λ1

2

]
η̂1 ⊗ η̂1.

Recalling that A′ is alternatively equal to λ2
2 or −λ1

2 , we deduce that

e(vsh)− 1

2
μ = −1

2
trμ · η̂herr ⊗ η̂herr on R

2, (3.12)

where the unit vector field η̂herr : R
2 → S1 satisfies

η̂herr(x) =
{
η̂1 0 ≤ x · η̂2−η̂1√

2
< θlsh

η̂2 θlsh ≤ x · η̂2−η̂1√
2

≤ 1
when x · η̂2 − η̂1√

2
∈ [0, 1] (3.13)

and is otherwise periodic. Thus vsh transforms μ into a defect which is piecewise
constant and rank one.

In the next step, we introduce uni-directional wrinkles in the direction of η̂herr.
Note the jump set of η̂herr is

Jη̂herr =
{
x ∈ R

2 : x · η̂2 − η̂1√
2

∈ lshZ

}
∪
{
x ∈ R

2 : x · η̂2 − η̂1√
2

∈ θlsh + lshZ

}
. (3.14)

It consists of (countably many) parallel lines at distances θlsh and (1− θ)lsh apart.
The pointwise estimates

||vsh||L∞ � trμ · lsh and ||∇vsh||L∞ � trμ (3.15)

follow from (3.10) and (3.11).
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Step 2: superimpose twin bands of wrinkles at scale lwr.Wenowconstruct uni-directional

wrinkles to alleviate the strain left over from Step 1. Define vwr : R
2 → R

2 and
wwr : R

2 → R by

vwr(x) = 1

2
trμ · lwrV

(
x · η̂herr(x)

lwr

)
η̂herr(x), x ∈ R

2,

wwr(x) = √
trμ · lwrW

(
x · η̂herr(x)

lwr

)
, x ∈ R

2. (3.16)

Here, W : R → R is given by

W (t) = √
2 cos(t), t ∈ R

and V : R → R is the unique 2π -periodic solution of

V ′(t)+ |W ′(t)|2 = 1 ∀ t ∈ R, V (0) = 0.

Such a solution exists as
ffl 2π
0 |W ′|2 = 1.

Evidently,

∇vwr = 1

2
trμ · V ′

(
x · η̂herr
lwr

)
η̂herr ⊗ η̂herr on R

2\Jη̂herr ,

∇wwr = √
trμ ·W ′

(
x · η̂herr
lwr

)
η̂herr on R

2\Jη̂herr (3.17)

and so

e(vwr)+ 1

2
∇wwr ⊗∇wwr = 1

2
trμ · η̂herr ⊗ η̂herr on R

2\Jη̂herr . (3.18)

Adding up (3.12) and (3.18), we see that

e(vsh + vwr)+ 1

2
∇wwr ⊗∇wwr = 1

2
μ on R

2\Jη̂herr . (3.19)

As vwr and wwr may jump across Jη̂herr , this identity may fail to hold there. The
pointwise estimates

||vwr||L∞ � trμ · lwr, ||∇vwr||L∞(R2\Jη̂herr ) � trμ, (3.20)

||wwr||L∞ �
√
trμ · lwr, ||∇wwr||L∞(R2\Jη̂herr ) �

√
trμ,

||∇∇wwr||L∞(R2\Jη̂herr ) �
√
trμ

lwr
(3.21)

follow from (3.16) and (3.17).
Step 3: join the wrinkles across internal walls at scale δint. Finally, in order to en-
sure their bending energy is finite, we must smooth the wrinkles across the jump set
Jη̂herr . For simplicity, and because it will not affect the estimates at leading order,
we use a cutoff function χint supported away from Jη̂herr to define the internal walls.
(Our choice to use a simple cutoff here manifests in the assumption (1.15b).)

The shortest distance between two lines belonging to Jη̂herr is θlsh. Since by
hypothesis δint < θlsh, there exists a smooth cutoff function χint ∈ C∞(R2) with
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• 0 ≤ χint ≤ 1
• χint(x) = 0 if d(x, Jη̂herr) ≤ 1

2δint and χint(x) = 1 if d(x, Jη̂herr) ≥ δint,
• ||∇χint||L∞ � 1

δint
and ||∇∇χint||L∞ � 1

δ2int

where the constants implicit in the above are independent of all parameters. Let
vherr : Q → R

2 and wherr : Q → R be given by

vherr = vsh + vwrχint and wherr = wwrχint.

This completes our construction of the herringbone. Note it follows from (3.19)
and the definition of χint that

e(vherr)+ 1

2
∇wherr ⊗∇wherr = 1

2
μ on d(·, Jη̂herr) ≥ δint. (3.22)

The pointwise estimates

||vherr||L∞ � trμ · lsh
(
1 ∨ lwr

lsh

)
, ||∇vherr||L∞ � trμ ·

(
1 ∨ lwr

δint

)
(3.23)

||wherr||L∞ �
√
trμ · lwr, ||∇wherr||L∞ �

√
trμ ·

(
1 ∨ lwr

δint

)

||∇∇wherr||L∞ �
√
trμ

lwr
·
(
1 ∨ l2wr

δ2int

)
(3.24)

carry over from (3.15), (3.20), (3.21), and the properties of χint listed above.

3.2.2. Energy Estimates for the Herringbone We turn to estimate the energy
of the herringbones defined above. It will be convenient to decompose Q into its
“wall” and “bulk” regions given by

Qwall =
{
x ∈ Q : d(x, Jη̂herr) < δint

}
and Qbulk = Q\Qwall. (3.25)

Define

a0(lsh, lwr;μ, Q) = trμ ·
ˆ
Q

∣∣∣∣W
(
x · η̂herr(x)

lwr

)∣∣∣∣
2

dx, (3.26)

a1(lsh, lwr, δint;μ, Q) =
(
1 ∨ l4wr

δ4int

)
|Qwall|. (3.27)

Lemma 3.2. Let Q be a square, let μ ∈ Sym2 have μ > 0, and let lwr, lsh, and
δint satisfy (3.9). The herringbones constructed in Section 3.2.1 obey the following
estimates:

• the stretching energy satisfies

ˆ
Q

∣∣∣∣e(vherr)+ 1

2
∇wherr ⊗∇wherr − 1

2
μ

∣∣∣∣
2

� |μ|2a1(μ, Q);
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• the bending energy satisfies
ˆ
Q
|∇∇wherr|2 ≤ a0(μ, Q)+ C |μ|a1(μ, Q)

l2wr

where the constant C is independent of all parameters;
• the substrate energy satisfies

ˆ
Q
|wherr|2 ≤ a0(μ, Q)l2wr.

Proof. We start by estimating the stretching energy, which requires estimating the
strain ε. Recall from (3.22) that

ε = e(vherr)+ 1

2
∇wherr ⊗∇wherr − 1

2
μ = 0 on Qbulk. (3.28)

To handle the wall region, we apply the pointwise estimates from (3.23) and (3.24)
to get that

|ε| ≤ |∇vherr| + 1

2
|∇wherr|2 + 1

2
|μ| � |μ| ·

(
1 ∨ l2wr

δ2int

)
on Qwall. (3.29)

Combining (3.28) and (3.29) yields that

ˆ
Q
|ε|2 =

(ˆ
Qwall

+
ˆ
Qbulk

)
|ε|2 � |μ|2

(
1 ∨ l4wr

δ4int

)
|Qwall| = |μ|2a1

according to (3.27). This proves the desired estimate on the stretching energy.
Nextweestimate the bending energy, being careful to keep trackof the important

prefactors. Since wherr = wwr in the bulk region and η̂herr is locally constant there,
we see from (3.16) that

∇∇wherr =
√
trμ

lwr
W ′′

(
x · η̂herr
lwr

)
η̂herr ⊗ η̂herr on Qbulk. (3.30)

On the other hand, it follows from the last estimate in (3.24) that

|∇∇wherr| �
√|μ|
lwr

(
1 ∨ l2wr

δ2int

)
on Qwall. (3.31)

Using (3.30) and (3.31) and the fact that |W | = |W ′′| we deduce that
ˆ
Q
|∇∇wherr|2 =

(ˆ
Qbulk

+
ˆ
Qwall

)
|∇∇wherr|2

≤ trμ

l2wr

ˆ
Q

∣∣∣∣W
(
x · η̂herr
lwr

)∣∣∣∣
2

+ C
|μ|
l2wr

(
1 ∨ l4wr

δ4int

)
|Qwall|

= a0 + C |μ|a1
l2wr
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by the definitions of a0 and a1 in (3.26) and (3.27).
We finish with the substrate energy. Evidently, there holds

|wherr| ≤ |wwr| = √
trμ · lwr

∣∣∣∣W
(
x · η̂herr
lwr

)∣∣∣∣ on Q

given that χint ≤ 1 and due to the out-of-plane part of (3.16). It follows that
ˆ
Q
|wherr|2 ≤

ˆ
Q
|wwr|2 = trμ · l2wr

ˆ
Q

∣∣∣∣W
(
x · η̂herr
lwr

)∣∣∣∣
2

= l2wra0,

as desired. ��
Next, we estimate the quantities a0 and a1 defined in (3.26) and (3.27).

Lemma 3.3. We have the estimates

|a0(μ, Q)− trμ · |Q|| � trμ · lwr
lsh

(
1 ∨ lsh

diam Q

)
|Q|,

a1(μ, Q) � δint

lsh

(
1 ∨ l4wr

δ4int

)(
1 ∨ lsh

diam Q

)
|Q|.

Proof. We start with a1. Recall the definitions of Jη̂herr and Qwall from (3.14) and
(3.25). The former consists of parallel lines at distances θlsh and (1− θ)lsh apart,
the total number of which intersecting Q is� diam Q

lsh
∨1. Each such line contributes

area � δint · diam Q to Qwall. Hence,

|Qwall| �
(
diam Q

lsh
∨ 1

)
· (δint · diam Q) = δint

lsh

(
1 ∨ lsh

diam Q

)
|Q|. (3.32)

It follows from (3.27) that

a1 � δint

lsh

(
1 ∨ l4wr

δ4int

)(
1 ∨ lsh

diam Q

)
|Q|.

We turn to estimate a0. First, we claim that∣∣∣∣
ˆ
S
W 2

(
x · η̂
l

)
dx − |S|

∣∣∣∣ � H1(∂S)l ∀ l ∈ (0,∞) (3.33)

if η̂ ∈ S1 and if S ⊂ R
2 is a bounded, measurable set. The constant implicit in

(3.33) is independent of l, η̂, and S. To prove it, note that W 2(·)+W 2(· + π
2 ) = 2,

from which it follows thatˆ
S
W 2

(
x · η̂
l

)
dx +

ˆ
S
W 2

(
(x + π

2 lη̂) · η̂
l

)
dx = 2|S|. (3.34)

On the other hand, a change of variables shows that
∣∣∣∣
ˆ
S
W 2

(
(x + π

2 lη̂) · η̂
l

)
−
ˆ
S
W 2

(
x · η̂
l

)∣∣∣∣ =
∣∣∣∣∣
(ˆ

S+ π
2 lη̂

−
ˆ
S

)
W 2

(
x · η̂
l

)∣∣∣∣∣
�
∣∣∣S# (

S + π

2
lη̂
)∣∣∣ . (3.35)
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To control the righthand side we use that
∣∣S#(S + lη̂)

∣∣ ≤ H1(∂S)l ∀ l ∈ (0,∞), (3.36)

a direct consequence of [69, Theorem 3]. Applying (3.34)–(3.36) proves (3.33).
With the estimate (3.33) in hand we can easily handle a0. From its definition in

(3.13), η̂herr takes on only the values η̂1 and η̂2. Decompose Q according to

Q = S1 ∪ S2 where Si =
{
x ∈ Q : η̂herr = η̂i

}
, i = 1, 2.

As in the proof of (3.32), we note that

H1(∂Si ) �
(
diam Q

lsh
∨ 1

)
· diam Q = 1

lsh

(
1 ∨ lsh

diam Q

)
|Q| (3.37)

for i = 1, 2. Hence,

|a0 − trμ · |Q|| = trμ ·
∣∣∣∣
ˆ
Q
W 2

(
x · η̂herr
lwr

)
− |Q|

∣∣∣∣
≤ trμ ·

2∑
i=1

∣∣∣∣
ˆ
Si
W 2

(
x · η̂i
lwr

)
− |Si |

∣∣∣∣

� trμ ·
2∑

i=1

H1(∂Si )lwr � trμ · lwr
lsh

(
1 ∨ lsh

diam Q

)
|Q|,

where in the second line we applied (3.33) and (3.37). ��

3.3. Piecewise Herringbone Patterns Adapted to Variable Defect

We return to � ⊂ R
2 which for our present purposes must only be a bounded

and Lipschitz domain, and consider a target defect μ : � → Sym2 that is positive
definite andLipschitz continuous. Our task is to construct a family of displacements

{(vp.h., wp.h.)} ⊂ W 1,∞(�;R
2)×W 2,∞(�)

adapted to μ in that

vp.h. ≈ 0, wp.h. ≈ 0, e(vp.h.)+ 1

2
∇wp.h. ⊗∇wp.h. ≈ 1

2
μ

and whose energy is optimal at leading order. After approximating μ by a piece-
wise constant target defect 〈μ〉 defined on a lattice of squares, we piece together
a well-chosen family of herringbones from Section 3.2 to form our “piecewise
herringbone” pattern. The result is depicted in Fig. 3 (see also Panel (a) in Fig. 1).

Our piecewise herringbones will be parameterized by

lwr ∈ (0,∞), lsh ∈ (0,∞), lavg ∈ (0,∞),

δint ∈
(
0,

1

4

λ

�
lsh

)
, δext ∈

(
0,

1

2
lavg

)
, (3.38)
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where λ,� ∈ (0,∞) satisfy

λI d ≤ μ(x) ≤ �I d ∀ x ∈ �. (3.39)

The parameters lwr, lsh, and δint should already be familiar from Section 3.2: these
set the lengthscales of the wrinkles, the in-plane shear, and the internal walls of the
herringbones. The first new parameter lavg gives the “averaging” lengthscale across
which we treat μ as if it were constant. It will be proportional to the diameter of the
herringboned squares. The parameter δext sets the thickness of the “external walls”
between neighboring squares. We shall construct a piecewise herringbone for any
choice of parameters satisfying (3.38). However, in anticipation of the optimization
that is to come, we note that ones for which

(
b

k

)1/4

= lwr � lsh � lavg � diam�,

lwr � δint �μ lsh, lsh � δext � lavg

satisfy

Eb,k,γ (vp.h., wp.h.) = (2
√
bk + γ ) · 1

2

ˆ
�

trμ dx + O

(
l2avg ∨

δint

lsh
∨ δext

lavg

)
.

The error term accounts for the cost of the approximation μ ≈ 〈μ〉 as well as
that of the walls. When it is negligible, our piecewise herringbones are optimal
at leading order (again, the requisite lower bound is contained in the results of
Section2).Minimizingover the free parametersmaximizes the rangeof this result—
see Corollary 3.1 for the details. We turn now to construct a general piecewise
herringbone, and to estimate its energy.

3.3.1. Constructing the Piecewise Herringbone

Step 1: assemble an lavg-by- lavg lattice of herringbones. Define the squares

Qα = α + (0, lavg)
2 ∀α ∈ Z

2

and let the index set I be the smallest subset of Z
2 with the property that

� ⊂ ∪α∈IQα.

Define the locally averaged target defect 〈μ〉 whose value on the αth square is

μα =
 
�∩Qα

μ(x) dx, α ∈ I. (3.40)

We produce a family of herringbone constructions {(vαherr, wα
herr)}α∈I using the

results of Section 3.2: givenα ∈ I,we definevαherr : Qα → R
2 andwα

herr : Qα → R

following the procedure from Section 3.2.1 with μα as the target defect and lsh,
lwr, and δint as above. (We take the parameters to be independent of α for ease of
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exposition, and as it will not affect the estimates at leading order.) Copying over
the pointwise bounds (3.23) and (3.24), we note that

||vαherr||L∞ � trμα · lsh
(
1 ∨ lwr

lsh

)
, ||∇vαherr||L∞ � trμα ·

(
1 ∨ lwr

δint

)
(3.41)

||wα
herr||L∞ �

√
trμα · lwr, ||∇wα

herr||L∞ �
√
trμα ·

(
1 ∨ lwr

δint

)
,

||∇∇wα
herr||L∞ �

√
trμα

lwr
·
(
1 ∨ l2wr

δ2int

)
(3.42)

with constants independent of α ∈ I.
Before proceeding to the next step of the construction, let us quickly verify

that the parameters lsh, lwr, and δint are indeed admissible for use in Section 3.2.
According to (3.9), we must check that

lsh ∈ (0,∞), lwr ∈ (0,∞), and δint ∈
(
0,

1

2
θαlsh

)
∀α ∈ I, (3.43)

where

θα = λα1

λα1 + λα2
and 0 < λα1 ≤ λα2 are the eigenvalues of μα.

It follows from (3.39) and (3.40) that θα ∈ ( λ
2�, �

2λ ). As by hypothesis δint <
1
4
λ
�
lsh,

we conclude (3.43).
Step 2: join the herringbones across external walls at scale δext. The next step is
to join the herringbones obtained above into a single, globally defined piecewise
herringbone pattern. We employ a family of smooth cutoff functions supported
away from∪α∈I∂Qα for the external walls. Since by hypothesis δext < 1

2 lavg, there
exists a family of smooth cutoff functions {χα

ext}α∈I such that

• χα
ext ∈ C∞

c (Qα) and 0 ≤ χα ≤ 1,
• χα

ext(x) = 0 if d(x, ∂Qα) ≤ 1
2δext and χα

ext(x) = 1 if d(x, ∂Qα) ≥ δext,
• ||∇χα

ext||L∞ � 1
δext

, ||∇∇χα
ext||L∞ � 1

δ2ext
.

The constants implicit above are independent of all parameters (including α). Fi-
nally, we define vp.h. : � → R

2 and wp.h. : � → R by

vp.h. =
∑
α∈I

vαherrχ
α
ext and wp.h. =

∑
α∈I

wα
herrχ

α
ext.
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This completes our construction of the piecewise herringbone. Note the pointwise
estimates

||vp.h.||L∞ � ||μ||L∞ · lsh
(
1 ∨ lwr

lsh

)
,

||∇vp.h.||L∞ � ||μ||L∞ ·
(
1 ∨ lsh

δext
∨ lwr

δext
∨ lwr

δint

)
, (3.44)

||wp.h.||L∞ �
√||μ||L∞ · lwr, ||∇wp.h.||L∞ �

√||μ||L∞ ·
(
1 ∨ lwr

δext
∨ lwr

δint

)
,

||∇∇wp.h.||L∞ �
√||μ||L∞

lwr
·
(
1 ∨ l2wr

δ2ext
∨ l2wr

δ2int

)
. (3.45)

These follow from (3.41), (3.42), and the properties of {χα
ext} listed above.

3.3.2. Energy Estimates for the Piecewise Herringbone Here we estimate the
energy of the piecewise herringbones just defined. Decompose � into its “wall”
and “bulk” regions given by

�wall = {x ∈ � : d(x,∪α∂Qα) < δext} and �bulk = �\�wall (3.46)

and define the quantities

A0(lavg;μ) =
∑
α∈I

trμα · |Qα| (3.47)

A1(lavg, lsh, lwr, δint, δext;μ) =
(
1 ∨ l2sh

δ2ext
∨ l4wr

δ4ext
∨ l4wr

δ4int

)
|�wall|

+ δint

lsh

(
1 ∨ l4wr

δ4int

)(
1 ∨ lsh

lavg

)
| ∪α∈I Qα| (3.48)

A2(lavg) = l2avg|�|. (3.49)

Lemma 3.4. Let � be bounded and Lipschitz, and let μ : � → Sym2 be positive
definite and Lipschitz continuous. Let lwr, lsh, lavg, δint, and δext satisfy (3.38). The
piecewise herringbones constructed in Section 3.3.1 satisfy the following estimates:

• the stretching energy satisfies

ˆ
�

∣∣∣∣e(vp.h.)+ 1

2
∇wp.h. ⊗∇wp.h. − 1

2
μ

∣∣∣∣
2

� ||μ||2L∞ A1 + ||∇μ||2L∞ A2;

• the bending energy satisfies
ˆ
�

|∇∇wp.h.|2 ≤ A0 + C ||μ||L∞ A1

l2wr

where the constant C is independent of all parameters;
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• the substrate energy satisfies
ˆ
�

|wp.h.|2 ≤ (A0 + C ||μ||L∞ A1) l
2
wr.

Proof. We begin with the stretching energy. Introduce the strains

ε = e(vp.h.)+ 1

2
∇wp.h. ⊗∇wp.h. − 1

2
μ,

εα = e(vαherr)+
1

2
∇wα

herr ⊗∇wα
herr −

1

2
μα for α ∈ I.

Using the definition of the cutoff function χα
ext we find that

ε = εα + 1

2
(μα − μ) on �bulk ∩ Qα,

hence by the triangle inequality

|ε| ≤ |εα| + 1

2
|μα − μ| � |εα| + ||∇μ||L∞lavg on �bulk ∩ Qα. (3.50)

On the other hand, the pointwise estimates from (3.44) and (3.45) imply that

|ε| ≤ |∇vp.h.|+1

2
|∇wp.h.|2+1

2
|μ| � ||μ||L∞

(
1 ∨ lsh

δext
∨ l2wr

δ2ext
∨ l2wr

δ2int

)
on �wall.

(3.51)
Applying (3.50), (3.51), and the stretching part of Lemma 3.2 we deduce that

ˆ
�

|ε|2 =
(ˆ

�wall

+
ˆ
�bulk

)
|ε|2 =

ˆ
�wall

|ε|2 +
∑
α∈I

ˆ
�bulk∩Qα

|ε|2

� ||μ||2L∞

(
1 ∨ l2sh

δ2ext
∨ l4wr

δ4ext
∨ l4wr

δ4int

)
|�wall|

+
∑
α∈I

[
||μ||2L∞a1(μα, Qα)+ ||∇μ||2L∞l2avg|�bulk ∩ Qα|

]

� ||μ||2L∞

[(
1 ∨ l2sh

δ2ext
∨ l4wr

δ4ext
∨ l4wr

δ4int

)
|�wall|

+δint

lsh

(
1 ∨ l4wr

δ4int

)(
1 ∨ lsh

lavg

)
| ∪α∈I Qα|

]
+ ||∇μ||2L∞l2avg|�|

� ||μ||2L∞ A1 + ||∇μ||2L∞ A2

according to the definitions of A1 and A2 in (3.48) and (3.49). Note we used the
estimate

∑
α∈I

a1(μα, Qα) � δint

lsh

(
1 ∨ l4wr

δ4int

)(
1 ∨ lsh

lavg

)
| ∪α∈I Qα| (3.52)



I. Tobasco

in the third line, which follows from Lemma 3.3 and the fact that diam Qα ∼ lavg
uniformly in α. The desired estimate on the stretching energy is proved.

