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Abstract

How much energy does it take to stamp a thin elastic shell flat? Motivated
by recent experiments on the wrinkling patterns of floating shells, we develop a
rigorous method via I'-convergence for answering this question to leading order
in the shell’s thickness and other small parameters. The observed patterns involve
“ordered” regions of well-defined wrinkles alongside “disordered” regions whose
local features are less robust; as little to no tension is applied, the preference for
order is not a priori clear. Rescaling by the energy of a typical pattern, we derive
a limiting variational problem for the effective displacement of the shell. It asks,
in a linearized way, to cover up a maximum area with a length-shortening map
to the plane. Convex analysis yields a boundary value problem characterizing the
accompanying patterns via their defect measures. Partial uniqueness and regularity
theorems follow from the method of characteristics on the ordered part of the shell.
In this way, we can deduce from the principle of minimum energy the leading order
features of stamped elastic shells.
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1. Introduction

Thin elastic sheets subject to compressive boundary conditions or loads readily
take on shapes far from their own. Sometimes such changes in shape lead to the
development of fine-scale wrinkling patterns, indicating the presence of residual
strain or excess material that is “wrinkled away”. Other times, crumpling patterns
occur such as those seen in everyday, crumpled paper sheets [83]. An intriguing
and widely open problem is to devise a method for predicting the features of the
often disordered network of creases or “minimal ridges” [53] that forms. This and
other simplified versions of the crumpling problem, which ask for sharp a priori
lower bounds on the energy required to crumple [19,80], remain far from being
understood (despite some striking recent phenomenological progress identifying
as a possible state variable the total length of the plastically damaged set [32]).

A cousin of the crumpling problem is the stamping one studied here, named
after the manufacturing process of the same name. In stamping, a thin elastic sheet
is pressed into a target shape. If the mid-surface of the sheet embeds isometrically
into the target, the sheet may simply take on the imposed shape. If no such embed-
ding exists, a pattern can instead appear [41]. The situation is reminiscent of the
isometric embedding theorem of Nash and Kuiper, which guarantees the existence
of a sequence of continuously differentiable isometric embeddings converging u-
niformly to any length-shortening map [48,57]. However, in this paper we will not
be concerned with such “pure” isometries, but rather with maps exhibiting small
amounts of strain.

Our motivation to study stamping stems from our desire to understand the pat-
terns that form when a thin elastic shell is placed onto an otherwise planar water
bath [1,2]. The water adheres to the underside of the shell, and capillary and gravi-
tational forces act to stamp it flat. Stretching forces prefer isometric deformations,
while bending forces limit the curvature that results. The authors in [1,2] report on
the striking formation of “wrinkle domains” made up of sinusoidal oscillations in
a piecewise constant or otherwise slowly-varying direction. A typical floating shell
divides into finitely many domains. At the interfaces are “walls”, across which the
direction of wrinkling changes rapidly, or “folds”, wherein material is lost beneath
the surface. The particular arrangement of wrinkles into domains is observed to
depend strongly on the initial features of the shell—namely, its Gaussian curvature
and boundary shape—and the authors wonder about the possibility of designing
patterns at will.

The appearance of wrinkle domains in floating elastic shells is remarkable.
It reminds of a key feature of other, more well-studied pattern forming systems
such as shape memory alloys [12], micromagnets [27], and liquid crystals [7]. The
authors in [1] highlight in particular a connection between wrinkles and the layers
of a smectic liquid crystal. They describe a coarse-graining procedure in which
the wrinkle direction plays the role of a director field, and the wrinkle peaks and
troughs are encoded in the level sets of a phase field function ¢. Setting an ansatz
into the total energy E, the authors extract a coarse-grained or “effective” energy
Ecir(¢). Carrying over known results on liquid crystals, the authors make scaling
predictions for various quantities such as the size of a typical domain and the width
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of its walls. It remains unclear, however, whether the overall layout of the wrinkles,
i.e., their particular arrangement into domains, can be recovered by this approach.
There is reason to doubt it can be done. Careful examination of the ansatz in [1]
shows it assumes the shell deforms by an oscillatory perturbation of some leading
order deformation which is implicitly defined. As such, it and the corresponding
phase field function ¢ may be prohibitively difficult to recover.

The situation becomes even more complicated as the thickness of the shell tends
to zero. Forthcoming experiments on ultrathin shells [78], having
thicknesses several orders of magnitude less than those in [1,2], show that some-
times no coherent wrinkling pattern occurs. In particular, spherical caps produce a
“disordered”, crumpling-like response whose local features are sensitive to pertur-
bation and vary between trials. Other less-symmetric spherical shells (e.g., triangles
cut from spheres) display a mixed ordered—disordered response, in which one part
remains ordered—being covered with wrinkle domains—while another part ex-
hibits the crumpling-like response. Upon perturbation, the local features of the
disordered parts tend to rearrange while their overall layout remains the same. In
contrast, the ordered parts remain more or less unchanged. Notably, the opposite
response occurs for saddle-shaped shells: ultrathin negatively curved shells exhibit
the same ordered wrinkle domains as do their thicker counterparts.

The task of determining the features of wrinkled thin elastic sheets has been the
subject of much research. When wrinkles occur in response to applied tensile forces,
certain directions are stabilized and one may deduce the direction of wrinkling from
tension-field theory [67,70,82], also known as the relaxed energy approach [62—
64]. The relaxed energy density Wi for a sheet with zero thickness (a “membrane’)
is a function of its effective strain, which vanishes on bi-axially compressed states
and is otherwise strictly positive. When applied to the tension-driven wrinkling
of thin elastic sheets [9,23], one finds that the extent of the un-wrinkled region is
determined, as well as the direction of the wrinkles, by solving a relaxed problem
of the form

min/Wrel(DGJeff)dA (1.1)
Getr S

subject to boundary conditions and loads. Here, ®¢¢ denotes the limiting or effective
deformation of the mid-sheet S that arises in the vanishing thickness limit. A recent
focus in tension-driven problems has been on identifying the scaling behavior(s)
with respect to thickness (and other parameters) of the higher order terms in the
expansion

min E = Cp + higher order terms (1.2)

as the thickness tends to zero. The constant Cy is given by the minimum value of
(1.1) and it amounts to the work done at leading order to stretch the sheet. Evaluating
the higher order terms requires identifying the lengthscale and amplitude of the
wrinkles whose existence is implied. In general these quantities can vary throughout
the sheet, making their analysis rather involved. Examples include the “wrinkling
cascades” seen in uni-axially compressed floating sheets pulled taught by surface
tension [38], as well as in hanging drapes pulled taught by gravity [10].
Wrinkling patterns also occur in situations devoid of strong tensile loads or
even lacking them altogether. This is the case for the stamped and floating shells



1. ToBAsCO

introduced above. The hallmarks of such curvature-driven wrinkling are the pres-
ence of geometric incompatibilities driving the patterned response, and a lack of
coherence in certain parameter regimes. The transition from ordered wrinkle do-
mains in moderately thin floating shells [1] to an ordered wrinkling—disordered
crumpling-like response in the ultrathin limit [78] is an example of this phe-
nomenon. Other examples include the ordered “herringbone” patterns and their
disordered “labyrinthine” counterparts occurring in bi-axially compressed sheets
on a planar substrate [15,17,39,40], as well as the hexagonal tiling and labyrinthine
patterns occurring in compressed thin elastic spheres bonded to a spherical core
[72,77].

In any case where tension fails to dominate, the relaxed problem (1.1) offers
little guidance as to the patterns that occur (we refer to a situation where Coy = 0).
Various authors working on problems for which surface tension is a small but
non-negligible effect have suggested [60,61,84] that the shell’s response can be
determined instead at leading order by solving a limiting or effective area problem
of the form

rgax Area(Desr(S)). (1.3)

eff

In analogy to (1.2), the minimum energy is expected to expand as
min £ = Cj - y + higher order terms (1.4)

as the surface tension coefficient y of the exposed interface tends to zero, and
the shell is predicted to maximize the area it covers at leading order. A natural
question is regarding constraints: in [84] where a flat disc is confined to a liquid
saddle surface, the perimeter of the sheet is taken to be fixed; in [60] where a flat
disc wraps a water droplet, the effective deformation ®.¢ is understood to be a
length-shortening map.

In this paper, we take the first step towards a mathematical analysis of curvature-
driven wrinkling. We adopt the viewpoint of energy minimization (even global
minimization to simplify) and set ourselves the following tasks: prove the validity
of an effective area problem such as (1.3) for the leading order behavior of (almost)
minimizers, and deduce from its solutions the patterns that form. We achieve these
goals for a class of weakly curved or shallow shells whose intrinsic geometries are
close to flat. This simplifying assumption facilitates analysis since it allows the use
of a geometrically linear, von Karman-like energy. Geometrically linear models
are standard in the literature on elastic pattern formation, though they have yet to
enjoy the same level of rigorous derivation from fully nonlinear elasticity as have
plate and shell models for finite bending deformations (for a recent review, see
[56]). Motivated by a recent suggestion [24] that there exists a “bending-induced”
tension proportional to the geometric mean of the shell’s bending modulus B and
the substrate stiffness K, we rescale our energy functionals by

Vett = 2V BK +y

and obtain their I'-limit as yef — 0 in a topology well-suited to the formation of
patterns. A linearized version of (1.3) and (1.4) results, in which y is replaced by
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the “effective surface tension” yegr. In proving these results, we will not assume that
minimizers obey any particular ansatz, or even that they exhibit ordered wrinkle
domains.

This brings us to what may be the most important contribution of this pa-
per: via convex analysis of the limiting, linearized area problem, we derive a new
and far-reaching method for proving that almost minimizers must tend towards an
ordered—possibly disordered state, one whose ordered part consists of known wrin-
kle domains, and whose possibly disordered part is left unconstrained. Our method
consists of two steps: first, we solve for a set of stable lines along which any os-
cillations (and concentrations) are ruled out; second, we recover the amplitude of
the oscillations that do occur via a second order linear partial differential equation
(PDE) for which the stable lines are characteristic curves. Thus, we have found a
way to treat wrinkles as the characteristic curves of a family of differential opera-
tors, rather than as the level sets of some unknown phase field function as proposed
in [1]. The upcoming Fig. 1 presents various arrangements of our stable lines. We
were pleased to learn that the predicted ordered parts where they exist (shown as
striped) compare favorably with the experiments that motivated our work. Even the
leftover, possibly disordered parts (shown in blank) look to align. A separate paper
is currently in preparation, where we plan to report on experimental and numerical
tests of our predictions [78]. We turn to introduce the model we use and to state
our main results.

1.1. Preliminaries

Section 1.1.1 introduces a geometrically linear model of elastic shells. Sec-
tion 1.1.2 passes to its non-dimensional form and identifies the parameter regime
of our results. Finally, in Section 1.1.3 we recall some basic facts about functions
of bounded deformation and bounded Hessian. The formal statement of our results
is in Section 1.2.

1.1.1. Weakly Curved Floating Shells We consider the model problem of a thin
elastic shell floating on an otherwise planar liquid bath. Let the undeformed mid-
shell S be the graph of a function p over some planar reference domain  C R?,
so that

S ={(x1,x, px)) :x € Q}.

Given a deformation @ : § — R3 of the shell, introduce its in- and out-of-plane
displacements u : © — R? and w :  — R according to

@ (x1, x2, p(0)) = (x1 +u1(x), x2 +u2(x), wx)), x € Q.

The plane being referenced is that of the undeformed liquid bath. So long as the
shell is weakly curved, meaning that its typical “slope” |V p| < 1, its deformation
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can be modeled as a minimizer of the energy'

Y 1 1 2 B 2
E=— leu) + =Vw @ Vw — =Vp  Vp|“dx + — |[VVw — VVp|©dx
2 Ja 2 2 2 Jo

K 1
+—/|w|2dx+)/1v</ —|Vp|2dx—/ u-ﬁds).
2 Jo Q2 a0
(1.5)

The notation e(u) = %(Vu + VuT) stands for the symmetrized gradient of the
displacement u. We use x ® y to denote the outer product of x and y, and » for the
outwards-pointing unit normal vector at 2. Our formula for the energy is directly
analogous to the one used in [74] to study the wrinkling of an internally pressurized
spherical shell, as well as the one used in [11,24,34] to study the wrinkling of a flat
disc on a spherical substrate; it is a geometrically linearized version of the energy
used in [1] for general floating shells. Here, to fix ideas, we focus on the setup
of a weakly curved shell on a planar liquid substrate, noting that our analysis can
be adapted to the more general setup of a weakly curved shell on a weakly curved
substrate. Underlying the energy F is a certain “geometric linearization” procedure
we shall describe. But first, let us introduce each of the terms in (1.5).

The formula (1.5) accounts for the potential energy of the shell and liquid
bath. The first two terms are the “stretching” and “bending” terms. They comprise
the elastic energy of the shell. The parameters ¥ = Est and B = ll—zEst3 are
its stretching and bending moduli, where Ej is its Young’s modulus and 7 is its
dimensional thickness. For simplicity, and as it contains the essential mathematical
details, we treat the case of an isotropic Hooke’s law with Poisson ratio v = 0. That
is, we take | - | to denote either the standard Euclidean or Frobenius matrix norm.
With this choice, the stretching energy is proportional to the sum of the squares of
the components of the geometrically linear strain

1 1
eze(u)+§Vw®Vw—§Vp®Vp, (1.6)

which it prefers to remain small. The bending energy is proportional to the sum
of the squares of the components of VVw — VVp. It limits the curvature that
develops. The remaining terms in (1.5) account for the energy of the liquid bath.
The parameter K = pg sets its “stiffness” to out-of-plane displacements (p is
the density of the liquid and g is the gravitational acceleration), while y}y sets the
strength of the liquid—vapor surface tension pulling at the shell’s edge. Note in
treating only the surface tension of the liquid—vapor interface, we assume the shell
adheres completely to the surface of the bath (see [34] for more on this point).

Before non-dimensionalizing, we pause to discuss the fact that (1.5) does not
report the true energy of the shell and liquid bath, but only approximates it to leading
order in a “geometrically linear” setting where

I we picked up the term “weakly curved” from [37]. It indicates a family of shells also
referred to as “shallow”, the deformations of which can be modeled using the Donnel—
Mushtari—Vlasov theory [58,81] or Marguerre’s theory of shallow shells [68]. Our stretching
and bending terms become the ones from [68] under the substitution w — w + p, and the
ones from [58,81] under the further substitution u — u — wVp.
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[Vu| ~ |[Vw|* ~ |Vp|* < L. (1.7)

The use of a more nonlinear model (“geometrically nonlinear” as in [1] or “fully
nonlinear” as in [9]) would of course yield more accurate results, but would re-
quire several significant mathematical advances beyond the ones achieved here.
As remarked above, we are not the first to make such a simplification in the study
of elastic patterns: other authors including those of [11,24,34,74] have used geo-
metrically linear models as well. The picture that has emerged is that, whereas the
quantitative predictions of such models can only be asymptotically correct, their
qualitative predictions often reflect those of a more nonlinear model. So while we
expect the analysis of (1.5) to reveal much about the experiments that motivated
this work, we warn that it may fail to capture the parts of those experiments that are
not weakly curved. The analysis of general floating shells is the subject of current
research.

To illustrate this point further, let us briefly indicate how the geometrically
linear energy (1.5) arises, informally, from a more nonlinear one. We focus on the
stretching term, as the rest can be explained similarly. As in [1,28], we note that
the (geometrically) nonlinear stretching energy of the shell is given by

E _! $dA 1.8
stretch = E S|8NL|S s (1.3)

where enp, is the strain of ®, d A is the area element of S, and | - |g is a suitable
matrix norm. Pulling back to €2, we introduce the deformed and reference metrics
g = D®T D& and g0 = DCDgDCDO where ®g(x) = (x1, x2, p(x)), and write

1 _
enL=2(g—g0), dA = /detgdx, | ls =g - |-

Taylor expanding about the trivial displacements (u#, w) = (0, 0) and the trivial
shell p = 0 yields

eNL = & +hot., dA=dx—+hot, |-|s=]|-|+hot,

where we have neglected higher order terms per (1.7). Replacing enr, dA, and
| - |s in (1.8) with their leading order approximations ¢, dx, and | - | results in the
stretching energy from (1.5).

1.1.2. Bendability, Deformability, and Confinement We are interested in the
minimizers of the energy (1.5), and especially in their dependence on its param-
eters. Here, we collapse these into three non-dimensional groups whose inverses
are known as “bendability”, “deformability”, and “confinement”. Similar groups
appear whenever elastic, surface tension, and substrate forces interact, as has been
shown in many other works including [23,34,43,74].

Let L be a representative lengthscale of the reference domain €2, and let R be

a representative radius of curvature for the shell. Consider the change of variables

u(x) =€’Li (), wx)=eLd(F), px)=eLp(F) (1.9)
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where € = L/R. Hats denote dimensionless variables defined on the unit domain
Q = L~'Q. That the shell is weakly curved corresponds to taking € < 1. Setting
(1.9) into (1.5) and changing variables, we find that

1 1
E(u, w)

EG, ) = 55—

satisfies

1 1
- /|e(u)+ Vw®Vw—§Vp®Vp|2 2YL2 2/|VVw—vvp|2

+1KL21 % |2+ v 1 / VA2 / .
— —— = — u-vj.
2 Y € /g e2\Ja2 p 90

Evidently, minimizing E is equivalent to minimizing E, but the latter version has
the benefit of collapsing the six original parameters Y, B, K, yy, L, and R into
three non-dimensional groups:

N naapill erormaniii
Y l 2 l 2 ’ Y ’
)/1\/ R

= % . 1z (conﬁnement*]).

Henceforth, we drop the hats and consider the non-dimensionalized energy
1 1 1 ’
Epryu,w)y== [ lew)+zVw @ Vw — -Vp ® Vp|~dx
2 Ja 2 2

b k
+-/ |VVw—VVp|2dx+—/ lw|? dx (1.10)
2 Q 2 Q

1
+y</ —|Vp|2dx—/ u-ﬁds)
Q2 a0

with its parameters b, k > 0 and y > 0.

Having non-dimensionalized, we can now introduce the asymptotic regime of
our results. This paper studies the asymptotics of Ej, x,, and its minimizers in any
limitb — 0, k — 00, y — 0 such that

b p\ 1/10
o % 2Vbk+y <1 and (E) L 2Vbk +y. (L.1D)

These conditions arise from the search for a parameter regime where minimizers
satisfy
e~0 and w~0 (1.12)

so that they are nearly strain-free and nearly flat. One expects this to hold if stretch-
ing and substrate forces dominate the response. As with isometric embeddings,
there exist infinitely many nearly strain-free displacements to any neighborhood
of the plane. (We will construct such displacements later on. See also [49] for the
case ¢ = 0.) With so much freedom, it is reasonable to think of minimizing the
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bending, substrate, and surface energies while treating (1.12) as a “constraint”; this
is an instance of the “Gauss—Euler elastica” variational principle proposed recently
in [24]. Following the line of reasoning there, one predicts the minimum energy to
scale ~ 2+/bk or y, whichever is the larger. The typical values of the stretching
and substrate forces are ~ 1 and k, so we are lead to take 2+/bk + y K landk as
in the first part of (1.11).

The last part of (1.11) is harder to explain. It comes from the fact that in order
to justify the claim that minimizers satisfy (1.12), we must be able to prove the
existence of in- and out-of-plane displacements satisfying

/ le]? « min Epk,, and k/ lw|?> <« min Ep i,y
Q Q

in a regime where the minimum energy is expected to scale ~ 2+/bk + y . Further-
more, as we intend to prove a I'-convergence result, we must accomplish this
for any possible limiting in-plane displacement u.fr. This is not a straightfor-
ward task, and it becomes all the more difficult (perhaps eventually impossible)
as 2+/bk + y — 0. Our choice to impose the second part of (1.11) arises from the
details of our herringbone-based recovery sequences. See the discussion following
Theorem 1.1 for more on this and Section 3 for the details.

1.1.3. Functions of Bounded Deformation and Bounded Hessian The goals of
this paper are to obtain and analyze the I"-limit of mE b.k,y in the parameter

regime (1.11). To this end, we make use of the spaces of bounded deformation and
bounded Hessian functions

BD(Q) = {u e LN R?) : e(u) € M(Q; Symz)} ,

HB(Q) = {(p e LY(Q): Vg € M(Q: Symz)}
where M(€2; Sym,) is the space of finite, symmetric 2-by-2 matrix-valued Radon
measures on the reference domain  C R?. As these spaces may not be immediately
familiar to all, we recall their basic properties and refer to [26,75,76] for more

details. The reader wishing to skip forward to our results should go to Section 1.2.
The spaces BD(S2) and H B(2) are Banach spaces under the norms

llullppe) = llull g + Jq le@lr,
lella@ = llellLig) + Jo IVVeh

respectively, where we define

/|M|1= sup /(mﬂ)
Q oeC.(2;Sym,) Q

lo(X)|eo<1 VxeQ

for u € M(2; Sym,). Although the norm fQ |p|1 is equivalent to the more
commonly used total variation one ) _; j |1ij1(£2), we use the former as it ap-
pears in our results. Note fQ )1 = tru(2) if © > 0. The natural injections
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BD() — L*(Q2; R?) and H B(R2) — C () are continuous in the strong topolo-
gies induced by the given norms. As it turns out, BD(2) and H B(2) are dual
spaces and possess weak-x topologies. Between these and the strong topologies lie
the so-called intermediate topologies metrized respectively by the distances

llu = vl +|[ole@l — [ole@)l
llp —¥lloi + o IVVel — [ VY]

The trace maps BD(Q) — L'(0Q, H), u — ulyq and HB(Q) — (C(3K), L'
@, HYY), o — (¢laq, Velsq) are intermediately continuous, and are defined by
continuous extension from the intermediately dense set C*(€2; R?). We often drop
the notation |3 when the meaning is clear, as in the integration-by-parts identities

/(a,e(u))z—/divo-udx+/ (a,u@f))ds,
Q Q aQ

/(U,VV(p):—/div0~Vg0dx+/ (0, Vo ® D)ds
Q Q Q2

s

(1.13)

forall o € C!(Q; Symy).

Finally, we introduce the quotient space BD(£2)/R. Setting o = Id into the
first identity in (1.13) shows that fasz u - v is unchanged under the replacement
u — u + rif e(r) = 0. By definition,

R={re BD(Q2) :e(r) =0}

is the space of linearly strain-free maps. It consists of all maps x — Rx + b where
R is anti-symmetric and b € R?. Although Korn’s inequality fails on BD(S2), the
Poincaré-type inequality

min [l — rll 1 g, sg/ el Yu e BD(S)
reRk Q

holds. Thus, fQ le(u)|1 defines a norm on the quotient space
BD(QQ)/R={u+r:ue€ BD(Q),r € R}

under which it becomes a Banach space. By Banach—Alaoglu, norm-bounded sub-
sets of BD(£2)/R are weakly-* precompact. Note u,, S weakly-* in BD(2)/R

if and only if e(u,) — e(u) weakly-+ in M(S2; Sym,). In such a case, there exists
{Fnlnen C R so that u, + r, — u strongly in L' (; R?).

1.2. Statement and Discussion of Results

Having introduced the (non-dimensionalized) energies Ej ,,, in (1.10), we
proceed to state our results. We start in Section 1.2.1 by deriving the sought after
effective energy Ecsr of the floating shell as the I'-limit of the rescaled energies

1 . .

N T Ejp k., . There we produce a first statement of the limiting problem in terms
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of the effective in-plane displacement u.fr. A second statement appears in Sec-
tion 1.2.2 in terms of a new variable called the “defect measure” . We think of
it as encoding the patterns. Section 1.2.3 obtains a dual description via an “Airy
potential” function ¢, and produces a boundary value problem for optimal ©« whose
coefficients depend on an optimal choice of ¢. Finally, Section 1.2.4 presents our
method of stable lines. For a short list of open questions, see Section 1.2.5.

Assumptions. Here we collect for the reader’s convenience a list of assumptions
that will reappear throughout. The following assumptions are basic to what we do:

Q C R? is a bounded, Lipschitz domain, p € W>2(), (1.14a)
{(Dn, ks Yn)Inen C (0, 11 x (0, 00) x [0, 1] satisfies
b 1.14b
iy &,2\/bnTn+Vn—>0 asn — 0o. ( )
kn Kk
Certain of our results require the following additional assumptions to hold:
€ is strictly star-shaped, p € W™ (), (1.15a)
bk 1/10
B/l T asn — oo (1.15b)
2/ bnky + i

Unless otherwise stated, any asymptotic statement involving b, k, or y is understood
to hold on a sequence satisfying (1.14b) and (1.15b). We often mute the subscript
n. Recall € is said to be strictly star-shaped if there exists x € Q so that for all
y € 92 the open line segment from x to y belongs to 2. Sometimes, we make use
of the hypothesis that €2 is simply connected to simplify the statements of certain
results.

These and other assumptions enter at various steps in our analysis. Briefly,
the situation is as follows: while for our complete I"-convergence result we must
impose all of the assumptions in (1.14) and (1.15), each of its components hold in
greater generality; so do our results regarding the analysis of the limiting problems.
To help the reader navigate, we have included a statement at the top of each of
Sections 2—6 clarifying which assumptions are needed there.

1.2.1. The Limiting Area Problem Our first result is a formula for the effective
energy E.fr of a weakly curved, floating shell, along with the limiting (linearized)
area problem it implies. Anticipating the minimum energy to scale ~ 2+/bk+y, we
divide by this and pass to the limit in the sense of I'-convergence. As usual, we fix the
admissible set and extend the energies Ej ¢, : BD(R2) x W12(Q) — (—00, <]
by taking

(1.10) (u, w) € WH2(Q) x W22(Q)

Ep iy, w) = .
Y o0 otherwise

Define Eefr : BD(R2) x WH2(Q) — (—o0, 0o] by

1 2 ~ 1 —
Euru. w) = {fg 3IVplPdx — [iqu-Dds e(u) §.§Vp ®Vpdx, w=0
(%) otherwise
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where pu < 1 if i — pn € M4 (R2; Sym,), the space of finite, non-negative, Sym,-
valued Radon measures on €2.

Theorem 1.1. Let 2, p, and {(b, k, y)} satisfy the assumptions (1.14) and (1.15).
The T"-convergence

1 r
——Ep iy — Eet
2Wok+y T ¢

holds with respect to the weak-* BD(S2) /R x W1-2(Q) topology, and the rescaled
energies are equi-coercive on that space. More precisely, we have the following
results:

1. (T-liminf inequality) Given any weakly-* converging sequence

(p i,y wb,k,y)—*\(u, w) weakly-* in BD(2)/R x WI’Z(Q),

there holds
E 3
i inf by U k,y> Whk,y) > Ee(t, w);
24/bk +y
2. (recovery sequences) Given any (u, w) € BD(2) x WL2(Q), there exists a
sequence

(Up sy, wb,k,y)i(u, w) weakly-x in BD(Q)/R x Wh2(Q)
such that

Ep i,y WUp i,y Whk,y)

2+/bk + y

3. (equi-coercivity) Any sequence {(up k., Wp k,y)} that satisfies

lim = Eefr(u, w);

Ep ey Wi,y > Whk,y)

24/bk +y

admits a sub-sequence that converges weakly-% in BD(Q2)/R x W1-2(Q).

lim sup

Remark 1.1. At first glance, it may seem surprising that the space B D, which was
originally introduced in connection with plasticity (see, e.g., [75]), should arise in
a problem devoid of plastic effects. It can, however, be anticipated on the grounds
that our energies are geometrically linear. For reasons that will become clear, Vw
will be bounded a priori in L2. The scaling |e(u)| ~ |Vw|2 then indicates a bound
on e(u) in L', implying weak-* pre-compactness in BD up to a linearly strain-
free map. The equi-coercivity result justifies these claims. A similar observation
was made in [20] where BD appeared in a I'-limit analysis of clamped elastic
membranes.
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It is well-known that I'-convergence combined with equi-coercivity implies the
convergence of minimum values along with minimizers [22,25]. Here, we deduce
that

min Ep

im ——2%Y min Eetr(eff, Wefr)-
2/ bk +y (ueff, wefr) EBD () x W12(Q) o ¢

Furthermore, the displacements (u.ff, wefr) on the righthand side are optimal if and
only if they are the weak-x* limit of a sequence of almost minimizers {(up k., , Wp k,y)}
of Ep 1,y . Such sequences satisfy

Epx,y(Upk,y, Wpk,y) =min Ep g o, + 02V bk +y)
by definition. Reducing to the finite part of E.¢r yields the following result:

Corollary 1.1. Given the assumptions (1.14) and (1.15), the rescaled minimum
energies satisfy

min Ep i,y

1
lim ——~ = min —|V 2dx—/ uerr - vds. (1.16)
2/bk +y ueir€BD(Q) /92| 7l 00
e(uer) <3 Vp@Vpdx

Furthermore, (ueff, Wefr) arises as the weak-+ BD(2) /Rx W L2(Q) limit of almost
minimizers of Ep i, if and only if uegr solves the limiting problem on the righthand
side, and wegs = 0.

We wish to make two remarks, on the geometric meaning of the limiting problem,
and on the proof of the I"-convergence result. First, we demonstrate how the limiting
problem in Corollary 1.1 can be recovered by linearizing the proposed area problem
(1.3). Just as we may associate to a deformation ® : § — R the in- and out-
of-plane displacements u and w, we may associate to the limiting or effective
displacements ug and wegr = 0 the effective deformation @egr : S — R3 given by

Defr (x, p(x)) = (x + uer(x),0), x € Q.