We turn to estimate the bending energy. Note that

wp.h. = wα
herr on �bulk ∩ Qα (3.53)

by the definition of χα
ext, while the pointwise estimate

|∇∇wp.h.| �
√||μ||L∞

lwr

(
1 ∨ l2wr

δ2ext
∨ l2wr

δ2int

)
on �wall (3.54)

follows from (3.45). Note also that
∑
α∈I

a0(μα, Qα) ≤
∑
α

trμα · |Qα|+C ||μ||L∞
lwr
lsh

(
1 ∨ lsh

lavg

)
|∪α∈I Qα| (3.55)

as a result of Lemma 3.3. Using (3.53), (3.54) and the bending part of Lemma 3.2
we deduce thatˆ

�

|∇∇wp.h.|2 =
(ˆ

�wall

+
ˆ
�bulk

)
|∇∇wp.h.|2

=
ˆ
�wall

|∇∇wp.h.|2 +
∑
α∈I

ˆ
�bulk∩Qα

|∇∇wα
herr|2

≤ C
||μ||L∞

l2wr

(
1 ∨ l4wr

δ4ext
∨ l4wr

δ4int

)
|�wall|

+
∑
α∈I

a0(μα, Qα)+ C ||μ||L∞a1(μα, Qα)

l2wr

≤ 1

l2wr

∑
α∈I

trμα · |Qα| + C
||μ||L∞

l2wr

[(
1 ∨ l4wr

δ4ext
∨ l4wr

δ4int

)
|�wall|

+δint

lsh

(
1 ∨ l4wr

δ4int

)(
1 ∨ lsh

lavg

)
| ∪α∈I Qα|

]

≤ A0 + C ||μ||L∞ A1

l2wr
where we applied (3.52) and (3.55) to pass from the second line to the third.

We finish with the substrate energy. Note that

|wp.h.| ≤ |wα
herr| on � ∩ Qα (3.56)

as there always holds χα
ext ≤ 1. Using (3.56) and the substrate part of Lemma 3.2,

there followsˆ
�

|wp.h.|2 ≤
∑
α∈I

ˆ
�∩Qα

|wα
herr|2 ≤

∑
α∈I

a0(μα, Qα)l
2
wr

≤ l2wr
∑
α

trμα · |Qα| + Cl2wr||μ||L∞
lwr
lsh

(
1 ∨ lsh

lavg

)
| ∪α∈I Qα|

≤ (A0 + C ||μ||L∞ A1) l
2
wr.



Curvature-driven wrinkling

We used (3.55) to pass to the second line, and the definitions of A0 and A1 from
(3.47) and (3.48) at the end. ��

Next, we identify an energetically optimal version of the piecewise herringbone
by minimizing over the free parameters lavg, lsh, lwr, δint, and δext from (3.38). To
simplify the presentation, and as it turns out to be consistent with optimality, we
shall impose the additional constraints

lwr � lsh � lavg � diam�, lwr � δint, lsh � δext (3.57)

below. We require the asymptotic behavior of the quantities A0, A1, and A2 from
(3.47)–(3.49).

Lemma 3.5. We have that

A0 →
ˆ
�

trμ dx, A1 � δint

lsh
|�| + δext

lavg
(diam�)2, A2 = l2avg|�|

in any limit satisfying (3.57).

Proof. The claim regarding A0 follows from its definition, since

∪α∈IQα → � as lavg → 0.

The claim regarding A2 is clear. Now we address A1. First, note that

| ∪α∈I Qα| � |�|
for all small enough lavg. Now recall the definition of�wall from (3.46). Each square
Qα has perimeter � lavg, and their δext-thickenings have area � δext · lavg. The total
number of squares is eventually �

(
diam�
lavg

)2
. Hence,

|�wall| �
(
1 ∨ (diam�)2

l2avg

)
· (δext · lavg) = δext

lavg

(
1 ∨ l2avg

(diam�)2

)
· (diam�)2 .

Setting these estimates into (3.48) and appealing to (3.57) we see that

A1 � |�wall| + δint

lsh
| ∪α∈I Qα| � δext

lavg
(diam�)2 + δint

lsh
|�|.

��
We are ready to optimize over the piecewise herringbone patterns adapted to μ.
Given (3.57), the estimatesˆ

�

|e(vp.h.)+ 1

2
∇wp.h. ⊗∇wp.h. − 1

2
μ|2 ��,μ l2avg ∨

δint

lsh
∨ δext

lavg
, (3.58)

b

2

ˆ
�

|∇∇wp.h.|2 + k

2

ˆ
�

|wp.h.|2

≤
(
b

2

1

l2wr
+ k

2
l2wr

)(ˆ
�

trμ+ o(1)+ C(�,μ)
δint

lsh
∨ δext

lavg

)
(3.59)
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follow fromLemmas 3.4 and 3.5. Balancing the dominant terms in (3.58) and (3.59)
yields

b

l2wr
= kl2wr and l2avg ∼

δint

lsh
∼ δext

lavg
,

while saturating the last two constraints from (3.57) yields

δint

lwr
∼ δext

lsh
∼ 1.

These five relations underlie optimal choices for the five free parameters. Using
them in (3.58) and (3.59) and recalling the pointwise estimates from (3.44) and
(3.45), we conclude the following result:

Corollary 3.1. Let� be bounded and Lipschitz, and letμ : � → Sym2 be positive
definite and Lipschitz continuous. Let {(vp.h., wp.h.)} be a sequence of piecewise
herringbones as constructed in Section 3.3.1, and suppose their parameters from
(3.38) satisfy

lwr =
(
b

k

)1/4

� diam�, lavg ∼ l1/5wr , lsh ∼ l1/2wr l
1/2
avg ,

δint ∼ lwr, δext ∼ lsh.

Such a sequence satisfies the energy estimates

ˆ
�

|e(vp.h.)+ 1

2
∇wp.h. ⊗∇wp.h. − 1

2
μ|2 ��,μ

(
b

k

)1/10

,

b

2

ˆ
�

|∇∇wp.h.|2 + k

2

ˆ
�

|wp.h.|2 ≤
√
bk ·

ˆ
�

trμ dx + o(
√
bk)

as well as the pointwise estimates

||vp.h.||L∞ �μ

(
b

k

)3/20

, ||∇vp.h.||L∞ �μ 1, (3.60)

||wp.h.||L∞ �μ

(
b

k

)1/4

, ||∇wp.h.||L∞ �μ 1, ||∇∇wp.h.||L∞ �μ

(
k

b

)1/4

.

(3.61)

3.4. Recovery Sequences

We are finally ready to prove Proposition 3.1. We take for granted the results
of Sections 3.1–3.3.

Proof of Proposition 3.1. Let ueff ∈ BD(�) be tension-free. By Proposition 2.1,
it suffices to construct

(ub,k,γ , ub,k,γ )
∗
⇀ (ueff, 0) weakly- ∗ in BD(�)×W 1,2(�) (3.62)



Curvature-driven wrinkling

such that

lim sup
Eb,k,γ (ub,k,γ , wb,k,γ )

2
√
bk + γ

≤
ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

ueff · ν̂ ds. (3.63)

We begin by applying the results of Section 3.1 to reduce to ueff that are smooth
and uniformly tension-free. Due to Lemma 3.1, there exist uniformly tension-free
{un}n∈N ⊂ C∞(�;R

2) converging to ueff in the intermediate sense. In particular,

un
∗
⇀ ueff weakly-∗ in BD(�) and

ˆ
∂�

un · ν̂ ds →
ˆ
∂�

ueff · ν̂ ds

as n → ∞. Suppose for each fixed n we can produce a recovery sequence {(un,m,
wn,m)}m∈N for (un, 0), i.e., a sequence satisfying the analog of (3.62) and (3.63)
but with ueff replaced by un . Then, a straightforward diagonalization argument
produces a recovery sequence for (ueff, 0). Thus, it suffices to achieve (3.62) and
(3.63) forueff that are smooth anduniformly tension-free.Wedo sovia the piecewise
herringbone patterns from Section 3.3.

Fix some ueff ∈ C∞(�;R
2) that is uniformly tension-free. Introduce the

(pointwise-defined) target defect

μ(x) = ∇ p ⊗∇ p(x)− 2e(ueff)(x) x ∈ � (3.64)

and note it is Lipschitz as

||∇μ||L∞ � ||∇∇ueff||L∞ ∨ ||∇∇ p||L∞||∇ p||L∞ < ∞.

It is also uniformly positive definite. Therefore, we may apply the results of Sec-
tion 3.3 to obtain a family of piecewise herringbones {(vp.h., wp.h.)} indexed by lavg,
lsh, lwr, δint, and δext and that are adapted to μ. Guided by Corollary 3.1, we choose
these parameters to depend on b and k (and not on γ ) as follows: we take

lwr =
(
b

k

)1/4

, lsh = l1/2wr l
1/2
avg , lavg = l1/5wr , δint = lwr, and δext = lsh

noting that these define a valid piecewise herringbone pattern, according to (3.38),
so long as

δint <
1

4

λ

�
lsh and δext <

1

2
lavg.

Here,λ,� ∈ (0,∞) are as in (3.39).Wemust arrange for l2/5wr < 1
4
λ
�
. The quantities

λ and � are fixed by μ, and hence by p and ueff. Of course, lwr � 1 within the
given parameter regime in (3.1). The required inequalities are eventually satisfied.

All that remains is to assemble the estimates from Corollary 3.1 to prove (3.62)
and (3.63). Calling

ub,k,γ = ueff + vp.h. and wb,k,γ = wp.h.,
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we see from (3.60) and (3.61) that the desired convergence (3.62) holds. Using the
formula (1.10) for the energy, the definition of the target defect in (3.64), and the
rest of the estimates in the corollary we conclude that

Eb,k,γ (ub,k,γ , wb,k,γ )

≤ 1

2

ˆ
�

|e(vp.h.)+ 1

2
∇wp.h. ⊗∇wp.h. − 1

2
μ|2 + b

2

ˆ
�

|∇∇wp.h.|2 + k

2

ˆ
�

|wp.h.|2

+ γ

(ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

ueff · ν̂
)
+ γ ||vp.h.||L1(∂�) + C(p)

b

2

(||∇∇wp.h.||L2 + 1
)

≤ (2
√
bk + γ ) ·

ˆ
�

1

2
trμ+ o(

√
bk)

+ C(�, p, ueff)

((
b

k

)1/10

+ b3/4k1/4 + γ

(
b

k

)3/20
)

= (2
√
bk + γ ) ·

ˆ
�

1

2
trμ+ o(2

√
bk + γ ),

by the definition of the parameter regime in (3.1). Note in the second linewe applied
the identity

ˆ
�

1

2
trμ(x) dx =

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds,

which follows from (3.64). The desired inequality (3.63) is proved. ��
Together, Propositions 2.1 and 3.1 prove Theorem 1.1. The rest of the results

in Sections 1.2.1 and 1.2.2 follow as explained there.

4. Convex Analysis of the Limiting Problems

Sections 2 and 3 established the role of the limiting minimization problems

min
ueff∈BD(�)

e(ueff)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds and min
μ∈M+(�;Sym2)

− 1
2 curlcurlμ=det∇∇ p

1

2

ˆ
�

|μ|1

(4.1)
in the asymptotic analysis of the energy Eb,k,γ . In particular, we showed under the
assumptions at the start of Section 1.2 that

min Eb,k,γ = C1 · (2
√
bk + γ )+ o(2

√
bk + γ ),

where C1 is the common minimum value of the limiting problems in (4.1). We also
established via �-convergence a correspondence between the almost minimizers of
Eb,k,γ , and optimal ueff and μ solving these problems. The fact that their optimal
values are the same follows from the change of variables

e(ueff)+ 1

2
μ = 1

2
∇ p ⊗∇ p dx
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and the Saint-Venant compatibility conditions for simply connected domains. We
refer the reader to Sections 1.2.1 and 1.2.2 for further discussion.

The remainder of this paper is devoted to the analysis of the limiting problems,
and in particular to proving the results from Sections 1.2.3 and 1.2.4. The present
section contains, amongst other things, a proof of Theorem 1.2: we establish the
asserted duality between the “primal” problems in (4.1) and their “dual” problem

max
ϕ:R2→R

ϕ is convex
ϕ= 1

2 |x |2 on R2\�

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p dx (4.2)

posed over the given admissible Airy potentials ϕ (our choice of terminology will
soon become clear). This duality holds under the basic assumptions from (1.14a)
if � is simply connected. Actually, the methods developed here extend with little
additional effort to general domains, even as the form of the dual problem changes.
The choice of primal must be addressed. Since the (linearized) area problem ap-
pearing on the lefthand side of (4.1) is the more general of the two, we take it to be
our primal in what follows. We do so also because we expect that it should extend
as the �-limit of 1

2
√
bk+γ

Eb,k,γ for general domains. We proceed to state its dual.

We require a certain linear functional L . Consider the vector space of functions
a : R

2 → R that are locally affine exterior to �, i.e., that satisfy

∇∇a = 0 on R
2\�

in the pointwise sense, and define

L(a) =
ˆ
R2\�

a det∇∇ p dx (4.3)

where p ∈ W 2,2(R2) ∩ Cc(R
2) is chosen once and for all such that p = p on �.

That the value of L(a) is independent of the choice of extension p of p follows
from the very weak Hessian identity

−1

2
curlcurl∇ p ⊗∇ p = det∇∇ p, (4.4)

as will be explained later on in Lemma 4.2. Evidently, it depends only on the values
taken on by a exterior to �. Given that a is locally affine there, we think of L as
a sort of “boundary integral”. Note if p is regular enough, this can be understood
using the divergence theorem along with (4.4).

We come now to our general duality result. Recall the formally adjoint operators
curlcurl and∇⊥∇⊥ from (1.27) and (1.33). Recall also that a sequence of measures
is said to converge narrowly in M(�;Sym2) if their integrals against arbitrary
elements of Cb(�;Sym2) converge.



I. Tobasco

Proposition 4.1. Let � be bounded and Lipschitz and let p ∈ W 2,2(�). We have
the duality

min
ueff∈BD(�)

e(ueff)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

ueff · ν̂ ds

= max
ϕ:R2→R

ϕ is convex
∇∇(ϕ− 1

2 |x |2)=0 on R2\�

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p dx + L

(
ϕ − 1

2
|x |2

)
.

(4.5)

Regarding complementary slackness, the following are equivalent for ueff and ϕ

admissible in the above:

1. ueff and ϕ are optimal;
2. there exist non-negative {μn}n∈N ⊂ C2(�;Sym2) approximating

μ = ∇ p ⊗∇ p dx − 2e(ueff)

in that

μn dx → μ narrowly inM(�;Sym2),

−1

2
curl curlμn dx

∗
⇀ det∇∇ p dx weakly- ∗ inM(�) (4.6)

as n → ∞, and for which

0 = lim
n→∞

ˆ
�

∣∣∣〈μn,∇⊥∇⊥ϕ
〉∣∣∣ = lim

n→∞

ˆ
∂�

|ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μn
〉 | ds; (4.7)

3. the limits in (4.7) vanish for all such approximations {μn}n∈N ⊂ C2(�;Sym2)

to the given μ.

Here, [∇ϕ] denotes the jump in ∇ϕ across ∂� in the direction of ν̂. It is given by
∇ϕ|∂(R2\�) − ∇ϕ|∂�.

Some remarks are in order. First, we observe that various other statements of the
dual problem from (4.5) can be produced given additional regularity for p. Perhaps
the most illuminating one is as follows: if p ∈ W 2,2(�)∩C1(�), the dual problem
can be rewritten as

max
σ∈M+

(
R
2;Sym2

)
div σ=0

σ=I d dx on R2\�

ˆ
�

〈
1

2
∇ p ⊗∇ p, I d dx − σ

〉
. (4.8)

As (4.8) is never used in this paper, we leave the details of its proof to the reader,
and simply remark that it proceeds via the usual change of variables between an
Airy potential ϕ and its induced “Airy stress”

σ = ∇⊥∇⊥ϕ
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with the only slight complication being that, here, σ is considered to be a measure.
In fact, the first step in our proof of (4.5) will be to obtain an ill-posed version
of (4.8) in which σ is taken to be continuous, and for which a maximizer is not
guaranteed.

Our next two remarks concern the proof of Theorem 1.2: we claim that Propo-
sition 4.1 reduces to the duality between (4.1) and (4.2) if � is simply connected.
To see this, first note that the functional on the righthand side of (4.5) is invariant
under the addition of any affine function to ϕ. Indeed, it follows from its definition
and the very weak Hessian identity (4.4) that

L(a) = −
ˆ
�

a det∇∇ p dx if a is affine. (4.9)

Now if � is simply connected it has only one exterior component, and hence any
locally affine function on R

2\� extends automatically as an affine function on R
2.

It follows that we may take ϕ = 1
2 |x |2 on R

2\� in (4.5), in which case L = 0 and
the original dual problem (4.2) results.

We finish by showing how the complementary slackness conditions of Theo-
rem 1.2 follow from the general ones established here. The fact is that the mollifi-
cations {μδ}δ>0 from (1.32) approximate the given μ in the sense of (4.6). This is
a direct consequence of Lemma 4.6 and the identity

−1

2
curlcurlμ = det∇∇ p.

Proposition 4.1 therefore implies that ueff and ϕ are optimal if and only if

〈
∇⊥∇⊥ϕ,μ

〉
= 0 in � and ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μ

〉 = 0 at ∂�

in the regularized sense (meaning that (1.35) holds). As the primal problems in (4.1)
are equivalent for simply connected �, Theorem 1.2 follows from these remarks.

The rest of this section proves Proposition 4.1. Section 4.1 establishes (4.5). It
is there that we explain how to anticipate the form of the general dual problem via
a minimax procedure. Section 4.2 proves the complementary slackness conditions
by establishing the integration by parts identity

1

2

ˆ
�

|μ|1 −
ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p − L

(
ϕ − 1

2
|x |2

)

= lim
n→∞

1

2

ˆ
�

〈
μn,∇⊥∇⊥ϕ

〉
+ 1

2

ˆ
∂�

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μn
〉

(4.10)

if ueff and ϕ are admissible and {μn}n∈N approximatesμ = ∇ p⊗∇ p dx−2e(ueff)
in the sense of (4.6). Together, these complete the proof of the general duality result.
They also lay the groundwork for Section 5 where we make precise our method of
stable lines.
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4.1. The Dual Problem

We begin by proving (4.5). First we introduce a Lagrange multiplier σ for the
tension-free constraint, and apply aminimax procedure to identify the dual problem
it should solve. Given u ∈ BD(�), observe that

e(u) ≤ 1

2
∇ p ⊗∇ p dx

⇐⇒
ˆ
�

〈
σ,

1

2
∇ p ⊗∇ p dx − e(u)

〉
≥ 0 ∀ σ ∈ C(�;Sym2) with σ ≥ 0.

The primal problem on the lefthand side of (4.5) can therefore be rewritten as

min
u∈BD(�)

e(u)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

u · ν̂ ds

= inf
u∈BD(�)

sup
σ∈C(�;Sym2)

σ≥0

ˆ
�

〈
I d − σ,

1

2
∇ p ⊗∇ p dx − e(u)

〉
.

Now to identify its dual, we reverse the order of operations between inf and sup.
We do so informally at first, and then again with a rigorous proof in Lemma 4.1.
Let σ ∈ C(�;Sym2). By the divergence theorem,ˆ

�

〈I d − σ, e(u)〉 = 0 ∀ u ∈ BD(�)

⇐⇒ div σ = 0 on � and σ ν̂ = ν̂ at ∂�.

The first condition in the second line is that σ is weakly divergence-free. The
second condition holds where the outwards-pointing unit normal ν̂ is well-defined.
It follows that

sup
σ∈C(�;Sym2)

σ≥0

inf
u∈BD(�)

ˆ
�

〈
I d − σ,

1

2
∇ p ⊗∇ p dx − e(u)

〉

= sup
σ∈C(�;Sym2)

σ≥0 and div σ=0
σ ν̂=ν̂ at ∂�

ˆ
�

〈
I d − σ,

1

2
∇ p ⊗∇ p

〉
dx,

and this is our candidate dual.
The following result justifies the manipulations above:

Lemma 4.1. There holds

min
u∈BD(�)

e(u)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

u · ν̂ ds

= sup
σ∈C(�;Sym2)

σ≥0 and div σ=0
σ ν̂=ν̂ at ∂�

ˆ
�

〈
I d − σ,

1

2
∇ p ⊗∇ p

〉
dx . (4.11)
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Equality continues to hold when the boundary condition σ v̂ = v̂ is replaced by the
more restrictive one that σ = I d at ∂�.

Proof. Although the asserted equalities are not yet clear, the inequality

min
u∈BD(�)

e(u)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 dx −

ˆ
∂�

u · ν̂ ds

≥ sup
σ∈C(�;Sym2)

σ≥0 and div σ=0
σ ν̂=ν̂ at ∂�

ˆ
�

〈
I d − σ,

1

2
∇ p ⊗∇ p

〉
dx

does follow directly from the minimax argument above (the inf sup of a functional
is never less than its sup inf). Eliminating the common term

´
�

1
2 |∇ p|2, making

the change of variables σ = I d − ζ , and applying a straightforward inclusion
argument, we see it suffices to check that

max
u∈BD(�)

e(u)≤ 1
2∇ p⊗∇ p dx

ˆ
∂�

u · ν̂ ds = inf
ζ∈Cc(�;Sym2)

I d≥ζ and div ζ=0

ˆ
�

〈
I d − ζ,

1

2
∇ p ⊗∇ p

〉
dx .

(4.12)
This can be done via the Fenchel–Rockafeller minimax theorem (see, e.g., [14,
Theorem 1.12]), as we explain.

Introduce the vector spaces

E = Cc(�;Sym2) and E∗ = M(�;Sym2)

and equip them respectively with the uniform and dual norms. By Riez–Markov,
E∗ is the topological dual of E . Define the functionals �,� : E → (−∞,∞] by

�(ζ) =
{´

�

〈
I d − ζ, 1

2∇ p ⊗∇ p
〉
dx Id ≥ ζ

∞ otherwise
and �(ζ) =

{
0 div ζ = 0

∞ otherwise
.

Since 1
2∇ p ⊗ ∇ p dx ∈ E∗, and as zero is bounded uniformly away from I d, the

functional� is finite and continuous at ζ = 0. Evidently,�(0) < ∞. Thus, by the
Fenchel–Rockafeller minimax theorem,

max
ε∈E∗ −�∗(−ε)−�∗(ε) = inf

ζ∈E �(ζ)+�(ζ). (4.13)

The Legendre transforms�∗, �∗ : E∗ → (−∞,∞] on the lefthand side are given
for ε ∈ E∗ by

�∗(ε) = sup
ζ∈E

ˆ
�

〈ζ, ε〉 −�(ζ) and �∗(ε) = sup
ζ∈E

ˆ
�

〈ζ, ε〉 −�(ζ).

To finish, we must deduce from (4.13) the desired equality (4.12).
It is clear from the definitions that

inf
ζ∈E �(ζ)+�(ζ) = inf

ζ∈Cc(�;Sym2)
I d≥ζ and div ζ=0

ˆ
�

〈
I d − ζ,

1

2
∇ p ⊗∇ p

〉
dx .
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Thus, the righthand sides of (4.12) and (4.13) agree. To check their lefthand sides,
we compute the Legendre transforms of � and �. Given ε ∈ E∗, we claim that

�∗(ε) = sup
ζ∈E

div ζ=0

ˆ
�

〈ζ, ε〉 =
{
0 ∃ u ∈ BD(�) s.t. ε = e(u)

∞ otherwise
. (4.14)

The first equality is clear. To see the second, note by the divergence theorem (the
first identity in (1.13)) that

ˆ
�

〈ζ, e(u)〉 = 0

whenever u ∈ BD(�) and ζ ∈ E ∩C1
c (�;Sym2) is divergence-free. By density, it

holds for ζ ∈ E that areweakly divergence-free. On the other hand, suppose ε ∈ E∗
but that there does not exist u ∈ BD(�) such that ε = e(u). According to [76,
Proposition 2.1 andTheorem2.1], there exists a divergence-free ζ ∈ C∞

c (�;Sym2)

for which

ˆ
�

〈ζ, ε〉  = 0.

Making the replacement ζ → λζ and sending λ → ∞ or −∞, we deduce (4.14).
Finally, we compute the Legendre transform of �. Given u ∈ BD(�), we see

using its definition that

�∗(−e(u))

= sup
ζ∈E
Id≥ζ

ˆ
�

〈ζ,−e(u)〉 −
ˆ
�

〈
I d − ζ,

1

2
∇ p ⊗∇ p

〉
dx

= sup
ζ∈E
Id≥ζ

ˆ
�

〈
ζ,

1

2
∇ p ⊗∇ p dx − e(u)

〉
−
ˆ
�

〈
I d,

1

2
∇ p ⊗∇ p

〉
dx

=
{´

�

〈
I d, 1

2∇ p ⊗∇ p dx − e(u)
〉− ´

�

〈
I d, 1

2∇ p ⊗∇ p
〉
dx e(u) ≤ 1

2∇ p ⊗∇ p dx

∞ otherwise

=
{
− ´

∂�
u · ν̂ ds e(u) ≤ 1

2∇ p ⊗∇ p dx

∞ otherwise
.

Combining this with (4.14) proves that

max
ε∈E∗ −�∗(−ε)−�∗(ε) = max

u∈BD(�)
−�∗(−e(u)) = max

u∈BD(�)

e(u)≤ 1
2∇ p⊗∇ p dx

ˆ
∂�

u · ν̂ ds.

Thus, the lefthand sides of (4.12) and (4.13) are the same. ��
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Lemma 4.1 is a good start, but we much prefer to identify a version of the dual
problem for which maximizers are guaranteed. The basic issue is that, while the
admissible σ in (4.11) satisfy

ˆ
�

|σ |1 =
ˆ
�

〈∇x, σ 〉 =
ˆ
∂�

x · ν̂ =
ˆ
�

〈∇x, I d〉 = 2|�|

so that they are bounded a priori in L1, no similar control on ∇σ is available (even
as it is trace-free). So, while the admissible set in (4.11) is pre-compact in the
weak-∗ topology induced by the injection

C(�;Sym2) → M(�;Sym2), σ �→ σ dx,

it is not closed. Evidently, the boundary conditions σ ν̂ = ν̂ and ad hoc regularity
hypothesis that σ ∈ C must be relaxed. Taking into account the low regularity of
∇ p, which is not necessarily continuous at the present level of generality, we find
it convenient to do so by changing variables to the anticipated potentials ϕ.

It is well-known that if σ is Sym2-valued and divergence-free, there exists a
scalar-valued function ϕ such that

σ = ∇⊥∇⊥ϕ

on any simply connected domain. (See (1.33) for the notation ∇⊥∇⊥.) Such func-
tions ϕ are usually referred to in the literature as “Airy potentials” or “Airy stress
functions”, and the divergence-free fields∇⊥∇⊥ϕ they generate are known as “Airy
stresses”. We need not rule out the possibility that� is multiply connected. This is
because the required change of variables ϕ can be carried out on R

2, as the bound-
ary conditions in (4.11) ensure that σ can be extended there in a divergence-free
way. To prepare, we record some useful properties of the functional L from (4.3).

Lemma 4.2. L is well-defined on the vector space of functions a : R
2 → R that

are locally affine exterior to �. It is linear and continuous in any norm for which
the restriction map a �→ a|

R2\� is continuous.

Proof. To check that L is well-defined, we must show that the integral in (4.3) does
not depend on the choice of extension p. That is, we must prove that

ˆ
R2\�

a det∇∇ p1 =
ˆ
R2\�

a det∇∇ p2

if p1, p2 ∈ W 2,2(R2) ∩ Cc(R
2) satisfy p1 = p2 on � and ∇∇a = 0 on R

2\�.
By density, it suffices to take p1 and p2 to be smooth. Note we can also take a to
be smooth as every locally affine function on R

2\� admits a smooth extension to
R
2. Testing (4.4) against a, integrating by parts twice, and subtracting yields that

ˆ
R2

a
(
det∇∇ p1 − det∇∇ p2

) = −1

2

ˆ
R2

〈
∇⊥∇⊥a,∇ p1 ⊗∇ p1 −∇ p2 ⊗∇ p2

〉
.

The integrand on the right vanishes a.e. by our hypotheses. For the same reason,
the integral on the left may be taken over R

2\�. The desired equality is proved.
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Looking back to (4.3), we see that L is a linear functional of a|
R2\�. Since

by hypothesis � is a bounded, Lipschitz domain, it has finitely many exterior
components, i.e.,

R
2\� = ∪N

i=1Ei where the sets Ei are open and disjoint.

That a is locally affine exterior to� is equivalent to the existence of {mi }Ni=1 ⊂ R
2

and {bi }Ni=1 ⊂ R such that

a = mi · x + bi on Ei , for i = 1, . . . , N .

Quotienting out by the equivalence relation that a1 ∼ a2 if a1|R2\� = a2|R2\�,
there results a finite dimensional vector space on which L is well-defined. The
stated continuity now follows from the elementary fact that every linear function
of finitely many variables is continuous, regardless of the choice of norm. ��
We are ready to change variables from σ to ϕ. To help simplify the presentation,
and as it does not affect the end result, we use the “restricted” set of admissible σ
from Lemma 4.1.

Lemma 4.3. The restricted sets of admissible stresses and Airy potentials{
σ ∈ C(�;Sym2) : σ ≥ 0, div σ = 0, σ = I d at ∂�

}
and

{
ϕ ∈ C2(R2) : ∇∇ϕ ≥ 0, ∇∇ϕ = I d on R

2\�}
are put into a many-to-one correspondence via the relation

∇⊥∇⊥ϕ =
{
σ on �

I d on R
2\� .

Under this correspondence,ˆ
�

〈
I d − σ,

1

2
∇ p ⊗∇ p

〉
dx =

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p dx + L

(
ϕ − 1

2
|x |2

)
.

Proof. The stated correspondence follows from our previous remarks on Airy po-
tentials since R

2 is simply connected. In particular, when we extend a given σ by
setting it equal to I d off of �, the resulting Sym2-valued function is continuous,
non-negative, andweakly divergence-free onR

2. Thus, there exists a corresponding
ϕ, which is of course non-unique. The reverse direction is clear.

We turn to prove the stated equality. By Lemma 4.2, wemay fix some compactly
supported, W 2,2 extension p of p in the definition of L . It follows from the given
correspondence and the very weak Hessian identity (4.4) thatˆ

�

〈
I d − σ,

1

2
∇ p ⊗∇ p

〉
=
ˆ
�

〈
∇⊥∇⊥

(
1

2
|x |2 − ϕ

)
,
1

2
∇ p ⊗∇ p

〉

=
ˆ
R2

〈
∇⊥∇⊥

(
ϕ − 1

2
|x |2

)
,−1

2
∇ p ⊗∇ p

〉

=
ˆ
R2

(
ϕ − 1

2
|x |2

)
det∇∇ p

=
ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p + L

(
ϕ − 1

2
|x |2

)
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as claimed. Note we used (4.3) at the end. ��
Combining Lemmas 4.1 and 4.3 we get that

min
u∈BD(�)

e(u)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

u · ν̂

= sup
ϕ∈C2(R2)
ϕ is convex

∇∇
(
ϕ− 1

2 |x |2
)
=0 on R2\�

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p + L

(
ϕ − 1

2
|x |2

)
.

(4.15)

The last step is to relax the ad hoc regularity hypothesis that ϕ ∈ C2, so as to allow
the corresponding σ to be measure-valued. We must check that the supremum
remains the same, and that it is achieved.

Lemma 4.4. The supremum on the righthand side of (4.15) equals the maximum
on the righthand side of (4.5). The latter admits an optimal ϕ.

Proof. The first part of the result follows immediately once we establish that
ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

u · ν̂ ≥
ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p + L

(
ϕ − 1

2
|x |2

)
(4.16)

whenever u and ϕ are admissible in (4.5). Indeed, the admissible set of ϕ in (4.15)
is a subset of that in (4.5). Enlarging an admissible set can never make the resulting
supremum smaller. Now to prove (4.16), we shall make use of the integration by
parts identity (4.10) introduced above and proved inLemma4.7 below, aswell as the
properties of themollifications {μδ}δ>0 from (1.32) to be proved in Lemma 4.6. The
reader may check that these results stand independently of the desired inequality.

Let u andϕ be admissible in (4.5) and callμ = ∇ p⊗∇ p dx−2e(u). Lemma4.6
and Lemma 4.7 show that

1

2

ˆ
�

|μ|1 −
ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p − L

(
ϕ − 1

2
|x |2

)

= lim
δ→∞

1

2

ˆ
�

〈
μδ,∇⊥∇⊥ϕ

〉
+ 1

2

ˆ
∂�

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μδ

〉
.

The integrands in the second line are non-negative by admissibility: that μδ ≥ 0
follows from our choice to take ρ ≥ 0 in their definition; that ∇∇ϕ ≥ 0 in � and
that ν̂ ·[∇ϕ] ≥ 0 at ∂� are easy consequences of the convexity of ϕ (see Lemma 4.5
below). Applying the divergence theorem from (1.13) and the fact that μ ≥ 0, we
find that

1

2

ˆ
�

|μ|1 =
ˆ
�

〈
I d,

1

2
μ

〉
=
ˆ
�

〈
I d,

1

2
∇ p ⊗∇ p dx − e(u)

〉

=
ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

u · ν̂.
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The inequality (4.16) is proved. Thus, the optimal values of the maximization
problems in (4.5) and (4.15) must be the same, regardless of whether or not they
admit any solutions.

We finish by showing the existence of a maximizer for the dual problem in
(4.5). We apply the direct method. Let B be a ball of finite radius that contains �,
and note it suffices to search for a maximizer in the subset{
ϕ ∈ C(R2) : ϕ is convex, ∇∇

(
ϕ − 1

2
|x |2

)
= 0 on R

2\�
}
∩
{
ϕ = 1

2
|x |2 on R

2\B
}
.

(4.17)
Indeed, the functional being maximized in (4.5) is unchanged under the addition
of any affine function to ϕ, as was noted in the paragraph surrounding (4.9). Thus,
we can take ϕ = 1

2 |x |2 on the unbounded component of R
2\�. Now observe that

(4.17) is compact in the uniform norm topology: it is closed, and using the bounds

||∇ϕ||L∞(B) ≤ 1 and ||ϕ||L∞(B) ≤ max
x∈B

1

2
|x |2 + diam B

we deduce from Arzelà–Ascoli that it is pre-compact. That the functional in (4.5)
is uniformly continuous follows from our standing assumptions that � is bounded
and Lipschitz and that p ∈ W 2,2(�). The uniform continuity of L(ϕ − 1

2 |x |2)
follows from Lemma 4.2. The existence of a maximizing ϕ is proved. ��
We are ready to prove (4.5).

Proof of the equality part of Proposition 4.1. Combining Lemmas 4.1–4.4 yields
the string of equalities

min
u∈BD(�)

e(u)≤ 1
2∇ p⊗∇ p dx

ˆ
�

1

2
|∇ p|2 −

ˆ
∂�

u · ν̂

= sup
σ∈C(�;Sym2)

σ≥0 and div σ=0
σ ν̂=ν̂ at ∂�

ˆ
�

〈
I d − σ,

1

2
∇ p ⊗∇ p

〉

= sup
ϕ∈C2(R2)
ϕ is convex

∇∇
(
ϕ− 1

2 |x |2
)
=0 on R2\�

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p + L

= max
ϕ:R2→R

ϕ is convex

∇∇
(
ϕ− 1

2 |x |2
)
=0 on R2\�

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p + L

where we have abbreviated the argument ϕ − 1
2 |x |2 of L . ��

Before moving on to the complementary slackness part of Proposition 4.1, we
pause to point out that the admissible Airy potentials from (4.5) can be described
using boundary conditions. This was stated in Remark 1.2 in the context of a simply
connected domain (where we took a = 0), and will be used later on below.



Curvature-driven wrinkling

Lemma 4.5. Upon restriction to �, the admissible set of Airy potentials in (4.5)
can be equivalently described as those ϕ ∈ HB(�) for which

∇∇ϕ ≥ 0 on � (4.18)

and such that

ϕ = 1

2
|x |2 + a and ν̂ · ∇ϕ ≤ ν̂ · (x +∇a) at ∂� (4.19)

for some a : R
2 → R that is locally affine exterior to�. These boundary conditions

are understood in the sense of trace, i.e., the values of ϕ and ∇ϕ at ∂� are taken
from �, while those of a and ∇a at ∂� are taken from R

2\�.

Proof. The result follows from the identity

∇∇ϕ = ∇∇ϕ��+ I d dx�R2\�+ ν̂ · [∇ϕ]ν̂ ⊗ ν̂H1�∂� on R
2 (4.20)

which holds for all ϕ ∈ HBloc(R
2) such that ϕ − 1

2 |x |2 is locally affine on R
2\�.

Indeed, if ϕ ∈ HB(�) satisfies (4.18) and (4.19) for some a as in the statement,
its extension by 1

2 |x |2 + a belongs to HBloc(R
2) and obeys (4.20). Its Hessian is

non-negative, and so it is convex. Therefore it is admissible in (4.5).
On the other hand, if ϕ is admissible then it is a convex extension of 1

2 |x |2 + a
fromR

2\� toR
2 for some a that is locally affine onR

2\�. It belongs to HBloc(R
2)

and satisfies ∇∇ϕ ≥ 0 on R
2. It restricts to an element of HB(�) with trace equal

to 1
2 |x |2 + a, so the first part of (4.19) holds. Testing (4.20) at ∂� and using that

[∇ϕ] = x +∇a|∂(R2\�) −∇ϕ|∂� at ∂�

yields the rest of (4.19). Testing it at � proves (4.18). ��

4.2. Complementary Slackness Conditions

It remains to prove the complementary slackness part of Proposition 4.1. First,
we verify that the mollification procedure from (1.32) can be used to generate the
approximations referred to there.

Lemma 4.6. Let μ ∈ M(�;Sym2) have curl curlμ ∈ M(�). Its mollifications
{μδ}δ>0 from (1.32) belong to C∞(�;Sym2) and converge to μ in the following
sense:

μδ dx → μ narrowly inM(�;Sym2),

curl curlμδ dx
∗
⇀ curl curlμ weakly- ∗ inM(�),

as δ → 0. If in addition μ ≥ 0, then μδ(x) ≥ 0 for all x ∈ � and δ > 0.
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Proof. The last conclusion regarding non-negativity follows from our assumption
that the kernel ρ ≥ 0. We establish the convergences now. Let σ ∈ Cb(�;Sym2).
Fixing y ∈ �, we see thatˆ

�

ρ

(
1

δ
(x − y)

)
σ(x)

dx

δ2
→ σ(y) as δ → 0

and also that∣∣∣∣
ˆ
�

ρ

(
1

δ
(x − y)

)
σ(x)

dx

δ2

∣∣∣∣ ≤
ˆ

1�(y + δx)ρ(x)|σ(y + δx)| dx ≤ ||σ ||L∞(�)

for all δ > 0. Therefore,ˆ
�

〈σ,μδ〉 dx =
ˆ
�

〈
σ(x),

ˆ
�

1

δ2
ρ

(
1

δ
(x − y)

)
dμ(y)

〉
dx

=
ˆ
�

〈ˆ
�

ρ

(
1

δ
(x − y)

)
σ(x)

dx

δ2
, dμ(y)

〉
→

ˆ
�

〈σ,μ〉
by the bounded convergence theorem. As σ was arbitrary, we conclude the narrow
convergence of μδ dx to μ.

Now we show the weak-∗ convergence of curlcurlμδ dx to curlcurlμ. Let
χ ∈ C∞

c (�). For small enough δ > 0, we can apply the fact that curlcurl and
∇⊥∇⊥ are formally adjoint along with Fubini’s theorem to write thatˆ

�

χcurlcurlμδ dx =
ˆ
�

〈ˆ
�

1

δ2
ρ

(
1

δ
(x − y)

)
∇⊥∇⊥χ(x) dx, μ(y)

〉

=
ˆ
�

〈ˆ
B1

ρ (x)∇⊥∇⊥χ(· + δx) dx, μ

〉

=
ˆ
�

〈
∇⊥∇⊥

ˆ
B1

ρ(x)χ(· + δx) dx, μ

〉
.

Using that curl curlμ ∈ M(�), there followsˆ
�

〈
∇⊥∇⊥

ˆ
B1

ρ(x)χ(· + δx) dx, μ

〉

=
ˆ
�

[ˆ
B1

ρ(x)χ(y + δx) dx

]
dcurl curlμ(y)

→
ˆ
�

χdcurl curlμ

as δ → 0. The proof is complete. ��
Next, we establish the integration by parts identity (4.10).

Lemma 4.7. Let u andϕ beadmissible in (4.5)and suppose {μn}n∈N ⊂ C2(�;Sym2)

converges to μ = ∇ p ⊗∇ p dx − 2e(u) in the sense of (4.6). Then,

1

2

ˆ
�

|μ|1 −
ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p dx − L

(
ϕ − 1

2
|x |2

)

= lim
n→∞

1

2

ˆ
�

〈
μn,∇⊥∇⊥ϕ

〉
+ 1

2

ˆ
∂�

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μn
〉
ds.



Curvature-driven wrinkling

Proof. Since ϕ − 1
2 |x |2 is locally affine on R

2\�, we can find a ∈ C∞(R2) such
that ϕ− 1

2 |x |2 = a there. Integrating by parts twice via (1.13) and recalling that the
unit tangent and outwards-pointing unit normal vectors to ∂�were taken to satisfy
τ̂ = ν̂⊥, we deduce thatˆ

�

〈
μn,∇⊥∇⊥

(
ϕ − 1

2
|x |2 − a

)〉

=
ˆ
�

(
ϕ − 1

2
|x |2 − a

)
curlcurlμn −

ˆ
∂�

curlμn · τ̂
(
ϕ − 1

2
|x |2 − a

)

+
ˆ
∂�

〈
μn,∇⊥

(
ϕ − 1

2
|x |2 − a

)
⊗ τ̂

〉

=
ˆ
�

(
ϕ − 1

2
|x |2 − a

)
curlcurlμn −

ˆ
∂�

ν̂ · [∇ϕ]
〈
μn, τ̂ ⊗ τ̂

〉

where in the last line we used that [∇ϕ] = x+∇a−∇ϕ|∂� is normal to ∂�. Thus,ˆ
�

〈
μn,∇⊥∇⊥ϕ

〉
+
ˆ
∂�

ν̂ · [∇ϕ]
〈
μn, τ̂ ⊗ τ̂

〉

=
ˆ
�

〈I d, μn〉 +
ˆ
�

(
ϕ − 1

2
|x |2 − a

)
curlcurlμn +

ˆ
�

〈
μn,∇⊥∇⊥a

〉
.

Taking n → ∞ and using the given approximation properties we deduce that

lim
n→∞

1

2

ˆ
�

〈
μn,∇⊥∇⊥ϕ

〉
+ 1

2

ˆ
∂�

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μn
〉

= 1

2

ˆ
�

|μ|1 −
ˆ
�

(ϕ − 1

2
|x |2 − a) det∇∇ p + 1

2

ˆ
�

〈
∇⊥∇⊥a, μ

〉
.

(4.21)

The last step is to rewrite the second line above using the definitions of μ and L .
Recall a ∈ C∞(R2) and equals ϕ − 1

2 |x |2 on R
2\�. Observe thatˆ

�

〈
∇⊥∇⊥a, e(u)

〉
= 0. (4.22)

Indeed, we can find a compactly supported, BD extension of u to R
2, and then as

∇⊥∇⊥a is divergence-free and vanishes outside of �, the desired identity follows
by the divergence theorem. Next, we claim that

L(a) = −
ˆ
�

a det∇∇ p +
〈
∇⊥∇⊥a, 1

2
∇ p ⊗∇ p

〉
. (4.23)

To prove it, introduce a compactly supported,W 2,2 extension p of p from� to R
2,

and test the very weak Hessian identity (4.4) against a. The result is thatˆ
R2

a det∇∇ p = −
ˆ
R2

〈
∇⊥∇⊥a, 1

2
∇ p ⊗ p

〉
.

Breaking up the integral on the left to be over� and R
2\�, and using the definition

of L in (4.3), there follows (4.23). Combining (4.21)–(4.23) with our choice to call
μ = ∇ p ⊗∇ p dx − 2e(u) finishes the proof. ��
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We are finally ready to complete the proof of Proposition 4.1.

Proof of the complementary slackness part of Proposition 4.1. Let ueff and ϕ be
admissible in (4.5), let μ = ∇ p ⊗ ∇ p dx − 2e(ueff), and let {μn}n∈N be non-
negative and converge to μ in the sense of (4.6). Recall from Lemma 4.7 that

1

2

ˆ
�

|μ|1 −
ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p − L

(
ϕ − 1

2
|x |2

)

= lim
n→∞

1

2

ˆ
�

〈
μn,∇⊥∇⊥ϕ

〉
+ 1

2

ˆ
∂�

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μn
〉
. (4.24)

Since ϕ is convex we find, just as in the proof of Lemma 4.5, that

∇∇ϕ ≥ 0 on � and ν̂ · [∇ϕ] ≥ 0 at ∂�.

Thus, the integrals in the second line of (4.24) are non-negative and limit to zero if
and only if the difference in the first line vanishes. At the same time, due to (4.5),
this difference vanishes if and only if ueff and ϕ are optimal. It remains to produce
an example of an approximating sequence {μn}. Using Lemma 4.6 and the fact that

−1

2
curlcurlμ = det∇∇ p,

we see the mollification procedure from (1.32) approximates μ as desired.
��

It is natural to wonder if there is some more intrinsic way of stating the comple-
mentary slackness conditions, i.e., one that does not make use of ad hoc regular-
izations. The crux of the issue is that one must make sense of the “Frobenius inner
product” of two Sym2-valued Radon measures, one of which is divergence-free
and the other of which has its curlcurl controlled. Consider, for instance, how to
define

〈∇⊥∇⊥ϕ, e(u)
〉
when ϕ ∈ HB and u ∈ BD. If for some reason we knew

that ϕ ∈ C1, we could fall back on the identity
〈
∇⊥∇⊥ϕ, e(u)

〉
= 2curl

(
e(u)∇⊥ϕ

)
− curlcurl (e(u)ϕ)

to define the product on the lefthand side as the distribution on the right. This sort
of approach goes back at least to [45]. Unfortunately, it is not the case that every
optimal Airy potential isC1. Lacking a successful distributional approach, we have
opted to use regularizations instead. For a related discussion see [4] (however, the
functionals there do not appear to allow for one-sided constraints).