Whereas the area of the undeformed mid-shell S satisfies

1
A(s)z/,/1+|vp|2dx=|sz|+/ §|Vp|2dx+h.o.t.,
Q Q

the area of its image under @ satisfies

A(Def(S)) = / Jdet DO DD d A = |2 + / div uegr dx + hoo.t.
S Q

to leading order in V p and Vu.g. (This ignores the possibility that ®.¢ may not be
one-to-one.) Subtracting and applying the divergence theorem yields the expansion

1
A(S) — A(D(S)) = / —|Vp|2dx —/ ueff - Vds + h.o.t. (1.17)
Q2 FYe
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Similarly, the one-sided constraint

1
e(uefr) < EVP ®Vpdx

from (1.16)—which we refer to henceforth as the statement that ues is (linearly)
tension-free—can be recovered by linearizing the statement that ®. is short, i.e.,

dr2 (Pefr(x), Pefr(y)) < ds (x,y) Vx,yeS.

In this way, the limiting problem from Corollary 1.1 manifests as the leading order
part of the geometric variational problem

min__ A(S) — A(Pefr(S))
Defr:S—>R2
that are short
which asks to cover up as much area as possible with a length-shortening map of
S to the plane.

We turn to discuss the key ingredients in the proof of Theorem 1.1. It requires
establishing a priori lower bounds on Ej x ,,, and verifying that they are asymptoti-
cally sharp. Behind the I'-liminf part is a sort of “geometric interpolation inequality”
that quantifies the fact that two regular enough embedded surfaces cannot be both
extrinsically close and intrinsically far. Here, the surfaces in question are those of
the nearly isometrically deformed mid-shell ® (S) and of its projection to the plane.
In terms of the displacements u and w, the inequality states that

| 12 12 |
_ 2 2 z 2 A
( | Aw|) (/ |w|) z/ IVl / w-d+hot  (1.18)
Q 2 Q Q2 a0

whenever ¢ ~ 0 and w & 0. On the lefthand side we see a trade-off between the
linearized mean curvature H ~ %Aw and the out-of-plane displacement w. On the
righthand side we recognize from (1.17) the difference between the intrinsic and
planar projected areas of the shell. Taking the trace of the statement that ¢ ~ 0 we
see from (1.6) that

divu + 1|v 2 1|v 2
1vu — w ~ — .
2 2! VP

Thus, (1.18) reminds of the classic Gagliardo—Nirenberg interpolation inequality

172 1/2
c(/ |VVw|2> (/ |w|2) z/ IVw|? 4+ h.o.t. (1.19)
Q Q Q

which holds for w & 0 and independently of the strain (see, e.g., [31]). While (1.19)
implies the equi-coercivity part of Theorem 1.1, it is not strong enough to establish
its ["-liminf part. Thinking of replacing the full Hessian VVw with Aw, which is
justified when ¢ & 0, we were led to its sharpened form (1.18). Though we are
certainly not the first to apply a Gagliardo—Nirenberg interpolation inequality to
the study of elastic patterns—such inequalities play an organizing role throughout
the subject of energy-driven pattern formation [46]—we know of only one other



Curvature-driven wrinkling

analysis of wrinkling in which an optimal prefactor is known [8]. The suggestion
that the geometric interpolation inequality (1.18) should be used in place of (1.19)
appears to be new; see Section 2 for more details.

Much of our work is devoted to the construction of recovery sequences verifying
the optimality of our lower bounds. Given any candidate tension-free displacement
Ueff, We construct in Section 3 an admissible sequence {(up k., , Wp k,y )} converging
weakly- to (uefr, 0) and whose energy satisfies

| A p\ 1/10
Epk,y Wb,y Wpky) = 2Vbk +y) </ ~|Vpl* - / u- V) +0 <—) :
Q2 IQ k

The out-of-plane parts of three such constructions are depicted in Fig. 1. Their
essential character is given by

W(x) = /201 (Eert) - Ls CO8 (M) (120)

Ly

where we denote the effective strain of uegr by

1
Eeff = e(Ueff) — EVp®Vpdx. (1.21)

We envision a “piecewise herringbone” pattern consisting of multiple herringbones,
one of which appears in each bold square in Panel (a) of Fig. 1. Herringbones are
made of twinned uni-directional wrinkles superimposed on alternating bands of
in-plane shear. We select them as our basic building blocks as they are highly
effective at accommodating constant bi-axial compressive strains [47]. Simply put,
our idea is that with enough herringbones, one should be able accommodate any
non-constant g.¢e—even the measure-valued ones in Theorem 1.1.

At the smallest scales, the ansatz (1.20) features uni-directional wrinkles at a
lengthscale ly, and in the direction of Nperr. Other larger lengthscales include one
associated with the size of the individual herringbones (also with the “averaging”
operator (-) through which e¢g will be approximated as piecewise constant), and
one associated with the oscillations in 7ne representing the wrinkle twins. Before
moving on, we would like to motivate the locally sinusoidal character of our piece-
wise herringbones—which are closer to the herringbones treated in [5,47] than, say,
the origami-based ones in [6]—on the grounds of energy minimization. Consider
what it takes for the two sides of the geometric interpolation inequality (1.18) to
be nearly the same: in its additive form, the inequality can be improved to say that

b k 1
—/ |Aw|2+—/ |w|2—2«/bk</ —|Vp|2—/ u~f))
2 Ja 2 Ja Q2 a0

1
> —/ |62 Aw+k?w|>+h.o.t.
2 Ja

so long as ¢ & 0 and w ~ 0. Hence, minimizers must satisfy

[k
—Aw =,/ -w
b
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Fig. 1. Three possible patterns formed by a floating triangular shell. Panel (a) depicts the
“piecewise herringbone” pattern we use to construct arbitrary recovery sequences. It consists
of multiple herringbones, one per square, each of which is made up of twinned wrinkles and
alternating in-plane shear. Panel (b) depicts an almost minimal pattern in the positively
curved case, consisting of ordered, uni-directional wrinkles and a piecewise herringbone
to model its disordered part. Panel (c) depicts an almost minimal pattern in the negatively
curved case. The emergence of ordered “wrinkle domains” such as in (b) and (c) will be
shown to follow from the principle of minimum energy

consistent with the locally sinusoidal character of (1.20). Note this also explains
the choice Iy, = (b/k)'/* we will eventually make. It is well-appreciated in the
literature on elastic pattern formation that such a lengthscale should emerge from
a competition between bending and substrate effects (see, e.g., [16]). We refer to
Section 2 for more on the geometric interpolation inequality and Section 3 for the
details of our piecewise herringbones.

1.2.2. Defect Measures Thus far, our results have focused on the effective dis-
placements that arise as limits of almost minimizers of Ej x ,. As explained in
Corollary 1.1, these can be found by solving the (linearized) area problem

1 .
min /—|Vp|2dx—/ Uefr - D ds (1.22)
Ueir€BD(Q) Q2 30
e(uetr) <5V p@Vpdx
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for the effective in-plane displacement u.g, and recalling that wegs = 0. In light
of our previous discussion of the experiments on floating shells from [1,2,78], the
reader may wonder whether solving (1.22) actually recovers the observed wrinkle
domains and possibly disordered parts. Indeed, deducing these is the goal of the
rest of our results, which culminate in Section 1.2.4 with our method of stable lines.
We start by rewriting (1.22) as a minimization over the effective strain g from
(1.21) or, as we prefer to think of it, over a quantity called the “defect measure”.

Defect measures are a basic tool for encoding the properties of high-frequency
oscillations (and concentrations) governed by PDEs [51,52]. We define them in the
present context as follows. Whenever a sequence {(u,,, w,)},cN converges weakly-
%in BD(2)/R x WH2(Q) to (uefr, 0) and satisfies

1 1
e(un) + 5 Vwn ® Vi, = -Vp®Vp strongly in L?(£2) (1.23)

so that it is asymptotically strain-free, we may associate to it a non-negative Syms-
valued defect measure

n = weak-xlim Vw, ® Vw, dx in M(£2; Sym,). (1.24)

Taking limits, we deduce the important identity

1 1
e(”eff)‘f‘zllz EVp®Vpdx (1.25)

which couples p back to ueg thus guaranteeing it is well-defined. In particular, the
limit in (1.24) holds a posteriori since any converging sub-sequence must yield
the same result (for a complete proof, see Lemma 2.2). Combining this with (1.21)
yields that

1
= —268eff Where &eff = e(Uetf) — sz ® Vpdx.

Evidently, solving for the defect measure of a given sequence is tantamount to
finding its effective strain.

Some examples are in order. Consider a uni-directional wrinkling pattern with
lengthscale Iy, < 1 and constant direction 7. Thinking that the out-of-plane part
should satisfy

w(x) = \/Elwr cos <xl~ 77) yields u=7Q® ndx

Wr

as [y — 0. The same measure results for non-constant 7, so long as its variations
are sufficiently mild. If 7 varies rapidly, as it does for the piecewise herringbone
patterns in (1.20), u can end up being rank two. Folds with various profiles can
also be handled. Let /; <« 1 and fix 7. Taking

N

12
(@m)3

_1(xi)?
wx) = e 2(’f) yields u=7@aH [{x:x-7=0)
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as [f — 0. The notation on the right indicates the restriction of the one-dimensional
Hausdorff measure ! to the given line. The motifs of wrinkles and folds are
ubiquitous in thin elastic sheets [13,65]. We propose to model them using defect
measures in the vanishing thickness limit.

Returning to the context of weakly curved, floating shells, we now change
variables from ugr to . We do so by identifying the set of defect measures asso-
ciated to the recovery sequences from Theorem 1.1. In fact, all recovery sequences
are asymptotically strain-free (see Section 2). Hence, u € M(£2; Sym,) arises as
the defect measure of a recovery sequence if and only if (1.25) holds for some
tension-free ueer € BD(2). That ucgr is tension-free is equivalent to the statement
that ;> 0. Recall the Saint-Venant compatibility conditions which state, for sim-
ply connected domains, that a Sym,-valued matrix field m is a linear strain, i.e.,
m = e(u) for some u if and only if

d11moo + 0pomyy — 2010m2 = 0. (1.26)

That this holds in the smooth setting appears in standard references on elasticity
(e.g., [54]). By a straightforward approximation argument, it also holds when
m € Mand u € BD. Denote

curlcurl m = 011mpy + dpmy1 — 2012m12 (1.27)

and observe the “very weak Hessian” identity
1
—5 curlcurl Vw ® Vw = det VVw, (1.28)

so named as it allows to define det VVw for w € W12 [42,49]. Combining (1.26)
and (1.28) yields the following fact: provided €2 is simply connected, there exists
u € BD(Q) satisfying (1.25) if and only if u € M(£2; Sym,) satisfies

1
—Ecurlcurl u=detVVp (1.29)

in the sense of distributions. Therefore, we may exchange the set of admissible ugf
from (1.22) with the new set of admissible defect measures p characterized by their
non-negativity and the PDE (1.29). To finish the exchange, note the identity

1 1 .
—/ s =/ —|VP|2dX—/ egt - D ds.
2 Jg Q2 a0

which follows from (1.25) upon integrating its trace. The following result is proved:

Corollary 1.2. Given the assumptions (1.14) and (1.15), the rescaled minimum
energies satisfy

. min Eh,k,y . 1 / M (1.30)
im ————+ = min = e .
2+/bk + y HEM(2:Symy) 2 Jo
— %curlcurl pn=det VVp
Furthermore, |u arises as the defect measure of almost minimizers of Ep i ,, if and
only if it solves the limiting problem on the righthand side.
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The limiting problems in Corollaries 1.1 and 1.2 are two sides of the same coin:
Corollary 1.1 determines the limiting displacement of the shell via optimal uc¢f, and
Corollary 1.2 determines the limiting features of its patterns via optimal . Defect
measures play a similar role for curvature-driven wrinkling to that of the “wrinkling
strain” identified in [64] for tension-driven wrinkling. Both quantities specify how
much material must be “gotten rid of” in an appropriate limit. However, u does not
derive from the relaxation of a fixed energy density, but rather from the I"-limit of
a sequence of rescaled energies.

Before proceeding to discuss the optimizers of the limiting problems in detail,
we pause to answer the question of whether the minimum energy actually scales
~ 2+/bk 4 y, under the assumptions given at the start of Section 1.2. Rearranging
(1.16) or (1.30) yields the expansion

min Ep ;. = C1 - QVbk + y) + 0(2vVbk + y)
where C| is the minimum value of the limiting problems. As (1.30) makes clear,
Ci=0 <= detVVp=0 ae.onQ.

Thus, the minimum energy scales ~ 2+/bk + y if and only if the initial Gaussian
curvature of the shell, which is proportional to det VV p, is other than zero.

1.2.3. Convex Analysis of the Limiting Problems The previous results, in par-
ticular Corollaries 1.1 and 1.2, established the role of the limiting problems

. 1 2 N . 1
Mgffnglg(Q) /Q Elvpl dx = /()Q ueff - Vs and /LGMF(]SIZI?SymZ) 5 /Q el
e(ucff)S%VP®VP dx —%curlcurl pn=det VVp
(1.31)
for the leading order response of weakly curved, floating elastic shells. We turn
to study their minimizers. Each of the problems in (1.31) is convex. On general
grounds, such “primal” minimization problems should admit “dual” maximization
problems, the solutions of which are paired via “complementary slackness” condi-
tions. What distinguishes the present discussion of convex duality from the typical
example (as in, e.g., [29]) is that, here, the natural pairing will turn out to require
an “inner product” between matrix-valued measures. The situation reminds of the
duality between stress and strain in Hencky plasticity, where similar issues arise
[45] (see also [4]).
Let p € C2°(B;) be non-negative and supported on the open unit disc B| =
B(0,1) C RZ?, and let [5, pdx = 1. Given € M(; Sym,), we define its

mollifications {1s}s~o C C*(SQ; Symy) by

_ L (=YY, Q 1.32
“a(x)_/ga_ﬂ)<T) n(y), xeq. (1.32)

Denote

VivE = cof vy = (922 T2 (1.33)
—d12 011
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Theorem 1.2. Let Q2 and p satisfy the assumption (1.14a) and suppose that Q2
is simply connected. The minimization problems in (1.31) are each dual to the
maximization problem

1
max / <(p — —|x|2) det VVp dx. (1.34)
w:Rz—ﬂR Q 2

@ is convex
p=11x1> on RN\Q

In particular, the optimal values in (1.31) and (1.34) are the same, and admissible
w and @ are optimal if and only if the complementary slackness conditions

0 = lim / ((m vlvw)( and 0=1m [ [0-[Vel(t @ 4%, us)lds
=0 Jo =0 Joq
(1.35)
hold; the same is true for admissible u.ts with Vp @ V p dx — 2e(uctr) in place of
wu. Here, [V] denotes the jump in Vo across 02 in the direction of V. It equals to
x — Volgq where the trace is taken from 2.

Remark 1.2. The admissible set in (1.34) consists of all convex extensions of %Ix |2
from R?\Q into . The use of R? is immaterial, and it can be replaced by any
convex neighborhood of 2. In fact, ¢ can be shown to be admissible if and only if
it restricts to 2 as an element of HB with VV¢ > 0 and such that the boundary
conditions

1
(p:§|x|2 and V-V <?D-x atdQ (1.36)

hold in the sense of trace. See Lemma 4.5. Regarding traces at 92, our convention
will be that whenever we refer to the values of a quantity there, we mean those of
its trace from 2 unless otherwise explicitly specified.

Remark 1.3. The complementary slackness conditions (1.35) hold regardless of the
choice of the kernel p in (1.32), so long as it belongs to C2°(B1), is non-negative,
and integrates to one. Other equivalent statements hold using the approximating
sequences in Proposition 4.1. The freedom to approximate p as needed will come
in handy later on in Section 5 when it comes time to justify the upcoming assertions
of our method of stable lines. Even more equivalent statements of complementary
slackness can be obtained by approximating ¢. We leave these to the reader.

Remark 1.4. Other, more general versions of the dual problem appear in Section 4,
including ones that apply when 2 is multiply connected. See Proposition 4.1 and
the discussion immediately thereafter.

While we explain in Section 4 how one can anticipate the form of the dual prob-
lem (1.34) on general grounds—it follows from a minimax procedure using the
divergence-free “stress” 0 = V1V-'¢ as a Lagrange multiplier for the tension-
free constraint—here we demonstrate how the complementary slackness conditions
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(1.35) arise. As the primal problems (1.31) are convex, their solutions are complete-
ly characterized by first order optimality. The key is an integration by parts identity
that says, roughly speaking, that

1/|| / 1||2dtvv

= — - = e

29#1 Q‘P 2x )4
1

Lol 1 A . a
= [ (Vo) + 5 [ bIVel(Eu) (137)
2 Ja 2 Jaa

whenever © and ¢ are admissible for (1.31) and (1.34). The integrands on the
righthand side of the equals sign are non-negative, while the difference on the
lefthand side vanishes if and only if u and ¢ are optimal. Hence, optimality should
be equivalent to the complementary slackness conditions

<vai¢,u>=0 on® and §-[Vpl(?®% u)=0 atdQ.  (1.38)

The only problem with this is that the terms appearing in (1.38) are not obviously
well-defined: evaluating the first one requires making sense of an “inner product”
between the matrix-valued measures 4 and V+V-1¢; evaluating the second one
requires assigning boundary values to the T7-component of . While it may be
possible to take advantage of the relationship between the formally adjoint opera-
tors V- V+ and curleurl to treat (1.38) in some more intrinsic way, we choose to
regularize instead. Integrating by parts with the mollifications {us} from (1.32), we
obtain (1.37) upon sending § — 0. The asserted complementary slackness condi-
tions follow. See Section 4 for the complete proof of Theorem 1.2, as well as for a
discussion of duality for general 2.

Theorem 1.2 separates the problem of determining the overall layout of the
patterns encoded by optimal p from that of determining their amplitude. We en-
vision a two-step procedure, where in the first step an optimal Airy potential ¢ is
found by solving the dual problem (1.34), and in the second step the complemen-
tary slackness conditions are systematically applied. To lighten the notation, we
use (1.38) from now on to refer to the complementary slackness conditions (1.35)
with a remark that they hold in the regularized sense. Note the meaning of this is
independent of the choice of the mollifying kernel p.

Corollary 1.3. Ler 2, p, and {(b, k, v)} satisfy the assumptions (1.14) and (1.15),
and let ¢ solve the dual problem (1.34). Then u € M, (2; Sym,) arises as the
defect measure of a sequence of almost minimizers {(up k,y, Wp,k,y)} of Ep i,y Le.,

w = weak-xlim Vwp r, ® Vwp i, dx  in M(2; Sym,) (1.39)

if and only if
—%curlcurl u=detVVp on Q
(Vivig u)=0 onQ . (1.40)
D-[Vel(t®7,u)=0 arof
The first equation holds in the sense of distributions, while the second and third
equations hold in the regularized sense.
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1.2.4. Stable Lines We come at last to our method of stable lines. This is a way
to deduce from knowledge of an optimal ¢ solving the dual problem (1.34) that
optimal p solving the primal problem (1.31) are rank one, absolutely continuous,
and uniquely determined on a subset of Q2. In other words, the method asserts the
existence of an “ordered” part, where stable lines exist and the convergence of al-
most minimizers towards known patterns is implied. (As usual, any reference to the
almost minimizers of Ej x ,, is contingent on the I"-convergence in Theorem 1.1.)
At its heart is an analysis of (1.40) as a boundary value problem for p via the
method of characteristics. As such, it is a bit difficult to describe the method in a
manner that is both general and precise. The following contains only the essence
of what we achieve in Section 5 and Section 6. See Section 1.2.5 for a list of open
questions that remain.

The first task is to explain what we mean by the “stable lines” and the “ordered
part” of the shell. The definitions we present here are only preliminary, as they
require more regularity than generally holds. More general definitions appear in
Section 5. Suppose, for the sake of argument, that u and ¢ are not only optimal
in (1.31) and (1.34) but are also smooth, at least off of some small (say, Hausdorff
one-dimensional) set. Then, the first complementary slackness condition in (1.40)
gives that

VLqu) L

in the pointwise sense. Since VV¢ and p are non-negative, it follows that the sum
of their ranks is at most two. Where rank VV¢ = 2, it must be that u = 0. On the
other hand, where rank u = 2 we see that ¢ is affine. The part where rank VV¢ = 1
can be said to be ordered, as there

uw=A1®1n forsomei >0and7n € R(VVyp). (1.41)

Given the interpretation of u as a defect measure of almost minimizers in (1.39),
we see that

At Vwpk,y, — 0 strongly in L? on the ordered part.

Put another way, the peaks and troughs of any wrinkles that persist must become
asymptotically perpendicular to the unit vector field 7 throughout the ordered part.
To help keep track of this, we propose the following geometric construction: given
an optimal ¢, plot its

stable lines—curves parallel to N (VV¢) where rank VVg = 1. (1.42)

In an asymptotic sense, these are the wrinkle peaks and troughs. They form domains,
as is apparent in Fig. 2. Naturally, one wonders if their geometry can be described.
First, let us give an argument for their existence.

It is a well-known fact of differential geometry that any smooth enough devel-
opable surface—which by definition has vanishing Gaussian curvature throughout
its extent—is the disjoint union of planar regions and an otherwise ruled part con-
sisting of line segments that extend between boundary points. Such segments define
the generators or ruling lines of the given surface (see, e.g., [71,73]). Now where
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Fig. 2. Optimal wrinkle patterns arrange themselves according to the plotted “stable lines”.
Panel (a) depicts the stable lines of various positively curved shells, and Panel (b) does
the same for negatively curved shells. By definition, stable lines fill out the ordered part
of the shell; any disordered response is confined to regions absent these lines (shown as
blank). Stable lines are also the characteristic curves of a certain second order, linear PDE
governing the defect measures of almost minimizers. When combined with appropriate
boundary conditions, uniqueness and regularity theorems can be proved throughout the
ordered part

=
Al

S

det VV¢ = 0 the Gaussian curvature of the graph of ¢ vanishes, so that it describes
a developable surface. Where rank VVg = 1, it consists of ruling lines. Upon pro-
jection to the plane we recover the desired stable lines. In fact, this argument shows
a little more: any smooth curve picked out by (1.42) is the planar projection of a
ruling line.

Evidently the layout of the stable lines, and that of the ordered wrinkle domain-
s they describe, is tied up with the geometry of developable surfaces. The ruled
part of any (piecewise) smooth developable surface can be decomposed into de-
velopable pieces of the following three elementary types: cylinders, whose ruling
lines are parallel; cones, whose ruling lines intersect at a point; and “tangential
developables™, whose ruling lines are tangent to a space curve. Upon projection,
we deduce the following classification scheme for stable lines: we say that

o afamily of stable lines is of the cylindrical type if it consists of parallel segments;

e a family of stable lines is of the conical type if its segments, when extended,
meet at a point; and

e afamily of stable lines is of the fangential type if its segments, when extended,
meet along a curve.

General arrangements of stable lines are built from these. From the twelve shells
depicted in Fig. 2 we count seven consisting of only the cylindrical type; two with
only the conical type (the positively curved half-disc and the negatively curved
disc); one featuring both cylindrical and conical types (the negative half-disc); and
one with only the tangential type (the negative ellipse).
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The following result is the key to the stable lines shown in Fig. 2. It contains
recipes for solving the dual problem when the initial Gaussian curvature is of one
sign.

Proposition 1.1. Let Q2 and p satisfy the assumption (1.14a) and suppose that Q2
is simply connected. If det VV p > 0 a.e., the dual problem (1.34) is solved by the
largest convex extension ¢ of % |x|? into Q. It satisfies

3

1 2
= mi 0; = |vi e Q, 1.43
@+ (x) {yfl}lérég 2 ,Zlyll for x (1.43)

where the minimization is taken over all pairs and triples {y;} C 02 such that

X = Z@iyi where {0;} C (0, 1) satisfies Z@i =1.
i i

If instead det VV p < 0 a.e., the dual problem is solved by the smallest convex
extension ¢_ 0f%|x|2 into Q. It satisfies

1 1
- (x) = =|x|> = =d3q(x) where dyo(x) = min |[x —y| forx € Q. (1.44)
2 2 yeaIQ

Remark 1.5. Optimal ¢ solving (1.34) are not in general unique. However, ifdet VV p
is strictly positive or strictly negative a.e., then ¢ or ¢_ is the unique solution of
(1.34). See Section 6.1.

We just finished describing how stable lines dictate the geometry of optimal 1,
and how we were able to solve for the ones in Fig. 2. There is a second, equally
as important role played by the stable lines. We claim that they are characteristic
curves along which the PDE in (1.40) becomes an ordinary differential equation
(ODE) for the only possibly non-zero eigenvalue X of u on the ordered part. Going
back to our previous assumptions of smoothness for & and ¢, and again postponing
precise statements to Section 5, we note the existence of a function ¢ > 0 such that

1 1
——curleurl( ® #-) = ——92, (o-
5 @) 20 it (@)
where 951 = it - V and where 7 is a unit eigenvector associated to A. Since 7
points perpendicularly to the stable lines, we recognize this operator as a directional

derivative along their extent. Setting (1.41) into the first part of (1.40), we deduce
that

—%8@ (oA) = det VVp along the stable lines. (1.45)

Thus, we have arrived at a second order linear ODE for A. Boundary data can be

extracted from (1.40), after which integration yields uniqueness, regularity, and
even explicit solution formulas across the ordered part.

Let us briefly comment on the sort of boundary data that can be deduced. In

some cases, stable lines pass between boundary points, such as for the positively
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curved shells in Panel (a) of Fig. 2. Provided ¢ is suitably non-degenerate, the last
part of (1.40) can be shown to imply the Dirichlet-type condition

o) = 0 where stable lines meet 0€2. (1.46)

Our proof of this assumes in particular that the coefficient b - [Vg] is non-zero,
and also that the stable lines in question meet €2 transversely. Together, (1.45) and
(1.46) constitute a family of two-point boundary value problems indexed by the
stable lines. See Corollary 5.1 for a precise statement of this result.

In other cases, stable lines meet in the interior. This happens for the negatively
curved shells in Panel (b) of Fig. 2. Since we expect V Vg to explode where stable
lines meet, the second equation in (1.40) should provide Dirichlet data. The first
equation should yield matching conditions. Altogether we will show that

oA =0 and 9;1(0A) =0 where stable lines meet, (1.47)

again subject to non-degeneracy conditions on ¢ (e.g., if the stable lines meet along
a curve, we assume they meet it transversely). Combining (1.45) and (1.47) yields
a family of Cauchy problems indexed by the stable lines. See Corollary 5.2 and
Corollary 5.3 for precise statements of this result.

The preceding observations suggest a significantly more general result: optimal
w should be uniquely determined wherever stable lines exist. While we do not yet
know how to prove this for general shells, we will show in Section 6 that it holds
for each the shells in Fig. 2, along with other related ones as well. That section
also contains the proof of Proposition 1.1. We hope our general description of the
method of stable lines here and in Section 5 helps the reader see the bigger picture
behind what it implies at the level of the examples in Section 6.

1.2.5. Open Questions We close this introduction with a few open questions.
Besides the obvious ones regarding the extension of our results beyond the as-
sumptions given at the start of Section 1.2 and beyond the realm of weakly curved
shells, there are some important issues that remain regarding the method of stable
lines.

First, it is an admittedly awkward point throughout that VV¢ is only a priori
a measure. For this reason, we do not yet have a generally useful definition of
stable lines. What we lack is a regularity theory for optimal ¢ solving (1.34) or,
failing that, a classification of developable surfaces of regularity H B. For now,
we note that each of the examples in Section 6 enjoys the following additional
regularity: optimal ¢ are smooth off of a singular set of finite length. This is more
than enough to justify our approach. More generally, building off of the theory of
w22 developable surfaces in [35,36,59] we show how to make sense of it where
¢ is (locally) W22, See Section 5.

Second, we wonder if optimal x solving (1.31) are unique under the condition
that there exists an optimal ¢ that is nowhere affine. Conjecture 6.1 at the very end
gives a concrete version of this question for negatively curved shells. Our reasoning
is simply that stable lines (suitably defined) should be characteristic curves for the
boundary value problem (1.40), and that the given hypothesis on ¢ should imply
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their density in €2. This should lead to the uniqueness of w. Though we do not
have a general theorem to this effect, we have achieved it in the context of several
examples, including the positively curved ellipse and half-disc in Panel (a) of Fig. 2,
as well as each of the negatively curved shells in Panel (b). See Section 6.2 and
Section 6.3.

Conversely, we wonder if there must exist infinitely many optimal u provided
there exists a region on which optimal ¢ are affine. Only when ¢ is affine on all
of © have we shown this to be true—see Example 6.2 for the highly degenerate
case of a positively curved disc. When combined with our I'-convergence results,
the existence of infinitely many optimal px implies the existence of infinitely many
almost minimizing sequences for Ey, x ,,, a situation that could perhaps explain the
disorder seen in ultrathin shells [78]. Whether this disorder arises from an overall
flatness of the energy landscape, or instead to a prevalence of local minimizers
remains to be understood.

1.3. Outline of the Paper

The remainder of the paper establishes the results outlined above. Section 2
covers the I'-liminf and equi-coercivity parts of Theorem 1.1, while Section 3
handles the recovery sequence part. Section 4 establishes Theorem 1.2. Section 5
discusses the method of stable lines. Finally, Section 6 proves Proposition 1.1 and
presents the details behind the patterns sketched in Fig. 2. Since Corollary 1.1-
Corollary 1.3 follow more or less immediately from the theorems as above, we do
not repeat their proofs below.

1.4. Notation

We use big O and little o notation as well as their abbreviations < and <. We
write f = o(g) and f < g to mean that the functions f and g satisfy g — Oina
relevant limit, and f = O(g) and f < g to mean that there exists a constant C > 0
such that f < Cg. If C = C(«) we indicate this using a subscript, as in f <y g.
We write f ~ g tomeanthat f < gand g < f. We abbreviate [V g = max{f, g}
and f A g = min{f, g}.