5. Wrinkle Patterns by the Method of Stable Lines

We continue our study of the limiting minimization problems in (4.1). Sec-
tion 4 identified various versions of the dual problem, along with complementary
slackness conditions satisfied by optimal primal-dual pairs. There we established
a general duality result, applicable even in situations where we do not yet know
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the �-limit of the rescaled energies 1
2
√
bk+γ

Eb,k,γ (such as when � is not strictly

star-shaped). Our results thus far can be summarized as follows: under the full set
of assumptions at the start of Section 1.2 of the introduction, μ ∈ M+(�;Sym2)

arises as the defect measure of an almost minimizing sequence for Eb,k,γ if and
only if it satisfies ⎧⎪⎨

⎪⎩
− 1

2 curlcurlμ = det∇∇ p on �〈∇⊥∇⊥ϕ,μ
〉 = 0 on �

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μ
〉 = 0 at ∂�

(5.1)

where ϕ solves the dual problem (4.2). The first equation holds in the sense of
distributions, while the second and third ones hold in the regularized sense, i.e.,

lim
δ→0

ˆ
�

∣∣∣〈μδ,∇⊥∇⊥ϕ
〉∣∣∣ = 0 and lim

δ→0

ˆ
∂�

|ν̂ ·[∇ϕ] 〈τ̂ ⊗ τ̂ , μδ

〉 | ds = 0 (5.2)

where {μδ}δ>0 are the mollifications from (1.32). Moreover, the same system (5.1)
applies even when only the basic assumptions from (1.14a) hold, so long as we take
μ = ∇ p ⊗ ∇ p dx − 2e(ueff) and let ueff and ϕ be optimal in (4.5). Recall [∇ϕ]
denotes the jump in ∇ϕ across ∂� in the direction of ν̂.

The purpose of this section is to study (5.1) as a boundary value problem for μ
and, in particular, to establish the results from Section 1.2.4 regarding the general
formulation of our method of stable lines. Let us briefly outline what we achieve.
We begin in Section 5.1 by defining a partition of the shell according to the structure
of ϕ. Included in this partition are the “stable lines” and the “ordered” set O they
fill out. We show that

μ = λη̂ ⊗ η̂ on O, where λ ≥ 0 and η̂ ∈ R ((∇∇ϕ)a.c.) .

The unit vector field η̂ arises as a suitable choice of normal to the stable lines. In
Section 5.2, we justify our assertion that the stable lines are characteristic curves
for the PDE

−1

2
curlcurl(η̂ ⊗ η̂λ) = det∇∇ p on O

implied by (5.1). We do so by producing ODEs for the absolutely continuous and
singular parts of λ, which hold on (a.e.) stable line. Finally, in Section 5.3 we
show how to derive appropriate boundary data depending on the layout of the
stable lines, and how to apply them to conclude (partial) uniqueness, regularity,
and explicit solution formulas for λ and μ. The reader wishing to see concrete
examples should go forward to Section 6, keeping in mind that we make repeated
use of Corollaries 5.1–5.3 there.

A word on assumptions is required: throughout this section, we require that �
is bounded and Lipschitz and that p ∈ W 2,2(�). We take μ ∈ M+(�;Sym2), let
ϕ : R

2 → R be convex, and assume they satisfy (5.1) (it will not be necessary
for our present purposes to assume they are optimal). Importantly, we must also
assume that

there exists a non-empty open subset of � on which ϕ ∈ W 2,2. (5.3)



I. Tobasco

As was addressed briefly in Section 1.2.5, this last assumption will allow us to
apply the theory of W 2,2 developable surfaces from [35,36,59]. Various further
assumptions on ϕ will be introduced as needed below.

5.1. Stable Lines

Our first task is to explain how the structure of ϕ constrains that of μ solving
(5.1). Guided by the second equation there, we define a partition of � by writing

� = � ∪ F ∪ O ∪U (5.4)

where the sets �, F , O , and U are as follows:

• the singular set� is the smallest closed subset of� such that ϕ ∈ W 2,2
loc (�\�);

• the flattened set F is the largest open subset of �\� on which both of the
eigenvalues of (∇∇ϕ)a.c. are locally uniformly positive a.e.;

• the ordered set O is the largest open subset of�\� on which one of the eigen-
values of (∇∇ϕ)a.c. is zero a.e. and the other eigenvalue is locally uniformly
positive a.e.;

• the unconstrained set U is the complement of � ∪ F ∪ O with respect to �.

To be clear, we say that a function ζ is locally uniformly positive a.e. on a (measur-
able) set A if for all x ∈ A there exists c > 0 and a relatively open neighborhood
V ⊂ A of x on which ζ ≥ c a.e. Note �  = � due to (5.3).

Next, we explain what we mean by “stable lines”. Recall from Section 1.2.4
that a curve parallel to N (∇∇ϕ) in O was (preliminarily) called a stable line.
This definition is no longer suitable in the present, measure-theoretic context. It
generalizes as follows: henceforth, we refer to a curve belonging to O as a stable
line of ϕ if it is a maximally contained open line segment on which ϕ is affine.

Lemma 5.1. Every x ∈ O belongs to a unique stable line �x , and ∂�x ⊂ ∂O. The
map x �→ �x is locally Lipschitz from O to the projective space P

1. In particular,
there exists η̂ ∈ Liploc(O; S1) that is constant along and perpendicular to the
stable lines, i.e.,

�x = �y �⇒ η̂(x) = η̂(y) ∀ x, y ∈ O and η̂(x) ⊥ �x ∀ x ∈ O. (5.5)

Remark 5.1. In general, η̂ can fail to be Lipschitz on O . This can happen for var-
ious reasons, such as when distinct stable lines share a common boundary point.
Examples of this appear throughout Panel (b) of Fig. 2.

Proof. We require some facts about developable surfaces. In the smooth setting,
a developable surface is one whose Gaussian curvature vanishes identically. Any
such surface can be decomposed into two disjoint parts: a ruled part consisting
of disjoint open line segments that pass between boundary points—the surface’s
ruling lines—and a locally planar part. In [59], this decomposition is shown to hold
for W 2,2 developable surfaces, i.e., ones whose Gaussian curvature vanishes a.e.
By a covering argument, it holds for W 2,2

loc developable surfaces as well.
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These facts allow to characterize the graph of ϕ over O . By definition, this is
the image of the mapping O → R

3, (x1, x2) �→ (x1, x2, ϕ(x)). Looking back to
the definition of O immediately after (5.4), we see that

ϕ ∈ W 2,2
loc (O) and rank∇∇ϕ = 1 a.e. on O.

Therefore, ϕ describes a W 2,2
loc developable surface over O , consisting entirely of

ruling lines. Stable lines are easily produced: the stable line �x through x aris-
es from the projection (x1, x2, x3) �→ (x1, x2) of the unique ruling line through
(x1, x2, ϕ(x)) to the plane. Indeed,ϕ is affine along �x , and it ismaximally extended
in O .

It remains to choose the normal η̂. Of course, we can take it to satisfy (5.5).
That it can be chosen to be locally Lipschitz follows from the known fact [36,44]
that the map x �→ �x is locally Lipschitz from O to the projective space P

1 %
S1/

{
n̂ ∼ −n̂

}
. Let us explain. Without loss of generality, we can take O to be

connected after passing to its components. In order that �x ⊥ �y it must be that
|x − y| > d∂O(x)∨ d∂O(y) as stable lines never intersect. So, once we decide that

η̂(x) · η̂(y) > 0 when |x − y| ≤ d∂O(x) ∨ d∂O(y)

there remain exactly two choices for η̂ : O → S1 (in general, the number of
choices depends on the number of connected components). Fixing η̂(x) at some
x ∈ O determines it throughout. It now follows that

∣∣η̂(x)− η̂(y)
∣∣ � |x − y|

d∂O(x) ∨ d∂O(y)
∀ x, y ∈ O

from a worst case analysis of how stable lines may meet at ∂O . ��
Having defined the stable lines of ϕ, we now use them to characterize the structure
of μ.

Lemma 5.2. Let � be partitioned as in (5.4). Any solution μ ∈ M+(�;Sym2) of
(5.1) must satisfy

μ = 0 on F and μ = λη̂ ⊗ η̂ on O (5.6)

for some λ ∈ M+(O) and η̂ ∈ Liploc(O; S1) satisfying (5.5).

Proof. We combine the previous result with the complementary slackness part of
(5.1). In particular, we make use of the first part of (5.2), which implies here that

0 = lim
δ→0

ˆ
F

∣∣∣〈μδ, (∇⊥∇⊥ϕ)a.c.
〉∣∣∣ dx = lim

δ→0

ˆ
O

∣∣∣〈μδ, (∇⊥∇⊥ϕ)a.c.
〉∣∣∣ dx . (5.7)

Note it follows from their definition that μδ dx
∗
⇀ μ weakly-∗ on F and O . See

Lemma 4.6.
Consider the flattened set F . We claim that every x ∈ F is contained in a

neighborhoodwhereμ = 0. Indeed, by its definition we can always find a relatively
open set V ⊂ F such that x ∈ V and

(∇∇ϕ)a.c. � I d a.e. on V .
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Upon passing to the limit in the first part of (5.7), we deduce that

0 = lim
δ→0

ˆ
V
|〈I d, μδ〉| dx = |μ|(V ).

Compact subsets of F are covered by finitely many such V . Hence, μ = 0 on F .
The ordered set O requires a bit more care. Recall ϕ is affine along its stable

lines, which run perpendicularly to η̂ ∈ Liploc(O; S1) from Lemma 5.1. So, there
exists ζ ∈ L1(O; (0,∞)) ∩ L2

loc(O) such that

(∇∇ϕ)a.c. = ζ η̂ ⊗ η̂ a.e. on O.

Actually, the definition of O gives a bitmore: for each x ∈ O there exists a relatively
open neighborhood V ⊂ O of x on which ζ � 1 a.e. Using this, we can pass to
the limit in the second part of (5.7) to find that

0 = lim
δ→0

ˆ
V

∣∣∣〈η̂⊥ ⊗ η̂⊥, μδ

〉∣∣∣ dx =
∣∣∣〈η̂⊥ ⊗ η̂⊥, μ

〉∣∣∣ (V ).

The choice of x ∈ O was arbitrary, so 〈η̂⊥ ⊗ η̂⊥, μ〉 = 0 on O . ��
The possibilities for μ at ∂O and ∂F are less clear, as the relevant eigenvalue(s) of
∇∇ϕ may degenerate there. We leave the detailed study of this to future work, and
turn to describe the role that stable lines play in our solution of (5.1).

5.2. The Method of Characteristics

The previous section described the relation between the structure of ϕ and that
of μ solving (5.1). Following Lemma 5.2, we continue to let λ ∈ M+(O) and
η̂ ∈ Liploc(O; S1) satisfy

μ = λη̂ ⊗ η̂ on O,

where η̂ is constant along and perpendicular to the stable lines {�x } of ϕ. By the
first equation in (5.1),

−1

2
curlcurl

(
η̂ ⊗ η̂ λ

) = det∇∇ p on O (5.8)

in the sense of distributions. We now claim that (5.8) can be solved using the
method of characteristics with stable lines as characteristic curves. It is not difficult
to understand why this ought to be the case. Denote the first and second directional
derivatives along the stable lines by

∂η̂⊥ = η̂⊥ · ∇ and ∂2
η̂⊥ =

〈
η̂⊥ ⊗ η̂⊥,∇∇

〉
. (5.9)

Pretending for the moment that λ and η̂ are smooth (rather than belonging to M+
and Liploc), we apply the product rule along with the identity ∂η̂⊥ η̂ = 0 to write

curlcurl
(
η̂ ⊗ η̂λ

) = ∂2
η̂⊥λ+ 2

�
∂η̂⊥�∂η̂⊥λ+ 1

�
∂2
η̂⊥�λ = 1

�
∂2
η̂⊥ (�λ) (5.10)



Curvature-driven wrinkling

where ∂η̂⊥� = div η̂⊥�. Thus, the PDE (5.8) can be rewritten (informally, at first)
as the family of ODEs

− 1

2�
∂2
η̂⊥ (�λ) = det∇∇ p along the stable lines.

Lemma 5.3 provides a rigorous version of this observation in the original, measure-
theoretic setting of (5.1). In brief: whereas the ODE derived above does turn out
to govern the absolutely continuous part of λ alongH1-a.e. stable line, its singular
part instead turns out to be affine along a complementary set of stable lines.

The next few paragraphs fix the notation used in the remainder. First, due to the
topological difficulties inherent in parameterizing the stable lines {�x }—see [36]
for a detailed account of the related problem of parameterizing ruling lines—we
find it convenient to reduce to certain well-prepared regions of the form

V = ∪s∈��s where � ⊂ V is a smooth curve such that

�s = �s′ �⇒ s = s′ ∀ s, s′ ∈ � and Ts� ∦ �s ∀ s ∈ �. (5.11)

Recall by a smooth curvewemean a diffeomorphic copy of an open interval I ⊂ R,
i.e., its image under a smooth and one-to-one map. (Later on, we allow � to denote
other, more general index sets.) The conditions on the second line require that the
curve � meets each stable line it indexes transversely and exactly once. It follows
from Lemma 5.1 that every x ∈ O admits a neighborhood of this form. Indeed, we
may simply choose � to pass through x and to remain approximately parallel to η̂

along its extent.
Next, we introduce the technique of disintegration of measure. The basic facts

are as follows (see, e.g., [33] formore details). Given one of the regionsV = ∪s∈��s
from (5.11), we say that

π : V → � sends x ∈ V to the unique s ∈ �x ∩ �. (5.12)

For each s ∈ �, the fiber π−1({s}) = �s . Given λ ∈ M(V ) and ϑ ∈ M(�) with
π#λ � ϑ , there exists a ϑ-a.e. uniquely determined (Borel) family {λs}s∈� ⊂
M(V ) such that

supp λs ⊂ �s ∀ s ∈ � and
ˆ
V
ψ dλ =

ˆ
�

[ˆ
�s

ψ dλs

]
dϑ(s) ∀ψ ∈ L1(V, λ).

Here, π# is the pushforward map through π . Thus, λ disintegrates into its parts
{λs}s∈� with respect to π and ϑ , a situation we indicate by writing

λ =
ˆ
�

λs dϑ(s).

A useful example to keep in mind is the formula for the two-dimensional Lebesgue
measure

L2 =
ˆ
�

�H1��s dH1(s) on V . (5.13)

This defines the change of measure factor � : V → (0,∞) anticipated in (5.10).
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Finally, we define the Sobolev spaces Wk,r (�s) for k ∈ N and r ∈ [1,∞]. For
each �s , we say that f ∈ Lr (�s,H1) belongs to W 1,r (�s) provided there exists
g ∈ Lr (�s,H1) such that

ˆ
�s

f ∂η̂⊥χ dH1 = −
ˆ
�s

gχ dH1 ∀χ ∈ C∞
c (�s).

In such a case, we write that

∂η̂⊥(s) f = g on �s,

and call g the weak directional derivative of f in the direction of η̂⊥(s). Thus,
∂η̂⊥(s) : W 1,r (�s) → Lr (�s,H1). Similarly,Wk,r (�s) consists of all f ∈ Lr (�s,H1)

whose weak directional derivatives ∂
j
η̂⊥(s) f of orders j = 1, . . . , k belong to

Lr (�s,H1). Of course, if f is smooth nearby �s , these derivatives can be com-
puted using (5.9) along with other, analogous formulas at higher order. Given
f ∈ Wk,r (�s) we define its trace f |∂�s as usual, by continuous extension of the
restriction map. As each �s is one-dimensional, ·|∂�s : Wk,r (�s) → L∞(∂�s,H0).

We are ready tomakeprecise our claim that the stable lines ofϕ are characteristic
curves for the PDE (5.8).

Lemma 5.3. Let λ ∈ M+(O) solve (5.8), and let V = ∪s∈��s and π : V → � be
as in (5.11) and (5.12). Then there exist λa.c., λsing : V → [0,∞) such that

λ = λa.c. dx +
ˆ
�

λsingH1��s dϑ(s) on V,

where ϑ is the singular part of π#λ with respect toH1. The function �λa.c. belongs
to W 2,1(�s) and satisfies

− 1

2�
∂2
η̂⊥(s)(�λa.c.) = det∇∇ p on �s (5.14)

upon restriction to H1-a.e. �s . Likewise, λsing belongs to W 2,∞(�s) and satisfies

∂2
η̂⊥(s)λsing = 0 on �s (5.15)

upon restriction to ϑ-a.e. �s .

Remark 5.2. If p ∈ W 2,2r so that det∇∇ p ∈ Lr , �λa.c. ∈ W 2,r on H1-a.e. �s .

Remark 5.3. It is straightforward to check that the following unique continuation-
type result holds: if V1 = ∪s∈�1�s and V2 = ∪s∈�2�s satisfy �1 ∩ V2 = �2 ∩ V1,
the functions provided above must have λ1a.c. = λ2a.c. Lebesgue a.e. on V1 ∩ V2, and
λ1sing = λ2sing upon restriction to ϑ-a.e. �s in V1 ∩ V2. We use this later on in the
proof of Corollary 5.3.
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Proof. We start by finding {λa.c.s }s∈�, {λsings }s∈� ⊂ M+(V ) such that

supp λa.c.s , supp λsings ⊂ �s ∀ s ∈ � and λ =
ˆ
�

λa.c.s dH1(s)+
ˆ
�

λ
sing
s dϑ(s) on V .

(5.16)
By disintegration of measure, there exist {λs}s∈� ⊂ M+(V ) such that

supp λs ⊂ �s ∀ s ∈ � and λ =
ˆ
�

λs dπ#λ on V .

Note the Lebesgue decomposition

π#λ = dπ#λ

dH1 H1 + ϑ with H1 ⊥ ϑ.

Taking

λa.c.s = dπ#λ

dH1 (s)λs forH1-a.e. s and λ
sing
s = λs for ϑ-a.e. s

we arrive at (5.16).
Having disintegrated λ into its parts {λa.c.s }s∈� , {λsings }s∈� we proceed to estab-

lish the desired ODEs. We will make use of the PDE (5.8) or, more precisely, its
distributional versionˆ

V
−1

2
∂2
η̂⊥ψ dλ =

ˆ
V
ψ det∇∇ p dx ∀ψ ∈ C∞

c (V ). (5.17)

The argument splits into two steps. The first step is to prove that (5.17) holds not
only for the test functions above, but also for ones of the form

ψ = χ� ◦ π where χ ∈ C∞
c (V ) and � ∈ C∞

c (�), (5.18)

and where in place of ∂2
η̂⊥ψ we write ∂2

η̂⊥χ� ◦ π . To see this, fix χ ∈ C∞
c (V ) and

let W ⊂ V be an open and compactly contained neighborhood of its support. We
claim there exists a sequence {πk}k∈N ⊂ C∞(W ;�) of smooth approximations to
π such that

πk → π, ∂η̂⊥πk → 0, and ∂2
η̂⊥πk → 0 uniformly on W (5.19)

as k → ∞. Postponing their construction to Lemmas 5.4 and 5.5 below, we define
{ψk}k∈N ⊂ C∞

c (V ) by
ψk = χ� ◦ πk (5.20)

and note using the product rule that

∂2
η̂⊥ψk = ∂2

η̂⊥χ� ◦ πk + 2∂η̂⊥χ∂η̂⊥(� ◦ πk)+ χ∂2
η̂⊥(� ◦ πk).

Due to (5.19), only the first term on the right survives in the limit. That is,

∂2
η̂⊥ψk → ∂2

η̂⊥χ� ◦ π uniformly on W.

Setting (5.20) into (5.17) and passing to the limit finishes the first step. See Lem-
mas 5.4 and 5.5 for the construction of the approximations πk .



I. Tobasco

We just showed that (5.17) holds for all test functions of the form (5.18).
Equivalently, by the disintegration formulas (5.13) and (5.16), we have that

0 = ´
�

[´
�s

1
2∂

2
η̂⊥χ dλa.c.s + ´

�s
χ� det∇∇ p dH1

]
�(s) dH1(s)

+ ´
�

[´
�s

1
2∂

2
η̂⊥χ dλsings

]
�(s) dϑ(s) (5.21)

for all χ ∈ C∞
c (V ) and � ∈ C∞

c (�). The next step is to show that the bracketed
terms vanish, i.e.,ˆ

�s

−1

2
∂2
η̂⊥(s)χ dλa.c.s =

ˆ
�s

χ� det∇∇ p dH1,

ˆ
�s

∂2
η̂⊥(s)χ dλsings = 0 (5.22)

for all χ ∈ C∞
c (�s) up to H1- and ϑ-negligible sets. By an extension argument it

suffices to take χ ∈ C∞
c (V ). Let {χk}k∈N ⊂ C∞

c (V ) be C2-dense. Setting χk into
(5.21) and recalling that H1 ⊥ ϑ , we see thatˆ

�s

−1

2
∂2
η̂⊥(s)χ dλa.c.s =

ˆ
�s

χ� det∇∇ p dH1 for H1-a.e. s,

ˆ
�s

∂2
η̂⊥(s)χ dλsings = 0 for ϑ-a.e. s

where at this stage the exceptional sets are allowed to depend on k. Intersecting over
k removes this dependence and yields (5.22). In other words, we have the ODEs

− 1

2
∂2
η̂⊥(s)λ

a.c.
s = � det∇∇ p onH1-a.e. �s,

∂2
η̂⊥(s)λ

sing
s = 0 on ϑ-a.e. �s . (5.23)

These hold in the sense of distributions on the specified stable lines.
The rest of the proof is straightforward. From (5.23) we see that λa.c.s , λ

sing
s �

H1��s and that their densities satisfy the same ODEs. By hypothesis, det∇∇ p ∈
L1(V ). It follows from (5.13) and Fubini’s theorem that � det∇∇ p ∈ L1(�s,H1),

so that dλa.c.s
dH1��s ∈ W 2,1(�s) onH1-a.e. �s . Evidently,

dλsings
dH1��s ∈ W 2,∞(�s) on ϑ-a.e.

�s as it is affine upon restriction to those stable lines. Setting

λa.c. = 1

�

dλa.c.s

dH1��s onH1-a.e. �s and λsing = dλsings

dH1��s on ϑ-a.e. �s

and using (5.13) and (5.16) once more, we conclude that

λ =
ˆ
�

�λa.c.H1��s dH1(s)+
ˆ
�

λsingH1��s dϑ(s)

= λa.c. dx +
ˆ
�

λsingH1��s dϑ(s).

The desired ODEs (5.14) and (5.15) follow from (5.23). ��
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Left over from the proof above is a result ensuring that the map π : V → �

from (5.12), whose fibers are the stable lines {�s}s∈� , can be approximated by
smooth maps {πk}k∈N with fibers converging to the stable lines (the precise sense
of approximation is in (5.19)). Similar results appear in the proof that smooth
developable surfaces are W 2,2-dense [35,36,59]. There, the authors replace the
surface’s ruling lines with smoothly varying ones; here, per Lemma 5.1, the stable
lines of ϕ are the planar projection of the ruling lines of its graph (over O). The
main difference is the choice of topology—we need that πk and certain of its
derivatives converge uniformly, rather than only a.e. Nevertheless, the argument
from the references can be adapted to produce the desired result.We follow [35,36].

Let V = ∪s∈��s be as in (5.11). The first step is to define coordinates adapted
to the stable lines. Recall we took � to be diffeomorphic to an open interval I ⊂ R.
Let γ : I → � be smooth map such that

V = ∪s∈I �γ (s), s �→ �γ (s) is one-to-one, γ ′ · η̂ ◦ γ > 0, |γ ′| = 1. (5.24)

Note the slight redundancy in the usage of s. In a minor modification of [35,36],
we define �n̂ : I × R → R

2 by

�n̂(s, t) = γ (s)+ t n̂⊥(s) (5.25)

for n̂ : I → S1. Unlike the references, we do not require that γ ′ ‖ n̂, although we
will eventually prevent them from being perpendicular. If n̂ is differentiable then
so is �n̂ , in which case

det∇�n̂ = γ ′ · n̂ − tκn̂ where κn̂ = n̂′ · n̂⊥. (5.26)

Taking n̂ = η̂ ◦ γ leads to the desired coordinates. We refer to �η̂ and κη̂
in place of �η̂◦γ and κη̂◦γ . Since η̂ is locally Lipschitz, �η̂ is as well. We claim
that it admits a locally Lipschitz inverse on V . That it is invertible there is a clear
consequence of the disjointness of the stable lines. Note that

det∇�η̂ = � ◦�η̂ > 0 a.e. on �−1
η̂

(V ), (5.27)

where � : V → (0,∞) is as in (5.13). That | det∇�η̂| = � ◦�η̂ follows from the
area formula for Lipschitz maps (see, e.g., [55]). Its positivity is due to the given
orientation in (5.24). Continuing, we define t±V : I → R such that

t−V < 0 < t+V and �γ (s) = �η̂

({s} × (t−V (s), t+V (s))
) ∀ s ∈ I.

Combining (5.26) and (5.27) shows that

1

t−V (s)
≤ κη̂(s)

γ ′ · η̂ ◦ γ (s) ≤ 1

t+V (s)
for a.e. s ∈ I. (5.28)

Hence, �−1
η̂

∈ Liploc(V ; I × R) by the Lipschitz inverse function theorem [18].

For future reference, note that the functions ±t±V are lower semi-continuous as V
is open; they are also bounded by its diameter.



I. Tobasco

All this being said, we now rewrite the map π : V → � from (5.12) as

π = γ ◦ (�−1
η̂

)1 where (s, t)1 = s. (5.29)

The plan is clear: look for a way of smoothing η̂ such that the associated maps
remain invertible, at least on a portion of V . Note we avoid ∂V as we do not make
any assumptions on its regularity, or on the behavior of the stable lines there (see
[35,36] for more on this point).

Lemma 5.4. Let t± ∈ Cc(I ) and let J ⊂ I be an open interval such that

t−V < t− ≤ 0 ≤ t+ < t+V and sup
J

t− < 0 < inf
J

t+. (5.30)

Define the open sets

Mt±,J = ∪s∈J {s} × (t−(s), t+(s)) and Vt±,J = ∪s∈J�η̂

({s} × (t−(s), t+(s))
)

and let W ⊂ Vt±,J be open and compactly contained. For all ε > 0 there exists
δ > 0 such that if n̂ : I → S1 is Lipschitz on J and satisfies

||n̂ − η̂ ◦ γ ||L∞(J ) < δ and

1

t−(s)
+ ε ≤ κn̂(s)

γ ′ · n̂(s) ≤ 1

t+(s)
− ε for a.e. s ∈ J,

(5.31)

then �n̂ admits an inverse on W satisfying �−1
n̂ ∈ Lip(W ;Mt±,J ) as well as the

estimates

||�−1
n̂ −�−1

η̂
||L∞(W ) ��,η̂,t±,J ||n̂ − η̂ ◦ γ ||L∞(J ),

||∇�−1
n̂ ||L∞(W ) ��,η̂,t±,J

1

ε
.

Proof. That�n̂ is ontoW can be checked using the homotopy invariance of degree
(see, e.g., [30] for the notation).By the definitions,�η̂ is a homeomorphismbetween
Mt±,J and Vt±,J . Define the continuous homotopy [0, 1] → C(Mt±,J ), θ �→ �θ =
�(1−θ)n̂+θη̂ from �0 = �n̂ to �1 = �η̂. Note that

|�θ(s, t)−�1(s, t)| ≤ |n̂(s)− η̂ ◦ γ (s)||t |.
Since by hypothesisW ⊂ Vt±,J , there exists δ0 > 0 such thatW∩�θ(∂Mt±,J ) = ∅
whenever ||n̂− η̂ ◦γ ||L∞(J ) < δ0 and for all θ . Applying [30, Theorem 2.3] proves
that d(�n̂,Mt±,J , p) = d(�η̂,Mt±,J , p) = 1 for all p ∈ W . Hence,

||n̂ − η̂ ◦ γ ||L∞(J ) < δ0 �⇒ W ⊂ �n̂(Mt±,J )

as in the first part of the claim.
Next, we show that �n̂ can be made one-to-one on Mt±,J . This part of the

proof is modeled more or less directly after [36, Section 5]. Introduce a function
τn̂ : J × J\ {(s, s′) : s = s′

} → R ∪ {∞} such that

γ (s)+ τn̂(s, s
′)n̂⊥(s) = γ (s′)+ τn̂(s

′, s)n̂⊥(s′). (5.32)



Curvature-driven wrinkling

If n̂(s) ∦ n̂(s′), τn̂(s, s′) gives the travel time from γ (s) in the direction of n̂⊥(s) to
the line containing γ (s′) and parallel to n̂⊥(s′). If n̂(s) ‖ n̂(s′) we set τn̂(s, s′) =
τn̂(s

′, s) = ∞. Looking back to (5.25), we see that �n̂(s, t)  = �n̂(s
′, t ′) for

(s, t), (s′, t ′) ∈ Mt±,J if and only if

1

t−(s)
≤ 1

τn̂(s, s′)
≤ 1

t+(s)
or

1

t−(s′)
≤ 1

τn̂(s′, s)
≤ 1

t+(s′)
(5.33)

and s  = s′. We check that this holds when ||η̂− η̂ ◦ γ ||L∞(J ) is sufficiently small.
Let s, s′ ∈ J be such that n̂(s) ∦ n̂(s′), and let (s, s′) denote the open interval

with boundary points s and s′. Of course, (s, s′) ⊂ J . Dotting n̂(s′) into (5.32) and
rearranging yields the formula

1

τn̂(s, s′)
=

(
n̂(s′)− n̂(s)

) · n̂⊥(s)
(γ (s′)− γ (s)) · n̂(s′) . (5.34)

The righthand side approximates κn̂/γ
′ · n̂. In particular, there exists δ1 > 0 and

c1 > 0 such that∣∣∣∣∣
(
n̂(s′)− n̂(s)

) · n̂⊥(s)
(γ (s′)− γ (s)) · n̂(s′) −

 
(s,s′)

κn̂

γ ′ · n̂

∣∣∣∣∣ ��,η̂,t±,J |s − s′| (5.35)

if ||n̂ − η̂ ◦ γ ||L∞(J ) < δ1 and |s − s′| < c1. It suffices to choose δ1 and c1 so that

γ ′(a) · n̂(a′) ��,η̂,J 1 ∀ a, a′ ∈ J with |a − a′| < c1. (5.36)

This is possible by (5.24) since J is compactly contained. Note we also used the
bound ||κn̂||L∞(J ) �t±,J 1, which follows from (5.30) and (5.31). Since t± are
continuous, these same assumptions yield c2 > 0 so that

1

t−(s)
− ε

2
≤
 
(s,s′)

1

t−
+ ε ≤

 
(s,s′)

κn̂

γ ′ · n̂ ≤
 
(s,s′)

1

t+
− ε ≤ 1

t+(s)
− ε

2
(5.37)

if |s − s′| < c2. Combining (5.34)–(5.37) with (5.33) yields that �n̂(s, t)  =
�n̂(s

′, t ′), provided that ||n̂ − η̂ ◦ γ ||L∞(J ) < δ1 and if (s, t), (s′, t ′) ∈ Mt±,J
satisfy 0 < |s − s′| < c1 ∧ c2 ∧ ε

2C . The constant C = C(�, η̂, t±, J ) is the one
implicit in the estimate (5.35). On the other hand, since �η̂(Mt±,J ) = Vt±,J , we
can write that

|s − s′|
||∇�−1

η̂
||L∞(Vt±,J )

≤ |�η̂(s, t)−�η̂(s
′, t ′)|

≤ |�n̂(s, t)−�n̂(s
′, t ′)| + |n̂(s)− η̂ ◦ γ (s)||t |

+|n̂(s′)− η̂ ◦ γ (s′)||t ′|
onMt±,J . There exists δ2 > 0 such that�n̂(s, t)  = �n̂(s

′, t ′) if ||n̂−η̂||L∞(J ) < δ2
and if (s, t), (s′, t ′) ∈ Mt±,J satisfy |s− s′| ≥ c1∧ c2∧ ε

2C . The conclusion is that

||n̂ − η̂ ◦ γ ||L∞(J ) < δ1 ∧ δ2 �⇒ �n̂ is one-to-one on Mt±,J .
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The first part of the claim on the invertibility of �n̂ is proved.
We end with the estimates on �−1

n̂ . Recall we arranged, by our choice of δ0,
for the inclusion W ⊂ �n̂(Mt±,J ) to hold. Let x ∈ W and produce (s, t) ∈ Mt±,J
with �n̂(s, t) = x . It follows that

|�−1
η̂

(x)−�−1
n̂ (x)| = |�−1

η̂
◦�n̂(s, t)−�−1

η̂
◦�η̂(s, t)|

≤ ||∇�−1
η̂

||L∞(Vt±,J )
|n̂(s)− η̂ ◦ γ (s)||t |

which yields the first estimate in the claim. Continuing, we note that δ1 was chosen
so that (5.36) would hold. In particular, γ ′ · n̂ ��,η̂,J 1 on J . It follows from (5.26)
and (5.31) that

det∇�n̂ ≥ ε(t+ ∧ |t−|)γ ′ · n̂ a.e. on Mt±,J .

The bound on ∇�−1
n̂ now follows from (5.25), (5.30), and the Lipschitz inverse

function theorem. ��
Having produced a sufficient condition for the invertibility of �n̂ away from ∂V ,
we can now construct the desired approximations πk of π .

Lemma 5.5. Let V = ∪s∈��s and π : V → � be as in (5.11) and (5.12), and
let W ⊂ V be open and compactly contained. There exists {πk}k∈N ⊂ C∞(W ;�)
such that πk → π , ∂η̂⊥πk → 0, and ∂2

η̂⊥πk → 0 uniformly as k → ∞.

Proof. We apply Lemma 5.4. Carrying over the notation from that result, we let
t± ∈ Cc(I ) and J ⊂ I be an open interval statisfying (5.30), such that W ⊂ Vt±,J
and Vt±,J ⊂ V . Since t−V < t− < 0 < t+ < t+V nearby J , there exists ε > 0 and
a slightly larger open interval J0 ⊂ I with J ⊂ J0, supJ0 t− < 0 < inf J0 t+, and
such that

1

t−(s)
+ 2ε ≤ 1

t−V (s)
and

1

t+V (s)
≤ 1

t+(s)
− 2ε ∀ s ∈ J0. (5.38)

To be clear, we consider t±, J , ε, and J0 to be fixed depending on �, η̂, W , and V
at this stage.

Next, we let δ > 0 be as in Lemma 5.4 and produce {η̂k}k∈N ⊂ C∞(I ; S1)
approximating η̂ ◦ γ . We will verify that our sequence satisfies (5.31) for large
enough k, i.e., there eventually holds

||η̂k − η̂ ◦ γ ||L∞(J ) < δ and
1

t−(s)
+ ε ≤ κη̂k (s)

γ ′ · η̂k(s) ≤ 1

t+(s)
− ε ∀ s ∈ J.

(5.39)
Fix ρ ∈ C∞

c ((−1, 1)) with ρ ≥ 0 and
´ 1
−1 ρ ds = 1. For all large enough k ∈ N,

define η̂k : I → S1 by taking

η̂k(s) = (η̂ ◦ γ )1/k(s)∣∣(η̂ ◦ γ )1/k(s)
∣∣ , (η̂ ◦ γ )1/k(s) =

ˆ
J0
kρ

(
k(s − s′)

)
η̂ ◦ γ (s′) ds′

(5.40)
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for s ∈ J and smoothly extending it to I . Its values on I\J are immaterial; we
define it there so as to match the lemma. Note we needed that

∣∣(η̂ ◦ γ )1/k
∣∣ > 0 on

J for (5.40) to make sense. This is not a problem, since for all large enough k there
holds

1 ≥ ∣∣(η̂ ◦ γ )1/k
∣∣ ≥ 1− ||κη̂||L∞(J0)

2

k
on J. (5.41)

Observe that

κη̂k =
(η̂ ◦ γ )′1/k · (η̂ ◦ γ )⊥1/k∣∣(η̂ ◦ γ )1/k

∣∣2 on J, while κη̂ = (η̂ ◦ γ )′ · (η̂ ◦ γ )⊥ on I.

(5.42)
When combined with the usual properties of mollification, these facts imply that

||η̂k − η̂ ◦ γ ||L∞(J ) � ||κη̂||L∞(J0)
1

k
,

||η̂′k ||L∞(J ) � ||κη̂||L∞(J0),

||η̂′′k ||L∞(J ) � k||κη̂||L∞(J0) + ||κη̂||2L∞(J0) (5.43)

for large enough k.We proceed to verify (5.39). That the first condition is eventually
satisfied is clear. For the second condition, let s ∈ J and note that

∣∣∣∣ κη̂k (s)

γ ′ · η̂k(s) −
ˆ
J0
kρ

(
k(s − s′)

) κη̂(s
′)

γ ′ · η̂ ◦ γ (s′) ds
′
∣∣∣∣ ��,η̂,J,J0

1

k
(5.44)

for large enough k. Besides (5.41)–(5.43), the proof makes use of the lower bound
γ ′ · η̂k ��,η̂,J 1 on J , which is eventually implied by (5.24) and the fact that J is
compactly contained. Note that

1

t−
+ 2ε ≤ κη̂

γ ′ · η̂ ◦ γ ≤ 1

t+
− 2ε a.e. on J0 (5.45)

by (5.28) and (5.38). Combining (5.44), (5.45), our choice to take ρ ≥ 0, and the
fact that 1/t± are uniformly continuous on J0, we deduce the second condition in
(5.39) for large enough k.

The previous paragraphs checked that the hypotheses of Lemma 5.4 hold for the
givenW and for our choices of t±, J , ε, and n̂ = η̂k .We had to take k large enough so
that the conditions in (5.39) would hold. The conclusion is that�η̂k : I ×R → R

2

from (5.25) admit inverses onW satisfying�−1
η̂k

∈ Lip(W ;Mt±,J ), for large enough

k. Recall Mt±,J = �−1
η̂

(Vt±,J ). The estimates

||�−1
η̂k

−�−1
η̂

||L∞(W ) ��,η̂,W,V ||η̂k − η̂ ◦ γ ||L∞(J ),

||∇�−1
η̂k

||L∞(W ) ��,η̂,W,V 1 (5.46)

follow directly from the ones in the lemma. We remind the reader that t±, J ,
and ε (and J0) were taken to depend on �, η̂, W , and V . Since �η̂k is smooth
and | det∇�η̂k | ��,η̂,W,V 1 on �−1

η̂k
(W ), the inverse function theorem gives that
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�−1
η̂k

∈ C∞(W ;Mt±,J ). We are ready to define the desired approximations πk . In
a direct analogy with the formula for π in (5.29), we define πk ∈ C∞(W ;�) by

πk = γ ◦ (�−1
η̂k

)1 where (s, t)1 = s (5.47)

for large enough k. The rest of the proof establishes the convergences in the claim.
That πk → π uniformly on W is clear. In fact, we read off from (5.29), (5.43),

(5.46), and (5.47) that

||πk −π ||L∞(W ) ��,η̂,W,V
1

k
, ||∇πk ||L∞(W ) ��,η̂,W,V 1, ||∇∇πk ||L∞(W ) ��,η̂,W,V k.

(5.48)
The third inequality follows from the elementary estimates

|∇�η̂k | � 1+ |t ||η̂′k |, |∇∇�η̂k | � |γ ′′| + |η̂′k | + |t ||η̂′′k |
along with the inverse function theorem. It is now convenient to consider η̂k as
being defined on W instead of I . Abusing notation slightly, we let

η̂k(x) = η̂k ◦ (�−1
η̂k

)1(x), x ∈ W.

On the righthand side we use (5.40), noting that (�−1
η̂k

)1(W ) ⊂ J . It is natural to

compare against η̂ = η̂ ◦ γ ◦ (�−1
η̂

)1. The estimates

||η̂k − η̂||L∞(W ) ��,η̂,W,V
1

k
, ||∇η̂k ||L∞(W ) ��,η̂,W,V 1 (5.49)

result from (5.43) and (5.46). We define ∂η⊥k
and ∂2

η⊥k
analogously to ∂η̂⊥ and ∂2

η̂⊥
from (5.9). Then,

∂η⊥k
πk = 0 and ∂2

η⊥k
πk = 0. (5.50)

These identities are consequences of the fact that ∂t (πk ◦�η̂k ) = 0. Indeed, ∂η⊥k
is

a directional derivative along the lines traced out by t �→ �η̂k (s, t), per (5.25).
We now have all of the ingredients to prove that ∂η̂⊥πk → 0 and ∂2

η̂⊥πk → 0
uniformly on W . Applying the first identity in (5.50) yields that

∂η̂⊥πk = ∂η̂⊥πk − ∂η⊥k
πk = ∂(η̂−η̂k )

⊥πk .

Using (5.48) and (5.49) we deduce that

||∂η̂⊥πk ||L∞(W ) ≤ ||η̂ − η̂k ||L∞(W )||∇πk ||L∞(W ) ��,η̂,W,V
1

k
.

Next, we differentiate the first identity in (5.50) to see that

0 = ∂(η̂−η̂k )
⊥
(
∂η̂⊥k

πk

)
= ∂(η̂−η̂k )

⊥ η̂⊥k · ∇πk +
〈
(η̂ − η̂k)

⊥ ⊗ η̂⊥k ,∇∇
〉
πk .

By the second identity there,

∂2
η̂⊥πk =

〈
η̂⊥ ⊗ η̂⊥ − η⊥k ⊗ η⊥k ,∇∇

〉
πk =

〈
(η̂ − η̂k)

⊥ ⊗ (η̂ − η̂k + 2η̂k)
⊥,∇∇

〉
πk

= ∂2
(η̂−η̂k )

⊥πk − 2∂(η̂−η̂k )
⊥ η̂⊥k · ∇πk .
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Using (5.48) and (5.49) again, we find that

||∂2
η̂⊥πk ||L∞(W ) ≤ ||η̂ − η̂k ||2L∞(W )||∇∇πk ||L∞(W )

+2||η̂ − η̂k ||L∞(W )||∇η̂k ||L∞(W )||∇πk ||L∞(W ) ��,η̂,W,V
1

k
.

The proof is complete. ��

5.3. Three Solution Formulas

Ultimately, we are interested in applying themethod of characteristics to deduce
(partial) uniqueness and regularity theorems, and even explicit solution formulas
for μ. Doing so requires supplementing the ODEs from Section 5.2 with boundary
data implied by the original system (5.1). Different data arise depending on the
stable lines. Guided by the upcoming examples in Section 6, we treat the three
configurations shown in Fig. 5. See Corollary 5.1 for Panel (a), Corollary 5.2 for
Panel (b), and Corollary 5.3 for Panel (c). We continue to use the notation from the
paragraphs leading up to Lemma 5.3.
Stable lines extending between boundary points. First, we consider Panel (a) of
Fig. 5. Recall O denotes the ordered set of ϕ from (5.4), while {�x } are its sta-
ble lines. Assume there exists an open set V ⊂ O of the form

V = ∪s∈��s where ∂�s ⊂ ∂� ∀ s ∈ �. (5.51)

As in (5.11), we understand � ⊂ V to be a smooth curve (i.e., one that is diffeo-
morphic to an open interval) that meets each stable line it indexes transversely and
exactly once. For simplicity, we suppose that

∪s∈�∂�s consists of two Lipschitz curves. (5.52)

By Lemma 5.1 and the definition of O , there exist ζ ∈ L1(V ; (0,∞)) ∩ L2
loc(V )

and η̂ ∈ Liploc(V ; S1) such that

∇∇ϕ = ζ η̂ ⊗ η̂ dx on V,

Fig. 5. Three configurations of stable lines. Panel (a) depicts stable lines extending between
boundary points. Panel (b) depicts stable lines meeting along an interior curve. Panel (c)
shows stable lines meeting at a point. Given suitable non-degeneracy conditions on ϕ, we
prove that μ is uniquely determined on such lines
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where η̂ is constant along and perpendicular to the stable lines. Our next assumption
is that

η̂ ∈ C(V ). (5.53)

In particular, the given stable lines are not allowed tomeet at ∂�. Finally, we assume
there exists c > 0 such that

ν̂ · [∇ϕ] ≥ c and
∣∣τ̂ · η̂|∂�

∣∣ ≥ c H1-a.e. on ∪s∈� ∂�s, (5.54)

where ν̂ and τ̂ are the outwards-pointing unit normal and tangent vectors at ∂�. The
second part of this last assumption requires that the given stable lines remain (a.e.)
uniformly transverse to ∂�. Recall the change of measure factor � : V → (0,∞)

from (5.13).

Corollary 5.1. Suppose ϕ admits some open set V ⊂ O satisfying (5.51)–(5.54),
and let μ ∈ M+(�;Sym2) solve (5.1). Then

μ = λη̂ ⊗ η̂ dx on V

where λ : V → [0,∞) is the unique weak solution of the two-point boundary value
problem {

− 1
2� ∂

2
η̂⊥(s)(�λ) = det∇∇ p on �s

�λ = 0 at ∂�s

upon restriction to H1-a.e. �s .

Proof. Combining the second part of (5.6) and Lemma 5.3 yields the formula

μ = λa.c.η̂ ⊗ η̂ dx +
ˆ
�

λsingη̂ ⊗ η̂H1��s dϑ(s) on V (5.55)

where λa.c. and λsing solve the ODEs (5.14) and (5.15) for H1- and ϑ-a.e. s ∈ �.
Our plan is to use the complementary slackness conditions in the original system
(5.1) to deduce the boundary conditions

�λa.c.|∂�s = 0 for H1-a.e. s and λsing|∂�s = 0 for ϑ-a.e. s. (5.56)

It follows immediately from (5.15) and the second of these that λsing = 0. Then,
(5.14) and the first condition yield the desired characterization of λ = λa.c.. The reg-
ularized formulation of the complementary slackness conditions must be applied.
Here, we use the second part of (5.2), which implies that

0 = lim
δ→0

ˆ
∪s∈�∂�s

|ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μδ

〉 | dH1 (5.57)

due to our assumptions (5.51) and (5.52) (that the domain of integration is measur-
able follows from the second of these). Recall {μδ}δ>0 are the mollifications of μ
defined in (1.32) using the kernel ρ ∈ C∞

c (B1). As noted in Remark 1.3 and proved
in Section 4, the complementary slackness conditions hold so long as ρ ≥ 0 and´
B1

ρ = 1. We choose it a bit more carefully now: for the purposes of this proof,
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we take ρ > 0 on a neighborhood of zero. This same choice also appears in the
proofs of Corollaries 5.2 and 5.3.