Dots and angle brackets denote the Euclidean vector and Frobenius matrix inner
productsx-y =Y x;y;and (A, B) = >, ; AijBij. Single lines without subscripts
denote Eucidean and Frobenius norms. The open Euclidean ball centered at x with
radius 7 is B, (x) = B(x,r) = {y : |x — y| < r}. We abbreviate B, = B, (0). The
shortest Euclidean distance from x to a set S is ds(x) = d(x, S) = infyeg|x — y|.
We use the matrix norms

Al =[Al= [ 1A% 1AL =) |Ajl. |Aloc = max |4
ij ij

throughout. Double lines || - || are reserved for function space norms.
Regarding function spaces, we use Cck(X) and Lip(X) to mean the spaces of
real-valued, k-times differentiable and Lipschitz continuous functions on some
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appropriate domain or metric space X. Subscripts are used as normal, with b for
uniformly bounded functions and ¢ for compactly supported ones. Semi-colons
indicate ranges other than R. For instance, C;,(€2; Sym,) indicates the space of
continuous, uniformly bounded, symmetric d-by-d matrix-valued functions on £2.
The Sobolev spaces WK (Q) and their local versions W{;’Cr (R2) are defined as usual.
We take the convention of referring to the (unique) continuous representative of a
function that is a.e. defined, if it exists. See Section 1.1.3 for BD(2) and H B(£2).

Regarding measures, we write M(X) to mean the space of finite, real-valued
Radon measures on some locally compact Hausdorff space X . Semi-colons indicate
values in vector spaces other than R. The subscript + indicates non-negativity.
Given o € Cp(X; Sym,) and u € M(X; Sym,), we denote their Frobenius inner
product and its integral on X by

(0, 1) = ) _oijpj and /X«r,m:(a,m(X).
ij

Given a Borel measurable set S, we write |S to mean the restriction of p to S
defined by ;| S(-) = n(SN-). The two-dimensional Lebesgue and one-dimensional
Hausdorff measures £2 and ' appear throughout. We also use the notations dx
and ds. If a property is stated simply as holding “a.e.”, we mean that it holds with
respect to Lebesgue unless the situation dictates otherwise. We denote | S| = £2(S).

Finally, by a “curve” we mean a homeomorphic copy of an open interval I C R,
i.e., its image under a continuous and one-to-one map. Such a map “parameterizes”
the given curve. Any further regularity will be specified, e.g., a smooth curve is one
that admits a C° parameterization. Given a Lipschitz curve I' C R?, its tangent
lines 7, T are defined for H'-a.e. s € T, along with a choice of unit tangent and
unit normal vector 7 and Dr satisfying

tr($)||T;T and Dr(s) L T,T' for H'-ae.s e I

We refer to the unit tangent and outwards-pointing unit normal at 32 simply as 7
and ». By convention, T = D+ where L denotes counterclockwise rotation by 7 /2.

2. A priori Lower Bounds and Tension-Free Limits

This section establishes the equi-coercivity and I"-liminf parts of Theorem 1.1.
These results do not rely on the full set of assumptions listed at the start of Sec-
tion 1.2, and make use of only the basic ones in (1.14). For the reader’s convenience,
we recall these assumptions in the formal statement of what we prove.

Proposition 2.1. (equi-coercivity and I'-liminf inequality) Suppose

Q is bounded and Lipschitz, p € W2’2(Q), %, 2Vbk+y <1 (2.1)

E’
and let the sequence {(up k,y, Wp.k,y)} satisfy

Epx,y (Upk,ys Whk,y) -

2+/bk +y

lim sup

(2.2)

Then the following statements hold:
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1. {(up k,y, Wpk,y)} is weakly-* pre-compact in BD(2) /R x wh2(Q);
2. each of its weak-x limit points are of the form (uegr, 0) where uesr is tension-free,
ie.,

1
EWﬁDSEVP®VPd”
Moreover, if

(Ub ko Whkoy) — (esy, 0) weakly- = in BD(Q)/R x Wh2(Q)

then

o Ebky Wb k,ys Whky) /1 ) .
lim inf —— — —— > —|Vpl©dx — Ueff -V dSs.
2bk 4y Q2 o

Remark 2.1. In the course of proving this result, we will show that any sequence
that obeys (2.2) is asymptotically strain-free in that (1.23) holds—this follows in
particular from the first inequality in Lemma 2.1. Lemma 2.2 then explains how a
unique defect measure p can be associated to any asymptotically strain-free and
weakly-* converging sequence. Together, these facts justify the introduction of
defect measures in Section 1.2.2.

We begin with a list of a priori bounds. Recall the definition of the strain ¢ in
(1.6).

Lemma 2.1. The inequalities

bky
/I8| < Epxy + 77, /IE(M)|<.Qp1+ Eb,k,y‘i‘\/—vy
Epiy+7v? Ep i,
/|w|2< — /|Vw| Sap L+ —1,
\/bk\/y
Ehk +y?
/IVle Sa.pl yb

hold forall0 <b <kand0 <y < 1.

Proof. First, we add a suitable constant to Ejp ¢, to make the result non-negative.
Integrating the pointwise identity

1
EMV—VH8+V2

1 1
:zwﬁ+y(yvm2—mw0-%wwﬁ+y2

1| 1dP = 2162 (e, y1d) + 1| 1d?
—le — = —|& — (€, — =
27 2 4 2

and applying the divergence theorem, there results

1/ 2,7V 2 1 2 1 2 A
Ly T +—/|Vw| =—/|s| +y /—|Vp| —/ u-d
2 Ja 2 Ja 2 Ja Q2 90

+y219|.
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Therefore,

Epry = Epiy + el

1 4
= - —yld*+ % | |Vw]?
2/sz|8 v |+2/sz| v

b k
+—/ |VVw—VVp|2+—/ lw|? > 0.
2 Ja 2 Ja
(2.3)

Being a sum of squares, Eb, k,y €asily admits lower bounds. Bounds on the original
energy follow.
We proceed to prove the inequalities from the claim. It follows from (2.3) that

/ w2 < Zokr
Q ok

and so the third inequality holds. The first and last inequalities are just as easily
shown. Using the triangle inequality and (2.3) we see that

/|e|25/ le — y1d)* + y*1Q| < Epiy + v2I9, (2.4)
Q Q

i
/|VVw|2§/ |Ww—vvm2+/ (VVpP S =L 4 1[VV 2. (25)
Q Q Q

The first and last inequalities follow. We turn now to control Vw and e(u).
Two separate arguments yield bounds on Vw, depending on whether y > +/bk
or not. The inequality

E
Ebky (2.6)

Vw2, <
follows directly from (2.3) in any case. At the same time, we can interpolate be-
tween the bending and substrate terms to obtain another bound. Using the triangle
inequality with (2.3) as we did in the proof of (2.5), we note that

Ep ey +blIVV 175 2 bIIVVWI7 4kl wl[72 2 Vok[[VVw|| 2wl 2kl w]]3

2.7)
by an elementary Young’s inequality. Recall the Gagliardo—Nirenberg interpolation
inequality

1/2
L2(Q)

1/2

||w||L2(Q)

Vw2 S IVVwI| + CE[wll 2 @) (2.8)

which holds for all w € W22(2) [31]. Since by hypothesis b < k, it follows from
(2.7) and (2.8) that

VBKIIVVwl| 2 llwll 2 + kllwl]7, < Epiy

bk ~ bk
Combining (2.6) and (2.9) yields the fourth inequality from the claim.

2
Vw2, e

+1IVVpll7.. (2.9)
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Finally, we handle e(u). By the definition of & and Holder’s inequality,

/Ie(u)ls/ |s|+/
Q Q Q

S1Q1Y el 2 + [IVwl[72 + VP17,

- Eb,k,
<o VEbky +r2+ ﬁk—JV +1IVVplIz, +11Vpll7a.

where in the last line we used (2.4), (2.6), and (2.9). The remaining inequality
follows. 0O

1 1
—Vw ® Vw +/ ~Vp®Vp
2 al2

Next, we verify that the weak-x limits of asymptotically strain-free sequences are
tension-free. At the same time, we justify the notion of defect measures introduced
in Section 1.2.2.

Lemma 2.2. Let
(Uy, wy) A (u,0) weakly- xin BD(2)/R x Wl’z(Q)

and suppose it is asymptotically strain-free in that
1 1 . 12
e(uy) + va" ® Vw, — EVP ® Vp stongly in L=(2; Sym,).

Then {Vw, ® Vw, dx} converges weakly-x in M(2; Sym,) to a non-negative,
Sym,-valued Radon measure u called the defect measure of the given sequence.
The defect measure satisfies

1 1
e(u)—i—EM:sz@Vpdx. (2.10)

As a result, the limiting in-plane displacement u must be tension-free.

Proof. Evidently,
1
Vw, @ Vw,dx =2 | e(u,) + Ean ® Vw, dx | —2e(u,) Vn.

On the righthand side, we see the difference between a sequence converging strongly
to Vp® V p dx, and another converging weakly-x to 2e(u). Therefore, the lefthand
side converges weakly-x. Passing to the limit and rearranging yields (2.10). Non-
negativity is preserved by weak-* convergence. Therefore, © > 0. O

At this point, we have enough to deduce the first part of Proposition 2.1 on
compactness. In order to prove the second part on a priori lower bounds, we must
identify the optimal prefactor in the bound on Vw from Lemma 2.1. That bound
was a consequence of the Gagliardo—Nirenberg interpolation inequality (2.8) so,
naturally, we seek a sharpened version of it now.
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Lemma 2.3. Let x € CX(Q) have 0 < x < 1. Ifb,k > 0 and w € W>2(Q),

b/ IVVw|? + k/ |w|? > 2«/bk/ IVw|*x + / b2 Aw + k12w x
Q Q Q Q

—2v bk||VX||L°°(SZ)||w||L2(Q)||Vw||L2(Q)

2

— blIVVXllL@ VW] 2 g -
Remark 2.2. Below, we shall apply this to sequences {w,} converging weakly- to
zero in W12(2), under the condition that b < k. Dividing by ~/bk we see that the
terms appearing on the second line above behave as errors. These arise, respectively,
from estimates on div(wVw) and det VVw in negative norms.
Remark 2.3. Following up on the previous remark, we note that if ¢ &~ 0 then
det VVw =~ det VVp as a result of the very weak Hessian identity (1.28), the
Saint-Venant compatibility conditions (1.26), and the definition of the strain. Hence,
|[VVw| & |Aw| explaining the appearance of the mean curvature H =~ %Aw on
the lefthand side of the geometric interpolation inequality (1.18).
Proof. Note the pointwise identities

IVVw|? = |Aw|*> — 2det VVw (2.11)
bl Aw|? + k|lw|* = 24/bk <|Vw|2 - div(wVw)) + 162 Aw + k' 2w)? (2.12)

as well as the very weak Hessian identity (1.28). Now let x be as in the statement.
Testing the first identity (2.11) against x and integrating by parts using (1.28), we
obtain that

/ [VVw|?x =/ [Aw|?x —2det VVwy
Q Q
=/ Awy + <Vw ® Vu, vlvix>
Q
> /Q |Awlx = IV Xl Vw7,
Testing the second identity (2.12) against x and integrating by parts, there follows

/ (b|Aw|2+k|w|2>X =2x/bk/ IVwl?x + wVw - Vy
Q Q
+/ B2 Aw + k12w 2y
Q

zzdbk/ |Vw|2)(+/ b2 Aw + k' 2w)?x
Q Q

— 2VDk[|V x| [[wll 2| Vw]| 2.
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Combining these and using that 0 < x < 1, we deduce that

/|VVw| ~|—k/|w| / bIVVw[? +k|w|)

z/g(bmw +klwl) x = bIVV Nl |Vl 2,

> 2\/bk/ [Vw|?x +/ b2 Aw — kPw |y
Q Q
= 2VDk|IV x|z l[wll 2 [[Vw]] 2
= blIVVxllL=l|Vull7.
This completes the proof. O
We are ready to prove the I'-liminf and equi-coercivity parts of Theorem 1.1.

Proof of Proposition 2.1. First, consider an admissible sequence {(upk,,, Wp.k,y)}
whose energy satisfies

Ep iy Wb,y Whik,y) SVbkVy K1 (2.13)

but is otherwise arbitrary. We must prove that it is weakly-* pre-compact and
identify its limit points. According to Lemma 2.1 and the assumptions on the
parameters in (2.1), any sequence satisfying (2.13) enjoys the estimates

1 1
/ le(upk,y) + vab,k,y ® Vwp r,y — EVP @ Vpl? S Vbkvy +y? <1,
Q

(2.14)
V kv
/ le(up k) Sa.p 1+ Vbkvy + Y < <1, (2.15)
Vbk vy + b
/ lwp.ky 1> Se # Sa/ TV ’ « 1, (2.16)
Q k k k
L Vbkvy
IVwp ., 1> Sa. <1, 2.17)
/Q 1 p 1 /_VJ/
bk v k
/IVVwb,ky|2 59p1+—y“’,§,/—vz. (2.18)
Q ’ ’ b b b

The first estimate shows that {(up ,,, Wp k,,)} is asymptotically strain-free. The
second proves that up, x ,, remains uniformly bounded in B D /R. The third and fourth
estimates show that wp x , remains uniformly bounded in W2 and converges
to zero strongly in L2. In combination with the Banach-Alaoglu theorem, these
imply that {(up k,y, Wp i,y )} is weakly-* pre-compact in BD /R x W12, Applying
Lemma 2.2 we learn that its limit points are of the form (ug, 0) where the in-plane
part uegr is tension-free. The first part of Proposition 2.1 is proved.
Now consider an admissible sequence satisfying

(WUp,k,y» Wh k,y) A (uefr, 0) weakly-x in BD/R x w2
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and for which the bound (2.13) holds. In terms of the defect measure p from
Lemma 2.2, we must prove that

e Ebky Upkys whky) 1/
liminf ——= = —— > = [ |ul1. (2.19)
2ok + y 2 Jo ™!

Indeed, according to (2.10) and the first integration by parts identity in (1.13),

1 1 1
—/ i = —/ <1d,u>=/ 1d, ~Vp ® Vpdx — e(uers)
2 Ja 2 Ja Q 2

1, R
—|\Vp|© — Uetr - V dS.
Q2 a0

Our plan is to pass to the limit in the bending and substrate terms from Ej, x ,, using
the sharp Gagliardo—Nirenberg inequality from Lemma 2.3. Passing to the limit in
the surface energy presents no additional difficulties.

Consider the bending term. Due to (2.18) and our assumption from (2.1) that
b <K k, it satisfies

b / IVVwp i, — VVPI* = b / IVVwp iy 1> = 261V VWp ke y 121V V I 12
Q Q
—b|IVVpll7,
> b/ |VVwp iy > — o(vDk).
Q

Fix a cutoff function y € CZ°(2) thatsatisfies0 < x < 1 butis otherwise arbitrary.
Using the sharp Gagliardo—Nirenberg inequality from Lemma 2.3 and the bound
just obtained, we conclude that

b/ IVVwp .y —VVp|2+k/ |wb,k,y|2
Q Q
> 2\/_bk/ Vb iy Px = 2VBRIV xl o lwl] 2Vl 2
Q

- b||VVX||L°°||Vw||2L2 — o(vbk)
> 2«/bk/ IVwp i, 1> x — o(v/bk)
Q

by (2.16) and (2.17). Combining this with the definition (1.10) of the energy and
(2.14), there results

b k
Ep .,y Wpk,ys Whk,y) = —/ IVVwp iy — VVpl? + —/ |wb,k,y|2
2 Ja 2 Jg
1 5 .
+v | zIVpl" —divupi,y
Q2

1
> (2vbk + 7/)/ <X1d, vab,k,y ® Vwb,k,y>
Q

— 0(\/%\/ y).
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Dividing by 2+/bk 4 y and passing to the limit via the defect measure p from
Lemma 2.2 yields

o Ep gy ks whky) /< 1
lim inf ——= = —— > lim x1d, =Vwpky @ Vwp i,
2/bk +y Q 2 ’ 4
1
== Id, 1) .
7 /Q (x1d, )
Letting x 1 1 and noting that ;© > 0 we obtain (2.19). O

3. The Piecewise Herringbone Construction

The previous section established the I"-liminf and equi-coercivity parts of Theo-
rem 1.1. Here, we complete its proof by producing the required recovery sequences.
To do so we will make use of all but one of the assumptions present in Section 1.2.
The main result of this section is as follows:

Proposition 3.1. (recovery sequences) Suppose

Q is bounded, Lipschitz, and strictly star-shaped,
p\ /10
peW>X(Q), and <%> L2Wbk+y « 1 (3.1)
and let uesr € BD(K2) be tension-free, meaning that

1
e(uefr) < EVP ®Vpdx.
Then there exists a sequence

(Ubk,y> Whk.y) X (uetr, 0) weakly- % in BD(S2) x W'2(8)

such that

. Epgy Uiy, Whky) /1 2 R
lim ——= — L = —|Vpl| dx—/ Ueff - V ds. 3.2)
23/bk +y Q2 o

Remark 3.1. The missing hypothesis is that y < k (see (1.14b)). While the form of
the I"-limit depends on this hypothesis—as can be anticipated from the discussion
surrounding (1.12)—it is not necessary here as the recovery sequences we describe
do not depend on y. Nevertheless, we include y as a subscript to keep the notation
consistent, and also to remind that other recovery sequences may very well depend
on all three parameters.

Our proof of Proposition 3.1 centers around the notion of the target defect measure
w specified by uegr. Following the discussion in Section 1.2.2 in the introduction,
we note that any recovery sequence must satisfy

Vwp i,y @ Vwp i,y dx A n weakly- * in M(€2; Sym,)

1
where © = —2é&¢ and  eeff = e(Uefr) — EVP ® Vpdx.



Curvature-driven wrinkling

£
b

Z

Fig. 3. A “piecewise herringbone” pattern representative of the ones we use to construc-
t recovery sequences. Herringbones adapted to constant target defects occupy individual
squares. Each herringbone consists of twinned uni-directional wrinkles and bands of in-
plane shear. Wrinkles are indicated by thin lines, and dashed lines indicate “internal walls”
across which their direction rapidly varies. Bold lines indicate “external walls” separating
the herringbones. The number of squares, the number of twins, and the width of the walls
will be optimized

We think of % u as a “misfit” to be alleviated by some well-chosen pattern. Note
w > 0 as uesr is tension-free.

The proof proceeds in three steps. First, we reduce to the case where p is
Lipschitz and strictly positive. The key lemma is in Section 3.1, where we show
how to approximate tension-free u € BD with u € C that are uniformly tension-
free, meaning that

1
e(u) < EVP ® Vp — Ald for some A > 0. 3.3)

Though our proof of this relies crucially on the supposed strict star-shapedness of
2, we wonder whether it holds in greater generality. It is not difficult to understand
why we would like u to be Lipschitz, as then it can be approximated by a piecewise
constant target defect (u) obtained from averaging u on a lattice of squares (shown
in Fig. 3 in bold). On the other hand, we pass from ;« > 0 to u > 0 simply because
it shortens the proof. Of course this does not preclude the possibility that optimal
u—i.e., those minimizing the righthand side of (3.2), see also (1.30)—may turn
out to be rank one or even to vanish somewhere.

The second step zooms into the squares where u ~ (). Section 3.2 produces a
two-scale wrinkling pattern known alternatively as the “herringbone”, “chevron”,
or “zigzag” one, and which can be adapted to any constant target defect (e.g., the
ones prescribed by (u)). Such patterns occur naturally in bi-axially compressed
sheets whose displacements are suppressed [15,17,39,40]. We were inspired by
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their analyses in [5,6,47], the last of which comes the closest to what we do here.
That reference identifies the scaling law of the minimum energy in a setup favoring
herringbones. In Section 3.2, we sharpen this result with a version of the herringbone
ansatz whose energy is optimal at leading order.

Finally, Section 3.3 assembles the individually herringboned squares into the
“piecewise herringbone” pattern depicted in Fig. 3, and estimates its energy. We
discuss “walls” of two types where the direction of wrinkling can rapidly change:
“internal walls” that reside within the squares, and “external walls” at the interfaces
between neighboring squares. The total cost of the walls increases in proportion to
their area. It scales with the total number of squares. On the other hand, the cost
associated with the approximation p =~ (u) decays with an increasing number of
squares. Balancing these, we eventually deduce that the excess energy implicit in
(3.2) can be made < (b/k)l/10 by using ~ (k/b)l/10 squares—see Corollary 3.1
for the details. Section 3.4 concludes with the formal proof of Proposition 3.1.

3.1. Smooth Approximation of Tension-Free Displacements

We start by showing how to approximate tension-free displacements by smooth
and uniformly tension-free ones. It will be important later on that we work in a
topology for which the functional on the righthand side of (3.2) is continuous.
Although the trace map u +— u|yq fails to be continuous in the weak-* topology on
B D, itis continuous in the intermediate topology. See Section 1.1.3 for the relevant
definitions.

Lemma 3.1. Ler Q C R? be bounded, Lipschitz, and strictly star-shaped, and
let p € W>(Q). The set of smooth and uniformly tension-free displacements
is intermediately dense in the tension-free ones. That is, given any tension-free
u € BD(), there exists {u}ney C CP(Q; R2) satisfying (3.3) such that

u, — u stronglyin LI(Q) and /|e(u,,)|1—>/ le(u)|; asn — oo.
Q Q

Proof. After a translation we can take €2 to be strictly star-shaped with respect to
the origin. Also, since u is the intermediate limit of u; = u — Ax as A — 0, it
suffices to prove the result for displacements that are uniformly tension-free. So let
u € BD(L2) be uniformly tension-free and let A > 0 be as in (3.3). We construct
the desired approximations {u,} in a two step process of dilation and mollification.

First, we dilate: given t € (0, 1), set Q2,; = %Q and let u; : @, — R? and
pr : Q¢ — Rbe given by

1 1
u:(x) = —u(rx) and p.(x) = —p(rx) forx € Q. 3.4
T T
Since e(u;) = e(u)(t-) it follows from (3.3) that

1
e(uy) < (EVPT ® Vp — Ald) dx on Q. 3.5)
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Next, we mollify: fix p € CZ°(B;) with p > 0 and fBl pdx = 1, and denote by
(+)s the standard mollification

1 _
(fs(x) = /R2 8—2/0 (%) f(y)dy foré > 0.

Recall 2 was taken to be strictly star-shaped with respect to 0. Thus, there exists
co(€2) > 0 such that

0<68<co((1—1) = Q-+ Bs C Q. (3.6)
So long as T and § satisfy (3.6), we may define u; s : Q — R? by writing
urs(x) = (ur)s(x), x € Q.

Evidently, these are smooth. We proceed to take § — 0 and 7 — 1.

We claim that u 5 is uniformly tension-free so long as 7 is close enough to one
and § is sufficiently small. To see this, note it follows from (3.5) and our choice to
take p > 0 that

1 1 _
e(urs) = (e(ur))s < <§Vpr ® Vpr — kld) =5 (Vp: ® Vpr)s —Ald on Q.

8

Recalling the definition of p, from (3.4), we see that
(Ve ® Vpr)s () = Vp ® V()]
< [ 6190 ® Vp(ctx — 53 = Vp @ Vpo) dy
< VpllL=@IVVplire@(t — x| + IlI8) Se.p [T — 11+ 18]
for x € Q. Taking 7 close enough to one and § sufficiently small ensures that
e(urs) < %Vp ®Vp— %Id on £,

as desired.
It remains to choose sequences t, — 1 and §, — 0 such that

Uz, s, — u strongly in LI(Q) and / le(uz,.s,) —>/ le(u)|; asn — oo.
Q Q

The L'-convergence holds in any case. For the second convergence, note that

e(ur,s) A e(ur) weakly-* in M(2;; Sym,) aséd — 0

for each fixed T € (0, 1). As |e(u)|(£2) < oo, there exist at most countably many t
for which |e(u;)[(0€2) # 0. Therefore, we can find 7,, — 1 and §,, — 0 such that

lim /|e<ur,,,,sn)|1= lim lim / le(ug, )1 = lim /|e<ur,,>|1=/ el
n—o00 Q n—-o00 §—0 Q n—00 Q Q

Taking n large enough and setting u, = u,, 5, proves the result. O
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Lemma 3.1 allows us to restrict the proof of Proposition 3.1 to ucs that are
smooth and uniformly tension-free, in which case the target defect can be given the
pointwise definition

wx) =VpVp(x) —2e(uesr)(x) Vx € Q. 3.7

Note w > 0 uniformly on Q. Thanks to our assumption that p € W so that
Vp € Lip, we see that u € Lip.
We now begin the process of constructing admissible displacements satisfying

1 1
U Uegr, w0, e(u)—i—EVw@Vw%EVp@Vp

with nearly minimal energy. Consider the change of variables u — ucg + v. Since
e(-) is linear, the energy depends on (v, w) as

1 1 1
Ep .,y (teff + v, w) = 3 /Q le(v) + va ® Vw — §u|2

b 2 k 2
4+ = [ |[VVw —=VVp| 4+ = [ |w|
2 J)a 2 )a

1 R -
+)’</—|VP|2—/ Meff-v>—)// vy
Q2 a0 a0

where we have introduced p from (3.7) into the stretching term. We treat the
simplest case where p is constant in Section 3.2, and then proceed to discuss more
general p in Section 3.3.

3.2. Herringbone Patterns Adapted to Constant Defect

Let Q C R? be a square and consider a constant target defect i € Sym, where
© > 0. Here, we describe a family of displacements

{(Uherr> Wherr)} € W (Q; R?) x W22(Q)

adapted to u in that

1 1
Vherr ~ 0,  Wherr & 0, €(Vherr) + szherr ® VWherr ~ EM
and that have nearly minimal energy. Fig. 4 depicts the herringbone patterns we
intend to construct. Solid lines indicate wrinkle peaks and troughs. Their direction
alternates in twin pairs, in tandem with bands of alternating in-plane shear. The
“area fraction” referred to there is set by the parameter

Al
6 =
A+ Ao

1
€ (0, 5] where 0 < A < A, are the eigenvalues of .  (3.8)

Panel (a) depicts the isotropic case 6 = % in which p is a multiple of the identity.

Panel (b) shows an anisotropic case where 6 € (0, %). Sending & — 0 recovers
uni-directional wrinkles as in Panel (c).
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Fig. 4. Herringbone patterns with variable area fractions adapted to constant defects. Solid
lines depict wrinkle peaks and troughs, while dashed lines indicate the presence of “internal
walls” across which the wrinkling direction changes. Panel (a) depicts an “isotropic” her-
ringbone for isotropic defect. Panel (b) shows an “anisotropic” herringbone for anisotropic
defect. Panel (c) depicts uni-directional wrinkles arising for defect of rank one

Our herringbones will be parameterized by

1
Lyr € (0,00), Ish € (0,00), Bt € (0, 5915h> : (3.9)

The first parameter Iy, sets the lengthscale of the wrinkles. The second parameter
Igh sets the magnitude of the in-plane shear. There is an energetic cost associated
to changing the direction of wrinkling, and §;, sets the thickness of the associated
“internal walls”. (Such walls are internal in the sense that they lie within the her-
ringbone, as opposed to the “external walls” introduced in Section 3.3.) The energy
estimates obtained in this section apply so long as (3.9) holds. However, it will be
convenient going forward to keep in mind the special case where

1/4
<%> =y L lgh K diam Q@ and lyr < Sine Sy lon

in which case there holds

Eh,k,)/(Uhern Wherr) = (2\/ + )/) _trlL|Q| +0 ( llnt)
sh

The error term is due to the internal walls. Combining this estimate with the a priori
lower bounds from Section 2, we see that herringbones for which 3““ & 2bk+y
are optimal at leading order. We turn to construct a general herrmgbone now, and
to estimate its energy.

3.2.1. Constructing the Herringbone Decompose the target defect as
=i @ N1+ A2i2 ® 2

where 71 and 7, are orthonormal eigenvectors corresponding to the eigenvalues A
and Ap.
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Step 1: produce bands of alternating in-plane shear at scale lg,. We start by intro-
ducing an in-plane displacement to transform the target defect from rank two to
rank one. Define vy, : R — R? by

x- (i — ﬁl) ~ ~ 2
vsh(X) = V2l A (—)( 2+11), xelR (3.10)
B s \/Elsh n m
where A : R — R is the one-periodic extension of
A2y 0<t<6
A(t) = /\22 . - , tel0,1]
FO-—F@—-0) 0<r=<1

It follows from the definition of € in (3.8) that A is Lipschitz. Indeed, A’(¢) equals
to X—ZZ for ¢t € (0, 0) and —)‘7] for t € (6, 1), so that it integrates to zero.
Now, as

x - (M2 —n1)

Vg, = A’ <
’ \/Elsh

)(ﬁ2+ﬁ1)®(ﬁ2—ﬁ1), (3.11)

we see that

1 x- (2 — 1) M. .
e(vsh)——u=[A/( 1 n)——}m@nz

2 \/zlsh 2
x-(=a)\ , M, s
- A (—)+—:| N & ni.
|: \/Elsh 2
Recalling that A’ is alternatively equal to %2 or —)‘71, we deduce that
1 1 " N 2
e(Usn) = S = =St hherr @ herr 0N R, (3.12)

where the unit vector field Hperr : R2 — ! satisfies

ﬁl 0<x- ﬁz\;;“ < Olgy ﬁz — ﬁl
N i when x -
n2 Olg < x V. <1 \/E

fherr (X) = { e[0,11 (3.13)

and is otherwise periodic. Thus vy, transforms p into a defect which is piecewise
constant and rank one.

In the next step, we introduce uni-directional wrinkles in the direction of 7hery.
Note the jump set of fpery iS

i — N1 2 — 11
V2 V2

It consists of (countably many) parallel lines at distances 0/, and (1 — )l apart.
The pointwise estimates

JA

Therr

={xeR2:x- elshZ}U{xeRzzx- eezsh+15hz}. (3.14)

[lvshllzoe Strp Iy and ||Vogy||pe Stru (3.15)

follow from (3.10) and (3.11).
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Step 2: superimpose twin bands of wrinkles at scale 1. We now construct uni-directional

wrinkles to alleviate the strain left over from Step 1. Define vy, : R? - R? and
Wy : R2 — R by

fherr (x), x € R?,

1 A
Vur(X) = St eV (nh_<>> .

lWl'
Wr (X) = L - Lyr W (M) . xeRZ (3.16)
wr

Here, W : R — R is given by
W) = ﬁcos(t), teR
and V : R — R is the unique 277 -periodic solution of
V) + W®PP=1 VieR, V() =0.

Such a solution exists as f; " [W'|> = 1.

Evidently,
1 X - Therr \ 4 .
Vogr = =trp -V’ L Nherr ® Nherr  ON Rz\Jﬁhm,
2 Lwr
X - fherr \
Vg = irp - W (l—e“> fherr on R2\J5 (3.17)
wr
and so
1 1 X X )
e(vyr) + vawr & Vwyr = Etr,u “ Therr ® Nherr 0N R \Jﬁhm- (3.18)

Adding up (3.12) and (3.18), we see that

(3.19)

herr *

1 1
e(sn + vur) + 2 Viur ® Ve =~ on RA\J;

AS vy and wy,y may jump across Jj

hierr» this identity may fail to hold there. The
pointwise estimates

owellLoe S trpe - Lyr, ||var||LOO(R2\Jﬁhm) S, (3.20)
HwwellLoe S A/t - Ly, ||war||L°°(R2\Jﬁhen) SV,
Jrp

IVVwwell o2y g, 3.21)

TTherr )~ [ wr

follow from (3.16) and (3.17).
Step 3: join the wrinkles across internal walls at scale 8;y. Finally, in order to en-
sure their bending energy is finite, we must smooth the wrinkles across the jump set
Jierr- FOT simplicity, and because it will not affect the estimates at leading order,
we use a cutoff function xine supported away from J5  to define the internal walls.
(Our choice to use a simple cutoff here manifests in the assumption (1.15b).)

The shortest distance between two lines belonging to Jp, .~ is 0lsn. Since by

hypothesis din¢ < 0lgh, there exists a smooth cutoff function yiy € C Oo(Rz) with
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e 0= xine <1
o Xint(x) =0ifd(x, J5 ) < %Bim and xint(x) = 1if d(x, J5,..) = Sine,

1 1
o [[VxindlLe S 5 and [[VV xind [ S 5
int

where the constants implicit in the above are independent of all parameters. Let
Vherr © O — R? and wherr : @ — R be given by

Uherr = Ush + UwrXint aNd  Wherr = Wwr Xint-

This completes our construction of the herringbone. Note it follows from (3.19)
and the definition of y;y that

1 1
e(Vherr) + vaherr ® Vwperr = EM ond(, Jﬁherr) > Sint. (3.22)

The pointwise estimates

l l
Vherr|[Lo® S WU - [sh = s Uherr||[L® S T - = .
[|Vherr|[Loe Strpw-lsn [ 1V I ||V Uherr|[Loe St 1\/8- (3.23)

S| nt

l
wherr| Lo < VI - Lyry ||V Wherr| |20 S &/tr - <1 v ﬂ)

Sint
NG 12
IV Vherlle S Y [1v 22 (3.24)
lWr alm

carry over from (3.15), (3.20), (3.21), and the properties of yin listed above.

3.2.2. Energy Estimates for the Herringbone We turn to estimate the energy
of the herringbones defined above. It will be convenient to decompose Q into its
“wall” and “bulk” regions given by

Owal = {x € Q 1d(x, J,) < 8t} and Qvuik = O\ Qwan. (3.25)

Define

N 2
ao(lsh. e 1. Q) = tr - / ‘W <M>‘ dx, (3.26)
o lwr
14
al(lsh, Lwr, Sint; M, Q) =|1lv ﬁ |Qwalll- (327)
int

Lemma 3.2. Let Q be a square, let € Sym, have p > 0, and let Ly, lgn, and
Sint satisfy (3.9). The herringbones constructed in Section 3.2.1 obey the following
estimates:

o the stretching energy satisfies

I

1 1
e(Vherr) + vaherr ® VWherr — EM 5 |,u|2a1 (e, 9);
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o the bending energy satisfies

: C 9
/ VYV wpen | < ao(p, Q) +lzlula1(u (0))
wr

where the constant C is independent of all parameters;
o the substrate energy satisfies

/ |wherr|2 <ap(u, Q)l\%r.
o

Proof. We start by estimating the stretching energy, which requires estimating the
strain ¢. Recall from (3.22) that

1 1
& = e(Vperr) + vaherr ® Vwnherr — EM =0 on Qpulk. (3.28)

To handle the wall region, we apply the pointwise estimates from (3.23) and (3.24)
to get that

1 1 12
lel < |Vuherr| + E|therr|2 + §|M| S [l - <1 Vv %) on Qyall. (3.29)

int

Combining (3.28) and (3.29) yields that

/|e|2=(/ / )|e|2<|u| lv | Qwaill = |1tl?a)
0 Owall Obulk 1nt

according to (3.27). This proves the desired estimate on the stretching energy.

Next we estimate the bending energy, being careful to keep track of the important
prefactors. Since wherr = Wy in the bulk region and 7per is locally constant there,
we see from (3.16) that

tl'/,L / X - ﬁh A A~
VVWherr = w” ( e”) herr ® Aherr 0N Obulk- (3.30)
Lwr Lwr
On the other hand, it follows from the last estimate in (3.24) that
/ 12
IVVWherr| S ] 1v == | on Quan. (3.3D)
Lyr 6int

Using (3.30) and (3.31) and the fact that |[W| = |W”| we deduce that

/ |vaherr|2 = </ +/ )|vaherr|2
9] Obulk Owall
tru X -7 1 Lor
/{ ( e”) +CzT< ) 10
t

m
ap + Clular
[
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by the definitions of ag and a; in (3.26) and (3.27).
We finish with the substrate energy. Evidently, there holds

w (x ) nherr)‘ on Q
Lwr

given that xj,; < 1 and due to the out-of-plane part of (3.16). It follows that

. 2
X * Th
/|wherr|2§/ |wwr|2:trﬂ’lgvr/ W(—= =l$vra(),
0 0 0 Ly

as desired. O

[Wherr| < [Wwr| = A/t @ - Ly

Next, we estimate the quantities ag and a; defined in (3.26) and (3.27).

Lemma 3.3. We have the estimates

Lwr Lsn
, t <t 1 ,
lao(u, Q) —trp - |Qf| Strpw- i < VdiamQ)|Q|

oy i1yl (1) Yo
At Lsh & diam O
Proof. We start with a;. Recall the definitions of J;, —and Qway from (3.14) and
(3.25). The former consists of parallel lines at distances 6/, and (1 — 0)lg, apart,
the total number of which intersecting Q is < di‘zihQ Vv 1. Each such line contributes
area < 8ip - diam Q to Qwan. Hence,

|Qwa11|§<d12;mQ )(alm diam Q) = Ont (1v s )IQI. (3.32)

sh lsh diam Q

It follows from (3.27) that

5 It Ish
a1V (1v )|Q|
lsh 8]m diam Q

We turn to estimate ag. First, we claim that

/W2< 1 )dx—lSI‘ < HYBS) VI e (0,00) (3.33)
S

if # € S' and if S C R? is a bounded, measurable set. The constant implicit in
(3.33) is independent of [, 7}, and S. To prove it, note that W2(-) + W2(- + 7) =2,
from which it follows that

/SW2< : )d +/SW2 (W) dx = 2|S|. (334)

On the other hand, a change of variables shows that

[ (520 L ()= ) ()

< ‘SA (S n %ln) . (3.35)
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To control the righthand side we use that
|SAS + 17| < H' (@) Vi e (0, 00), (3.36)

a direct consequence of [69, Theorem 3]. Applying (3.34)—(3.36) proves (3.33).
With the estimate (3.33) in hand we can easily handle ag. From its definition in
(3.13), Nherr takes on only the values 777 and 7. Decompose Q according to

Q=S8US, where Si={x€ Q:fper=7i}, i=12.
As in the proof of (3.32), we note that

diam Q

sh

1 N <
HOS) 5 ( diam Q

\/1) dlamQ—li<1v fsh >|Q| (3.37)

fori = 1, 2. Hence,

X - 1
Iao—trleII:trw’/QWz( ; err)—|Q|'

Wwr
W2 (x_' ﬁ") _
lWr

lwr lsh
<t H! 0S)lyr <t 1v ,
T Zl (S lwe Sty lm( diamQ)|Q|

where in the second line we applied (3.33) and (3.37). O

3.3. Piecewise Herringbone Patterns Adapted to Variable Defect

We return to  C R? which for our present purposes must only be a bounded
and Lipschitz domain, and consider a target defect v : 2 — Sym, that is positive
definite and Lipschitz continuous. Our task is to construct a family of displacements

[ wpn)} € WH2(2: R2) x W2(Q)

adapted to w in that

1 1
Uph, ~ 0, Wp.h, ~ 0, e(vph.) + vap.h. ® Vwph, ~ EM

and whose energy is optimal at leading order. After approximating p by a piece-

wise constant target defect (1) defined on a lattice of squares, we piece together

a well-chosen family of herringbones from Section 3.2 to form our “piecewise

herringbone” pattern. The result is depicted in Fig. 3 (see also Panel (a) in Fig. 1).
Our piecewise herringbones will be parameterized by

le € (0’ OO), lSh € (07 00)1 lan € (Os OO)’

1A 1
Jint € (0, ZXlSh> s Oext € (01 Elavg) ; (3.38)
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where A, A € (0, co) satisfy
Md < u(x) < Ald Vx e Q. (3.39)

The parameters Iy, Ish, and i, should already be familiar from Section 3.2: these
set the lengthscales of the wrinkles, the in-plane shear, and the internal walls of the
herringbones. The first new parameter /,,, gives the “averaging” lengthscale across
which we treat u as if it were constant. It will be proportional to the diameter of the
herringboned squares. The parameter dex; sets the thickness of the “external walls”
between neighboring squares. We shall construct a piecewise herringbone for any
choice of parameters satisfying (3.38). However, in anticipation of the optimization
that is to come, we note that ones for which

b 14
(E) =l € lsh K lavg < diam €2,

Lyr 5 int ,Sp. Lsh, Isn ,S Bext 5 lavg

satisfy

1 8 )
Epky(Vph.s Wph) = CVbk +y) - 5 /Q trpdx + O (lgvg v ll_l: v leXt> :
s avg

The error term accounts for the cost of the approximation u ~ (u) as well as
that of the walls. When it is negligible, our piecewise herringbones are optimal
at leading order (again, the requisite lower bound is contained in the results of
Section 2). Minimizing over the free parameters maximizes the range of this result—
see Corollary 3.1 for the details. We turn now to construct a general piecewise
herringbone, and to estimate its energy.

3.3.1. Constructing the Piecewise Herringbone

Step 1: assemble an lyyg-by- layg lattice of herringbones. Define the squares

0 =0+ (0, L)’ VYaeZ?
and let the index set 7 be the smallest subset of Z? with the property that
Q C Uger E~

Define the locally averaged target defect (1) whose value on the «oth square is
Uy = ][ ux)dx, ael. (3.40)
QN Q4

We produce a family of herringbone constructions {(vf.,,, W) }laer Using the
results of Section 3.2: givena € 7, wedefine vy, : Qy — RZand Wit Q0 — R
following the procedure from Section 3.2.1 with u, as the target defect and Iy,
lwr, and 8in; as above. (We take the parameters to be independent of « for ease of
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exposition, and as it will not affect the estimates at leading order.) Copying over
the pointwise bounds (3.23) and (3.24), we note that

l I
I T (1 v ll) IVl S e (1 y 8L> (3.41)

sh int

lw
W[z < Vit bare [Vl o0 < /i fig - (1 y _>,
T 2,
NG (1 y )

||vaﬁerr||Loo 5 (342)

lWI'

with constants independent of o € 7.

Before proceeding to the next step of the construction, let us quickly verify
that the parameters g, lywr, and iy are indeed admissible for use in Section 3.2.
According to (3.9), we must check that

1
Ign € (0,00), Iy € (0,00), and 8in € (o, Eealsh) Yael, (343)

where

o
1

AY + A3

= and 0 < A{ < Aj are the eigenvalues of 1ty .

It follows from (3.39) and (3.40) that 6, € (55, 4). As by hypothesis §ine < 5 % /g,
we conclude (3.43).

Step 2: join the herringbones across external walls at scale d¢x¢. The next step is
to join the herringbones obtained above into a single, globally defined piecewise
herringbone pattern. We employ a family of smooth cutoff functions supported
away from Uy 70 Q, for the external walls. Since by hypothesis dex; < %lavg, there
exists a family of smooth cutoff functions {x&,}yer such that

o x&, €CX(Qy)and 0 < x4 <1,
o x&(x) =Oifd(x 304) < 38ext and x& (x) = 1if d(x, 3Qa) > Sext,

1
L ||VXext||L°o ~ (SEXI ||VVXext||L°o 52 .
ext

The constants implicit above are independent of all parameters (including «). Fi-
nally, we define vpp, : @ — R? and wpp : 2 — R by

_ o o _ o o
Up.h. = Z Vherr Xext and - wph, = Z Wherr Xext-

ael ael
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This completes our construction of the piecewise herringbone. Note the pointwise
estimates

l
opa 1z < llallzos - L (1 v li)

sh

I I [
IV opnllzee < gl - (1vs—hvﬂvﬂ>, (3.44)

Bext Bext Sint

[ [
Hwpnllze S VIRl - bwrs  1[Vwpnllze S VIlgllLee - (1 v Sﬂ v %) :
ext 1nt
IRl (1 OB, lér)

[IVVwphllre S (3.45)

2y 82,

Ly ext

nt

These follow from (3.41), (3.42), and the properties of { x5} listed above.

3.3.2. Energy Estimates for the Piecewise Herringbone Here we estimate the
energy of the piecewise herringbones just defined. Decompose 2 into its “wall”
and “bulk” regions given by

Qual = {x € Q:d(x,Uy00q) < ext} and Qpuk = 2\Qyan (3.46)

and define the quantities

Ao(lavg; 1) =)t i - | Qo (3.47)
ael
[ AP
A1 (lavg, lsh, lwrs Sint, Sext; 1) = | 1V ;_ Vv % Vv % [Qwart
Sext ext 6int
8i I !
+ o (1 v %) (1 v l—h) | User Qul (3.48)
sh Sint avg
Ax(lavg) = I3,419. (3.49)

Lemma 3.4. Let @ be bounded and Lipschitz, and let ju : 2 — Sym, be positive
definite and Lipschitz continuous. Let Ly, lsh, lavg, Sint, and Sext satisfy (3.38). The
piecewise herringbones constructed in Section 3.3.1 satisfy the following estimates:

o the stretching energy satisfies

J

o the bending energy satisfies

Ao + CllpllL= Ay
/ IVVwpn|* < 7
Q wr

1 1 ? 5 5
e(vpn) + vap.h. ® Vwph, — e Sl AL + IV il|gec A2;

where the constant C is independent of all parameters;
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o the substrate energy satisfies
[ wnn P < o+ Cllualiz=AD B,
Q
Proof. We begin with the stretching energy. Introduce the strains

1 1
¢ =e(vpn) + vap.h. ® Vwpn, — M

o 1 o o 1
Ea = €(Vpep) + §therr ® Vwpey, — M fora € 1.

Using the definition of the cutoff function x&, we find that

1
&E=¢&¢+ E(H«a — ) on Qpuk N Qq,

hence by the triangle inequality

1
le] < leal + §|H«ot —ul S el + IVl Loolayg  on Qpuk N Q. (3.50)

On the other hand, the pointwise estimates from (3.44) and (3.45) imply that

V l V 2 l < lSh l\%vr l\%vr
le] < | vp.h.|+2| Wpoh.| +2|M| Slullee {1V iV 2 vV -] onQua.
ext

ext int

(3.51)
Applying (3.50), (3.51), and the stretching part of Lemma 3.2 we deduce that

2 2 2 2
/|8|=</ +/ >|8|=/ e+ / le]
Q Qall Qbulk Qyall aer ’ oukNQq

I

8x. 5

ext nt

5 [T AR
S iz 1vaﬂvﬁ |Qwanl

+ D [l s Qo) + 11981 12| Rtuik 1 Qo

ael

2 4 4
2 sh
S sl {(1 v SEV SRV ﬂ) [2wall]

S 14 Lsh
+ll_‘: (1 v ﬁ) (1 % s—) | Uyer Qa|i| + ||VM||i°Ol§vg|9‘|
S.

SNl Ar + [Vl 3w As

according to the definitions of A; and A; in (3.48) and (3.49). Note we used the
estimate

8; 4 l
D a(pa Q) S 7 (1V 3 (1 % i‘) | Uner Qal (3.52)
lsn 8 lavg

ael int
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in the third line, which follows from Lemma 3.3 and the fact that diam Qy ~ layg
uniformly in «. The desired estimate on the stretching energy is proved.
We turn to estimate the bending energy. Note that

Wph, = wﬁterr on Qpuik N Qg (3.53)

by the definition of x&,, while the pointwise estimate

vz 2. 12,
— |1 on Qyall

VoV

ext int

[VVwpn!| S (3.54)

lwr

follows from (3.45). Note also that

lsh
> ao(tta Qu) <Ztrua |Qa|+C||u||Loo—h<1vl )|uaan| (3.55)
avg

ael

as a result of Lemma 3.3. Using (3.53), (3.54) and the bending part of Lemma 3.2
we deduce that

/ |Vpr.h.|2=</ + / )|Wwp.h.|2
Q Qwall Qbulk

=/ IVVwpn | +Z/ IVVwe, |2
Qwall

aer ? oukN Qo

||M||L°° e 1%
=< T(lVSTV(S_ |2yl

ext int

+3 ao(Ua> Qu) + Cllpllz=ar(ta, Qo)

2
ael lwr
[l A
Ztrua 1Qul + C=5 [(lvTv— |Qwanl
T wel Sext 51nt

Sint I, Isn
(v S (1 5 ) 1Veer Qal
sh 81nt avg

- Ao + CllullL= Ay
- I3

where we applied (3.52) and (3.55) to pass from the second line to the third.
We finish with the substrate energy. Note that

|wph | S |wgerr| on Q N QO( (356)

as there always holds x&; < 1. Using (3.56) and the substrate part of Lemma 3.2,
there follows

/|wph| <Z/ 0enl” = 3 ot QI

ael

Lsn
< By Yttt 101+ Clls 1 (19 22 ) 1 User 00l
o

sh lavg
< (Ao + ClipllLeAn) 13,
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We used (3.55) to pass to the second line, and the definitions of Ay and A from
(3.47) and (3.48) at the end. O

Next, we identify an energetically optimal version of the piecewise herringbone
by minimizing over the free parameters lyyg, Ish, lwr, Sint> and ex¢ from (3.38). To
simplify the presentation, and as it turns out to be consistent with optimality, we
shall impose the additional constraints

lor < lsp < lavg L diam 2, Iy, 5 Sint,  Lsh ,S Jext (3.57)

below. We require the asymptotic behavior of the quantities Ag, A1, and A, from
(3.47)—(3.49).

Lemma 3.5. We have that

int Bext

Ag— [ rpdx, A <2IQl+ 2(diamQ)?, A, =12,|9|
Q Lsh [ ave

avg
in any limit satisfying (3.57).
Proof. The claim regarding Aq follows from its definition, since
Uger Qo —> 2 as lyyg — 0.
The claim regarding A, is clear. Now we address A;. First, note that
| User Qul S 192

for all small enough /,ys. Now recall the definition of Q. from (3.46). Each square
Q. has perimeter < layg, and their Sex-thickenings have area < Sex( - layg. The total

) 2
number of squares is eventually < (%) . Hence,
. 2
(diam )2 Bext lave . 2
Q < 1V ——— ] (Sext -/ =—[1Vv———— ] (diamQ)~.
[Q2wan| S ( lfvg ( ext avg) lavg (diam Q)2 (di )

Setting these estimates into (3.48) and appealing to (3.57) we see that

S é . S
A1 < 1Quanl + l‘—“‘| Uger Qul < le—"‘(chamm2 + 1‘—“‘|sz|.

sh avg sh

O

We are ready to optimize over the piecewise herringbone patterns adapted to .
Given (3.57), the estimates

1 1 Sint 8
[ 1enn) + 3 wpn © Vi, = 34P Sa By v VIS, 358)
Q 2 2 lsh lavg
b k
—/ |vap.h.|2+—/ lwph.|*
2 Ja 2 Ja
b1 k Sint 8
< <—T + —l@r> </ trpe 4 o(1) + C(Q, ) —= v e“) (3.59)
ler 2 Q lsh lavg
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follow from Lemmas 3.4 and 3.5. Balancing the dominant terms in (3.58) and (3.59)
yields
b i _ Bex

— —=kI2 and 2, ~ -2 ,
l‘%,r wr avg lsh lavg

while saturating the last two constraints from (3.57) yields

8int (Sext
N =

lwr lsh

These five relations underlie optimal choices for the five free parameters. Using
them in (3.58) and (3.59) and recalling the pointwise estimates from (3.44) and
(3.45), we conclude the following result:

Corollary 3.1. Let Q2 be bounded and Lipschitz, and let ;v : Q@ — Sym, be positive
definite and Lipschitz continuous. Let {(vpn., wpn.)} be a sequence of piecewise
herringbones as constructed in Section 3.3.1, and suppose their parameters from
(3.38) satisfy
1/4
oy = (%> «diam Q. oy ~ 1N, gy ~ 121102,
Jint ~ lwr,  ext ™~ lsh-

Such a sequence satisfies the energy estimates

k

b k

5/ |Vpr,hA|2+§/ lwph > < \/bk./trudx+0(\/bk)
Q Q Q

| L, 1/10
o |e(Up.h.) + vap‘h. ® Vwph, — 5/” SQ,/L - s

as well as the pointwise estimates

3/20
Nvpnllze Su (E) o NVupnllee Spl, (3.60)

b 1/4 k 1/4
||wp.h.||L°c 5# (%) s ||prAh.||L°° ,Sp_ I, ||vva.h.||L°° Su (Z) .
(3.61)

3.4. Recovery Sequences

We are finally ready to prove Proposition 3.1. We take for granted the results
of Sections 3.1-3.3.

Proof of Proposition 3.1. Let ueir € BD(S2) be tension-free. By Proposition 2.1,
it suffices to construct

(Ubky» Ubk.y) 2 (uefr, 0)  weakly- % in BD(Q) x Wh2(Q) (3.62)
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such that
. Ep i,y Up i,y Whk,y) /1 2 R
lim sup ——= = < —|Vpl© — Ueff - D dSs. (3.63)
2Vbk +y Q2 0o

We begin by applying the results of Section 3.1 to reduce to u.g that are smooth
and uniformly tension-free. Due to Lemma 3.1, there exist uniformly tension-free
{uptnen C C*(L2; R?) converging to u.f in the intermediate sense. In particular,

un—*\ueff weakly-*xin BD(2) and /

U, -vds — / Ueff - V ds
aQ Q2

as n — 00. Suppose for each fixed n we can produce a recovery sequence {(uy.,
Wy.m)Imen for (u,, 0), i.e., a sequence satisfying the analog of (3.62) and (3.63)
but with uesr replaced by u,. Then, a straightforward diagonalization argument
produces a recovery sequence for (ueg, 0). Thus, it suffices to achieve (3.62) and
(3.63) for ufr that are smooth and uniformly tension-free. We do so via the piecewise
herringbone patterns from Section 3.3.

Fix some uef € C 00(5; Rz) that is uniformly tension-free. Introduce the
(pointwise-defined) target defect

pnx) =VpVp(x) — 2e(ue)(x) x €2 (3.64)
and note it is Lipschitz as
IVillLee S IV Vel V [IVV plLe]IVpl|Le < 00,

It is also uniformly positive definite. Therefore, we may apply the results of Sec-
tion 3.3 to obtain a family of piecewise herringbones {(vph., wpn.)} indexed by lyyg,
Lsh, Lwrs Sint> and Sex¢ and that are adapted to . Guided by Corollary 3.1, we choose
these parameters to depend on b and k (and not on y) as follows: we take

b 1/4
Lor = (‘) , = 11/211/2 lavg = l\fv/rs, Sint = lwr, and ext = Lin

k wr ‘avg®

noting that these define a valid piecewise herringbone pattern, according to (3.38),
so long as

1x
Sint < ZXlSh and Sext < Elavg.

Here, X, A € (0, co) are asin (3.39). We must arrange forlfu/r5 < 4—1‘% The quantities
A and A are fixed by u, and hence by p and ucg. Of course, Iy, < 1 within the
given parameter regime in (3.1). The required inequalities are eventually satisfied.

All that remains is to assemble the estimates from Corollary 3.1 to prove (3.62)

and (3.63). Calling

Upky = Ueff +Vph, and Wp gy = Wph.,
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we see from (3.60) and (3.61) that the desired convergence (3.62) holds. Using the
formula (1.10) for the energy, the definition of the target defect in (3.64), and the
rest of the estimates in the corollary we conclude that

Ep i,y Wpk,ys Wok,y)
<1/|( )+ SVupn ® V ! |2+b/|vv |2+k/| 1
= v =Vuw Wph — = = w = w
=2/ €(Up.h. > p.h. p.h. 2,“ 2 Jq p.h. 2 /g p.h.
1 . b
+v / *|VP|2—/ Ueff + V +V||Up.h.||Ll(3Q)+C(P)*(||vap.h.||1‘2+1)
Q2 a0 2

< Vbk + y)~/ %tr,u—i—o(x/ﬁ)
Q

b 1/10 b 3/20
et pa((2) "o (2))

= (2vbk + y)~/ %tru+o(2ﬂ+ Y,
Q

by the definition of the parameter regime in (3.1). Note in the second line we applied

the identity
1 1 2 A
—tru(x)dx = —|Vpl©dx — Ueff - D ds,
Q2 Q2 B1o)

which follows from (3.64). The desired inequality (3.63) is proved. O

Together, Propositions 2.1 and 3.1 prove Theorem 1.1. The rest of the results
in Sections 1.2.1 and 1.2.2 follow as explained there.

4. Convex Analysis of the Limiting Problems

Sections 2 and 3 established the role of the limiting minimization problems

. 1 N . 1
min / 7|Vp|2dx — ueff - Vds and min — [el1
ueff€E BD(2) Q 2 a0 neMy(L2:;Sym,) 2 Q
e(ueff)f%Vp@)Vp dx 7%curlcur]u=del VVp

4.1
in the asymptotic analysis of the energy Ej . In particular, we showed under the
assumptions at the start of Section 1.2 that

min Ep i, = C1 - 2vVbk +y) +0(2Vbk + y),

where C| is the common minimum value of the limiting problems in (4.1). We also
established via I'-convergence a correspondence between the almost minimizers of
Ep k., and optimal uegr and o solving these problems. The fact that their optimal
values are the same follows from the change of variables

1 1
e(uer) + SH= EVP ® Vpdx
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and the Saint-Venant compatibility conditions for simply connected domains. We
refer the reader to Sections 1.2.1 and 1.2.2 for further discussion.

The remainder of this paper is devoted to the analysis of the limiting problems,
and in particular to proving the results from Sections 1.2.3 and 1.2.4. The present
section contains, amongst other things, a proof of Theorem 1.2: we establish the
asserted duality between the “primal” problems in (4.1) and their “dual” problem

1
max / <¢ - —|x|2) detVVpdx 4.2)
(p_:Rz—>R Q 2

@ is convex
p=%1x> on R2\Q

posed over the given admissible Airy potentials ¢ (our choice of terminology will
soon become clear). This duality holds under the basic assumptions from (1.14a)
if € is simply connected. Actually, the methods developed here extend with little
additional effort to general domains, even as the form of the dual problem changes.
The choice of primal must be addressed. Since the (linearized) area problem ap-
pearing on the lefthand side of (4.1) is the more general of the two, we take it to be
our primal in what follows. We do so also because we expect that it should extend
as the I"-limit of WE’* k,y for general domains. We proceed to state its dual.

We require a certain linear functional L. Consider the vector space of functions
a : R? — R that are locally affine exterior to 2, i.e., that satisfy

VVa =0 on R2\§

in the pointwise sense, and define

L(a) = / adetVVpdx 4.3)
R2\Q

where p € W22(R?) N C.(R?) is chosen once and for all such that p = p on Q.
That the value of L(a) is independent of the choice of extension p of p follows
from the very weak Hessian identity

1
—zcurlcurl Vp® Vp =det VVp, 4.4

as will be explained later on in Lemma 4.2. Evidently, it depends only on the values
taken on by a exterior to 2. Given that a is locally affine there, we think of L as
a sort of “boundary integral”. Note if p is regular enough, this can be understood
using the divergence theorem along with (4.4).

We come now to our general duality result. Recall the formally adjoint operators
curlcurl and V4V from (1.27) and (1.33). Recall also that a sequence of measures
is said to converge narrowly in M(S2; Sym,) if their integrals against arbitrary
elements of C;(€2; Sym,) converge.
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Proposition 4.1. Let Q be bounded and Lipschitz and let p € W>2(2). We have
the duality

. 1 A
min /—|Vp|2dx—/ Ueff - D dS
Uesr€ BD(S) Q2 Fle}
euett) <3V p@Vp dx

1 1
= max / <<p——|x|2> detVVpdx+L<g0——|x|2).
PeRZR Q 2 2

@ is convex
VV(p—151x|*)=0 on R\Q

4.5)

Regarding complementary slackness, the following are equivalent for ucgs and ¢
admissible in the above:

1. uetr and ¢ are optimal;
2. there exist non-negative {{i,}nen C C3(Q: Sym,) approximating

u=VpQVpdx — 2e(uefr)
in that
Wndx — w narrowly in M(£2; Sym,),
—%curlcurl Un dx X det VVpdx weakly-* in M(S2) 4.6)

as n — 00, and for which

0= lim /Kun,vivL(p)(: lim D [Vol(t ® %, ) lds; (47)
Q

n—oQ n—oQ a0 |
3. the limits in (4.7) vanish for all such approximations {{in}nen C C2(S2: Sym,)
to the given (L.