All this being said, we claim that the desired boundary conditions (5.56) hold.
Using thatμ and ρ are non-negative and applying the disintegration formulas (5.13)
and (5.55), we have by Fubini’s theorem that

μδ(x) ≥
ˆ
V

1

δ2
ρ

(
x − y

δ

)
dμ(y)

=
ˆ
�

[ˆ
�s

1

δ2
ρ

(
x − y

δ

)
�λa.c.η̂ ⊗ η̂(y) dH1(y)

]
dH1(s)

+
ˆ
�

[ˆ
�s

1

δ2
ρ

(
x − y

δ

)
λsingη̂ ⊗ η̂(y) dH1(y)

]
dϑ(s)

for all x ∈ �. Applying this where the given stable lines meet ∂� yields that

ˆ
∪s∈�∂�s

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , μδ

〉
dH1

≥
ˆ
�

[ˆ
y∈�s

ˆ
x∈∪s∈�∂�s

ν̂ · [∇ϕ](x)|τ̂ (x) · η̂(y)|2�λa.c.(y)

ρ

(
x − y

δ

)
dH1(x)dH1(y)

δ2

]
dH1(s)

+
ˆ
�

[ˆ
y∈�s

ˆ
x∈∪s∈�∂�s

ν̂ · [∇ϕ](x)|τ̂ (x) · η̂(y)|2λsing(y)

ρ

(
x − y

δ

)
dH1(x)dH1(y)

δ2

]
dϑ(s).

The integral on the lefthand side tends to zero as δ → 0 by (5.57). Using Fatou’s
lemma, we can pass to the limit on the right. Recall from Lemma 5.3 that �λa.c.
and λsing belong to W 2,1(�s) and W 2,∞(�s) respectively for H1- and ϑ-a.e. s. In
particular, �λa.c.(y) and λsing(y) converge to their traces as y → ∂�s along a.e. �s .
Applying the hypotheses (5.53) and (5.54), and making use of our choice to take
ρ > 0 nearby zero, we conclude that

0 =
ˆ
�

||�λa.c.||L∞(∂�s ,H0) dH1(s) =
ˆ
�

||λsing||L∞(∂�s ,H0) dϑ(s)

in the limit δ → 0. The boundary conditions (5.56) are proved. ��

Stable lines meeting along an interior curve.We turn to Panel (b) of Fig. 5. Again,
recall from (5.4) that O denotes the ordered set of ϕ to which its stable lines {�x }
belong, while� is its singular set. We now let V ⊂ O ∪� be an open set such that

V \� = V− ∪ V+ where V± = ∪s∈�±�s are disjoint. (5.58)
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Here, �± are smooth curves belonging to V± that meet their indexed stable lines
transversely and exactly once. Our second assumption is twofold: we require that

each indexed stable line �s passes between � and ∂V, and

for all z ∈ V ∩� there exist s± ∈ �± such that {z} = ∂�s+ ∩ ∂�s− .

(5.59)

Looking back to Fig. 5 should help make this clear. Continuing, we assume for
simplicity that

V ∩� is a Lipschitz curve. (5.60)

Lemma 5.1 now guarantees the existence of ζ ∈ L1(V ; (0,∞)) ∩ L2
loc(V \�) and

η̂ ∈ Liploc(V \�; S1) such that
∇∇ϕ = ζ η̂ ⊗ η̂ dx + ν̂� · [∇ϕ]ν̂� ⊗ ν̂� H1�� on V .

Here, ν̂� denotes a choice of unit normal vector to �, which is defined a.e. along
the portion of it belonging to V . We take it to point from V− to V+, and write
[·] = ·|�+ −·|�− for the corresponding jump in a quantity where ·|�± are the traces
at � from V±. Our fourth assumption is that

η̂ restricts to each of V± as an element of C(V±). (5.61)

In particular, this implies that the pair s± in (5.59) is unique, as no two stable lines
on the same side of V ∩ � can meet there. Finally, we suppose there exists c > 0
such that

ζ ≥ c L2-a.e. on V,

ν̂� · [∇ϕ] ≥ c and
∣∣τ̂� · η̂|�±

∣∣ ≥ c H1-a.e. on V ∩� (5.62)

where τ̂� = ν̂⊥� . Define the change of measure factor � : V → (0,∞) as in (5.13).

Corollary 5.2. Suppose ϕ admits some open set V ⊂ O ∪ � satisfying (5.58)–
(5.62), and let μ ∈ M+(�;Sym2) solve (5.1). Then

μ = λη̂ ⊗ η̂ dx on V,

where λ : V → [0,∞) is the unique weak solution of the Cauchy problem

{
− 1

2� ∂
2
η̂⊥(s)(�λ) = det∇∇ p on �s

�λ = ∂η̂⊥(s)(�λ) = 0 at ∂�s ∩�

upon restriction to H1-a.e. �s .

Remark 5.4. Under the abovehypotheses, det∇∇ p ≤ 0 a.e. onV . Indeed, it follows
from the Cauchy problem that �λ and det∇∇ p take on opposite signs, while � > 0
and λ ≥ 0.



Curvature-driven wrinkling

Remark 5.5. In each of the examples in Section 6 it will turn out that if � is not
empty nor a single (smooth) curve, it is nevertheless a tree. At its internal vertices,
three or more stable lines will meet, and to achieve the analogous result we will
need to show that μ vanishes on these lines. This can be done using the ideas in the
proof below. See Example 6.8 for more details.

Proof. The proof is similar in spirit to that of Corollary 5.1, albeit more involved.
We start by showing that

μ = 0 on V ∩�. (5.63)

At the same time, a straightforward application of (5.6) and Lemma 5.3 yields the
formula

μ = λa.c.η̂ ⊗ η̂ dx +
ˆ
�

λsingη̂ ⊗ η̂H1��s dϑ(s) on V \�, (5.64)

where λa.c. and λsing solve the ODEs (5.14) and (5.15) for H1- and ϑ-a.e. s in the
index set � = �+ ∪ �−. Our second step will be to extract the initial conditions

�λa.c.|∂�s∩� = ∂η̂⊥(s)(�λa.c.)|∂�s∩� = 0 forH1-a.e. s, (5.65)

λsing|∂�s∩� = ∂η̂⊥(s)λsing|∂�s∩� = 0 for ϑ-a.e. s (5.66)

from the first two equations in (5.1). Combining these with (5.14) and (5.15) proves
that λsing = 0, and the desired characterization of λ = λa.c. follows. To accomplish
these steps, we shall make use of the following consequences of the (regularized)
complementary slackness conditions (5.2), which hold in light of the formula for
∇∇ϕ above:

0 = lim
δ→0

ˆ
V \�

∣∣∣〈ζ η̂⊥ ⊗ η̂⊥, μδ

〉∣∣∣ dx = lim
δ→0

ˆ
V∩�

|ν̂� ·[∇ϕ] 〈τ̂� ⊗ τ̂�, μδ

〉 | dH1,

(5.67)
where {μδ}δ>0 are the mollified versions of μ from (1.32). Again, we take the
kernel ρ ∈ C∞

c (B1) to satisfy ρ > 0 on a neighborhood of zero (see Remark 1.3).
We start by proving (5.63). First, we note for every x ∈ V that

μδ(x) ≥
ˆ
V∩�

1

δ2
ρ

(
x − y

δ

)
dμ(y) and μδ(x) ≥

ˆ
V \�

1

δ2
ρ

(
x − y

δ

)
dμ(y).

(5.68)
These follow from the non-negativity of ρ and μ. Integrating the first of these and
applying Fubini’s theorem yieldsˆ

V \�

〈
ζ η̂⊥ ⊗ η̂⊥, μδ

〉
dx

≥
ˆ
V∩�

〈ˆ
V \�

ζ η̂⊥ ⊗ η̂⊥(x)ρ
(
x − y

δ

)
dx

δ2
, μ(y)

〉
,

ˆ
V∩�

〈
ν̂� · [∇ϕ]τ̂� ⊗ τ̂�, μδ

〉
dH1

≥ 1

δ

ˆ
V∩�

〈ˆ
V∩�

ν̂� · [∇ϕ]τ̂� ⊗ τ̂�(x)ρ

(
x − y

δ

)
dH1(x)

δ
, μ(y)

〉
.
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According to (5.67), the integrals on the left tend to zero as δ → 0. Applying (5.61)
along with the first part of (5.62), we can pass to the limit in the first inequality
above to deduce that

0 =
〈
η̂⊥ ⊗ η̂⊥|�± , μ

〉
on V ∩�.

Then, using that μ is non-negative and Sym2-valued, we get that

μ = 〈
η̂ ⊗ η̂|�± , μ

〉
η̂ ⊗ η̂|�± on V ∩�.

Now plug this into the second inequality and send δ → 0 again (this is to deal with
the case where η̂|�± are parallel on a non-null set). Applying (5.61) along with the
second and third parts of (5.62), and recalling that ρ > 0 nearby zero, there follows

0 = 〈
η̂ ⊗ η̂|�± , μ

〉
on V ∩�.

Therefore μ = 0 on V ∩� and (5.63) is proved.
We proceed to control μ on V \�. As explained above, we must establish the

initial conditions (5.65) and (5.66) for �λa.c. and λsing. We handle their traces first.
This part of the proof can be copied almost verbatim from that of Corollary 5.1.
Recall the index set � = �+ ∪ �−. Using the second part of (5.68) along with the
disintegration formulas (5.13) and (5.64) produces the lower boundˆ

V∩�
〈
ν̂� · [∇ϕ]τ̂� ⊗ τ̂�, μδ

〉
dH1

≥
ˆ
�

[ˆ
y∈�s

ˆ
x∈V∩�

ν̂� · [∇ϕ](x)|τ̂�(x) · η̂(y)|2�λa.c.(y)

ρ

(
x − y

δ

)
dH1(x)dH1(y)

δ2

]
dH1(s)

+
ˆ
�

[ˆ
y∈�s

ˆ
x∈V∩�

ν̂� · [∇ϕ](x)|τ̂�(x) · η̂(y)|2λsing(y)

ρ

(
x − y

δ

)
dH1(x)dH1(y)

δ2

]
dϑ(s).

According to (5.67), the integral on the lefthand side tends to zero as δ → 0.
Applying the assumption (5.61), the second and third parts of (5.62), and our choice
to take ρ > 0 nearby zero, we pass to the limit to deduce that

0 =
ˆ
�

�λa.c.|∂�s∩� dH1(s) =
ˆ
�

λsing|∂�s∩� dϑ(s).

Since the integrands are non-negative, they must vanish a.e. The first parts of (5.65)
and (5.66) are proved.

The next part of the proof has no analog in that of Corollary 5.1: we must show
that ∂η̂⊥(�λa.c.) and ∂η̂⊥λsing vanish at V ∩�. The argument goes in two steps. The
first step is to show that

0 ≤ ∂η̂⊥(s)(�λa.c.)|∂�s∩� for H1-a.e. s ∈ �,

0 ≤ ∂η̂⊥(s)λsing|∂�s∩� for ϑ-a.e. s ∈ �.
(5.69)
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Here, we understand each �s to be oriented so that it starts at � and ends at ∂V ,
i.e., we take η̂⊥ to point away from �. (This is possible due to (5.59).) The second
step is to deduce from the first equation in (5.1) the matching conditions

0 = ∂η̂⊥(s+)(�λa.c.)|∂�s+∩� + ∂η̂⊥(s−)(�λa.c.)|∂�s−∩�,
0 = ∂η̂⊥(s+)λsing|∂�s+∩� + ∂η̂⊥(s−)λsing|∂�s−∩�

(5.70)

respectively for H1-a.e. and ϑ-a.e. s± ∈ �± with ∂�s+ ∩ ∂�s− ∩ V ∩ �  = ∅.
Note there is a one-to-one correspondence between points z ∈ V ∩ � and pairs
s± ∈ �± satisfying {z} = ∂�s+ ∩ ∂�s− , due to (5.59) and (5.61). Combining (5.69)
and (5.70) yields the remaining parts of (5.65) and (5.66).

First, we handle (5.69). Since μ ≥ 0, the densities �λa.c. and λsing are non-
negative. That is,

0 ≤
ˆ
�s

ψ�λa.c. dH1 for H1-a.e. s and 0 ≤
ˆ
�s

ψλsing dH1 for ϑ-a.e. s

whenever ψ ≥ 0. Let χ ∈ Cc((1, 2)) be non-negative and integrate to one, and
define ψδ ∈ C(�s) for δ > 0 by

ψδ(x) = 1

|x − z| ·
1

δ
χ

( |x − z|
δ

)
where {z} = ∂�s ∩ V ∩�.

Recall from Lemma 5.3 that �λa.c. ∈ W 2,1(�s) and λsing ∈ W 2,∞(�s) forH1- and
ϑ-a.e. s, respectively. Above, we proved that they vanish at a.e. ∂�s∩�. Therefore,

ˆ
�s

ψδ�λa.c. dH1 → ∂η̂⊥(s)(�λa.c.)|∂�s∩� for H1-a.e. s,

ˆ
�s

ψδλsing dH1 → ∂η̂⊥(s)λsing|∂�s∩� for ϑ-a.e. s

and with this the desired inequalities (5.69) follow.
Finally, we prove the matching conditions (5.70). Testing the first part of (5.1)

against ψ ∈ C∞
c (V ) and applying the disintegration formulas (5.13) and (5.64)

yields the identity

ˆ
V
ψ det∇∇ p dx =

ˆ
V

〈
−1

2
∇⊥∇⊥ψ,μ

〉

=
ˆ
�

[ˆ
�s

−1

2
∂2
η̂⊥(s)ψ�λa.c. dH1

]
dH1(s)

+
ˆ
�

[ˆ
�s

−1

2
∂2
η̂⊥(s)ψλsing dH1

]
dϑ(s).
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Integrating by parts twice with the ODEs (5.14) and (5.15), there follows

ˆ
�

[ˆ
�s

∂2
η̂⊥(s)ψ�λa.c. dH1

]
dH1(s) =

ˆ
�

(
ψ∂η̂⊥(s)(�λa.c.)

) |∂�s∩� dH1(s)

− 2
ˆ
V
ψ det∇∇ p dx,

ˆ
�

[ˆ
�s

∂2
η̂⊥(s)ψλsing dH1

]
dϑ(s) =

ˆ
�

(
ψ∂η̂⊥(s)λsing

) |∂�s∩� dϑ(s).

Setting these formulas into the identity above and cancelling like terms proves that

0 =
ˆ
�

(
ψ∂η̂⊥(s)(�λa.c.)

) |∂�s∩� dH1(s)+
ˆ
�

(
ψ∂η̂⊥(s)λsing

) |∂�s∩� dϑ(s)

for all ψ ∈ C∞
c (V ). The conditions in (5.70) now follow from the correspondence

between z ∈ V ∩� and s± ∈ �±, as H1 ⊥ ϑ on � = �+ ∪ �−. ��
Stable lines meeting at an interior point. We end with the possibility in Panel (c)
of Fig. 5. Let O be the ordered set of ϕ from (5.4), and suppose there exists a point
x0 ∈ � and an open set V ⊂ O ∪ {x0} such that

x0 ∈ V and V \ {x0} = ∪s∈��s where �s ||êr (s) ∀ s ∈ �. (5.71)

We use (r, θ) to denote polar coordinates about x0, and {êr , êθ } for the associated
orthonormal frame. The set � is understood to meet each stable line it indexes
transversely and exactly once; we take it to be diffeomorphic to the unit circle S1.
It follows that

∇∇ϕ = ζ(θ)

r
êθ ⊗ êθ dx on V

where ζ ∈ L2((0, 2π)) is locally uniformly positive a.e. Evidently, x0 belongs to
the singular set � of ϕ, as 1/r is not square integrable on any neighborhood of the
origin. Denote ∂r = ∂êr .

Corollary 5.3. Suppose ϕ admits a point x0 ∈ � and some open set V ⊂ O ∪ {x0}
satisfying (5.71), and let μ ∈ M+(�;Sym2) solve (5.1). Then

μ = λêθ ⊗ êθ dx on V,

where λ : V → [0,∞) is the unique weak solution of the Cauchy problem

{
− 1

2r ∂
2
r (rλ) = det∇∇ p on �s

rλ = ∂r (rλ) = 0 at ∂�s ∩ {x0}

upon restriction to H1-a.e. �s .
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Proof. We follow the same outline as the proof of Corollary 5.2, with the details
being modified slightly to make up for the fact that ∇∇ϕ lacks a singular part. The
first step will be to show that

μ({x0}) = 0. (5.72)

At the same time, Lemmas 5.2 and 5.3 yield the formula

μ = λa.c.êθ ⊗ êθ dx +
ˆ
�

λsingêθ ⊗ êθH1��s dϑ(s) on V \ {x0} (5.73)

where λa.c. and λsing solve the ODEs (5.14) and (5.15). It is here that we use the
unique continuation-type result from Remark 5.3. This allows to prove (5.73) by
finding two neighborhoods Vi = ∪�i �s of the form (5.11) with V \{x0} = V1 ∪ V2
and � ∩ Vi = �i , and by applying Lemma 5.3 to each Vi . That the individual
disintegration formulas agree on V1 ∩ V2 is assured by the remark. The final step
of the proof is to establish the initial conditions

rλa.c.|∂�s (x0) = ∂r (rλa.c.)|∂�s (x0) = 0 for H1-a.e. s, (5.74)

λsing|∂�s (x0) = ∂rλsing|∂�s (x0) = 0 for ϑ-a.e. s. (5.75)

We use the first complementary slackness condition in (5.1), which implies that

0 = lim
δ→0

ˆ
V

∣∣∣∣
〈
ζ(θ)

r
êr ⊗ êr , μδ

〉∣∣∣∣ dx . (5.76)

Note {μδ}δ>0 are given by (1.32) where the mollifying kernel ρ ∈ C∞
c (B1) is

non-negative and integrates to one. As in the previous two proofs, we take ρ > 0
nearby zero (see Remark 1.3).

We start with the proof of (5.72). Given any x ∈ V we can write that

μδ(x) ≥ ρ

(
x − x0

δ

)
μ({x0}),

since ρ and μ are non-negative. It follows that

ˆ
V

〈
ζ

r
êr ⊗ êr , μδ

〉
dx ≥ 1

δ

〈ˆ
Bδ(x0)

ζ
δ

r
êr ⊗ êr (x)ρ

(
x − x0

δ

)
dx

δ2
, μ({x0})

〉

for all sufficiently small δ > 0. The integral on the lefthand side tends to zero by
(5.76). Recall ζ is locally uniformly positive a.e., i.e., every θ ∈ (0, 2π) admits a
neighborhood on which ζ ≥ c(θ) > 0 a.e. Recall also that we chose to take ρ > 0
nearby zero. Multiplying by δ and sending δ → 0 proves that

〈
x̂ ⊗ x̂, μ({x0})

〉 = 0 ∀ x̂ ∈ S1.

It follows that μ({x0}) = 0 as claimed in (5.72).



I. Tobasco

Next, we determine μ on V \{x0}. The formula (5.73) follows as above. We
proceed to show the initial conditions (5.74) and (5.75). First, we consider the
traces of rλa.c. and λsing. Given x ∈ V ,

μδ(x) ≥
ˆ
V \{x0}

1

δ2
ρ

(
x − y

δ

)
dμ(y)

=
ˆ
�

[ˆ
y∈�s

1

δ2
ρ

(
x − y

δ

)
êθ ⊗ êθ (y)rλa.c.(y) dH1(y)

]
dH1(s)

+
ˆ
�

[ˆ
y∈�s

1

δ2
ρ

(
x − y

δ

)
êθ ⊗ êθ (y)λsing(y) dH1(y)

]
dϑ(s)

by (5.13) and (5.73). It follows from Fubini’s theorem that
ˆ
V

〈
ζ

r
êr ⊗ êr , μδ

〉
dx

≥
ˆ
�

[ˆ
y∈�s

ˆ
x∈Bδ(x0)

ζ
δ

r
(x)|êr (x) · êθ (y)|2rλa.c.(y)

ρ

(
x − y

δ

)
dxdH1(y)

δ3

]
dH1(s)

+
ˆ
�

[ˆ
y∈�s

ˆ
x∈Bδ(x0)

ζ
δ

r
(x)|êr (x) · êθ (y)|2λsing(y)

ρ

(
x − y

δ

)
dxdH1(y)

δ3

]
dϑ(s)

for all small enough δ > 0. Again, the lefthand side limits to zero by (5.76).
Consider the terms on the right. The function ζ is locally uniformly positive a.e.
Even though êr (x) · êθ (y) = 0 when x = y, the typical value of |êr (x) · êθ (y)| is
bounded from zero. The kernel ρ > 0 nearby zero. Passing to the limit via Fatou’s
lemma proves that

0 =
ˆ
�

rλa.c.|∂�s (x0) dH1(s) =
ˆ
�

λsing|∂�s (x0) dϑ(s).

As the integrands are non-negative they must vanish a.e. The first parts of (5.74)
and (5.75) are proved.

Finally, we check that ∂r (rλa.c.) and ∂rλsing vanish at x0. This last part of the
proof is directly analogous to that of Corollary 5.2. In fact, it is so similar that we
omit most of the details for brevity’s sake. First, observe that

0 ≤ ∂r (rλa.c.)|∂�s (x0) forH1-a.e. s ∈ �,

0 ≤ ∂rλsing|∂�s (x0) for ϑ-a.e. s ∈ �. (5.77)

These hold since the functions rλa.c. and λsing are non-negative, while their traces at
x0 were shown to vanish in the previous step. Second, note the matching conditions

0 =
ˆ
�

∂r (rλa.c.)|∂�s (x0) dH1(s) =
ˆ
�

∂rλsing|∂�s (x0) dϑ(s) (5.78)
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which arise from the first part of (5.1) as êθ is discontinuous at x0. Together, (5.77)
and (5.78) yield the remaining parts of (5.74) and (5.75).

We briefly explain the matching conditions. Let ψ ∈ C∞
c (V ) have ψ(x0) = 1.

Combining the first part of (5.1) with (5.13) and (5.73) yields that
ˆ
V
ψ det∇∇ p dx =

ˆ
�

[ˆ
�s

−1

2
∂2r ψrλa.c. dH1

]
dH1(s)

+
ˆ
�

[ˆ
�s

−1

2
∂2r ψλsing dH1

]
dϑ(s).

Integrating by parts with the ODEs (5.14) and (5.15) proves the identities
ˆ
�

[ˆ
�s

∂2r ψrλa.c. dH1
]
dH1(s) =

ˆ
�

∂r (rλa.c.)|∂�s (x0) dH1(s)

− 2
ˆ
V
ψ det∇∇ p dx,

ˆ
�

[ˆ
�s

∂2r ψλsing dH1
]
dϑ(s) =

ˆ
�

∂rλsing|∂�s (x0) dϑ(s).

The desired conditions (5.78) follow. ��

6. Application to Shells with Curvature of Known Sign

This final section combines all of our previous results to deduce the patterns
seen in weakly curved, floating shells. In particular, we derive the diagrams in
Fig. 2 and use them to demonstrate our method of stable lines. This should serve
to complement the general presentation of the method in Section 5. In addition to
the basic assumptions in (1.14a), each of the examples we discuss will be subject
to the simplifying hypotheses that

� is simply connected and det∇∇ p is a.e. of one sign.

As usual, when we refer to “optimal” μ we mean solutions of the primal prob-
lem(s) in (4.1). Equivalently, these are non-negative solutions of the boundary
value problem (5.1) where ϕ solves the dual. Our earlier results show that, under
the assumptions at the start of Section 1.2, such μ are nothing other than the defect
measures of the almost minimizers of Eb,k,γ . Any reference to almost minimizers
is contingent upon the �-convergence in Theorem 1.1.