Here, [V¢] denotes the jump in Vg across 92 in the direction of V. It is given by
V¢|3(R2\§) — Volia.

Some remarks are in order. First, we observe that various other statements of the
dual problem from (4.5) can be produced given additional regularity for p. Perhaps
the most illuminating one is as follows: if p € W22(Q)NC(Q), the dual problem
can be rewritten as

1
max / <—Vp®Vp, Iddx—o>. (4.8)
oeMi(R%Symy) J@ 2

dive=0
o=Iddx on R\

As (4.8) is never used in this paper, we leave the details of its proof to the reader,
and simply remark that it proceeds via the usual change of variables between an
Airy potential ¢ and its induced “Airy stress”

o= VJ‘VJWp
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with the only slight complication being that, here, o is considered to be a measure.
In fact, the first step in our proof of (4.5) will be to obtain an ill-posed version
of (4.8) in which o is taken to be continuous, and for which a maximizer is not
guaranteed.

Our next two remarks concern the proof of Theorem 1.2: we claim that Propo-
sition 4.1 reduces to the duality between (4.1) and (4.2) if Q2 is simply connected.
To see this, first note that the functional on the righthand side of (4.5) is invariant
under the addition of any affine function to ¢. Indeed, it follows from its definition
and the very weak Hessian identity (4.4) that

L(a) = —/ adet VVpdx if ais affine. 4.9)
Q

Now if € is simply connected it has only one exterior component, and hence any
locally affine function on R%\$2 extends automatically as an affine function on R
It follows that we may take ¢ = %|x|2 on R?\ in (4.5), in which case L = 0 and
the original dual problem (4.2) results.

We finish by showing how the complementary slackness conditions of Theo-
rem 1.2 follow from the general ones established here. The fact is that the mollifi-
cations {is}s~0 from (1.32) approximate the given u in the sense of (4.6). This is
a direct consequence of Lemma 4.6 and the identity

1
— Ecurlcurl u=detVVp.
Proposition 4.1 therefore implies that uefr and ¢ are optimal if and only if
(VLVW, u) =0 inQ and D [Vl(?®% u)=0 atdQ

in the regularized sense (meaning that (1.35) holds). As the primal problems in (4.1)
are equivalent for simply connected €2, Theorem 1.2 follows from these remarks.

The rest of this section proves Proposition 4.1. Section 4.1 establishes (4.5). It
is there that we explain how to anticipate the form of the general dual problem via
a minimax procedure. Section 4.2 proves the complementary slackness conditions
by establishing the integration by parts identity

1/Il / 1||2dtVV L 1||2

— — —_— e — —_—

5 J = [ e gk p ¢ -l
1

. 1ol 1 N A
= tim o | (i VEVERO) 4 [ 0 Vel(E@E ) @10
Q Q2

n—o00 2 2

if uegr and @ are admissible and {u,, }, e approximates £ = Vp® 'V p dx —2e(uer)
in the sense of (4.6). Together, these complete the proof of the general duality result.
They also lay the groundwork for Section 5 where we make precise our method of
stable lines.
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4.1. The Dual Problem

We begin by proving (4.5). First we introduce a Lagrange multiplier o for the
tension-free constraint, and apply a minimax procedure to identify the dual problem
it should solve. Given u € B D(£2), observe that

1
e(u) < 5Vp®Vpdx
1 _
<~ /<a,§Vp®Vpdx—e(u)>20 Yo € C(2; Sym,) witho > 0.
Q

The primal problem on the lefthand side of (4.5) can therefore be rewritten as

1 N
min /—|Vp|2dx—/ u-Dds
ueBD(R) Q2 90
e(u)f%Vp@Vpdx

1
= inf sup /<Id—a,—Vp®Vpdx—e(u)>.
u€BD(L) aeC(ﬁ;Symz) Q 2
>0
Now to identify its dual, we reverse the order of operations between inf and sup.
We do so informally at first, and then again with a rigorous proof in Lemma 4.1.
Let o € C(2; Sym,). By the divergence theorem,

/(Id—o,e(u)):O Yu e BD(Q2)
Q
< divo=0 onQ and ov =1 atodf.

The first condition in the second line is that o is weakly divergence-free. The
second condition holds where the outwards-pointing unit normal  is well-defined.
It follows that

1

sup inf / <Id—o,—Vp®Vpdx—e(u)>

Uec(ﬁ;symz)ueBD(Q) Q 2
o>0

1
= sup /<Id—o,—Vp®Vp> dx,
0eC(Q;Symy) /€« 2
0>0 and divo=0
ob=D at 9Q
and this is our candidate dual.
The following result justifies the manipulations above:

Lemma 4.1. There holds

. 1 A
min / —|Vp|2dx—/ u-vds
ueBD(Q) Q2 90
e(u)f%Vp@Vpdx

1
= sup /<Id—o,—Vp®Vp> dx. 4.11)
0eC(Q;Symy) VL 2
0>0 and divo=0
o=V at IQ
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Equality continues to hold when the boundary condition o0 = 0 is replaced by the
more restrictive one that 0 = Id at 0<2.

Proof. Although the asserted equalities are not yet clear, the inequality

1
min / —|Vp|2dx—/ u-vds
ueBD(2) Q2 a0
e(u)f%Vp@Vpdx

1
> sup /<Id—a,—Vp®Vp> dx
oeC(Q; Symy,) Q 2
0>0 and divo=0
ob=D at IQ
does follow directly from the minimax argument above (the inf sup of a functional
is never less than its sup inf). Eliminating the common term fQ %W p|?, making
the change of variables 0 = Id — ¢, and applying a straightforward inclusion
argument, we see it suffices to check that

1
max u-vds = inf Id —¢,-Vp®Vp)dx.
ueBD(RQ) /;,Q £€C(2;Sym,) /Q< ¢ 2 P p>
e()<1VpeVpdx 1d>¢ and div =0

(4.12)

This can be done via the Fenchel-Rockafeller minimax theorem (see, e.g., [14,
Theorem 1.12]), as we explain.
Introduce the vector spaces

E = C.(Q; Sym,) and E* = M(S; Sym,)
and equip them respectively with the uniform and dual norms. By Riez—Markov,
E* is the topological dual of E. Define the functionals ®, ¥ : E — (—00, 00] by

D) = and V()=

Jolld—¢. 3Vp @ Vp)dx Id=>¢ 0 divi=0
00 otherwise oo otherwise -
Since %V p ® Vpdx € E*, and as zero is bounded uniformly away from Id, the
functional @ is finite and continuous at ¢ = 0. Evidently, W(0) < oo. Thus, by the
Fenchel-Rockafeller minimax theorem,
max —®*(—g) — ¥*(e) = inf ®() + Y (?). (4.13)
ecE* CeE
The Legendre transforms &*, W* : E* — (—o00, oo] on the lefthand side are given
for e € E* by

®*(e) = sup /(C, g) —®(¢) and W*(e) = sup /(4“, g) — V().
LeE JQ LeE JQ
To finish, we must deduce from (4.13) the desired equality (4.12).
It is clear from the definitions that

1

inf @ V() = inf Id —¢, =V Vp)dx.

cek (©+v© cec(,»fsg;Symz) /sz< A p> *
Id>¢ and div {=0
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Thus, the righthand sides of (4.12) and (4.13) agree. To check their lefthand sides,
we compute the Legendre transforms of ® and W. Given ¢ € E*, we claim that

0 3Jue BD(Q)s.t.e =e(u)

U*(e) = sup /(4,8>= . (4.14)
ceE JQ oo otherwise
dive=0

The first equality is clear. To see the second, note by the divergence theorem (the
first identity in (1.13)) that

/ (¢, e(u)) =0
Q

wheneveru € BD(Q2)and ¢ € EN cj. (£2; Sym,) is divergence-free. By density, it
holds for ¢ € E that are weakly divergence-free. On the other hand, suppose ¢ € E*
but that there does not exist u € BD(S2) such that ¢ = e(u). According to [76,
Proposition 2.1 and Theorem 2.1], there exists a divergence-free { € C2°(2; Symy,)
for which

/Q@,s) £0.

Making the replacement { — A¢ and sending A — 0o or —oo, we deduce (4.14).
Finally, we compute the Legendre transform of ®. Given u € BD(S2), we see
using its definition that

D" (—e())

= sup / (¢, —e(u))—/<1d—§,1Vp®Vp> dx
ek Ja Q 2

ld=¢

1 " 1
sup /<{, -Vp® Vpdx —e(u)>— / <Id, pr®Vp> dx
cee Ja\ 2 Ja 2

I1d>¢

) o1, IVp®Vpdx —e))— [o(Id, 3Vp @ Vp)dx e(u) < %Vp ® Vpdx
S otherwise

)= faqu-vds e(u) < %Vp ® Vpdx
e otherwise ’

Combining this with (4.14) proves that

max —®*(—g) — ¥ (e) = max —P"(—e(n)) = max / u-vds.
ceE* ueBD(Q) ueBD(RQ) 9Q
e(u)g%Vp®Vpdx

Thus, the lefthand sides of (4.12) and (4.13) are the same. O
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Lemma 4.1 is a good start, but we much prefer to identify a version of the dual
problem for which maximizers are guaranteed. The basic issue is that, while the
admissible o in (4.11) satisfy

/|o|1=/(Vx,a>=/ x-ﬁz/(Vx,Id)=2|Q|
Q Q Q2 Q

so that they are bounded a priori in L', no similar control on Vo is available (even
as it is trace-free). So, while the admissible set in (4.11) is pre-compact in the
weak-* topology induced by the injection

C(Q; Sym,) — M(Q; Sym,), o > o dx,

it is not closed. Evidently, the boundary conditions o b = ¥ and ad hoc regularity
hypothesis that ¢ € C must be relaxed. Taking into account the low regularity of
V p, which is not necessarily continuous at the present level of generality, we find
it convenient to do so by changing variables to the anticipated potentials ¢.

It is well-known that if ¢ is Sym,-valued and divergence-free, there exists a
scalar-valued function ¢ such that

o= VLVJVp

on any simply connected domain. (See (1.33) for the notation VLV Such func-
tions ¢ are usually referred to in the literature as “Airy potentials” or “Airy stress
functions”, and the divergence-free fields V- V1 ¢ they generate are known as “Airy
stresses”. We need not rule out the possibility that 2 is multiply connected. This is
because the required change of variables ¢ can be carried out on R?, as the bound-
ary conditions in (4.11) ensure that o can be extended there in a divergence-free
way. To prepare, we record some useful properties of the functional L from (4.3).

Lemma 4.2. L is well-defined on the vector space of functions a : R*> — R that
are locally affine exterior to Q. It is linear and continuous in any norm for which
the restriction map a — a |R2\§ is continuous.

Proof. To check that L is well-defined, we must show that the integral in (4.3) does
not depend on the choice of extension p. That is, we must prove that

/ adetVVp, = / adetVVp,
R2\Q R2\Q

if oy, Py € W22(R?) N C.(R?) satisfy p; = P, on Q and VVa = 0 on R\ Q.
By density, it suffices to take p; and p, to be smooth. Note we can also take a to
be smooth as every locally affine function on R\ admits a smooth extension to
R?. Testing (4.4) against a, integrating by parts twice, and subtracting yields that

1
/ a (det VP, — det VVPy) = —3 / <VLVla, V5, ® VB, — VP, ® Vﬁ2>.
R2 R2

The integrand on the right vanishes a.e. by our hypotheses. For the same reason,
the integral on the left may be taken over R?\ Q. The desired equality is proved.



1. ToBAsCO

Looking back to (4.3), we see that L is a linear functional of a|R2\§. Since
by hypothesis 2 is a bounded, Lipschitz domain, it has finitely many exterior
components, i.e.,

R*\Q = UY | E; where the sets E; are open and disjoint.
That a is locally affine exterior to €2 is equivalent to the existence of {m; }lN: 1 C R2
and {b;}I.; C R such that
a=m;-x+b;, onE;, fori=1,...,N.
Quotienting out by the equivalence relation that a; ~ a2 if a1\ g = a2lp2\g»
there results a finite dimensional vector space on which L is well-defined. The

stated continuity now follows from the elementary fact that every linear function
of finitely many variables is continuous, regardless of the choice of norm. O

We are ready to change variables from o to ¢. To help simplify the presentation,
and as it does not affect the end result, we use the “restricted” set of admissible o
from Lemma 4.1.

Lemma 4.3. The restricted sets of admissible stresses and Airy potentials
{U e C(Q; Sym,) :0 >0, dive =0, o0 = Id at E)Q}
and {go € C2(R?) : VVg >0, VV¢ = Id on RZ\Q}

are put into a many-to-one correspondence via the relation

VJ‘VJ‘(p _ o on 2 .
Id onR*\Q

Under this correspondence,

1 1 1
/ Id —o,-VpQVp dx:/ ¢ — —|x|>)detVVpdx + L (¢ —=|x*).
o 2 o 2 2

Proof. The stated correspondence follows from our previous remarks on Airy po-
tentials since R? is simply connected. In particular, when we extend a given o by
setting it equal to /d off of €, the resulting Sym,-valued function is continuous,
non-negative, and weakly divergence-free on R?. Thus, there exists a corresponding
¢, which is of course non-unique. The reverse direction is clear.

We turn to prove the stated equality. By Lemma 4.2, we may fix some compactly
supported, W22 extension p of p in the definition of L. It follows from the given
correspondence and the very weak Hessian identity (4.4) that

1 Lo (1 5 1
ld —0,-VpQVp)= VEVa L sIxlIP =), sVp®Vp
o 2 o 2 2
1 1
:/ <VLVL <<p——|x|2>,——Vﬁ®Vﬁ>
R2 2 2
1, _
= ¢ — =|x|7)det VVDp
R2 2
= o — —|x|°)detVVp+ L (¢ — =|x|
Q 2 2
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as claimed. Note we used (4.3) attheend. 0O

Combining Lemmas 4.1 and 4.3 we get that

1 N
min / —|Vp|2—/ u-v
ueBD(Q) Q2 90

e(u)f%Vp@Vpdx

1 1
= sup /((p——|x|2)detVVp+L<(p——|x|2>.
peC2(R?) Q 2 2

@ is convex
vv(wémz):o on R2\Q

(4.15)

The last step is to relax the ad hoc regularity hypothesis that ¢ € C?2, 50 as to allow
the corresponding o to be measure-valued. We must check that the supremum
remains the same, and that it is achieved.

Lemma 4.4. The supremum on the righthand side of (4.15) equals the maximum
on the righthand side of (4.5). The latter admits an optimal ¢.

Proof. The first part of the result follows immediately once we establish that

1 2 N 1 2 1 2
—|Vpl©— u-v> ¢ — —|x|7)detVVp+ L ¢ — <|x| (4.16)
Q2 a0 Q 2 2

whenever u and ¢ are admissible in (4.5). Indeed, the admissible set of ¢ in (4.15)
is a subset of that in (4.5). Enlarging an admissible set can never make the resulting
supremum smaller. Now to prove (4.16), we shall make use of the integration by
partsidentity (4.10) introduced above and proved in Lemma 4.7 below, as well as the
properties of the mollifications {5 }5~0 from (1.32) to be proved in Lemma 4.6. The
reader may check that these results stand independently of the desired inequality.

Letu and ¢ be admissiblein (4.5)andcallu = VpVp dx—2e(u). Lemma4.6
and Lemma 4.7 show that

1/II / L) detvvp -2 L
— — —_— e J— —_—
3 L N p =5l

.1 Lol 1 - A
= lim = <,u3,V \% (p>+— v~[V¢]<r®r,u5).
s—o0 2 Jo 2 Jaq
The integrands in the second line are non-negative by admissibility: that us > 0
follows from our choice to take p > 0 in their definition; that VV¢ > 0 in Q2 and
that V- [Ve] > 0 at 92 are easy consequences of the convexity of ¢ (see Lemma 4.5
below). Applying the divergence theorem from (1.13) and the fact that u > 0, we
find that

1 1 1
—/ |u|1:/ Id, - :/ Id, =Vp @ Vpdx — e(u)
2 Ja Q 2 Q 2
/1|v ? / D
= —|Vp|© — u-v.
Q2 B1e)
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The inequality (4.16) is proved. Thus, the optimal values of the maximization
problems in (4.5) and (4.15) must be the same, regardless of whether or not they
admit any solutions.

We finish by showing the existence of a maximizer for the dual problem in
(4.5). We apply the direct method. Let B be a ball of finite radius that contains €2,
and note it suffices to search for a maximizer in the subset

2 . e 2a e 2
{(p € C(R9) : g is convex, VV (g&— Elxl ) =0onR \Q} N {(p = §|x| on R \B}.
4.17)
Indeed, the functional being maximized in (4.5) is unchanged under the addition
of any affine function to ¢, as was noted in the paragraph surrounding (4.9). Thus,
we can take ¢ = %lx | on the unbounded component of R?\ Q2. Now observe that
(4.17) is compact in the uniform norm topology: it is closed, and using the bounds

1 .
IVl <1 and |[|@||Lo(s) < max = |x|* + diam B
X€EB 2

we deduce from Arzela—Ascoli that it is pre-compact. That the functional in (4.5)
is uniformly continuous follows from our standing assumptions that €2 is bounded
and Lipschitz and that p € W?22(Q). The uniform continuity of L(¢p — %|x|2)
follows from Lemma 4.2. The existence of a maximizing ¢ is proved. O

We are ready to prove (4.5).

Proof of the equality part of Proposition 4.1. Combining Lemmas 4.1-4.4 yields
the string of equalities

1 -
min / —|Vp|2—/ u-v
ueBD(Q2) Q2 a0

e(u)f%Vp@Vpdx

1
= sup /<Id—a,—Vp®Vp>
0eC(Q;Symy) 7€ 2

o >0 and divo=0
oD=0D at 0Q

1
= sup / (gp——|x|2>detVVp+L
peCA(®Y) 2 2

@ is convex
VV((p—%|x|2)=0 on RA\Q

1
= max / ¢——|x|2 detVVp + L
o R2SR Q 2

@ is convex
VV((p—%|x|2)=O on R\Q

where we have abbreviated the argument ¢ — %l)cl2 of L. O

Before moving on to the complementary slackness part of Proposition 4.1, we
pause to point out that the admissible Airy potentials from (4.5) can be described
using boundary conditions. This was stated in Remark 1.2 in the context of a simply
connected domain (where we took a = 0), and will be used later on below.
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Lemma 4.5. Upon restriction to 2, the admissible set of Airy potentials in (4.5)
can be equivalently described as those ¢ € H B(R2) for which

VVp >0 onQ (4.18)

and such that
1
(p=§|x|2+a and D-Vo <D-(x+Va) atdQ (4.19)

for some a : R* — R that is locally affine exterior to Q2. These boundary conditions
are understood in the sense of trace, i.e., the values of ¢ and Ve at 92 are taken
from Q, while those of a and Va at dQ are taken from R*\Q.

Proof. The result follows from the identity
VVe = VV@|Q+ 1ddx|R\Q+ - [Veld @ DH'[0Q onR>  (4.20)

which holds for all ¢ € H Bioc (R?) such that ¢ — 1|x|? is locally affine on R*\ Q2.
Indeed, if ¢ € H B(2) satisfies (4.18) and (4.19) for some a as in the statement,
its extension by %lx|2 + a belongs to H Bjyc (R?) and obeys (4.20). Its Hessian is
non-negative, and so it is convex. Therefore it is admissible in (4.5).

On the other hand, if ¢ is admissible then it is a convex extension of %|x 1> +a
from R? \5 to R for some a that is locally affine on R? \ﬁ. It belongs to H Bjy¢ (RZ)
and satisfies VV¢ > 0 on R2. It restricts to an element of H B(2) with trace equal
to %lxl2 + a, so the first part of (4.19) holds. Testing (4.20) at 2 and using that

[Vol=x + Va|3(R2\§) — Voplagg atof

yields the rest of (4.19). Testing it at 2 proves (4.18). O

4.2. Complementary Slackness Conditions

It remains to prove the complementary slackness part of Proposition 4.1. First,
we verify that the mollification procedure from (1.32) can be used to generate the
approximations referred to there.

Lemma 4.6. Let 1 € M(2; Sym,) _have curlcurl u € M(Q). Its mollifications
{s}s=o from (1.32) belong to C*°(2; Sym,) and converge to u in the following

sense.

ws dx — . narrowly in M(S2; Sym,),

curlcurl us dx X curleurl W weakly- x in M(R2),

as 8§ — 0. If in addition . > 0, then us(x) > 0 forall x € Q and 8 > 0.
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Proof. The last conclusion regarding non-negativity follows from our assumption
that the kernel p > 0. We establish the convergences now. Let o € Cp,(£2; Sym,).
Fixing y € €2, we see that

1 dx 5 0
/Qp g(x—y))a(X)6—2—>6(y) asd —

and also that

1 dx
/Qp (g(x - y)> o(x) 5l
for all § > 0. Therefore,

1 1
Loy ar= [ (oo, [ S0 (50 -9)dnwm) as
Q Q 95 1)
1 dx
=/Q</Qp(E(x—y))a(x)s—z,du(y)>—>/Q<6,u)

by the bounded convergence theorem. As o was arbitrary, we conclude the narrow
convergence of ugs dx to w.

Now we show the weak-x convergence of curlcurl us dx to curlcurl . Let
x € C2°(). For small enough § > 0, we can apply the fact that curlcurl and
V1LV are formally adjoint along with Fubini’s theorem to write that

1 1 Lol
/Xcurlcurl,ugdxz/ /—2,0 —(x—=y) ) V-V x(x)dx, u(y)
Q al\/ad s
=/</ p(X)VLVLX(~+8x)dx7M>
Q B
=/<VLVL/ p(x)x('+5x)dx,,u>.
Q B

Using that curl curl u € M(2), there follows

/<VLVL/ p(x)x(-+8x)dx,u>
Q B

= / |:/ p(xX)x(y+ 5x)dxi| dcurl curl u(y)
Q B

— / xdcurl curl
Q

as § — 0. The proof is complete. O

< /My 500 (y 4 80)] dx < [lollLo

Next, we establish the integration by parts identity (4.10).

Lemma 4.7. Letu and ¢ be admissible in (4.5) and suppose { iy }nen C C3(Q: Sym,)
converges to L = Vp @ Vpdx — 2e(u) in the sense of (4.6). Then,

1/|| / 1||2dtVVd L 1||2

p— J— —_— e J— —_—

ZQMI Q(p 2x pdx ) 2x
1

. Lol 1 A Ao
= lim — <,u,,,V \Y% <p>+— v-[Vgo](r@t,,u,,)ds.
2 Ja 2 Jaq

n— oo
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Proof. Since ¢ — %lx|2 is locally affine on R?\©, we can find a € C*®(R?) such

that ¢ — %|x |> = a there. Integrating by parts twice via (1.13) and recalling that the
unit tangent and outwards-pointing unit normal vectors to a2 were taken to satisfy
7 = D+, we deduce that

1
et 2)
Q 2
1, " I
= ¢ — —|x|* — a | curlcurl u, — curl up, -7l — =|x|” —a
Q 2 a0 2
1 .
+/ <Mn, vt <<p — < |xf? —a> ® r>
Fle) 2
1 5 A A oA
= ¢ — =|x|* —a ) curlcurl p,, — D [Vol (i, T® 1)
Q 2 FYe!
where in the last line we used that [V¢] = x + Va — Vg|jq is normal to 9€2. Thus,

[ v 920)+ [ 5190l t @2)
Q Q2

I » 1ol
= (Id, un) + ¢ — —|x|* — a | curlcurl u, + <un,V \Y a>.
Q Q 2 Q

Taking n — oo and using the given approximation properties we deduce that

o1 1 N A
lim —/<,U«n,VLVL¢’>+—/ Do [Vel(T T, pn)
2 Ja 2 Jsa

n—o0o

1 1 2 1 1wl
— [ uh= [ 0= =P —a)detVVp + = <v v a,,u>.
2 /o .72 2 /g

421

The last step is to rewrite the second line above using the definitions of 1 and L.
Recall ¢ € C*°(R?) and equals ¢ — %|x|2 on R?\ Q. Observe that

/Q <VLVLa, e(u)> —0. (4.22)

Indeed, we can find a compactly supported, BD extension of u to R?, and then as
viviais divergence-free and vanishes outside of €2, the desired identity follows
by the divergence theorem. Next, we claim that

1
L(a) = _/ adetVVp+<VJ‘VJ‘a,EVp®Vp>. (4.23)
Q

To prove it, introduce a compactly supported, W22 extension p of p from Q to R?,
and test the very weak Hessian identity (4.4) against a. The result is that

1
/adetVVﬁ:—/ <va¢a,—Vﬁ®ﬁ>.
RZ RZ 2

Breaking up the integral on the left to be over Q and R?\ €2, and using the definition
of L in (4.3), there follows (4.23). Combining (4.21)—(4.23) with our choice to call
uw=Vp®Vpdx — 2e(u) finishes the proof. O
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We are finally ready to complete the proof of Proposition 4.1.

Proof of the complementary slackness part of Proposition 4.1. Let uerr and ¢ be
admissible in (4.5), let u = Vp ® Vpdx — 2e(ues), and let {i,}nen be non-
negative and converge to u in the sense of (4.6). Recall from Lemma 4.7 that

1/|| / Lap ) detvvp — L Lap
= — ——|x e - - —|x
3 Q/u o (2 5 )4 (2 3

.1 Lol 1 A A
= lim = <Mn,v v ¢>+— D [Vel(F @ %, m).  (424)
Q 2 Joq

n—>oo 2
Since ¢ is convex we find, just as in the proof of Lemma 4.5, that
VVe >0 onQ and V-[Vg]>0 atdf.

Thus, the integrals in the second line of (4.24) are non-negative and limit to zero if
and only if the difference in the first line vanishes. At the same time, due to (4.5),
this difference vanishes if and only if uef and ¢ are optimal. It remains to produce
an example of an approximating sequence {i, }. Using Lemma 4.6 and the fact that

1
— Ecurlcurl u=detVVp,

we see the mollification procedure from (1.32) approximates p as desired.
0O

It is natural to wonder if there is some more intrinsic way of stating the comple-
mentary slackness conditions, i.e., one that does not make use of ad hoc regular-
izations. The crux of the issue is that one must make sense of the “Frobenius inner
product” of two Sym,-valued Radon measures, one of which is divergence-free
and the other of which has its curlcurl controlled. Consider, for instance, how to
define (VlVLgo, e(u)) when ¢ € HB and u € BD. If for some reason we knew
thatp € C ! we could fall back on the identity

<VJ‘VL¢), e(u)> = 2curl (e(u)VJ‘gz)) — curleurl (e(u)g)

to define the product on the lefthand side as the distribution on the right. This sort
of approach goes back at least to [45]. Unfortunately, it is not the case that every
optimal Airy potential is C!. Lacking a successful distributional approach, we have
opted to use regularizations instead. For a related discussion see [4] (however, the
functionals there do not appear to allow for one-sided constraints).

5. Wrinkle Patterns by the Method of Stable Lines

We continue our study of the limiting minimization problems in (4.1). Sec-
tion 4 identified various versions of the dual problem, along with complementary
slackness conditions satisfied by optimal primal-dual pairs. There we established
a general duality result, applicable even in situations where we do not yet know
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.. . 1 . .
the I'-limit of the rescaled energies N Ep k,y (such as when € is not strictly

star-shaped). Our results thus far can be summarized as follows: under the full set
of assumptions at the start of Section 1.2 of the introduction, u € M4 (€2; Sym,)
arises as the defect measure of an almost minimizing sequence for Ej x , if and
only if it satisfies

—%curlcurl u=detVVp onQ

(VEVie, u)=0 on (5.1)
D-[Vel(t®7,u)=0 atdQ

where ¢ solves the dual problem (4.2). The first equation holds in the sense of
distributions, while the second and third ones hold in the regularized sense, i.e.,

ggé}(ua,viwp)):o and  lim /mw.[v(p](f@f,m)ms:o (5.2)

where {us}5~0 are the mollifications from (1.32). Moreover, the same system (5.1)
applies even when only the basic assumptions from (1.14a) hold, so long as we take
w=Vp®Vpdx — 2e(uetr) and let ucfr and ¢ be optimal in (4.5). Recall [Vg]
denotes the jump in Vg across 92 in the direction of D.

The purpose of this section is to study (5.1) as a boundary value problem for p
and, in particular, to establish the results from Section 1.2.4 regarding the general
formulation of our method of stable lines. Let us briefly outline what we achieve.
We begin in Section 5.1 by defining a partition of the shell according to the structure
of ¢. Included in this partition are the “stable lines” and the “ordered” set O they
fill out. We show that

w=An®7n onO, wherer>0andn € R((VVQ)ac).

The unit vector field 7 arises as a suitable choice of normal to the stable lines. In
Section 5.2, we justify our assertion that the stable lines are characteristic curves
for the PDE

1
—Ecurlcurl(ﬁ ®nA) =detVVp on O

implied by (5.1). We do so by producing ODEs for the absolutely continuous and
singular parts of A, which hold on (a.e.) stable line. Finally, in Section 5.3 we
show how to derive appropriate boundary data depending on the layout of the
stable lines, and how to apply them to conclude (partial) uniqueness, regularity,
and explicit solution formulas for A and p. The reader wishing to see concrete
examples should go forward to Section 6, keeping in mind that we make repeated
use of Corollaries 5.1-5.3 there.