This section is organized as follows. We begin in Section 6.1 with the general
task of solving the dual problem

max
ϕ:R2→R

ϕ is convex
ϕ= 1

2 |x |2 on R2\�

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p dx (6.1)

under the assumption that the shell is positively or negatively curved.We show how
this boils down to finding either the largest or the smallest convex extension ϕ+ or
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ϕ− of 1
2 |x |2 into �, and obtain two more or less explicit geometric optimization

procedures for doing so. Thus, we prove Proposition 1.1.
We then go on to the examples. Section 6.2 treats various positively curved

shells, including the ones depicted in Panel (a) of Fig. 2. Applying Corollary 5.1,
we learn that optimal μ are uniquely determined on the ordered set O of ϕ+, and
furthermore that they satisfy

μ = λη̂ ⊗ η̂ dx on O, where

{
− 1

2� ∂
2
η̂⊥(�λ) = det∇∇ p on O

�λ = 0 at ∂O ∩ ∂�
.

(6.2)
Here, η̂ is a suitable choice of normal to the stable lines of ϕ+. These will turn out
to extend between points on ∂� throughout the set O where they are defined.

A parallel discussion of negatively curved shells is in Section 6.3. We show
how the stable lines of ϕ− follow the paths of quickest exit from�, as indicated in
Panel (b) of Fig. 2. Such paths meet at the medial axis

M = {x ∈ � : d∂�(x) = |x − y| for multiple y ∈ ∂�} (6.3)

shown in bold. Apparently, our negatively curved examples are such that their
stable lines fill out the given shells. Applying Corollary 5.2 or Corollary 5.3, we
consequently show that optimal μ are unique and that they satisfy

μ = λ∇⊥d∂� ⊗∇⊥d∂� dx on �, where

{
− 1

2� ∂
2∇d∂�

(�λ) = det∇∇ p on �\M
�λ = ∂∇d∂�(�λ) = 0 at M

.

(6.4)
We close with a general conjecture on the (conditional) uniqueness of optimal μ.

To be clear, the systems in (6.2) and (6.4), and that we derive in the examples
below, are only abbreviated versions of the ones implied byCorollaries 5.1–5.3: they
indicate a situation where �λ restricts toH1-a.e. stable line �s as the unique weak
solution of an appropriate two-point boundary value or Cauchy problem (obtained
by restoring the s-dependences as in the corollaries). To lighten the notation, we
refer to such abbreviated systems throughout.

6.1. Optimal Airy Potentials and Their Stable Lines

We begin by proving Proposition 1.1. Let � ⊂ R
2 be a bounded, Lipschitz

domain that is simply connected, and let p ∈ W 2,2(�) be such that det∇∇ p is a.e.
of one sign. Define the functions ϕ± : R

2 → R by

ϕ+(x) = sup

{
ϕ(x) : ϕ is convex on R

2 and equals
1

2
| · |2 on R

2\�
}
,

ϕ−(x) = inf

{
ϕ(x) : ϕ is convex on R

2 and equals
1

2
| · |2 on R

2\�
}

for all x ∈ R
2. Clearly, if ϕ is admissible in the dual problem (6.1) then

ϕ−(x) ≤ ϕ(x) ≤ ϕ+(x) ∀ x . (6.5)
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Lemma 6.1. The functions ϕ+ and ϕ− are convex, and are equal to 1
2 |x |2 onR

2\�.
Therefore, they are the largest and smallest convex extensions of 1

2 |x |2 into �.
Furthermore, the formulas (1.43) and (1.44) hold: given x ∈ �,

ϕ+(x) = min{yi }⊂∂�

3∑
i=1

θi
1

2
|yi |2 (6.6)

where the minimization is taken over all pairs and triples {yi } ⊂ ∂� satisfying

x =
∑
i

θi yi where {θi } ⊂ (0, 1) satisfies
∑
i

θi = 1;

also

ϕ−(x) = 1

2
|x |2 − 1

2
d2∂�(x) where d∂�(x) = min

y∈∂� |x − y|. (6.7)

Proof. The convexity ofϕ+ is clear, as the pointwise supremumof convex functions
is convex. It is also clear that ϕ+ = 1

2 |x |2 outside of �. The formula (6.6) now
follows from the dual characterization of the convex envelope of a function as the
infimumof convex combinations of its graph (see, e.g., [21, Theorem2.35]). Indeed,
we recognize from its definition that ϕ+ is the largest convex function bounding
the function U : R

2 → R equal to ∞ on � and 1
2 |x |2 on R

2\� from below. That
is, it is the convex envelope of U . Applying the dual characterization, we get that

ϕ+(x) = inf

{
3∑

i=1

θiU (yi ) : yi ∈ R
2 and θi ∈ [0, 1] for i = 1, 2, 3,

x =
3∑

i=1

θi yi ,
3∑

i=1

θi = 1

}

= inf

{
3∑

i=1

θi
1

2
|yi |2 : yi ∈ R

2\� and θi ∈ [0, 1] for i = 1, 2, 3,

x =
3∑

i=1

θi yi ,
3∑

i=1

θi = 1

}
.

The minimization can be parameterized by {yi }, as once these have been chosen
{θi } are determined. And, as 1

2 |x |2 is strictly convex, the minimizing {yi } ⊂ ∂�

whenever x ∈ �. This proves (6.6).
Now we discuss ϕ−. We proceed in the opposite order, showing first that the

functionL : R
2 → R equal to 1

2 |x |2 − 1
2d

2
∂� on � and 1

2 |x |2 on R
2\� is convex,

and then checking that it equals to ϕ−. Note by its definition that

L (x) = 1

2
|x |2 − 1

2
min
y /∈� |x − y|2 = max

y /∈� x · y − 1

2
|y|2.

Thus, L is convex as it is the pointwise supremum of affine functions. To finish,
we show that ϕ ≥ L whenever ϕ is a convex extension of 1

2 |x |2 into �. Clearly
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this holds for x /∈ �, so fix some x ∈ �. Let y ∈ ∂� be a point closest to x , and
let z be on the line segment from x to y. Calling t = |z − x |, we obtain the bound

ϕ

(
x + t

y − x

d∂�(x)

)
≥ (y − x) · y

d∂�(x)
(t − d∂�(x))+ 1

2
|y|2 = (y − x) · y

d∂�(x)
t +L (x).

Note in the last step we used that L (x) = x · y − 1
2 |y|2. Setting t = 0 yields the

desired inequality ϕ(x) ≥ L(x). It follows from its definition that ϕ− = L. ��
Corollary 6.1. The functions ϕ+ and ϕ− solve the dual problem (6.1) respectively
when det∇∇ p ≥ 0 and≤ 0 a.e. Furthermore, if either of these inequalities is strict
a.e., then (6.1) is only solved by the corresponding ϕ+ or ϕ−.

Proof. We give the proof in the case that det∇∇ p ≥ 0, as the other case is the
same. Rearranging (6.5) shows that ϕ+ − ϕ ≥ 0 whenever ϕ is admissible for the
dual. It follows thatˆ

�

(
ϕ+ − 1

2
|x |2

)
det∇∇ p ≥

ˆ
�

(
ϕ − 1

2
|x |2

)
det∇∇ p.

As ϕ+ is admissible by Lemma 6.1, it is a maximizer. On the other hand, if ϕ is a
maximizer it must be that ˆ

�

(ϕ+ − ϕ) det∇∇ p = 0.

If, in addition, det∇∇ p > 0 a.e., ϕ = ϕ+ so that no other maximizer exists. ��
Proposition 1.1 is proved. Note we also established the uniqueness in Remark 1.5.

6.2. Positively Curved Shells

We are ready to solve for the patterns in Fig. 2. Here, we treat the positively
curved shells shown in Panel (a), i.e., we let p ∈ W 2,2(�) satisfy

det∇∇ p ≥ 0 a.e.

We begin each example by producing the largest convex extension ϕ+ of 1
2 |x |2 into

the given �. We identify its singular, flattened, ordered, and unconstrained sets �,
F , O , andU as well as its stable lines {�x } following the definitions in Section 5.1.
Then, we show how to apply Corollary 5.1 to characterize optimalμ. The end result
is a proof that optimal μ are unique upon restriction to O , and that they satisfy a
version of (6.2).

Our first example is the positively curved ellipse in Panel (a) of Fig. 2.

Example 6.1. (positively curved ellipse) Let 0 < b < a and take as the domain the
ellipse

E =
{
(x1, x2) : x

2
1

a2
+ x22

b2
< 1

}
.
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We claim that

ϕ+(x) = 1

2

(
b2 +

(
1− b2

a2

)
x21

)
, x ∈ E . (6.8)

It is straightforward to check using Lemma 4.5 that (6.8) defines a convex extension
of 1

2 |x |2 into E . It satisfies

∇∇ϕ+ =
(
1− b2

a2

)
ê1 ⊗ ê1 dx on E

so that its Hessian is non-negative and uniformly bounded, and it equals to 1
2 |x |2

at ∂E . Since

ν̂ · [∇ϕ+] =
(
x1
a2
, x2
b2

)
√

x21
a4

+ x22
b4

·
(
x1 − (1− b2

a2
)x1, x2

)
= b2

√
x21
a4

+ x22
b4

> 0 at ∂E,

(6.9)
we conclude that (6.8) is admissible. Now, we must verify it is the largest convex
extension. Given x ∈ E there is a unique line containing it and parallel to ê2. That
line intersects ∂E at two points {(x1,±x2(x1))}, and

x = θ(x1, x2(x1))+ (1− θ)(x1,−x2(x1)) for some θ ∈ (0, 1).

If ϕ is any convex extension of 1
2 |x |2 into E it follows that

ϕ(x) ≤ θ
1

2
|(x1, x2(x1))|2 + (1− θ)

1

2
|(x1,−x2(x1))|2 = 1

2

(
x21 + b2

(
1− x21

a2

))
.

Thus (6.8) is indeed the formula for ϕ+ on E .
Having obtained ϕ+, we note it partitions E according to

O = E and � = F = U = ∅.
In particular, the entire ellipse is ordered. Its stable lines {�x } are the lines referred to
above or, rather, the portion of themwithin E .Wefinish by applyingCorollary 5.1 to
characterize optimalμ. Given any sufficiently small δ > 0,we claim the hypotheses
(5.51)–(5.54) hold with ϕ = ϕ+ and for

V = {x ∈ E : −a + δ < x1 < a − δ}, ζ = 1− b2

a2
, η̂ = ê1.

That ν̂ · [∇ϕ+] ≥ c > 0 follows from (6.9). The uniform transversality condition
|τ̂ · ê1| ≥ c(δ) > 0 is clear. Note we introduced the cutoff length δ to deal with the
fact that |τ̂ · ê1| → 0 as x1 → ±a. As the stable lines are parallel, the change of
measure factor � from (5.13) remains constant and non-zero along each of them;
it is a function of x1 whose exact form is immaterial and depends on the choice
of indexing curve �. Applying Corollary 5.1 and taking δ → 0 we conclude that
optimal μ are unique, and that they satisfy

μ = λê1 ⊗ ê1 dx on E, where

{
− 1

2∂
2
2λ = det∇∇ p on E

λ = 0 at ∂E
.

This completes our discussion of the positively curved ellipse.
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Next, we consider the positively curved disc. The corresponding entry in Fig. 2
is blank, indicating a complete lack of stable lines. As a result, we will be able to
construct infinitely many optimal μ.

Example 6.2. (positively curved disc) Let a > 0 and take as the domain the disc

D =
{
(x1, x2) : x21 + x22 < a2

}
.

Since ∂D is a level set of 1
2 |x |2, it follows immediately from (6.6) that

ϕ+(x) = 1

2
a2, x ∈ D.

Hence

∇∇ϕ+ = 0 on D

and the corresponding partition of D degenerates into

U = D and � = F = O = ∅.
The entire disc is unconstrained. The ordered set is empty and there are no stable
lines. Nevertheless, optimal μ can still be characterized as non-negative solutions
of (5.1), which degenerates into the system

{
− 1

2 curlcurlμ = det∇∇ p on D〈
τ̂ ⊗ τ̂ , μ

〉 = 0 at ∂D
. (6.10)

Note the PDE holds in the sense of distributions, while the boundary conditions
hold in the regularized sense, i.e.,

0 = lim
δ→0

ˆ
∂D

∣∣〈τ̂ ⊗ τ̂ , μδ

〉∣∣ ds (6.11)

where {μδ}δ>0 are as in (1.32). We used that ν̂ · [∇ϕ+] = a > 0 at ∂D.
As a boundary value problem, (6.10) is severely underdetermined. Here is an

example of the non-uniqueness it permits: given any decomposition of D into a
disjoint family of open line segments with boundary points on ∂D, and letting
η̂ ∈ Liploc(D; S1) be constant along and perpendicular to the segments, we claim
that the measure

μ = λη̂ ⊗ η̂ dx on D, where

{
− 1

2� ∂
2
η̂⊥(�λ) = det∇∇ p in D

�λ = 0 at ∂D
(6.12)

is a solution of (6.10). Hence, it is optimal. Note � : D → (0,∞) is defined via
(5.13). That μ is indeed a solution can be checked using the methods of Section 5.
Recall the system in (6.12) stands for a family of two-point boundary value problems
indexed by the given segments (just as in Corollary 5.1). The PDE in (6.10) now
follows more or less directly from the notation introduced in Section 5.2 above
Lemma5.3. Establishing the boundary conditions takes a bitmorework:we achieve
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them by reversing the proof of Corollary 5.1. Start by indexing the segments, which
we still call {�s}, with a curve � ⊂ D such that D = ∪s∈��s where s �→ �s is
one-to-one and s ∈ �s . It will suffice to take � to be Lipschitz. Rewriting (6.11)
using disintegration of measure, we must check that

0 = lim
δ→0

ˆ
s∈�

[ˆ
x∈∂D

ˆ
y∈�s

∣∣τ̂ (x) · η̂(y)∣∣2 �λ(y)ρ
(
x − y

δ

)
dH1(x)dH1(y)

δ2

]
dH1(s),

where ρ ∈ C∞
c (B1) is non-negative and integrates to one. We do so via the domi-

nated convergence theorem.
The bracketed integrals tend to zeroH1-a.e. due to the boundary conditions in

(6.12). Indeed, �λ ∈ W 2,1(�s) upon restriction to a.e. �s , and the corresponding
traces at ∂�s vanish. Integrating the ODEs from (6.12) along a.e. �s yields that
|�λ(y)| � d(y, ∂�s)||� det∇∇ p||L1(�s ,H1) for y ∈ �s . If (x, y) ∈ ∂D × �s satis-
fies |x − y| < δ, then d(y, ∂�s) �a (δ/H1(�s)) ∧ H1(�s) and

∣∣τ̂ (x) · η̂(y)∣∣ �a

H1(�s) ∨ δ. Hence,
ˆ
(x,y)∈∂D×�s|x−y|<δ

∣∣τ̂ (x) · η̂(y)∣∣2 �λ(y) dH1(x)dH1(y)

δ2
�a ||� det∇∇ p||L1(�s ,H1)

for a.e. s. The righthand side is integrable by (5.13) since p ∈ W 2,2. Sending δ → 0
completes the proof.

Even though the segments used above may remind of stable lines, we prefer not
to call them as such. For one, the decomposition D = ∪s∈��s is not unique. Each
such decomposition gives rise to a different optimal μ and, correspondingly, to a
different sequence of almost minimizers of Eb,k,γ under the assumptions at the start
of Section 1.2. In some asymptotic sense, this is the opposite of stability. Also, these
are not the only optimal μ. In particular, the set of solutions of (6.10) is convex.
Taking convex combinations of the measures in (6.12), we deduce the existence
of optimal μ that are everywhere rank two. The corresponding almost minimizers
feature two-dimensional patterns instead of one-dimensional, wrinkling-like ones.
We wonder if the disordered positively curved discs from [78] can be understood
using suitable solutions of (6.10). If no such μ represents the observed patterns,
it would neccessarily follow that they cannot be modeled as almost minimizers of
Eb,k,γ , as least in the parameter regime (1.11).

The previous examples set the extremes: whereas a positively curved ellipse is
totally ordered, a positively curved disc is totally unconstrained (save for boundary
data). Our next two examples sit somewhere in-between. They address the triangle,
square, and rectangle from Panel (a) of Fig. 2.What distinguishes the former shapes
from the latter is the fact that triangles and squares admit inscribed circles, whereas
rectangles do not.

Example 6.3. (positively curved tangential polygons) A tangential polygon is a
convex polygon that admits an inscribed circle, known as its incircle. Every regular
polygon is tangential; more generally, a convex polygon is tangential if and only if
its angle bisectors intersect at a distinguished point. This point is called the incenter,
being the center of the incircle just defined. Given a tangential polygon P , we call
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its contact polygon P ′ the convex polygon whose vertices are the points of contact
of the incircle with P . Thus, P decomposes into a disjoint union of its contact
polygon and finitely many leftover isosceles triangles, one for each vertex.

Now let P be a tangential polygon with vertices a1, . . . , an ∈ R
2 and interior

angles α1, . . . , αn . Let its incenter be at the origin, and call the radius of its incircle
a. Let P ′ be the contact polygon defined above. The remainder P\P ′ divides into
n isosceles triangles, which we label as Ti for i = 1, . . . , n. The labeling is such
that the i th vertex of the original polygon ai is a vertex of the i th triangle Ti . For
use in what follows, we take P ′ to be closed (relative to P) and let each Ti be open.
After a fairly straightforward but somewhat lengthy argument, one finds that

ϕ+(x) =
{

1
2a

2 x ∈ P ′
1
2

((
x · âi

)2 + tan2(αi2 )
(|ai | − x · âi

)2)
x ∈ Ti , i = 1, . . . , n

for x ∈ P . From this it follows that

∇∇ϕ+ =
n∑

i=1

(
1+ tan2

(αi
2

))
âi ⊗ âi1Ti dx on P.

The absolute continuity follows from the fact that P ′ is the contact polygon of P .
Regarding the partition implied by ϕ+, we find that

O = ∪i Ti , U = P ′, σ = F = ∅.
The trianglesTi are ordered,whereas P ′ is unconstrained.The stable lines belonging
to the i th triangle Ti lie perpendicular to âi and extend from ∂P to ∂P .

Having identified ϕ+, we can apply Corollary 5.1 to characterize optimal μ.
Note (5.51)–(5.53) holds with ϕ = ϕ+ and for

V = Ti , ζ = 1+ tan2
(αi
2

)
, η̂ = âi

for i = 1, . . . , n. Theuniform transversality condition from (5.54) is easily checked,
as |τ̂ · âi | ≥ c > 0. Since

∇ϕ+ = x · âi âi − tan2
(αi
2

) (|ai | − x · âi
)
âi , x ∈ Ti

we see that

ν̂ · [∇ϕ+] = x · â⊥i ν̂ · â⊥i + tan2(
αi

2
)
(|ai | − x · âi

)
ν̂ · âi ≥ 0 at ∂Ti ∩ ∂P.

Evidently, the first part of (5.54) fails for V as it allows for x → ai . However, this
is easy to fix: as in Example 6.1, we can introduce a small cutoff length δ > 0 and
modify V such that ν̂ · [∇ϕ+] ≥ c(δ) > 0. Note � is constant along the stable lines
as they remain parallel within each Ti . Applying Corollary 5.1 and taking δ → 0
yields that

μ = λi âi ⊗ âi dx on Ti , where

{− 1
2∂

2
â⊥i

λi = det∇∇ p on Ti

λ = 0 at ∂Ti ∩ ∂P

for i = 1, . . . , n. In particular, any two optimal μ agree upon restriction to ∪i Ti .
Much less is known at present regarding μ on P ′.
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Most polygons do not admit an inscribed circle, i.e., they fail to be tangential.
Nevertheless, the arguments appearing in the previous example can be adapted to
handle a more general case.

Example 6.4. (positively curved rectangle) Let 0 < b < a and consider the rectan-
gle

R = {(x1, x2) : −a < x1 < a,−b < x2 < b} .
Although R does not admit an inscribed circle, there does exist a one-parameter
family of maximally contained circles given by

Ct =
{
(x1, x2) : (x1 − t)2 + x22 = b2

}
, −(b − a) ≤ t ≤ b − a.

The left and rightmost circles

Cl = C−(b−a) and Cr = Cb−a

play a role analogous to that of the incircle above. BothCl andCr touch R at exactly
three points: call the triangles formed by these points Tl and Tr. The remainder is
made up of four 45−45−90 triangles Tnw, Tsw, Tse, and Tne and one sub-rectangle
Rc. The subscripts nw and so on indicate location as on a compass. It will probably
be helpful to look at Fig. 2. There, Tl and Tr are indicated in blank, whereas the
remaining triangles Tnw, Tsw, Tse, Tne and sub-rectangle Rc are drawn with stripes.
For use with what follows, we take each of these to be open with the exception of
Tl and Tr, which we take to be closed relative to R.

All this being said, we claim that the largest convex extension ϕ+ of 1
2 |x |2 into

R is given by solving

∂2(1,−1)ϕ+ = 0 on Tne ∪ Tsw, ∂2(1,1)ϕ+ = 0 on Tse ∪ Tnw,

∂22ϕ+ = 0 on Rc, ∇∇ϕ+ = 0 on T ◦
l ∪ T ◦

r (6.13)

with the boundary data

ϕ+ = 1

2
|x |2 at ∂R. (6.14)

The function defined by (6.13) and (6.14) is piecewise quadratic, and is affine upon
restriction to Tl and Tr. Clearly, it is a convex extension of 1

2 |x |2 into R. To see
it is the largest one, we must show it yields an upper bound on any other convex
extension ϕ. Evidently ϕ ≤ ϕ+ on Tl and Tr since they are equal at their vertices.
Now let x ∈ R\(Tl ∪ Tr) and consider the largest open line segment containing x
on which ϕ+ is affine (see the corresponding entry in Fig. 2). The boundary of each
such segment consists of two points y1, y2 ∈ ∂R. By convexity,

ϕ(x) ≤ θ
1

2
|y1|2 + (1− θ)

1

2
|y2|2 = ϕ+(x),

where x = θy1 + (1 − θ)y2. Hence, (6.13) and (6.14) indeed define the largest
convex extension of 1

2 |x |2 into R.
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Moving on, we see that

∇∇ϕ+ = (1, 1)⊗ (1, 1)1Tne∪Tsw dx + (1,−1)⊗ (1,−1)1Tse∪Tnw dx

+(1, 0)⊗ (1, 0)1Rc dx on R.

Hence, R is partitioned by ϕ+ according as

O =
(
∪α∈{n,s}
β∈{e,w}

Tαβ

)
∪ Rc, U = Tl ∪ Tr, � = F = ∅.

The stable lines {�x } are parallel to (1,−1) on Tne ∪ Tsw, (1, 1) on Tse ∪ Tnw, and
(0, 1) on Rc, and they extend between pairs of boundary points. So, we can apply
Corollary 5.1 to characterize optimalμ on O . We leave the details to the reader this
time, and simply point out that ν̂ ·[∇ϕ+] ≥ 0 at ∂R, and that this bound degenerates
only at the vertices of R. Uniform transversality is clear; also, � is constant along
each stable line as they are parallel within the connected components of O . The
conclusion of Corollary 5.1 is that

μ = λnesw

(
1√
2
,

1√
2

)
⊗
(

1√
2
,

1√
2

)
dx on Tne ∪ Tsw,

μ = λsenw

(
1√
2
,
−1√
2

)
⊗
(

1√
2
,
−1√
2

)
dx on Tse ∪ Tnw,

μ = λc(1, 0)⊗ (1, 0) dx on Rc,

where ⎧⎨
⎩
− 1

2∂
2(

1√
2
,− 1√

2

)λnesw = det∇∇ p in Tne ∪ Tsw

λnesw = 0 at ∂(Tne ∪ Tsw) ∩ ∂R
,

⎧⎨
⎩
− 1

2∂
2(

1√
2
, 1√

2

)λsenw = det∇∇ p in Tse ∪ Tnw

λsenw = 0 at ∂(Tse ∪ Tnw) ∩ ∂R
,

{
− 1

2∂
2
2λc = det∇∇ p in Rc

λc = 0 at ∂Rc ∩ ∂R
.