A word on assumptions is required: throughout this section, we require that 2
is bounded and Lipschitz and that p € W22(Q). We take © € M4 (2; Sym,), let
¢ : R? = R be convex, and assume they satisfy (5.1) (it will not be necessary
for our present purposes to assume they are optimal). Importantly, we must also
assume that

there exists a non-empty open subset of €2 on which ¢ € w22, (5.3)
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As was addressed briefly in Section 1.2.5, this last assumption will allow us to
apply the theory of W22 developable surfaces from [35,36,59]. Various further
assumptions on ¢ will be introduced as needed below.

5.1. Stable Lines

Our first task is to explain how the structure of ¢ constrains that of @ solving
(5.1). Guided by the second equation there, we define a partition of 2 by writing

Q=XUFUOUU 5.4

where the sets X, F, O, and U are as follows:

o the singular set X is the smallest closed subset of €2 such that ¢ € WI%)’CZ(Q\Z);

e the flattened set F is the largest open subset of 2\X on which both of the
eigenvalues of (VVg), . are locally uniformly positive a.e.;

o the ordered set O is the largest open subset of 2\ ¥ on which one of the eigen-
values of (VVg)a.. is zero a.e. and the other eigenvalue is locally uniformly
positive a.e.;

o the unconstrained set U is the complement of ¥ U F' U O with respect to 2.

To be clear, we say that a function ¢ is locally uniformly positive a.e. on a (measur-
able) set A if for all x € A there exists ¢ > 0 and a relatively open neighborhood
V C A of x on which ¢ > c a.e. Note ¥ # Q due to (5.3).

Next, we explain what we mean by “stable lines”. Recall from Section 1.2.4
that a curve parallel to N(VVeg) in O was (preliminarily) called a stable line.
This definition is no longer suitable in the present, measure-theoretic context. It
generalizes as follows: henceforth, we refer to a curve belonging to O as a stable
line of ¢ if it is a maximally contained open line segment on which ¢ is affine.

Lemma 5.1. Every x € O belongs to a unique stable line £, and ¢, C 90. The
map x — L, is locally Lipschitz from O to the projective space P'. In particular
there exists | € Lipy.(O0; S Y that is constant along and perpendicular to the
stable lines, i.e.,

by=40, = Nx)=n(y) Yx,ye€ O and n(x) L L, YxeO0. (55)

Remark 5.1. In general, 7] can fail to be Lipschitz on O. This can happen for var-
ious reasons, such as when distinct stable lines share a common boundary point.
Examples of this appear throughout Panel (b) of Fig. 2.

Proof. We require some facts about developable surfaces. In the smooth setting,
a developable surface is one whose Gaussian curvature vanishes identically. Any
such surface can be decomposed into two disjoint parts: a ruled part consisting
of disjoint open line segments that pass between boundary points—the surface’s
ruling lines—and a locally planar part. In [59], this decomposition is shown to hold
for W22 developable surfaces, i.e., ones whose Gaussian curvature vanishes a.e.
By a covering argument, it holds for Wli’cz developable surfaces as well.
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These facts allow to characterize the graph of ¢ over O. By definition, this is
the image of the mapping O — R3, (x1,x2) — (x1, x2, ¢(x)). Looking back to
the definition of O immediately after (5.4), we see that

(78S Wli’cz(O) and rankVVe =1 a.e.on O.

Therefore, ¢ describes a Wli’cz developable surface over O, consisting entirely of
ruling lines. Stable lines are easily produced: the stable line ¢, through x aris-
es from the projection (x1, x2, x3) > (x1, x2) of the unique ruling line through
(x1, x2, p(x)) to the plane. Indeed, ¢ is affine along ¢, , and it is maximally extended
in O.

It remains to choose the normal 7. Of course, we can take it to satisfy (5.5).
That it can be chosen to be locally Lipschitz follows from the known fact [36,44]
that the map x > £, is locally Lipschitz from O to the projective space P! ~
sty {ﬁ ~ —ﬁ}. Let us explain. Without loss of generality, we can take O to be
connected after passing to its components. In order that £, L ¢, it must be that
|x —y| > dyo(x) Vdyo(y) as stable lines never intersect. So, once we decide that

n(x) - 7(y) >0 when |x —y| <dyo(x) Vdyo(y)

there remain exactly two choices for 7 : O — S 1 (in general, the number of
choices depends on the number of connected components). Fixing 7(x) at some
x € O determines it throughout. It now follows that

lx — yl

i) -] < ————— Vx,ye 0
) —A| S dyo )V dyo(y) 7 )

from a worst case analysis of how stable lines may meetat 90. 0O
Having defined the stable lines of ¢, we now use them to characterize the structure
of .

Lemma 5.2. Let Q2 be partitioned as in (5.4). Any solution u € M (2; Sym,) of
(5.1) must satisfy
uw=0 onF and n=rnpQ®mn onO (5.6)

for some ) € My (0) and 1) € Lip,,.(O; S) satisfying (5.5).

Proof. We combine the previous result with the complementary slackness part of
(5.1). In particular, we make use of the first part of (5.2), which implies here that

dx. (5.7)

0=li ’( L(Vivt >
tim [ Jfs 0 )| dx = fim

dr=lim [ |{us. (77400
o

Note it follows from their definition that @5 dx A u weakly-x on F and O. See
Lemma 4.6.

Consider the flattened set . We claim that every x € F is contained in a
neighborhood where . = 0. Indeed, by its definition we can always find a relatively
openset V C F such thatx € V and

(VV@)ae. 2 Id ae.onV.

~
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Upon passing to the limit in the first part of (5.7), we deduce that

0 = lim / (1, s)] dx = |l (V).
5—0 174

Compact subsets of F are covered by finitely many such V. Hence, u = O on F.

The ordered set O requires a bit more care. Recall ¢ is affine along its stable
lines, which run perpendicularly to /) € Lip,,.(O: S') from Lemma 5.1. So, there
exists £ € L'(0; (0, 00)) N L} .(0) such that

(VV@)ac. =¢n®n ae.on 0.

Actually, the definition of O gives abit more: foreachx € O there exists arelatively
open neighborhood V C O of x on which ¢ 2 1 a.e. Using this, we can pass to
the limit in the second part of (5.7) to find that

o=ty [ i) e =3 0

The choice of x € O was arbitrary, so (7~ ® 7+, 1) =0on 0. O

The possibilities for p at 9O and 9 F are less clear, as the relevant eigenvalue(s) of
V Ve may degenerate there. We leave the detailed study of this to future work, and
turn to describe the role that stable lines play in our solution of (5.1).

5.2. The Method of Characteristics

The previous section described the relation between the structure of ¢ and that
of wu solving (5.1). Following Lemma 5.2, we continue to let A € M (O) and
7l € Lipy,.(0; S') satisfy

w=xinp®n ono,

where 7 is constant along and perpendicular to the stable lines {£,} of ¢. By the
first equation in (5.1),

1
—Ecurlcurl (h®nr)=detVVp on O (5.8)

in the sense of distributions. We now claim that (5.8) can be solved using the
method of characteristics with stable lines as characteristic curves. It is not difficult
to understand why this ought to be the case. Denote the first and second directional
derivatives along the stable lines by

dpr =itV and 2, = <ﬁi ®ht vv). (5.9)
Pretending for the moment that A and 7 are smooth (rather than belonging to M
and Lip,,.), we apply the product rule along with the identity aﬁLﬁ = 0 to write

A 2 1 1
curleurl (f ® 7AA) = agﬂx + Eaﬁlgaﬁu\ + Eaglgx = Eagl (or) (5.10)
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where aﬁJ_Q = div ﬁlg. Thus, the PDE (5.8) can be rewritten (informally, at first)
as the family of ODEs

—%8@ (or) = det VVp along the stable lines.
Lemma 5.3 provides a rigorous version of this observation in the original, measure-
theoretic setting of (5.1). In brief: whereas the ODE derived above does turn out
to govern the absolutely continuous part of A along H'-a.e. stable line, its singular
part instead turns out to be affine along a complementary set of stable lines.

The next few paragraphs fix the notation used in the remainder. First, due to the
topological difficulties inherent in parameterizing the stable lines {£,}—see [36]
for a detailed account of the related problem of parameterizing ruling lines—we
find it convenient to reduce to certain well-prepared regions of the form

V = Userds where I' C V is a smooth curve such that
by =Lty = s=35 Vs,s’ €l and T,T }f&s VseTl. (511)

Recall by a smooth curve we mean a diffeomorphic copy of an open interval / C R,
i.e., its image under a smooth and one-to-one map. (Later on, we allow I" to denote
other, more general index sets.) The conditions on the second line require that the
curve I" meets each stable line it indexes transversely and exactly once. It follows
from Lemma 5.1 that every x € O admits a neighborhood of this form. Indeed, we
may simply choose I' to pass through x and to remain approximately parallel to 7
along its extent.

Next, we introduce the technique of disintegration of measure. The basic facts
are as follows (see, e.g., [33] for more details). Given one of the regions V = Uger &
from (5.11), we say that

m:V — I'sendsx € V tothe unique s € ¢, NT. (5.12)

For each s € T, the fiber 71 ({s}) = £,. Given A € M(V) and ¥ € M(T") with
gk K U, there exists a ¥-a.e. uniquely determined (Borel) family {A;}ser C
M(V) such that

supprs C €y Vs el and /wax:/[/ wd,\s} do(s) Yy e LYV, ).
1% r LJe

Here, w4 is the pushforward map through . Thus, A disintegrates into its parts
{Xs}ser with respect to  and ¢, a situation we indicate by writing

A:/Asdﬁ(s).
r

A useful example to keep in mind is the formula for the two-dimensional Lebesgue
measure

Lzz/gwl L6 dH'(s) onV. (5.13)
r

This defines the change of measure factor ¢ : V — (0, 0o) anticipated in (5.10).
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Finally, we define the Sobolev spaces wkr(e,) fork € Nand r € [1, 0o]. For
each £, we say that f € L"({s, H b belongs to whre) provided there exists
g € L" (£, H") such that

/f(‘)ﬁLxd?{]:—/gxd‘Hl Vx € CX(s).
£y

Ls

In such a case, we write that
I f =& ondy,

and call g the weak directional derivative of f in the direction of 7= (s). Thus,
Ly - W (ty) — L™ (Ls, H"). Similarly, W5 (£5) consists of all f € L” (€5, H")
whose weak directional derivatives 8,{) Les) f of orders j = 1,...,k belong to
L" (¢, 7—(1). Of course, if f is smooth nearby ¢, these derivatives can be com-
puted using (5.9) along with other, analogous formulas at higher order. Given
f € Wk (,) we define its trace Slae, as usual, by continuous extension of the
restriction map. As each £ is one-dimensional, -|5¢, : Wkr(eg) — L®0¢,, HO).

We are ready to make precise our claim that the stable lines of ¢ are characteristic
curves for the PDE (5.8).

Lemma 5.3. Let .. € M4 (O) solve (5.8), and let V = Ugerls andmw : V — T be
as in (5.11) and (5.12). Then there exist Ayc., Asing : V — [0, 00) such that

A= hac dx + / AsingH ' [£5 dD(s) on V,
I

where ¥ is the singular part of wy with respect to H'. The function ohq . belongs
to W24, and satisfies

1
—gagl (5y(@hac) =det VVp on £ (5.14)

upon restriction to H'-q.e. t;. Likewise, Asing belongs to W2'°°(Es) and satisfies
021 oy ksing =0 on & (5.15)

upon restriction to v-a.e. .

Remark 5.2. If p € W22 50 that det VVpeL, ohae € W2 on H'-ae. ;.

Remark 5.3. 1t is straightforward to check that the following unique continuation-

type result holds: if V| = Uger, 45 and Vo = User, € satisfy ' N Vo =T NV,

the functions provided above must have ! . = A2 . Lebesgue a.e. on V| N V5, and

A;ing = )»gin upon restriction to ¥-a.e. £5; in V1 N V,. We use this later on in the

proof of Corollary 5.3.
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Proof. We start by finding {13 }scr, {)»fving}ser C M4(V) such that

supp ASC, suppkiing Cl; Vsel and A= / A%C dH (s) + / ASRE 19 (s) on V.
r r

(5.16)
By disintegration of measure, there exist {A;}ser C M (V) such that

suppis C €y Vs el and )\.Z/)\Sdﬂ#)\. onV.
r

Note the Lebesgue decomposition

dT[#)\ 1 . 1
”#)‘qu_(l(H + 9 with H* L9
Taking
dmyh i
ac = dj;*;l ($)rs forH'-ae.s and AJ"S =2x, for¥-ae.s

we arrive at (5.16). _

Having disintegrated A into its parts {A3 }ser, (A" ser we proceed to estab-
lish the desired ODEs. We will make use of the PDE (5.8) or, more precisely, its
distributional version

1
/V—zagll//dkz/vlﬂdetVVpdx Ve CRV). (5.17)

The argument splits into two steps. The first step is to prove that (5.17) holds not
only for the test functions above, but also for ones of the form

Y =xWom where x € C°(V)and ¥ € C°(I), (5.18)

and where in place of 3$¢W we write Br%l)(\ll o . To see this, fix x € CZ°(V) and

let W C V be an open and compactly contained neighborhood of its support. We
claim there exists a sequence {7 }xeny C C°(W; I') of smooth approximations to
7 such that

T — T, 8ﬁﬂrk — 0, and ngtk — 0 uniformly on W (5.19)

as k — oo. Postponing their construction to Lemmas 5.4 and 5.5 below, we define

{Vilken C CZ(V) by
Y = xWomy (5.20)

and note using the product rule that
3§L1ﬂk = a,;x\p 0 Tk + 2051 X 350 (W 0 ) + Xaé(\ll o k).
Due to (5.19), only the first term on the right survives in the limit. That is,
ai Y — Bng\IJ om uniformly on W.

Setting (5.20) into (5.17) and passing to the limit finishes the first step. See Lem-
mas 5.4 and 5.5 for the construction of the approximations 7.
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We just showed that (5.17) holds for all test functions of the form (5.18).
Equivalently, by the disintegration formulas (5.13) and (5.16), we have that

0=J [fzx %8?]LX dric + fls X0 detVVpd?{l] W(s)dH (s)
I [, 302 x ™ w(syan o) (5.21)

forall x € CX(V) and W € C°(T"). The next step is to show that the bracketed
terms vanish, i.e.,

1
/e—zaé(s)xd)\?‘c':/ xodet VVpdH",

£s

/K 02, ) X dasne — g (5.22)

for all x € C°(¢s) up to H'- and ©-negligible sets. By an extension argument it
suffices to take x € C2°(V). Let {xx}xeny C C°(V) be C?-dense. Setting y; into
(5.21) and recalling that H' L ¥, we see that

1
/——3i()xd}»§"°'=/ngetVVdel for H'-ae.s,
¢, 27T 2
/ 3§L(S)X d)\iing =0 ford-ae.s
£y

where at this stage the exceptional sets are allowed to depend on k. Intersecting over
k removes this dependence and yields (5.22). In other words, we have the ODEs

1
—58’%@ 3¢ — pdet VVp onH'-ae. £,

02, ME=0 onv-ae. L. (5.23)

These hold in the sense of distributions on the specified stable lines. _
The rest of the proof is straightforward. From (5.23) we see that 13-, A &

H' | £, and that their densities satisfy the same ODEs. By hypothesis, det VVp
LY (V). It follows from (5.13) and Fubini’s theorem that 0detVVp e L' (s, HY,

dig® 2,1 1 - g™ 2,00
so that THIL € W= (£;) on H -a.e. £;. Evidently, aHIL e W>(ls) on v-a.e.
£ as it is affine upon restriction to those stable lines. Setting
1 d)»?'c' : dkzing
=———— onH -ae. l; and Agpe = ——— onv-ae.’l
a.c. 0 dH! A s sing dH! e, s

and using (5.13) and (5.16) once more, we conclude that
A= / OhacH s dH (s) + / AsingH ' [ €5 dV (s)
r r
= Age. dx + / AsingH ' €5 d (s).
r

The desired ODEs (5.14) and (5.15) follow from (5.23). 0O
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Left over from the proof above is a result ensuring that the map 7 : V — I’
from (5.12), whose fibers are the stable lines {{s}scr, can be approximated by
smooth maps {7y }xen With fibers converging to the stable lines (the precise sense
of approximation is in (5.19)). Similar results appear in the proof that smooth
developable surfaces are W22_dense [35,36,59]. There, the authors replace the
surface’s ruling lines with smoothly varying ones; here, per Lemma 5.1, the stable
lines of ¢ are the planar projection of the ruling lines of its graph (over O). The
main difference is the choice of topology—we need that m; and certain of its
derivatives converge uniformly, rather than only a.e. Nevertheless, the argument
from the references can be adapted to produce the desired result. We follow [35,36].

Let V = Userf be as in (5.11). The first step is to define coordinates adapted
to the stable lines. Recall we took I to be diffeomorphic to an open interval I C R.
Let y : I — T be smooth map such that

V =Userly(s), 8 Ly isone-to-one, y' -floy >0, |y =1 (524

Note the slight redundancy in the usage of s. In a minor modification of [35,36],
we define ®; : I x R — R? by

(s, 1) = y(s) + tht(s) (5.25)

for i : I — S'. Unlike the references, we do not require that y’ || 7, although we
will eventually prevent them from being perpendicular. If 7 is differentiable then
so is @}, in which case

detVd; =y - A —tk; where «; =n'- it (5.26)

Taking 7 = 1) o y leads to the desired coordinates. We refer to ®; and «;

in place of @5, and k., . Since 7 is locally Lipschitz, @ is as well. We claim

that it admits a locally Lipschitz inverse on V. That it is invertible there is a clear
consequence of the disjointness of the stable lines. Note that

detVd; = 0o ®; >0 ae. on cb;l(V), (5.27)

where ¢ : V — (0, 00) is as in (5.13). That [ det V| = ¢ o ®; follows from the
area formula for Lipschitz maps (see, e.g., [55]). Its positivity is due to the given
orientation in (5.24). Continuing, we define t\j,E : I — R such that

ty, <0<t and €, = ®; ({s} x (¢, (), 1,/ () Vsel
Combining (5.26) and (5.27) shows that

1 - Kﬁ(s)

— =< = < fora.e. s € I. (5.28)
ty(s) ~ ¥ oy (s) T ()

Hence, GJ# € Lip;oc(V; I x R) by the Lipschitz inverse function theorem [18].

For future reference, note that the functions :I:t‘ﬂ,E are lower semi-continuous as V
is open; they are also bounded by its diameter.
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All this being said, we now rewrite the map 7 : V — I from (5.12) as
T=yo (CI>;71)1 where (s,1)1 =s. (5.29)

The plan is clear: look for a way of smoothing 7 such that the associated maps
remain invertible, at least on a portion of V. Note we avoid 0V as we do not make
any assumptions on its regularity, or on the behavior of the stable lines there (see
[35,36] for more on this point).

Lemma 5.4. Let 1+ € C.(I) and let J C I be an open interval such that

t, <t~ <0<t <t} and supt~ <O <inf r*. (5.30)
7 J

Define the open sets
M= j = Uses{s} x 17(9),17(5)) and Viz j = Uses @ ({s} x (17 (5), 17 (5)))

and let W C Vix ; be open and compactly contained. For all € > 0 there exists
8 > O such that if i - I — SV is Lipschitz on J and satisfies

1A —=HoyllLewy <8 and
1 5 1 5.31
+€§KH—(AS)S —€ forae. s e J, ( )
1= (s) y'i(s) Tt (s)
then ®; admits an inverse on W satisfying dDﬁ_l € Lip(W; M= ;) as well as the
estimates

-1 —1 PR
1D = @2 llLowy Sroet,s |18 =70y llLe),
—1
||V¢’,a Lo (w) 51",?;,:#1 ;

Proof. That ®; is onto W can be checked using the homotopy invariance of degree
(see, e.g., [30] for the notation). By the definitions, ®; is ahomeomorphism between

M+ ;and V,= ;. Define the continuous homotopy [0, 1] — C(Mx ;),0 > ®y =
@(1_9)ﬁ+9ﬁ from CD() = (Dﬁ to q>1 = cDﬁ Note that

|Po(s, 1) — Pi(s, )] < |ia(s) — oy ()]]e].

Since by hypothesis W C V= j,thereexists §g > Osuchthat WN®g(dM,= ;) =0
whenever || — o y||Lxs) < o and for all 8. Applying [30, Theorem 2.3] proves
that d(®y4, M+ 5, p) = d(P4, M= 5, p) = 1 forall p € W. Hence,

A —noyllrewy <80 = W C Dp(M;= ;)

as in the first part of the claim.

Next, we show that ®; can be made one-to-one on M, ;. This part of the
proof is modeled more or less directly after [36, Section 5]. Introduce a function
;0 J x J\{(s.5) : s ="} - RU {00} such that

Y($) + Tils, sHat(s) = y(s)) + 1 (s, 9)at(s). (5.32)
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If i(s) Jf A(s"), 77 (s, s") gives the travel time from y (s) in the direction of A (s) to
the line containing y (s") and parallel to A (s"). If a(s) || A(s") we set t;(s, s') =
7;(s’,5) = oo. Looking back to (5.25), we see that ®;(s, ) # D;(s’, ") for
(s,1),(s',1') € M+ if and only if

1 1 1 1 1

o S nes) e e Snes ey O

and s # s’. We check that this holds when |7} — 7j o y||Loo(y) is sufficiently small.

Let s, s’ € J be such that 7i(s) Jf 7i(s), and let (s, s”) denote the open interval
with boundary points s and s". Of course, (s, s') C J. Dotting 7i(s”) into (5.32) and
rearranging yields the formula

1 () —als) -t (s)
Ti(s.s) () =y () Al

The righthand side approximates «;/y’ - 71. In particular, there exists §; > 0 and
c1 > 0 such that

(ﬁ(s’) — ﬁ(s)) at(s) 3 ]L K
(Y@ —y(@s)) - n(s’) (s,5")

(5.34)

A

o Stz Is =l (5.35)

if [|n —NoyllLew) <81 and |s — s'| < c1. It suffices to choose §; and ¢; so that
y'(a)-i(@) Zr;., 1 VYa,a' € Jwith|la —d'| <ci. (5.36)

This is possible by (5.24) since J is compactly contained. Note we also used the
bound ||«;llzee sy Se=.y 1, which follows from (5.30) and (5.31). Since t* are
continuous, these same assumptions yield ¢ > 0 so that

1 € 1 Kp 1 1 €
— __S —_+E§ A S —+_€S T — = (537)
1=(5) 27 Jont G VR T St 1(s) 2

if |s — | < c¢p. Combining (5.34)—(5.37) with (5.33) yields that ®;(s, 1) #
®; (s, 1), provided that |2 — 7 o y||zosy < 81 and if (s, 1), (s'.1)) € M=,
satisfy 0 < |s —s"| < ¢1 A c2 A 5&. The constant C = C(T', 7, 1%, J) is the one
implicit in the estimate (5.35). On the other hand, since ®;(M;+ j) = V& j, we
can write that

s —s']

- < @05, 1) — (s, 1)
VO ey~ !

< |Pi(s, 1) — P, 1)+ 1ii(s) — 7oy (5)]lt]
+i(s") = f oy (O

on M+ ;. Thereexists 8, > Osuchthat ®;(s, 1) # @ (s’, ") if |[|A—1|| o) < 82
andif (s, 1), (s',t") € M= j satisfy |s —s'| > ¢1 Aca A 5. The conclusion is that

[ln—hoyllL=wu)y <81 Ady == @ isone-to-oneon M= ;.
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The first part of the claim on the invertibility of ®; is proved.

We end with the estimates on CD;?]. Recall we arranged, by our choice of §,
for the inclusion W C ®; (M= ;) to hold. Let x € W and produce (s, ) € M+
with @ (s, t) = x. It follows that

0.1 — @ ()] = 19,1 0 Dils, 1) — D o Dy(s, 1)
< IV®; e plis) =i oy ()]

which yields the first estimate in the claim. Continuing, we note that §; was chosen
so that (5.36) would hold. In particular, y’- 72 2 5 ; 1 on J. It follows from (5.26)
and (5.31) that

detVd,; > et Alt7)y -7t ae. on Mz .

The bound on VCID;1 now follows from (5.25), (5.30), and the Lipschitz inverse
function theorem. O

Having produced a sufficient condition for the invertibility of ®; away from 0V,
we can now construct the desired approximations 7y of 7.

Lemma 5.5. Let V = Ugerly and m @V — T be as in (5.11) and (5.12), and
let W C V be open and compactly contained. There exists {my}yeny C C°(W; T)
such that s — 7, 9517 — 0, and Bénk — 0 uniformly as k — oo.

Proof. We apply Lemma 5.4. Carrying over the notation from that result, we let
tT € C.(I)and J C I be an open interval statisfying (5.30), such that W C Viz g
andV,TJ C V.Sincet;, <t” <0< tt < t‘J,r nearby J, there exists € > 0 and
a slightly larger open interval Jo C I with J C Jo, sup 5 17 <0 <infy, t+, and
such that

1
2 d ——
t=(s) Tees 1, (5) an 1 () = t+(s)

—2¢ Vse . (5.38)

To be clear, we consider =, J, €, and Jo to be fixed depending on I, 7, W, and V
at this stage.

Next, we let § > 0 be as in Lemma 5.4 and produce {fi}reny C C°(/; sh
approximating 7 o y. We will verify that our sequence satisfies (5.31) for large
enough £, i.e., there eventually holds

€< K;"Z(S) < 1 —¢ Vsel.
1= (s) Y - ik(s) Tt (s)
(5.39)

Fix p € C°((—1, 1)) with p > 0 and f_ll pds = 1. For all large enough k € N,
define 7j; : I — S! by taking

Nk =N oyllLew) <8 and

(Mo y)yk(s)

oo (ﬁoy>1/k(s>=/ ko (k(s — ) oy (s) ds’

Jo

Mk(s) =

(5.40)
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for s € J and smoothly extending it to 7. Its values on /\J are immaterial; we
define it there so as to match the lemma. Note we needed that ’(f; oY)y k’ > 0 on
J for (5.40) to make sense. This is not a problem, since for all large enough k there
holds

A 2
L= |Goyu|=1- ||Kﬁ||L°°(J0)% on J. (541)
Observe that

(o) - (Giow)y,
P Al/k 3 1/k n J, while I(A_(no)/) (ﬁOJ/)L on /.
[GESINY

(5.42)
When combined with the usual properties of mollification, these facts imply that

ik —novllLew) S ||Kﬁ||L°°(Jo)%,

Loy S kgllzoe )

Al Loy S Klliegl ooy + 1165112 50 (n) (5.43)
for large enough k. We proceed to verify (5.39). That the first condition is eventually
satisfied is clear. For the second condition, let s € J and note that

Kep, (8) / , K5 (s") , 1
————— | kp(k(s —5")) —F———=4ds'| Sr.s - (5.44)

‘V“nk(S) g ) oy | i g
for large enough k. Besides (5.41)—(5.43), the proof makes use of the lower bound
Y-k Zr.5,5 1 on J, which is eventually implied by (5.24) and the fact that J is
compactly contained. Note that

K 1

——— < — —2¢ ae.onJy (5.45)
y'sfoy Tt

by (5.28) and (5.38). Combining (5.44), (5.45), our choice to take p > 0, and the
fact that 1/ are uniformly continuous on Jy, we deduce the second condition in
(5.39) for large enough k.

The previous paragraphs checked that the hypotheses of Lemma 5.4 hold for the
given W and for our choices of t£,J,¢e,andn = Nk .We had to take k large enough so
that the conditions in (5.39) would hold. The conclusion is that @5, : I x R — R2
from (5.25) admitinverses on W satisfying (bgkl € Lip(W; M+ ), forlarge enough

k.Recall M= ; = Cbﬁ_l(VtiJ). The estimates

1
——|—2e<

-1 -1 A ~
1P5 — @5 llLaw) Sroaw,v ik — 1o yllL=w),

Ve, ||L°°(W) Srawy 1 (5.46)

follow directly from the ones in the lemma. We remind the reader that =, 7,
and € (and Jy) were taken to depend onTI', n, W, and V. Since @, is smooth

and [det V@ | Zr 5w,y 1 on dJ (W) the inverse function theorem gives that

il 2
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d>5k1 € C®(W; M+ ;). We are ready to define the desired approximations . In

a direct analogy with the formula for 7 in (5.29), we define 7y € C*°(W; T') by
Te=yo (@;kl)l where (s, 1)) = s (5.47)

for large enough k. The rest of the proof establishes the convergences in the claim.
That w; — 7 uniformly on W is clear. In fact, we read off from (5.29), (5.43),
(5.46), and (5.47) that

IVarlleew) Srawyv Lo VIl wy Sroaw,v k.
(5.48)

[lme = mllLoeowy Srosw,v o

The third inequality follows from the elementary estimates
Vs | S T+ 1elliel, VY@ | S 1"+ 1] + 1211

along with the inverse function theorem. It is now convenient to consider 7 as
being defined on W instead of /. Abusing notation slightly, we let

Mk (x) = fik o (®; D1(x), x €W,

On the righthand side we use (5.40), noting that (¢5k1)1 (W) c J. It is natural to

compare against 7 = oy o (Cbﬁ_l)l. The estimates

e — AllLeewy Sroaw,v IVarllLew) Sropw,v | (5.49)

E!
result from (5.43) and (5.46). We define a,]kL and 8; | analogously to 951 and 87% |
from (5.9). Then, ‘
0, =0 and 97,7 =0. (5.50)
< k

These identities are consequences of the fact that 9, (7rx o @5, ) = 0. Indeed, 8nkl is
a directional derivative along the lines traced out by # > @, (s, 1), per (5.25).

We now have all of the ingredients to prove that 9517, — 0 and 85 e — 0
uniformly on W. Applying the first identity in (5.50) yields that

8;7M'L'k = 8;]¢7Tk — ankurk = a(ﬁ_ﬁk)Lnk.

Using (5.48) and (5.49) we deduce that

1

1051kl Loewy < 117 — MkllLoeom) I VKl Lo wy Srogw.v T

Next, we differentiate the first identity in (5.50) to see that
0 =8y (05071 ) = 05_p L - Vo +(( — )" @ A, VV )
(=it \ T4t Tk (=) Mk k = Nk Mk > ke
By the second identity there,
02m = (it @it =t @k, VV)m = () = 10" ® G — i + 204, VV) i

__ a2 Al
= a(ﬁiﬁk“ﬂk - Za(ﬁ_ﬁk)mk - V.
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Using (5.48) and (5.49) again, we find that

2 )
051 7kl Loeqwy = (10 = Mkl T00 w) IV Vel [ Lo (w)
1

+2117 = il lLeeow) IV ikl Lo ow) | Vel [ Lo (wy Srp,w,v T

The proof is complete. O

5.3. Three Solution Formulas

Ultimately, we are interested in applying the method of characteristics to deduce
(partial) uniqueness and regularity theorems, and even explicit solution formulas
for 1. Doing so requires supplementing the ODEs from Section 5.2 with boundary
data implied by the original system (5.1). Different data arise depending on the
stable lines. Guided by the upcoming examples in Section 6, we treat the three
configurations shown in Fig. 5. See Corollary 5.1 for Panel (a), Corollary 5.2 for
Panel (b), and Corollary 5.3 for Panel (c). We continue to use the notation from the
paragraphs leading up to Lemma 5.3.

Stable lines extending between boundary points. First, we consider Panel (a) of
Fig. 5. Recall O denotes the ordered set of ¢ from (5.4), while {£,} are its sta-
ble lines. Assume there exists an open set V C O of the form

V = Userls where 30, C 9Q VseT. (5.51)

As in (5.11), we understand I' C V to be a smooth curve (i.e., one that is diffeo-
morphic to an open interval) that meets each stable line it indexes transversely and
exactly once. For simplicity, we suppose that

User 04 consists of two Lipschitz curves. (5.52)

By Lemma 5.1 and the definition of O, there exist ¢ € L'(V; (0, 00)) N leoc(V)
and 7} € Lipy,o(V; S!) such that

VVp =(n®ndx onV,

L LJ yes
(a) (b) (c)

Fig. 5. Three configurations of stable lines. Panel (a) depicts stable lines extending between
boundary points. Panel (b) depicts stable lines meeting along an interior curve. Panel (c)
shows stable lines meeting at a point. Given suitable non-degeneracy conditions on ¢, we
prove that u is uniquely determined on such lines
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where 7 is constant along and perpendicular to the stable lines. Our next assumption
is that o

necC). (5.53)
In particular, the given stable lines are not allowed to meet at 2. Finally, we assume
there exists ¢ > 0 such that

D-[Vgl=>c and |?-filse|>c H'-ae on User 34, (5.54)

where  and 7 are the outwards-pointing unit normal and tangent vectors at d<2. The
second part of this last assumption requires that the given stable lines remain (a.e.)
uniformly transverse to d€2. Recall the change of measure factor o : V — (0, 00)
from (5.13).

Corollary 5.1. Suppose ¢ admits some open set V. C O satisfying (5.51)—(5.54),
and let p € M4 (S2; Sym,) solve (5.1). Then

Uw=A®ndx onV

where A : 'V — [0, 00) is the unique weak solution of the two-point boundary value
problem

—iai (5)(©}) =det VVp on &
oA =0 at 04

upon restriction to H'-a.e. €.

Proof. Combining the second part of (5.6) and Lemma 5.3 yields the formula
= hach @ Hdx + / Asingfl ® AH' €5 dV(s) onV (5.55)
r

where Ay, and Aging solve the ODEs (5.14) and (5.15) for H'-and 9-ae.s € I.
Our plan is to use the complementary slackness conditions in the original system
(5.1) to deduce the boundary conditions

Oraclog, =0 for H'ae. s and Asinglae, =0 for ¥-ae.s. (5.56)

It follows immediately from (5.15) and the second of these that A, = 0. Then,
(5.14) and the first condition yield the desired characterization of A = X, ... The reg-
ularized formulation of the complementary slackness conditions must be applied.
Here, we use the second part of (5.2), which implies that

0 = lim 19 [Vel(t ® 2, us) | dH' (5.57)

§—0 User 8y
due to our assumptions (5.51) and (5.52) (that the domain of integration is measur-
able follows from the second of these). Recall {it5}5-0 are the mollifications of u
defined in (1.32) using the kernel p € C2°(B1). As noted in Remark 1.3 and proved
in Section 4, the complementary slackness conditions hold so long as p > 0 and
/ , » = 1. We choose it a bit more carefully now: for the purposes of this proof,
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we take p > 0 on a neighborhood of zero. This same choice also appears in the
proofs of Corollaries 5.2 and 5.3.

All this being said, we claim that the desired boundary conditions (5.56) hold.
Using that ¢ and p are non-negative and applying the disintegration formulas (5.13)
and (5.55), we have by Fubini’s theorem that

1 —
1 — A A~
B /r M 2” (x s y) Qrac.) ® 1(y) dﬂl(y)] dH'(s)

1 —
+ /r [ /1Z 5P (%) Asmgmﬁ(y)d(ﬂl(y)} v (s)

for all x € Q. Applying this where the given stable lines meet 92 yields that

/ - [Vel(t ® £, us) dH'
Userdts

> / [ / / b - [VolIE () - 1) Porac. ()
r yely J xeUger ol
, (x — y) dH (x)dH' (y)

8 52

+ / [ / / D [V - () Phsing(»)
r yely J x€Ugerdly

x—y\ dH'(x)dH' (y)
P ( 3 > 52 ] du(s).

} dH' (s)

The integral on the lefthand side tends to zero as § — 0 by (5.57). Using Fatou’s
lemma, we can pass to the limit on the right. Recall from Lemma 5.3 that oA, .
and Aging belong to W21(e,) and W (¢,) respectively for H'- and 9-ae.s. In
particular, oA, c.(¥) and Aging (y) converge to their traces as y — 9£; along a.e. £;.
Applying the hypotheses (5.53) and (5.54), and making use of our choice to take
o > 0 nearby zero, we conclude that

02/||Q)Ma.c.||L00(aeS,7{0)dﬂl(s) Z/||)\sing||Lw(aeS,1{0)dﬁ(s)
r r

in the limit § — 0. The boundary conditions (5.56) are proved. 0O

Stable lines meeting along an interior curve. We turn to Panel (b) of Fig. 5. Again,
recall from (5.4) that O denotes the ordered set of ¢ to which its stable lines {£,}
belong, while X is its singular set. We now let V' C O U X be an open set such that

VAZ =V_UV, where Vi =Usr, ¥{; aredisjoint. (5.58)
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Here, I'y. are smooth curves belonging to V4 that meet their indexed stable lines
transversely and exactly once. Our second assumption is twofold: we require that

each indexed stable line ¢; passes between % and 0V, and
forall z € V N X there exist s+ € 't such that {z} = 9¢,, N 0L _.
(5.59)

Looking back to Fig. 5 should help make this clear. Continuing, we assume for
simplicity that
V NX isaLipschitz curve. (5.60)

Lemma 5.1 now guarantees the existence of ¢ € L!(V; (0, 00)) N LIZOC(V\Z) and
A € Lipjoc (V\Z; S') such that

VV = ® fdx + Dx - [Velis @ g H' S on V.

Here, Dy denotes a choice of unit normal vector to X, which is defined a.e. along
the portion of it belonging to V. We take it to point from V_ to V,, and write
[-] = ‘Iz, —|x_ for the corresponding jump in a quantity where -| 5 are the traces
at ¥ from V4. Our fourth assumption is that

7 restricts to each of V4 as an element of C(VL.). (5.61)

In particular, this implies that the pair s4 in (5.59) is unique, as no two stable lines
on the same side of V N ¥ can meet there. Finally, we suppose there exists ¢ > 0
such that

L >c L?-ae. on vV,
Dx - [Vol>c and |#x-fls.|>c H'aeonVNE (562

where Ty = f)JE-. Define the change of measure factor o : V — (0, 0o0) asin (5.13).

Corollary 5.2. Suppose ¢ admits some open set V. .C O U X satisfying (5.58)—
(5.62), and let p € M4 (£2; Sym,) solve (5.1). Then

w=in®ndx onV,
where A 1 V — [0, 00) is the unique weak solution of the Cauchy problem

—iagl (5(©2) =det VVp on &

upon restriction to H'-a.e. €.

Remark 5.4. Under the above hypotheses,det VV p < Oa.e.on V.Indeed, it follows
from the Cauchy problem that o and det V'V p take on opposite signs, while o > 0
and A > 0.



Curvature-driven wrinkling

Remark 5.5. In each of the examples in Section 6 it will turn out that if ¥ is not
empty nor a single (smooth) curve, it is nevertheless a tree. At its internal vertices,
three or more stable lines will meet, and to achieve the analogous result we will
need to show that  vanishes on these lines. This can be done using the ideas in the
proof below. See Example 6.8 for more details.

Proof. The proof is similar in spirit to that of Corollary 5.1, albeit more involved.
We start by showing that
u=0 onVnNx. (5.63)

At the same time, a straightforward application of (5.6) and Lemma 5.3 yields the
formula

K= lacl) ®nNdx +/ hsing) ® AH' L€s d¥(s) on V\Z, (5.64)
r

where A, and Aging solve the ODEs (5.14) and (5.15) for H'- and ¥-a.e. s in the
index set I' = I'y U T'_. Our second step will be to extract the initial conditions

Ohaclatns = 5L () (@hac)lag,ns =0 for H'-ae.s, (5.65)

Asinglae,ns = 051 (5)Asinglae,nz = 0 for P-ae. s (5.66)

from the first two equations in (5.1). Combining these with (5.14) and (5.15) proves
that Aging = 0, and the desired characterization of A = A, ¢, follows. To accomplish
these steps, we shall make use of the following consequences of the (regularized)

complementary slackness conditions (5.2), which hold in light of the formula for
V Vg above:

0 = lim

(et @it o) dx=lim [ 1o519gl (25 @ 5. w5} | 4H,
5—0 V\Z 1)

=0 Jvns
(5.67)
where {s}s~0 are the mollified versions of p from (1.32). Again, we take the
kernel p € C2°(B) to satisfy p > 0 on a neighborhood of zero (see Remark 1.3).
We start by proving (5.63). First, we note for every x € V that

wz=[ 3 (x_y>d(> d ez [ (x_y>d<>
ws(x) = <o —)dn@y) and psx) > <0 — ) dun®y).
vos 82 é vz 82 s

(5.68)
These follow from the non-negativity of p and w. Integrating the first of these and

applying Fubini’s theorem yields

/ (ci* @it us) dx
V\Z

N —y\ d
2/ </ tht @At (x)p (%) 5—§,u(y)>,
vz \Jn\xs

/ (D5 - [Volts ® £x. ps) dH'
vNs

1 —y\ dH!
> —/ </ Uy - [Volts ® Tx(x)p (x y) (X),/L(y)>-
8 Jvnz \Jvns ) F)
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According to (5.67), the integrals on the left tend to zero as § — 0. Applying (5.61)
along with the first part of (5.62), we can pass to the limit in the first inequality
above to deduce that

0= <ﬁL ®itlx,, M> onVNI.
Then, using that u is non-negative and Sym,-valued, we get that
p=(®hls.. u)i®Hlz, onVNE.

Now plug this into the second inequality and send § — 0 again (this is to deal with
the case where 7j|x_ are parallel on a non-null set). Applying (5.61) along with the
second and third parts of (5.62), and recalling that p > 0 nearby zero, there follows

O=(f]®ﬁ|gi,u) onVNZxX.

Therefore £ = 0 on V N X and (5.63) is proved.

We proceed to control i on V\X. As explained above, we must establish the
initial conditions (5.65) and (5.66) for oAac. and Aging. We handle their traces first.
This part of the proof can be copied almost verbatim from that of Corollary 5.1.
Recall the index set I' = I' . U I'_. Using the second part of (5.68) along with the
disintegration formulas (5.13) and (5.64) produces the lower bound

/ (D5 - [Velts ® tx. us) dH'
vns

> / [ / / bs. - Vol ()22 () - A0 0hac.(y)
r yely JxeVNZE
x—y\ dH' (x)dH (y)
P\ s 52

N / [ / / b - [VRI)I 5 () - A0 PAsing (1)
r yvely JxeVNZE
p(x y) dH' (x)dH (y)} 49(s).

} dH' (s)

8 82

According to (5.67), the integral on the lefthand side tends to zero as § — 0.
Applying the assumption (5.61), the second and third parts of (5.62), and our choice
to take p > 0 nearby zero, we pass to the limit to deduce that

0=/Q)»a.c.|azmz dWl(S)=/)»sing|azmz dv (s).
r r

Since the integrands are non-negative, they must vanish a.e. The first parts of (5.65)
and (5.66) are proved.

The next part of the proof has no analog in that of Corollary 5.1: we must show
that aﬁL (oAac.) and aﬁJ_ Asing vanish at V' N X. The argument goes in two steps. The
first step is to show that

0 < 3515y (Qrac)lae,ns for H'-ae.s €T,
(5.69)
0 < 951 (5)Asinglae,nz for -ae.s € I
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Here, we understand each ¢, to be oriented so that it starts at X and ends at 9V,
i.e., we take ﬁJ- to point away from X. (This is possible due to (5.59).) The second
step is to deduce from the first equation in (5.1) the matching conditions

0 =051(,) (@ ac) o, nx + 0515 ) (@rac)loe,_nzs
(5.70)
0 = 0515, )Asingloe,, Nz + 9515 )Asinglae,_nz

respectively for H'-ae. and 9-ae. s+ € 'y with s, NOL;,_ NV NI # 0
Note there is a one-to-one correspondence between points z € V N X and pairs
st € I'y satisfying {z} = 9¢,, N d¢;_, due to (5.59) and (5.61). Combining (5.69)
and (5.70) yields the remaining parts of (5.65) and (5.66).

First, we handle (5.69). Since i > 0, the densities @A, and Agjyg are non-
negative. That is,

05/ wgka.c.dﬂl for H'-ae.s and 05/ 1///\Singd'Hl for ¥-a.e. s
L Ls

whenever ¢ > 0. Let x € C.((1, 2)) be non-negative and integrate to one, and
define {5 € C () for § > 0 by

1 1 |x — z|
Ys(x) = c=X where {z} =39, NV NX.
lx —z] & 8

Recall from Lemma 5.3 that oA, .. € W>!(£,) and Asing € W2 (¢) for H'- and
v-a.e. s, respectively. Above, we proved that they vanish at a.e. 9 N X. Therefore,

/ Ys0hac. dH' — 351 (0hac)lag,nx for H'-ae. s,
2

Iﬂgksing d'}{l — aﬁL(s)ksinngE for ¥-a.e. s
Ly

and with this the desired inequalities (5.69) follow.

Finally, we prove the matching conditions (5.70). Testing the first part of (5.1)
against ¢y € CZ°(V) and applying the disintegration formulas (5.13) and (5.64)
yields the identity

1
/V peee /v <‘§Vlww, u>
1
=/ |:/ _EagL(s)wQ)”a.c_ d?—{]:| d?—[l(s)
I L/

I
+/r [/e =3 O3y Whsing dﬂl} dv(s).
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Integrating by parts twice with the ODEs (5.14) and (5.15), there follows

/r [ /{Z a,%i(s)z/fgxa.c.dwl} dH' (s) = /F (V3525 (@ac) lag,ns dH' ()
—2/ Y det VVpdx,
\4

/FI:/[ agL(s)w)hSing d?‘{li| dz?(s) = /F (waﬁL(s))"Sing) |3€Xﬁ2 d'[?(S)

Setting these formulas into the identity above and cancelling like terms proves that

0= / (B 5) (@) Loty dH1 (s) + / (0515 hsing) loeyriz D (s)
I r

for all € C2°(V). The conditions in (5.70) now follow from the correspondence
betweenz € VN T andsy € Ty ,asH! L 9 onT = rLrur_. o

Stable lines meeting at an interior point. We end with the possibility in Panel (c)
of Fig. 5. Let O be the ordered set of ¢ from (5.4), and suppose there exists a point
xo € Q and an open set V C O U {xo} such that

xo €V and V\{xo} = Userfs where £lle,(s) VseTl. 5.71)

We use (r, 0) to denote polar coordinates about xg, and {é,, €y} for the associated
orthonormal frame. The set I' is understood to meet each stable line it indexes
transversely and exactly once; we take it to be diffeomorphic to the unit circle S'.
It follows that

0
VVgp = & )é(; ®eégdx onV
r

where ¢ € L?((0, 27)) is locally uniformly positive a.e. Evidently, xo belongs to
the singular set X of ¢, as 1/r is not square integrable on any neighborhood of the
origin. Denote 3, = 9;, .

Corollary 5.3. Suppose ¢ admits a point xoy € 2 and some open set V. C O U {xo}
satisfying (5.71), and let u € M (2; Sym,) solve (5.1). Then

nw=>XegRegdx onV,
where A 1 V — [0, 00) is the unique weak solution of the Cauchy problem

—L32(rk) = det VVp on{,
rkA=0,(rrA) =0 at 34; N {xp}

upon restriction to H Lae. t.
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Proof. We follow the same outline as the proof of Corollary 5.2, with the details
being modified slightly to make up for the fact that VV¢ lacks a singular part. The
first step will be to show that

u({xo}) = 0. (5.72)

At the same time, Lemmas 5.2 and 5.3 yield the formula
U= Aacey ® egdx + / )»Singég ® 597‘{1 [ls dv(s) on V\ {xo} (5.73)
r

where A, and Aging solve the ODEs (5.14) and (5.15). It is here that we use the
unique continuation-type result from Remark 5.3. This allows to prove (5.73) by
finding two neighborhoods V; = Ur, £, of the form (5.11) with V\{xo} = V1 U V;
and ' N V; = I, and by applying Lemma 5.3 to each V;. That the individual
disintegration formulas agree on Vi N V; is assured by the remark. The final step
of the proof is to establish the initial conditions

raacloe, (x0) = 8 (Fhac)lae, (x0) =0 for H'-ae. s, (5.74)
Asinglae, (X0) = O Asinglae, (xo) =0 for ¥-a.e. s. (5.75)

We use the first complementary slackness condition in (5.1), which implies that

0 = lim /
§—0 Jy

Note {us}s~0 are given by (1.32) where the mollifying kernel p € CS°(By) is
non-negative and integrates to one. As in the previous two proofs, we take p > 0
nearby zero (see Remark 1.3).

We start with the proof of (5.72). Given any x € V we can write that

dx. (5.76)

0
<¥ér ® éy, ﬂ8>

X — X0

8

us(x) = p ( ) n({xo}),

since p and u are non-negative. It follows that

¢ . R 1 S, R X —x0\ dx
/ <—er ®e. m> dx > L </ 26 ®er(x)p( ) a u({xo}>>
v\l (S Bs(x0) r (S (S

for all sufficiently small § > 0. The integral on the lefthand side tends to zero by
(5.76). Recall ¢ is locally uniformly positive a.e., i.e., every 6 € (0, 27) admits a
neighborhood on which ¢ > ¢(#) > 0 a.e. Recall also that we chose to take p > 0
nearby zero. Multiplying by 6 and sending § — O proves that

(f®% u(xo))=0 ¥Yies'

It follows that u({xp}) = 0 as claimed in (5.72).
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Next, we determine p on V\{xg}. The formula (5.73) follows as above. We
proceed to show the initial conditions (5.74) and (5.75). First, we consider the
traces of rA,c. and Agipg. Givenx € V,

1 X =y
s (x) = /V\{xo} 27 (T) du(y)
1 XY=V, N 1 1
= /F [/d 2P <T) eg @ eg(Y)rigc.(y)dH (y)} dH (s)
yels

1 —
1)L 50 (55w ammmanto) | ase)
r ye(Z_v(S 1)

by (5.13) and (5.73). It follows from Fubini’s theorem that
¢, n
=er @ép, s ) dx
v\l

5
> / [ / / £ 2 (016,00 - 26 (0)Praae.(v)
I L/yety JxeBs(xg) T

x—y\ dxdH' ()]
P\ .

)

+ / [ / / £ =016, (x) - é9(3)[*Asing ()
r L/yets JxeBs(xg) T

) (x —y) dxdH ' (y)]

dH' (s)

; = dv(s)

for all small enough 6§ > 0. Again, the lefthand side limits to zero by (5.76).
Consider the terms on the right. The function ¢ is locally uniformly positive a.e.
Even though é,(x) - é9(y) = 0 when x = y, the typical value of |é,(x) - €9 (y)| is
bounded from zero. The kernel p > 0 nearby zero. Passing to the limit via Fatou’s
lemma proves that

O:/F}’)\.a_c.mfx(xo)d'}‘{l(s):/r)\,singhés(xo)dﬁ(s).

As the integrands are non-negative they must vanish a.e. The first parts of (5.74)
and (5.75) are proved.

Finally, we check that 9, (rA,¢.) and 0, Asing vanish at xo. This last part of the
proof is directly analogous to that of Corollary 5.2. In fact, it is so similar that we
omit most of the details for brevity’s sake. First, observe that

0 < 8, (rhac)loe, (xo) forH'-ae.s T,
0 < 9 Asinglag, (xo) for -ae.s €T. (5.77)

These hold since the functions r A, ¢, and Agje are non-negative, while their traces at
Xxo were shown to vanish in the previous step. Second, note the matching conditions

O=/F3r(r)~a.c.)|8ﬁs(x0)d7'{l(s) =/F3r?»sing|azs(XO)d73‘(S) (5.78)
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which arise from the first part of (5.1) as &y is discontinuous at x¢. Together, (5.77)
and (5.78) yield the remaining parts of (5.74) and (5.75).

We briefly explain the matching conditions. Let ¢ € C2°(V) have ¥ (xg) = 1.
Combining the first part of (5.1) with (5.13) and (5.73) yields that

/lﬂdetVVpdxz/ [/ —lafw,\a_c_dwl] dH'(s)
% riJe 2

+/ [/ —1331/msingd(ﬂl} do (s).
rlfe 2

Integrating by parts with the ODEs (5.14) and (5.15) proves the identities
/ [ / 07 Yriac. dﬂl] dH' (s) = / 0r (rdaelae, (o) dH' (5)
r LJe, r

- 2/ Y detVVpdx,
v

/ [ / a}wxsmgd%‘] di(s) = / B hsinglae, (X0) A (5).
r ls r

The desired conditions (5.78) follow. 0O

6. Application to Shells with Curvature of Known Sign

This final section combines all of our previous results to deduce the patterns
seen in weakly curved, floating shells. In particular, we derive the diagrams in
Fig. 2 and use them to demonstrate our method of stable lines. This should serve
to complement the general presentation of the method in Section 5. In addition to
the basic assumptions in (1.14a), each of the examples we discuss will be subject
to the simplifying hypotheses that

Q2 is simply connected and det VVp is a.e. of one sign.

As usual, when we refer to “optimal” u we mean solutions of the primal prob-
lem(s) in (4.1). Equivalently, these are non-negative solutions of the boundary
value problem (5.1) where ¢ solves the dual. Our earlier results show that, under
the assumptions at the start of Section 1.2, such u are nothing other than the defect
measures of the almost minimizers of Ej x . Any reference to almost minimizers
is contingent upon the I'-convergence in Theorem 1.1.

This section is organized as follows. We begin in Section 6.1 with the general
task of solving the dual problem

1
max / (w — —|x|2) det VVpdx (6.1)
P R2>R Q 2

@ 1s convex
<p=%|x|2 on R2\Q

under the assumption that the shell is positively or negatively curved. We show how
this boils down to finding either the largest or the smallest convex extension ¢ or
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¢_ of %|x|2 into €2, and obtain two more or less explicit geometric optimization
procedures for doing so. Thus, we prove Proposition 1.1.

We then go on to the examples. Section 6.2 treats various positively curved
shells, including the ones depicted in Panel (a) of Fig. 2. Applying Corollary 5.1,
we learn that optimal p are uniquely determined on the ordered set O of ¢4, and
furthermore that they satisfy
—iagl (oX) =detVVp on O
oA =0 atdo N o

(6.2)
Here, 7 is a suitable choice of normal to the stable lines of ¢ . These will turn out
to extend between points on 9€2 throughout the set O where they are defined.

A parallel discussion of negatively curved shells is in Section 6.3. We show
how the stable lines of ¢_ follow the paths of quickest exit from €2, as indicated in
Panel (b) of Fig. 2. Such paths meet at the medial axis

uw=A1®1ndx onO, where

M ={x € Q:dyo(x) = |x — y| for multiple y € IR} (6.3)

shown in bold. Apparently, our negatively curved examples are such that their
stable lines fill out the given shells. Applying Corollary 5.2 or Corollary 5.3, we
consequently show that optimal p are unique and that they satisfy

1 42
—5-0 A) =detVVp on Q\M
w= AVEidyg ® Vidyodx on 2, where 20 Vg (%) P i\ .
OA = Ovgyq(0r) =0 at M

6.4)
We close with a general conjecture on the (conditional) uniqueness of optimal .
To be clear, the systems in (6.2) and (6.4), and that we derive in the examples
below, are only abbreviated versions of the ones implied by Corollaries 5.1-5.3: they
indicate a situation where oA restricts to H'-a.e. stable line £ as the unique weak
solution of an appropriate two-point boundary value or Cauchy problem (obtained
by restoring the s-dependences as in the corollaries). To lighten the notation, we
refer to such abbreviated systems throughout.

6.1. Optimal Airy Potentials and Their Stable Lines

We begin by proving Proposition 1.1. Let & C R? be a bounded, Lipschitz
domain that is simply connected, and let p € W22(2) be such that det VV p is a.e.
of one sign. Define the functions ¢+ : R> — R by

1

@4(x) = sup {(p(x) : ¢ is convex on R? and equals §| . |2 on RZ\Q} ,
1

¢—(x) = inf {(p(x) : @ is convex on R? and equals §| . |2 on RZ\Q}

for all x € R?. Clearly, if ¢ is admissible in the dual problem (6.1) then

o—(x) < p(x) < pi(x) Vax. (6.5)
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Lemma 6.1. The functions ¢ and ¢_ are convex, and are equal to % x| on R?\ Q.

Therefore, they are the largest and smallest convex extensions of %|x|2 into Q.
Furthermore, the formulas (1.43) and (1.44) hold: given x € <,

3

1
= mi 0; =i |? 6.6
@+ (x) {yf‘fé‘;‘,g 2 12|Yt| (6.6)

where the minimization is taken over all pairs and triples {y;} C 02 satisfying

x = Z@iy,- where {0;} C (0, 1) satisfies Z@i =1;
i i

also
1

<)—1||2
(p,x—zx >

de(x) where dyq(x) = min |x — y|. (6.7)
yea
Proof. The convexity of ¢ is clear, as the pointwise supremum of convex functions
is convex. It is also clear that ¢ = %|x|2 outside of 2. The formula (6.6) now
follows from the dual characterization of the convex envelope of a function as the
infimum of convex combinations of its graph (see, e.g., [21, Theorem 2.35]). Indeed,
we recognize from its definition that ¢ is the largest convex function bounding
the function % : R? — R equal to oo on €2 and %|x|2 on R?\ €2 from below. That
is, it is the convex envelope of % . Applying the dual characterization, we get that

3
@4 (x) = inf {Ze,-%(y,») cyi € R2and 6; € [0, 1] fori =1,2,3,

=1

l 3 3

X = ZGiyi, ZQi = 1}
i=1 i=1

3
1
= inf {29i§|y,-|2 cyi e R:\Qand 6, € [0, 1] fori =1,2,3,
i=1

3 3
X = Zf)iyi, Z@i = 1} .
i=1 i=1

The minimization can be parameterized by {y;}, as once these have been chosen
{6;} are determined. And, as %|x|2 is strictly convex, the minimizing {y;} C 92
whenever x € 2. This proves (6.6).

Now we discuss ¢_. We proceed in the opposite order, showing first that the
function .Z : R? - R equal to %|x|2 — %dgg on 2 and %lxl2 on R\ is convex,
and then checking that it equals to ¢_. Note by its definition that

1 1 1
L(x) = EIXI2 — 5 min x -y = max x -y — §|y|2-

Thus, .Z is convex as it is the pointwise supremum of affine functions. To finish,
we show that ¢ > % whenever ¢ is a convex extension of %|x|2 into Q. Clearly
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this holds for x ¢ €2, so fix some x € Q. Let y € 92 be a point closest to x, and
let z be on the line segment from x to y. Calling t = |z — x|, we obtain the bound
(y—x

-y
e t+ Z(x).

y—x y—-—x)-y Lo
<P<x+tdm(x)>2 Do) (¢ daQ(X))+2|y| =

Note in the last step we used that Z(x) = x -y — %| y|2. Setting r = 0 yields the
desired inequality ¢ (x) > L(x). It follows from its definition that ¢p_ = L. O

Corollary 6.1. The functions ¢ and ¢_ solve the dual problem (6.1) respectively
when det VV p > 0 and < 0 a.e. Furthermore, if either of these inequalities is strict
a.e., then (6.1) is only solved by the corresponding ¢+ or ¢_.