Optimal μ are uniquely determined on Tne ∪ Tsw, Tse ∪ Tnw, and Rc.

In the previous examples, stable lines ended up being parallel within each con-
nected component of O . Our last positively curved example exhibits non-parallel
stable lines. It is the half-disc from Panel (a) of Fig. 2.

Example 6.5. (positively curved half-disc) Consider a disc with radius a > 0 and
center (0, a), and let

D+ =
{
(x1, x2) : x21 + (x2 − a)2 < a2, x2 > a

}
.

Let (r, θ) denote polar coordinates about 0. Given x ∈ D+, consider the ray parallel
to êr (x) that passes through x and begins at the origin. This ray intersects ∂D+ at
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two points, which we label as p(x) and q(x) where |p| < |q|. Note there always
holds |p||q| = 2a2. Using this, it is easy to check the identities

|p| = a

sin θ
and |q| = 2a sin θ, (6.15)

which will come in handy below.
We now claim that

ϕ+(r, θ) = 1

2
(|p| + |q|)r − 1

2
|p||q| on D+. (6.16)

As we show at the end of this example,

∇∇ϕ+ = a

r sin3 θ
êθ ⊗ êθ dx on D+,

so that the partition of D+ is given simply by

O = D+ and � = F = U = ∅.
The half-disc is totally ordered. Its stable lines {�x } are the portions of the rays
described above within D+. To identify μ we apply Corollary 5.1 with ϕ = ϕ+
and with

V = D+, ζ = a

r sin3 θ
, η̂ = êθ .

The hypotheses (5.51)–(5.53) are not difficult to check, but againwemust be careful
about (5.54). Note that

∇ϕ+ = 1

2
(|p| + |q|)êr .

Hence,

ν̂ · [∇ϕ+] = −ê2 · ((x1, a)− 1

2
(|p| + |q|)êr ) = 1

2
(|q| − |p|) sin θ ≥ 0

at the bottom part of ∂D+, while at the top part

ν̂ · [∇ϕ+] =
( x1
a
,
x2
a

− 1
)
·
(
r − 1

2
(|p| + |q|)

)
(cos θ, sin θ)

= 1

2
(|q| − |p|) sin θ ≥ 0.

Both inequalities are strict away from the corners where |p| = |q|. Thus, we can
introduce a cutoff length δ > 0 to be sent to zero as in the other examples. We get
that ν̂ · [∇ϕ+] ≥ c(δ) > 0. The uniform transversality condition |τ̂ · êθ | ≥ c > 0
holds. This time, the change of measure factor from (5.13) satisfies � = c�(θ)r
where the exact form of c� depends on the choice of indexing curve �. This is
because the stable lines follow rays. Applying Corollary 5.1 and taking δ → 0
proves that optimal μ are unique, and that they satisfy

μ = λêθ ⊗ êθ dx on D+, where

{
− 1

2r ∂
2
r (rλ) = det∇∇ p in D+

λ = 0 at ∂D+
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for the positively curved half-disc.
We finish by proving that (6.16) is indeed the largest convex extension of 1

2 |x |2
into D+. Making use of convexity along the rays, one easily concludes that ϕ ≤ ϕ+
as in the other examples. Here, we focus on checking that the given ϕ+ is a convex
extension after all. We apply Lemma 4.5. First, note that ϕ+ = 1

2 |x |2 for x ∈ ∂D+.
In particular, when r = |p| it follows from (6.16) that

ϕ+(r, θ) = 1

2
(|p| + |q|)|p| − 1

2
|p||q| = 1

2
|p|2 = 1

2
r2,

and similarly for r = |q|. That ν̂ · [∇ϕ+] ≥ 0 at ∂D+ was shown above. Finally,
we check that ∇∇ϕ+ ≥ 0 on D+. Note that

ϕ+(r, θ) = b1(θ)r + b0, where b0 = −1

2
|p||q| = −a2

and b1 = 1

2
(|p| + |q|) = a

2

(
2 sin θ + 1

sin θ

)
,

due to (6.15). Differentiating twice yields that

∇∇ϕ+ = 1

r
(b′′1 + b1)êθ ⊗ êθ = 1

r

a

sin3 θ
êθ ⊗ êθ ≥ 0.

The lemma now implies that ϕ+ is admissible and the example is complete.

Before moving on to the negatively curved examples, we pause to reflect on the
fact that the singular set � turned out to be empty in each of the examples above.
Of course, this is related to the regularity of ϕ+ and, ultimately, to the shape of ∂�.
As an example of what can be proved, we note that if � is uniformly convex and
∂� ∈ C1,1, then the results of [66,79] on Alexandrov solutions to the Dirichlet
problem det∇∇ϕ = 0 in � and ϕ = 1

2 |x |2 at ∂� imply that ϕ+ ∈ C1,1
loc (�). Of

course, � = ∅ in such a case.

6.3. Negatively Curved Shells

We turn to the patterns in Panel (b) of Fig. 2. These were drawn assuming that
p ∈ W 2,2(�) satisfies

det∇∇ p ≤ 0 a.e.

For each specified shell we obtain the smallest convex extension ϕ− of 1
2 |x |2 into

�, which requires solving for the boundary distance function d∂� from (6.7). Its
singular, flattened, ordered, and unconstrained sets �, F , O , and U follow, as do
its stable lines {�x }. Again, we refer to Section 5.1 for the relevant definitions.

Let us comment briefly on the role that the medial axis M from (6.3) plays. As
our examples will show, the stable lines of ϕ− follow the paths of quickest exit from
�, i.e., they lie parallel to ∇d∂� where they exist. Based on this and the formula
for ϕ− in (6.7), it is reasonable to expect that

∇∇ϕ− = (1− d∂��d∂�)∇⊥d∂� ⊗∇⊥d∂� dx

+d∂� |[∇d∂�]| ν̂M ⊗ ν̂M H1�M on � (6.17)
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ifM is regular enough. (For a general discussion on the regularity of themedial axis,
see [50].) We show a version of (6.17) in each example below, and use it to identify
the aforementioned partition and the stable lines. Finally, we prove that optimal μ
are unique and that they satisfy (6.4) by applying Corollary 5.2 or Corollary 5.3.

We start with the negatively curved disc from Panel (b) of Fig. 2.

Example 6.6. (negatively curved disc) Let

D =
{
(x1, x2) : x21 + x22 < a2

}

and observe its medial axis is the singleton

M = {0}.
Using polar coordinates (r, θ), the boundary distance function is simplyd∂D = a−r
and hence

ϕ− = ar − 1

2
a2 on D.

Differentiating yields that

∇∇ϕ− = a

r
êθ ⊗ êθ dx on D.

Even though∇∇ϕ− � dx , its density is not square integrable on any neighborhood
of M . Therefore, D is partitioned by ϕ− according as

� = {0}, O = D\{0}, F = U = ∅.
The stable lines form rays parallel to ∇d∂D = −êr .

Next, we apply Corollary 5.3 to identify optimal μ. Its hypothesis (5.71) holds
with

x0 = 0 and V = D.

We immediately conclude that the unique optimal μ for the negatively curved disc
satisfies

μ = λêθ ⊗ êθ dx on D, where

{
− 1

2r ∂
2
r (rλ) = det∇∇ p on D\{0}

rλ = ∂r (rλ) = 0 at 0
.

In particular, the almost minimizers of Eb,k,γ must exhibit an (approximately)
azimuthally symmetric response, of course subject to the assumptions at the start
of Section 1.2 under which our �-convergence results hold.

Before moving on, we note that a similar result can be proved for the case of
a flat disc attached to a weakly curved spherical substrate—a model problem that
has been the focus of much previous research, including at least [11,24,34]. The
conclusion is that optimal μ are uniquely determined, absolutely continuous, and
parallel to êθ ⊗ êθ with a density as above. As far as we know, this yields the first
mathematically rigorous proof that azimuthal wrinkling is energetically preferred
in a problem absent tensile loads. That azimuthal wrinkling should be preferred has
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often been explained as a consequence of symmetry (with the notable exception of
[11] where it was derived via minimization, albeit for a problem on the borderline
between tension- and curvature-driven). Just because a shell is naturally symmetric
does not mean that it should remain so when pressed onto a substrate, even if it
has the same symmetries as the shell: indeed, Example 6.2 shows that a positively
curved disc confined to the plane admits infinitely many non-symmetric optimal μ
and, correspondingly, infinitely many non-symmetric almost minimizers. Whether
or not global minimizers must exhibit symmetry remains unknown.

Our next example concerns the ellipse in Panel (b) of Fig. 2. In lieu of producing
an exact formula for d∂�, we will make use of the following fact: d∂� is concave if
and only if� is convex [3]. Note this is an example where the medial axis is strictly
smaller than the singular set.

Example 6.7. (negatively curved ellipse) Let

E =
{
(x1, x2) : x

2
1

a2
+ x22

b2
< 1

}

where 0 < b < a. The boundary distance function d∂E is smooth off of the closure
of the medial axis

M =
{
(x1, 0) : |x1| ≤ a

(
1− b2

a2

)}
,

and we find that

∇∇ϕ− = (1− d∂E�d∂E )∇⊥d∂E ⊗∇⊥d∂E dx

+d∂E |[∇d∂E ]| ν̂M ⊗ ν̂M H1�M on E

as anticipated in (6.17). The function ϕ− partitions E according as

� = M, O = E\M, F = U = ∅
and the stable lines {�x } run parallel to ∇d∂E . We now claim that there is a single
optimal μ for the negatively curved ellipse, and that it satisfies

μ = λ∇⊥d∂E ⊗∇⊥d∂E dx on E,

where

{
− 1

2� ∂
2∇d∂E

(�λ) = det∇∇ p on E\M
�λ = ∂∇d∂E (�λ) = 0 at M

(6.18)

and where � : E\M → (0,∞) is given by (5.13). We proceed in two steps: first,
we use Corollary 5.2 to identify μ off of the half-open line segments

L± =
{
(x1, 0) ∈ E : ±x1 ≥ a

(
1− b2

a2

)}
,

and then we check that μ = 0 on L± by a separate argument.
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Recall �x denotes the stable line through x , given by �x = {θ z + (1 − θ)y :
θ ∈ (0, 1)} for z ∈ M and y ∈ ∂E . For any small enough δ > 0, let

Mδ =
{
(x1, 0) : |x1| < a

(
1− b2

a2

)
− δ

}

and observe the assumptions (5.58)–(5.62) of Corollary 5.2 hold with ϕ = ϕ− and
for

V = Mδ ∪ {x ∈ E\M : ∂�x ∩ Mδ  = ∅}, ζ = 1− d∂E�d∂E , η̂ = ∇⊥d∂E .

In particular as E is convex, d∂E is concave so that ζ ≥ 1. Both |[∇d∂E ]| and
|τ̂M ·∇⊥d∂E |M±| are bounded below by some c(δ) > 0 uniformly on Mδ . Applying
Corollary 5.2 and sending δ → 0 yields that

μ = λ∇⊥d∂E ⊗∇⊥d∂E dx on E\ {L+ ∪ L−} ,

where

{
− 1

2� ∂
2∇d∂E

(�λ) = det∇∇ p on E\ {L+ ∪ L−}
�λ = ∂∇d∂E (�λ) = 0 at M

.

This identifies μ uniquely off of the segments L±.
All that remains is to prove that μ = 0 on L±. These segments are the closure,

relative to E , of the stable lines between z± = (±a(1− b2

a2
), 0) and y± = (±a, 0).

Going back to Lemmas 5.2 and 5.3, we see that

μ�L± = A±δz± + λ±∇⊥d∂E ⊗∇⊥d∂E H1�L±,
where λ±(x) = c± + c̃±(x − z±) · ∇d∂E

and where A± ∈ Sym2 and c±, c̃± ∈ R. The measures μ�L± are curlcurl-free in
the sense of distributions on E , i.e.,

0 =
ˆ
E

〈
∇⊥∇⊥ψ,μ�L±

〉
=
〈
A±,∇⊥∇⊥ψ(z±)

〉
+
ˆ
L±

λ±∂2∇d∂Eψ dH1

=
〈
A±,∇⊥∇⊥ψ(z±)

〉
+ c±∂∇d∂Eψ(z±)− c̃±ψ(z±)

for all ψ ∈ C∞
c (E). It follows that A± = 0 and c± = c̃± = 0. Thus, μ�L± = 0

and this completes the proof of (6.18).

Several negatively curved convexpolygons appear inPanel (b) of Fig. 2.Wecon-
sider these next. As in the previous example, the solution formulas from Section 5.3
must be supplemented by a separate argument showing that μ is not supported on
certain leftover stable lines. This time, the argument involves the complementary
slackness conditions from (5.1).

Example 6.8. (negatively curved convex polygons) Let P be a convex polygon
with vertices a1, . . . , an ∈ R

2 labeled in counterclockwise order and sides S1 =
[a1, a2], . . . , Sn = [an, an+1] where an+1 = a1. The outwards-pointing unit nor-
mal vector to ∂P takes on n distinct values, which we label as

ν̂i = ν̂|Si =
(ai − ai+1)

⊥

|ai − ai+1| , i = 1, . . . , n.
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Themedial axis M is a tree made up of finitely many line segments. Its complement
P\M is the disjoint union of n (open) sub-polygons P1, . . . , Pn . The labels are such
that Si ⊂ ∂Pi . Let τ̂M and ν̂M denote unit tangent and unit normal vectors to M .
We take them to be locally constant off of its internal vertices.

With the notation set, we can describe ϕ−. Observe that d∂P = dSi = d(·, Si )
on the i th sub-polygon Pi . Hence,

ϕ− = 1

2
|x |2 − 1

2
d2Si on Pi

for i = 1, . . . , n. As each side Si is a line segment, it follows easily that

∇∇ϕ− =
n∑

i=1

ν̂⊥i ⊗ ν̂⊥i 1Pi dx +
∑

1≤i< j≤n

d∂P |ν̂i − ν̂ j |ν̂M ⊗ ν̂M H1�∂Pi ∩ ∂Pj on P.

Thus, the stable lines run parallel to ∇d∂P = ν̂i on Pi , and the original polygon P
is partitioned by ϕ− into the sets

� = M, O = P\M, F = U = ∅.
All this being said, we now claim that the unique optimal μ is given by

μ =
n∑

i=1

λi ν̂
⊥
i ⊗ ν̂⊥i 1Pi dx on P,

where

{
− 1

2∂
2
ν̂i
λi = det∇∇ p on Pi

λi = ∂ν̂iλi = 0 at ∂Pi ∩ M
for i = 1, . . . , n. (6.19)

As in the previous example, our plan is as follows: first we apply Corollary 5.2 to
identify μ away from an exceptional one-dimensional set L , and then we verify
separately that μ = 0 on L .

Corollary 5.2 is built to handle situations where stable lines meet along a curve.
Here, stable linesmeet along a tree—themedial axisM . Its edges are line segments,
its external vertices are given by {ai }ni=1 ⊂ ∂P , and we label its internal vertices
as {zk}Nk=1 ⊂ P . It will probably be useful to look back at the medial axis (in
bold) of the triangle, square, or rectangle in Fig. 2. Each internal vertex zk belongs
to the boundary of finitely many stable lines. Let Lk be the union of zk and its
associated stable lines, and let L = ∪N

k=1Lk . Now in the same manner as was
done for Example 6.7 (and as will be done for Example 6.9 below), we can apply
Corollary 5.2 to deduce that

μ = λ∇⊥d∂P ⊗∇⊥d∂P dx on P\L ,

where

{
− 1

2∂
2∇d∂P

λ = det∇∇ p on P\L
λ = ∂∇d∂Pλ = 0 at ∂(P\L) ∩ M

thus showing it is uniquely determined there. For brevity’s sake we leave the details
of this to the reader, and simply note the relevant hypotheses can be checked using
that |ν̂i − ν̂ j |, τ̂M · ν̂⊥i , and τ̂M · ν̂⊥j are all non-zero at ∂Pi ∩ ∂Pj .
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It remains to show thatμ = 0 on L . Consider the restriction ofμ to Lk , whichwe
recall consists of zk along with the finitely many stable lines {�si } having zk ∈ ∂�si .
The labeling is such that �si ⊂ Pi , and we think of it as running from zk to the i th
side Si . In particular, �si is parallel to ν̂i . Lemmas 5.2 and 5.3 prove that

μ�Lk = Aδzk +
∑
i

λi ν̂
⊥
i ⊗ ν̂⊥i H1��si , where λi (x) = ci + c̃i (x − zk) · ν̂i

(6.20)
for A ∈ Sym2 and ci , c̃i ∈ R. Since μ�Lk is curlcurl-free in the sense of distribu-
tions on P , there holds

0 =
ˆ
P

〈
∇⊥∇⊥ψ,μ�Lk

〉
=
〈
A,∇⊥∇⊥ψ(zk)

〉
−
∑
i

ci∂ν̂iψ(zk)+
∑
i

c̃iψ(zk)

for all ψ ∈ C∞
c (P). It follows immediately that

A = 0,
∑
i

ci ν̂i = 0,
∑
i

c̃i = 0. (6.21)

So far, the argument has been more or less the same as in the previous example, and
indeed we can already conclude that μ({zk}) = 0. However, we cannot conclude
that μ�Lk = 0 at this point. The trouble is that stable lines belonging to different
Pi may be parallel (e.g., for a negatively-curved rectangle). In such a case, at least
two of the vectors ν̂i appearing in (6.21) will be parallel, and the desired conclusion
that ci = 0 will not follow.

The key is to go back to the first complementary slackness conditions in (5.1),
which state here that

〈∇⊥∇⊥ϕ−, μ
〉 = 0 in the regularized sense. In particular,

0 = lim
δ→0

ˆ
M
|d∂P [∇d∂P ]

〈
τ̂M ⊗ τ̂M , μδ

〉 | dH1, (6.22)

where {μδ}δ>0 are the mollifications in (1.32). As noted in Remark 1.3, we may
take the kernel ρ > 0 nearby zero. Given x ∈ M , observe using the non-negativity
of μ, the formula (6.20), and Fubini’s theorem thatˆ

M
d∂P |[∇d∂P ]|

〈
τ̂M ⊗ τ̂M , μδ

〉
dH1

≥
ˆ
y∈�si

ˆ
x∈M∩∂Pi

d∂P |[∇d∂P ](x)||τ̂M (x) · ν̂⊥i |2λi (y)ρ
(
x − y

δ

)
dH1(x)dH1(y)

δ2

for each i . According to (6.22), the lefthand side tends to zero as δ → 0. Regarding
the righthand side, note that d∂P |[∇d∂P ]| and |τ̂M · ν̂⊥i | are bounded away from
zero within the integral. Also, λi (y) → ci as y → zk along �si . Using that ρ > 0
nearby zero, we find upon sending δ → 0 that

ci = 0 ∀ i. (6.23)

With this, we can easily control the remaining {c̃i }. Since μ��si ≥ 0 there holds
λi ≥ 0, and then using that λi (zk) = ci = 0 we see that ∂ν̂iλi (zk) = c̃i ≥ 0. It now
follows from the third part of (6.21) that

c̃i = 0 ∀ i. (6.24)
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Looking back to (6.20) once more, we see that μ�Lk = 0 for each k. Hence,
μ�L = 0 and (6.19) is proved.

It is no accident that these last few steps followed along the same lines as the
proofs of Corollaries 5.2 and 5.3. Our task was, once again, to show thatμ vanishes
on certain leftover stable lines. The constraints (6.23) and (6.24) entered as Cauchy
data analogous to, e.g., (5.66) in Corollary 5.2. We imagine a similar approach may
be used to control μ in other circumstances where the formulas from Section 5.3
do not directly apply.

Our final example is the half-disc in Panel (b) of Fig. 2. It is the only of our
examples in which M ends up being curved.

Example 6.9. (negatively curved half-disc) Consider a disc of radius a centered at
the origin and let

D+ =
{
(x1, x2) : x21 + x22 < a2, x2 > 0

}
.

Note d∂D+ is smooth away from the medial axis

M =
{
(x1, x2) : 2ax2 = a2 − x21 , x2 > 0

}

which is the unique parabolic arc passing through the corners (±a, 0) and (0, a
2 ).

Denote the part of D+ below M by D+S and the part above M by D+N. Then,

∇∇ϕ− = ê1 ⊗ ê11D+S dx + a

r
êθ ⊗ êθ1D+N dx

+d∂D+
∣∣ê2 + êr

∣∣ ν̂M ⊗ ν̂M H1�M on D+.

We see that ϕ− partitions D+ according as

� = M, O = D+\M, F = U = ∅.
The stable lines are parallel to ∇d∂D+ = ê2 in D+S and ∇d∂D+ = −êr in D+N.

A straightforward application of Corollary 5.2 proves that optimalμ are unique.
The conditions (5.58)–(5.62) hold for ϕ = ϕ− and for

V = D+, ζ =
{
1 x ∈ D+S
a
r x ∈ D+N

, η̂ =
{
ê1 x ∈ D+S

êθ x ∈ D+N
.

In particular, the medial axis is smooth and the quantities |ê2 + êr |, |τ̂M · ê1|, and
|τ̂M · êθ | are uniformly positive there. Also, ζ > 0 uniformly on D+. Finally, we
see that � = cS(x1) in D+S and � = cN (θ)r in D+N due to the fact that the stable
lines describe either parallel lines or rays (the functions cS and cN depend on the
index set �). Applying Corollary 5.2, we conclude that optimal μ satisfy

μ = λSê2 ⊗ ê21D+S dx + λNêθ ⊗ êθ1D+N dx on D+,

where{
− 1

2∂
2
2λS = det∇∇ p in D+S

λS = ∂2λS = 0 at M
and

{
− 1

2r ∂
2
r (rλN) = det∇∇ p in D+N

λN = ∂rλN = 0 at M
.

These systems determine optimal μ uniquely for the negatively curved half-disc.
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We close with a general conjecture on the uniqueness of optimal μ. Although
optimalμ turned out to be unique in each of the negatively curved examples above,
the reader may yet wonder whether the convexity of � is crucial for this, or if it
is simply an artifact of our examples. We believe the latter is true. In fact, based
on our method of stable lines, we expect optimal μ will be unique whenever there
exists an optimal ϕ that is nowhere locally affine (regardless of the curvature).
Here is a more concrete version of this conjecture specialized to simply connected,
negatively curved shells. Recall the medial axis M from (6.3) and the change of
measure factor � from (5.13).

Conjecture 6.1. Suppose that � is simply connected and let det∇∇ p ≤ 0 a.e.
Assume the paths of quickest exit from � do not meet at ∂�. Then optimal μ are
unique, and moreover satisfy

μ = λ∇⊥d∂� ⊗∇⊥d∂� dx on �,

where

{
− 1

2� ∂
2∇d∂�

(�λ) = det∇∇ p on �\M
�λ = ∂∇d∂� (�λ) = 0 at M

.
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