Proof. We give the proof in the case that det VVp > 0, as the other case is the
same. Rearranging (6.5) shows that ¢ — ¢ > 0 whenever ¢ is admissible for the
dual. It follows that

1 1
/((p+——|x|2)detVVpZ/ ((p——|x|2)detVVp.
o 2 o 2

As ¢4 is admissible by Lemma 6.1, it is a maximizer. On the other hand, if ¢ is a
maximizer it must be that

/(gp+ —¢@)detVVp =0.
Q

If, in addition, det VV p > 0 a.e., ¢ = ¢+ so that no other maximizer exists. O

Proposition 1.1 is proved. Note we also established the uniqueness in Remark 1.5.

6.2. Positively Curved Shells

We are ready to solve for the patterns in Fig. 2. Here, we treat the positively
curved shells shown in Panel (a), i.e., we let p € W>2() satisfy

detVVp >0 ae.

We begin each example by producing the largest convex extension ¢ of % |x|? into
the given 2. We identify its singular, flattened, ordered, and unconstrained sets X,
F, O,and U as well as its stable lines {¢, } following the definitions in Section 5.1.
Then, we show how to apply Corollary 5.1 to characterize optimal n. The end result
is a proof that optimal p are unique upon restriction to O, and that they satisfy a
version of (6.2).

Our first example is the positively curved ellipse in Panel (a) of Fig. 2.

Example 6.1. (positively curved ellipse) Let 0 < b < a and take as the domain the
ellipse

RN PRI S .
=1 (x1,x): =+ -% <
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We claim that
1/, b\ ,
or(x) = 3 b"+ 11— ) xi), xekE. (6.8)

It is straightforward to check using Lemma 4.5 that (6.8) defines a convex extension
of % Ix|? into E. It satisfies

b2
VV(p+ = (1 —a—2>é1®éldx on E

so that its Hessian is non-negative and uniformly bounded, and it equals to %|x|2
at 9 E. Since
X1 X2
X (—2, ﬁ> p2 ¥2 52
DoVerl= 2L (xj— (1= =)xpx2 ) =02/ L +22 >0 atdE,
[2 2 a? a* bt
1 + 2
a* Tt

(6.9)
we conclude that (6.8) is admissible. Now, we must verify it is the largest convex
extension. Given x € E there is a unique line containing it and parallel to é;. That
line intersects d E at two points {(x1, £x2(x1))}, and

x =60(xq1, x2(x1)) + (1 —0)(x1, —x2(x1)) forsomed € (0, 1).

If ¢ is any convex extension of %lx |2 into E it follows that

() < 0511, x20)P 4 (= 0~ x1, —r2G) = = (62 + 82 1—ﬁ
(0_21,21 21,21—21 2]

Thus (6.8) is indeed the formula for ¢4 on E.
Having obtained ¢, we note it partitions E according to

O=FE and X =F=U =90.

In particular, the entire ellipse is ordered. Its stable lines {£, } are the lines referred to
above or, rather, the portion of them within E. We finish by applying Corollary 5.1 to
characterize optimal . Given any sufficiently small § > 0, we claim the hypotheses
(5.51)—(5.54) hold with ¢ = ¢ and for

V={xeE:—a+d<x1<a-38}, ¢=1——, f=e.

That U - [Ve4] > ¢ > 0 follows from (6.9). The uniform transversality condition
IT-e1] > c(8) > 0is clear. Note we introduced the cutoff length & to deal with the
fact that |7 - €;] — 0 as x; — =a. As the stable lines are parallel, the change of
measure factor o from (5.13) remains constant and non-zero along each of them;
it is a function of x| whose exact form is immaterial and depends on the choice
of indexing curve I'. Applying Corollary 5.1 and taking § — 0 we conclude that
optimal p are unique, and that they satisfy

—193A=detVVp onE

=Ae1 ®eée1dx onE, where .
p=ragea =0 at OF

This completes our discussion of the positively curved ellipse.
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Next, we consider the positively curved disc. The corresponding entry in Fig. 2
is blank, indicating a complete lack of stable lines. As a result, we will be able to
construct infinitely many optimal 1.

Example 6.2. (positively curved disc) Let a > 0 and take as the domain the disc
D = {(x],xz) :xl2 +x% < az} .
Since 9D is a level set of % |x |2, it follows immediately from (6.6) that

1,
¢+(x)=§a, x € D.

Hence
VVgpy =0 onD
and the corresponding partition of D degenerates into
U=D and X=F =0 =4/.

The entire disc is unconstrained. The ordered set is empty and there are no stable
lines. Nevertheless, optimal p can still be characterized as non-negative solutions
of (5.1), which degenerates into the system

{—%curlcurl,u =detVVp on D 6.10)

(tot,u)=0 atdD

Note the PDE holds in the sense of distributions, while the boundary conditions
hold in the regularized sense, i.e.,

0=1 T, d 6.11
lim 8D|(r®t ws)| ds (6.11)
where {us}s=0 are as in (1.32). We used that D - [Voy] =a > 0at dD.

As a boundary value problem, (6.10) is severely underdetermined. Here is an
example of the non-uniqueness it permits: given any decomposition of D into a
disjoint family of open line segments with boundary points on 9D, and letting
1 € Lip,,.(D; S 1) be constant along and perpendicular to the segments, we claim
that the measure
1 agl (oA) =detVVp inD

uw=An®ndx onD, where {_E

(6.12)
or=0 atdD

is a solution of (6.10). Hence, it is optimal. Note o : D — (0, 00) is defined via
(5.13). That p is indeed a solution can be checked using the methods of Section 5.
Recall the system in (6.12) stands for a family of two-point boundary value problems
indexed by the given segments (just as in Corollary 5.1). The PDE in (6.10) now
follows more or less directly from the notation introduced in Section 5.2 above
Lemma 5.3. Establishing the boundary conditions takes a bit more work: we achieve
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them by reversing the proof of Corollary 5.1. Start by indexing the segments, which
we still call {£;}, with a curve I' C D such that D = Ugcr € where s +— £ is
one-to-one and s € {;. It will suffice to take I" to be Lipschitz. Rewriting (6.11)
using disintegration of measure, we must check that

o —y\ dH' (x)dH'
- [/ / 20 - A orp (x y) @) (y):|d7{l(s),
§—=0 Jser xedD Jyel; 8 )

where p € C2°(B1) is non-negative and integrates to one. We do so via the domi-
nated convergence theorem.

The bracketed integrals tend to zero JH!-a.e. due to the boundary conditions in
(6.12). Indeed, oA € WZ’I(EX) upon restriction to a.e. £, and the corresponding
traces at d¢; vanish. Integrating the ODEs from (6.12) along a.e. £ yields that
loA()| < d(y, 3€s)lodet VV pll i, 41y for y € €5 If (x, y) € 9D x £ satis-
fies |x — y| < &, then d(y, 3¢) Sa (8/H'(€s)) A H' (&) and |7(x) - ()| Sa
H'(¢5) v 8. Hence,

dH (x)dH' ()
5 Salledet VVpliLig g

- a2
%X,y)eanzs |t(x) : ’7()7)‘ oA (y)

lx—yl<8

for a.e. s. The righthand side is integrable by (5.13) since p € W22, Sending § — 0
completes the proof.

Even though the segments used above may remind of stable lines, we prefer not
to call them as such. For one, the decomposition D = Ugcr ¥ is not unique. Each
such decomposition gives rise to a different optimal © and, correspondingly, to a
different sequence of almost minimizers of Ej, i ,, under the assumptions at the start
of Section 1.2. In some asymptotic sense, this is the opposite of stability. Also, these
are not the only optimal p. In particular, the set of solutions of (6.10) is convex.
Taking convex combinations of the measures in (6.12), we deduce the existence
of optimal u that are everywhere rank two. The corresponding almost minimizers
feature two-dimensional patterns instead of one-dimensional, wrinkling-like ones.
We wonder if the disordered positively curved discs from [78] can be understood
using suitable solutions of (6.10). If no such u represents the observed patterns,
it would neccessarily follow that they cannot be modeled as almost minimizers of
Ep i,y as least in the parameter regime (1.11).

The previous examples set the extremes: whereas a positively curved ellipse is
totally ordered, a positively curved disc is totally unconstrained (save for boundary
data). Our next two examples sit somewhere in-between. They address the triangle,
square, and rectangle from Panel (a) of Fig. 2. What distinguishes the former shapes
from the latter is the fact that triangles and squares admit inscribed circles, whereas
rectangles do not.

Example 6.3. (positively curved tangential polygons) A tangential polygon is a
convex polygon that admits an inscribed circle, known as its incircle. Every regular
polygon is tangential; more generally, a convex polygon is tangential if and only if
its angle bisectors intersect at a distinguished point. This point is called the incenter,
being the center of the incircle just defined. Given a tangential polygon P, we call
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its contact polygon P’ the convex polygon whose vertices are the points of contact
of the incircle with P. Thus, P decomposes into a disjoint union of its contact
polygon and finitely many leftover isosceles triangles, one for each vertex.

Now let P be a tangential polygon with vertices aj, . .., a, € R” and interior
angles o1, . . ., &,. Let its incenter be at the origin, and call the radius of its incircle
a. Let P’ be the contact polygon defined above. The remainder P\ P’ divides into
n isosceles triangles, which we label as 7; fori = 1, ..., n. The labeling is such
that the ith vertex of the original polygon q; is a vertex of the ith triangle 7;. For
use in what follows, we take P’ to be closed (relative to P) and let each T; be open.
After a fairly straightforward but somewhat lengthy argument, one finds that

a’ xepP
((c-a)® + @) (lai] = x-@)’) xeTi=1,...n

D= N —

o+ (x) = {
for x € P. From this it follows that

n
VVpi = Z (1 + tan? (%)) a; ® aijlr, dx on P.

i=

The absolute continuity follows from the fact that P’ is the contact polygon of P.
Regarding the partition implied by ¢, we find that

O0=UT, U=P, o=F=4¢.

The triangles 7; are ordered, whereas P’ is unconstrained. The stable lines belonging
to the ith triangle 7; lie perpendicular to g; and extend from 9 P to 9 P.

Having identified ¢4, we can apply Corollary 5.1 to characterize optimal p.
Note (5.51)—(5.53) holds with ¢ = ¢ and for

2 (i ~ ~
V=T, ¢=1+tn (?) h=a
fori =1, ..., n. Theuniform transversality condition from (5.54) is easily checked,
as |T - a;| > ¢ > 0. Since
A A o AN A
Vo =x-a;a; — tan’ (El) (Iai| —Xx .ai)ai, xeT;
we see that
~ AlA A o AN A A
V-[Vei]l =x -ailv-aij‘—i—tanz(?l) (|a,'| —X -a,~)v-a,~ >0 atdTl; NaP.

Evidently, the first part of (5.54) fails for V as it allows for x — a;. However, this
is easy to fix: as in Example 6.1, we can introduce a small cutoff length § > 0 and
modify V such that D - [Vg,] > ¢(8) > 0. Note g is constant along the stable lines
as they remain parallel within each 7;. Applying Corollary 5.1 and taking § — 0
yields that

—302, 4 =detVVp onT;
A=0 atdT; NP

W =MXa; ®a;dx onT;, where

fori = 1,...,n. In particular, any two optimal u agree upon restriction to U; T;.
Much less is known at present regarding i on P’.
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Most polygons do not admit an inscribed circle, i.e., they fail to be tangential.
Nevertheless, the arguments appearing in the previous example can be adapted to
handle a more general case.

Example 6.4. (positively curved rectangle) Let 0 < b < a and consider the rectan-
gle

R={(x1,x3):—a <x; <a,—b <xy <b}.

Although R does not admit an inscribed circle, there does exist a one-parameter
family of maximally contained circles given by

C=lo - +d=p), —b-w<r<b-a
The left and rightmost circles
Ci=C_p—q) and C; = Cp_,

play arole analogous to that of the incircle above. Both C} and C; touch R at exactly
three points: call the triangles formed by these points 77 and T;. The remainder is
made up of four 45 — 45 — 90 triangles Trw, Tsw, Tse, and Tye and one sub-rectangle
R.. The subscripts nw and so on indicate location as on a compass. It will probably
be helpful to look at Fig. 2. There, 7} and T; are indicated in blank, whereas the
remaining triangles Ty, Tsw, Tse, Tne and sub-rectangle R are drawn with stripes.
For use with what follows, we take each of these to be open with the exception of
Ti and T;, which we take to be closed relative to R.

All this being said, we claim that the largest convex extension ¢4 of %|x 2 into
R is given by solving

0y e+ =0 onTheUTyw, 93194 =0 on Ty U Thy,
93¢, =0 on R, VVp, =0 onTPUTY (6.13)

with the boundary data
1
¢y = 5|x|2 at aR. (6.14)

The function defined by (6.13) and (6.14) is piecewise quadratic, and is affine upon
restriction to 77 and T;. Clearly, it is a convex extension of %|x|2 into R. To see
it is the largest one, we must show it yields an upper bound on any other convex
extension ¢. Evidently ¢ < ¢4 on Tj and T; since they are equal at their vertices.
Now let x € R\ (7] U T;) and consider the largest open line segment containing x
on which ¢ is affine (see the corresponding entry in Fig. 2). The boundary of each
such segment consists of two points yi, y» € d R. By convexity,

L L.
p(x) =07 NI+ A =0) 712l = ¢1(x),

where x = 0y; 4+ (1 — 0)y>. Hence, (6.13) and (6.14) indeed define the largest
convex extension of %|x|2 into R.
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Moving on, we see that

VVep, =(1,1)® {1, Dirur, dx+ 1, -1) ® (A, =Dz, dx
+(1,0) ® (1,0)1¢, dx on R.

Hence, R is partitioned by ¢ according as

0= (Uae{n,s} Taﬂ) UR.,, U=TUT, EX=F=40.
Bele.w}

The stable lines {£,} are parallel to (1, —1) on Tye U Ty, (1, 1) on Tge U Ty, and
(0, 1) on R, and they extend between pairs of boundary points. So, we can apply
Corollary 5.1 to characterize optimal . on O. We leave the details to the reader this
time, and simply point out that D- [V ] > 0 at d R, and that this bound degenerates
only at the vertices of R. Uniform transversality is clear; also, g is constant along
each stable line as they are parallel within the connected components of O. The
conclusion of Corollary 5.1 is that

1 1 1 1

—,—= | ®| —=,—= ) dx onTy UTg,

ﬁ ﬁ) (\/5 \/Z) ne SW
1 -1 1 -1

n = )\,senw <E, E) 024 (ﬁ, —2) dx on TSC @] an,

= he(1,0)® (1,0)dx on Re,

M = Anesw <

where
=502 | \nesw =det VVp in The U Ty,
(ﬁ’fﬁ) ,
knesw =0 at B(Tne U Tsw) NJoR
592 | \Asenw =det VVp in Tie U Ty
(%5:%) ,
Asenw = at 0(Tge U Tyw) NOR

—193h. =detVVp inR.
Ae=0 atdR.NAR "’
Optimal p are uniquely determined on Tpe U Ty, Tse U Thy, and Rc.

In the previous examples, stable lines ended up being parallel within each con-
nected component of O. Our last positively curved example exhibits non-parallel
stable lines. It is the half-disc from Panel (a) of Fig. 2.

Example 6.5. (positively curved half-disc) Consider a disc with radius ¢ > 0 and
center (0, a), and let

D, = [(xl,xz) :x% + (xp —a)2 < az,xz > a}.

Let (r, 8) denote polar coordinates about 0. Given x € D, consider the ray parallel
to ¢, (x) that passes through x and begins at the origin. This ray intersects 9 D at
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two points, which we label as p(x) and g(x) where |p| < |g|. Note there always
holds | p||g| = 2a>. Using this, it is easy to check the identities

Ipl= -2 and |q| = 2asiné, (6.15)
sin 6
which will come in handy below.
We now claim that
1 1
@4 (r,0) = E(Ipl +lgDr — EIPIIC]I onD,. (6.16)
As we show at the end of this example,
VVoy = .a3 e9g ®egdx on Dy,
r sin” 6

so that the partition of D is given simply by
O=D; and E=F=U=4.

The half-disc is totally ordered. Its stable lines {¢,} are the portions of the rays
described above within D . To identify u we apply Corollary 5.1 with ¢ = ¢
and with

a

V=D, =———, n=¢.
A rsin® 0 7

The hypotheses (5.51)—(5.53) are not difficult to check, but again we must be careful
about (5.54). Note that

1 R
Voy = E(Ipl + IgDer.
Hence,
N . 1 . 1 .
V- [Voi] = —er - ((x1,a) — E(Ipl +lgDer) = E(Iql —|pl)sin® >0

at the bottom part of d D, while at the top part

N X1 X2 1 )
P Vel = (3.2 = 1) - (r = 5Upl +1gD ) (cos6, sino)
a a 2
1 .
=5 (gl = IpD)sin® = 0.
Both inequalities are strict away from the corners where |p| = |¢|. Thus, we can

introduce a cutoff length § > 0 to be sent to zero as in the other examples. We get
that D - [Ve4] > ¢(8) > 0. The uniform transversality condition |7 - ég| > ¢ > 0
holds. This time, the change of measure factor from (5.13) satisfies o = cr(0)r
where the exact form of cr depends on the choice of indexing curve I'. This is
because the stable lines follow rays. Applying Corollary 5.1 and taking 6 — 0
proves that optimal u are unique, and that they satisfy

L92(r1) =detVVp in Dy

— Ay ®égdx on Dy, where { 27
f=ren e * {A:O at 9D,
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for the positively curved half-disc.

We finish by proving that (6.16) is indeed the largest convex extension of %Ix 2
into D . Making use of convexity along the rays, one easily concludes that ¢ < ¢4
as in the other examples. Here, we focus on checking that the given ¢ is a convex
extension after all. We apply Lemma 4.5. First, note that ¢, = +|x|? forx € D,

-2
In particular, when » = |p| it follows from (6.16) that

(.8) = ~(1pl + laDIpl = 1pllg] = 21p2 = 212
Y41, —217 qi)\p 2179—21’ —2r,

and similarly for » = |g|. That b - [Vg4] > 0 at d D4 was shown above. Finally,
we check that VV¢, > 0 on DT. Note that

1
¢+(r.0) = b1(O)r +bo. where by = —>|pllql = —a’
d b= ~(pl+1gh = < (25in6 + —
an = - = — | 2sin —,
L=l =5 Sin 6
due to (6.15). Differentiating twice yields that
1 . . 1 N N
VVpr = —(b] +b1)ép ® ég = —— 5 ®ep > 0.
r r sin” 6

The lemma now implies that ¢ is admissible and the example is complete.

Before moving on to the negatively curved examples, we pause to reflect on the
fact that the singular set ¥ turned out to be empty in each of the examples above.
Of course, this is related to the regularity of ¢ and, ultimately, to the shape of 9<2.
As an example of what can be proved, we note that if 2 is uniformly convex and
9Q € C11, then the results of [66,79] on Alexandrov solutions to the Dirichlet
problem det VVy = 0 in 2 and ¢ = 1 |x[? at Q2 imply that ¢ € C2! (). Of
course, ~ = ¢ in such a case.

6.3. Negatively Curved Shells

We turn to the patterns in Panel (b) of Fig. 2. These were drawn assuming that
pE W22(Q) satisfies

detVVp <0 ae.

For each specified shell we obtain the smallest convex extension ¢_ of %|x |2 into
2, which requires solving for the boundary distance function dyq from (6.7). Its
singular, flattened, ordered, and unconstrained sets X, F, O, and U follow, as do
its stable lines {£,}. Again, we refer to Section 5.1 for the relevant definitions.

Let us comment briefly on the role that the medial axis M from (6.3) plays. As
our examples will show, the stable lines of ¢_ follow the paths of quickest exit from
Q, i.e., they lie parallel to Vdyq where they exist. Based on this and the formula
for ¢_ in (6.7), it is reasonable to expect that

VVe_ = (1 — dyoAdyg) Vdyg ® Vidyg dx
+dyo [[Vdyall Oy @ Dy H' (M on Q 6.17)
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if M is regular enough. (For a general discussion on the regularity of the medial axis,

see [50].) We show a version of (6.17) in each example below, and use it to identify

the aforementioned partition and the stable lines. Finally, we prove that optimal u

are unique and that they satisfy (6.4) by applying Corollary 5.2 or Corollary 5.3.
We start with the negatively curved disc from Panel (b) of Fig. 2.

Example 6.6. (negatively curved disc) Let
D = H(xl,xz) :x12 +x% < a2]
and observe its medial axis is the singleton
M = {0}.

Using polar coordinates (r, 6), the boundary distance functionis simply dyp = a—r
and hence

1, D
_=ar ——<a~ onD.
¢ 2
Differentiating yields that
VVp_ = C—lég ®eégdx onD.
r

Eventhough VVg_ « dx,its density is not square integrable on any neighborhood
of M. Therefore, D is partitioned by ¢_ according as

Y ={0}, O=D\[0}, F=U=¢.

The stable lines form rays parallel to Vdyp = —eé,.
Next, we apply Corollary 5.3 to identify optimal p. Its hypothesis (5.71) holds
with

xo=0 and V = D.

We immediately conclude that the unique optimal p for the negatively curved disc
satisfies

—5-92(rx) = det VVp on D\{0} ‘

=Aeyp @ egdx on D, where
f=reo@e Fh=8,0r0) = 0 at0

In particular, the almost minimizers of Ej x , must exhibit an (approximately)
azimuthally symmetric response, of course subject to the assumptions at the start
of Section 1.2 under which our I"-convergence results hold.

Before moving on, we note that a similar result can be proved for the case of
a flat disc attached to a weakly curved spherical substrate—a model problem that
has been the focus of much previous research, including at least [11,24,34]. The
conclusion is that optimal p are uniquely determined, absolutely continuous, and
parallel to ég ® ég with a density as above. As far as we know, this yields the first
mathematically rigorous proof that azimuthal wrinkling is energetically preferred
in a problem absent tensile loads. That azimuthal wrinkling should be preferred has



1. ToBAsCO

often been explained as a consequence of symmetry (with the notable exception of
[11] where it was derived via minimization, albeit for a problem on the borderline
between tension- and curvature-driven). Just because a shell is naturally symmetric
does not mean that it should remain so when pressed onto a substrate, even if it
has the same symmetries as the shell: indeed, Example 6.2 shows that a positively
curved disc confined to the plane admits infinitely many non-symmetric optimal p
and, correspondingly, infinitely many non-symmetric almost minimizers. Whether
or not global minimizers must exhibit symmetry remains unknown.

Our next example concerns the ellipse in Panel (b) of Fig. 2. In lieu of producing
an exact formula for dyq, we will make use of the following fact: dyg is concave if
and only if €2 is convex [3]. Note this is an example where the medial axis is strictly
smaller than the singular set.

Example 6.7. (negatively curved ellipse) Let

E ( ) x%+x§ 1
=i, x):—=+-5<

where 0 < b < a. The boundary distance function djy g is smooth off of the closure

of the medial axis
_ b?
M = {(xl,O) x| Sa(l - —2>}
a

VVo_ = (1 —dypAdygp) Vidyr ® VEidyp dx
+dyg [[Vdyg]l| Oy @ Dy H LM on E

and we find that

as anticipated in (6.17). The function ¢_ partitions E according as
=M, O=E\M, F=U=90

and the stable lines {£,} run parallel to Vdyg. We now claim that there is a single
optimal p for the negatively curved ellipse, and that it satisfies

n= )»VJ'daE ® Vldg)E dx onE,

142 —
—L92, (oh) =detVVp on E\M
where 2 99a,; (@) = de P n_\ (6.18)

and where ¢ : E\M — (0, c0) is given by (5.13). We proceed in two steps: first,
we use Corollary 5.2 to identify w off of the half-open line segments

b2
L:I::{(XI,O)EEZ:I:)CI 2a<1__2)}’

a

and then we check that 4 = 0 on Ly by a separate argument.
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Recall £, denotes the stable line through x, given by £, = {0z + (1 —6)y :
0 € (0,1)}forz € M and y € dE. For any small enough § > 0, let

b2
Ms = {(xl,O) Cxi] < a <1 — —2> —8}
a

and observe the assumptions (5.58)—(5.62) of Corollary 5.2 hold with ¢ = ¢_ and
for

V=MsU{x € E\M: 3, N Ms#B), ¢=1—dyprAdye, 1 =Vitdyg.

In particular as E is convex, dyg is concave so that { > 1. Both |[VdyE]| and
|2a1 - V-dy | .. | are bounded below by some ¢(8) > 0 uniformly on Ms. Applying
Corollary 5.2 and sending § — 0 yields that

w=AVitdyp @ Vidypdx on E\{L,UL_},
—iaédaE(gx) =detVVp onE\{LyUL_} '
oA = vy, (0A) =0 at M

where

This identifies © uniquely off of the segments L.
All that remains is to prove that u = 0 on L. These segments are the closure,
. . 2
relative to E, of the stable lines between z+ = (Fa(l — %), 0) and y+ = (£a, 0).
Going back to Lemmas 5.2 and 5.3, we see that

plls = Asd,, +A:Vidyp ® Vidyr HY | L,
where A4(x) =cy +C+(x —z4) - Vdyg

and where A1 € Sym, and ¢4, ¢+ € R. The measures p| L+ are curlcurl-free in
the sense of distributions on E, i.e.,

0=/<VLVL1//,MLLi>=<Ai’VlVL1ﬂ(zi)>+/ hidyy, W dH'
E L

= (As VEVE Y @) + et ¥ (2e) - Eev (o)

for all v € CS°(E). It follows that Ay = 0 and c+ = ¢+ = 0. Thus, u|Ly =0
and this completes the proof of (6.18).

Several negatively curved convex polygons appear in Panel (b) of Fig. 2. We con-
sider these next. As in the previous example, the solution formulas from Section 5.3
must be supplemented by a separate argument showing that p is not supported on
certain leftover stable lines. This time, the argument involves the complementary
slackness conditions from (5.1).

Example 6.8. (negatively curved convex polygons) Let P be a convex polygon
with vertices aj, ..., a, € R? labeled in counterclockwise order and sides S} =
la1,az2], ..., S, = la,, ant1] where a, 11 = aj. The outwards-pointing unit nor-
mal vector to d P takes on n distinct values, which we label as

(@i — ait1)*t

, i=1,...,n.
la; — ajt1]

b =Dls, =
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The medial axis M is a tree made up of finitely many line segments. Its complement
P\ M is the disjoint union of n (open) sub-polygons P, ..., P,. The labels are such
that S; C 9 P;. Let Ty; and Dy denote unit tangent and unit normal vectors to M.
We take them to be locally constant off of its internal vertices.

With the notation set, we can describe ¢_. Observe that dyp = ds; = d(-, S;)
on the ith sub-polygon P;. Hence,

1 1
P §|x|2 - Edgi on P,

fori =1,...,n. As each side S; is a line segment, it follows easily that

n
VV¢_=ZﬁiJ‘®f)f'ﬂpidx+ Z dap|f1,‘—f)j|\A1M®lA1M7‘{1|_3P,‘03Pj on P.

i=1 I<i<j<n

Thus, the stable lines run parallel to Vdyp = ¥; on P;, and the original polygon P
is partitioned by ¢_ into the sets

X=M, O=P\M, F=U=¥/.

All this being said, we now claim that the unique optimal u is given by

n
M:Z)\iﬁf‘(@ﬁf‘ﬂpidx on P,
i=1
—%8?_)»,~ =detVVp on P; .
where Vi fori =1,...,n. (6.19)

A =0p2; =0 atoP,NM

As in the previous example, our plan is as follows: first we apply Corollary 5.2 to
identify u away from an exceptional one-dimensional set L, and then we verify
separately that w = Oon L.

Corollary 5.2 is built to handle situations where stable lines meet along a curve.
Here, stable lines meet along a tree—the medial axis M. Its edges are line segments,
its external vertices are given by {a;}/_, C 9P, and we label its internal vertices
as {zk},iv=1 C P. It will probably be useful to look back at the medial axis (in
bold) of the triangle, square, or rectangle in Fig. 2. Each internal vertex z; belongs
to the boundary of finitely many stable lines. Let L be the union of z; and its
associated stable lines, and let L = U,ivzlLk. Now in the same manner as was
done for Example 6.7 (and as will be done for Example 6.9 below), we can apply
Corollary 5.2 to deduce that

w=AV¥tdyp ® V*tdypdx on P\L,
—308, L=detVVp on P\L
A= dvaypr =0 at d(P\L) N M

where

thus showing it is uniquely determined there. For brevity’s sake we leave the details
of this to the reader, and simply note the relevant hypotheses can be checked using
that [V; — Dj, Ty - f)f-, and Ty - f)j.- are all non-zero at d P; N 9 P;.
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Itremains to show that u = 0 on L. Consider the restriction of u to Ly, which we
recall consists of z; along with the finitely many stable lines {£y,} having zx € 9£;.
The labeling is such that £;, C P;, and we think of it as running from z to the ith
side S;. In particular, £, is parallel to ;. Lemmas 5.2 and 5.3 prove that

ulLe = Ady + Y 1id @ D H' Ly, where A;(x) =i + & (x — 1) - D
i
(6.20)
for A € Sym, and ¢;, ¢; € R. Since | Ly is curlcurl-free in the sense of distribu-
tions on P, there holds

0= [ (vHotvnlie) = (4. 95V @) - Y et v + Y
P ; i
for all € C2°(P). It follows immediately that
A=0, Zciﬁi =0, Za =0. 6.21)
i i

So far, the argument has been more or less the same as in the previous example, and
indeed we can already conclude that 1 ({zx}) = 0. However, we cannot conclude
that | Ly = O at this point. The trouble is that stable lines belonging to different
P; may be parallel (e.g., for a negatively-curved rectangle). In such a case, at least
two of the vectors 7; appearing in (6.21) will be parallel, and the desired conclusion
that ¢; = 0 will not follow.

The key is to go back to the first complementary slackness conditions in (5.1),
which state here that (VLVL(/)_, M) = 0 in the regularized sense. In particular,

0= lim [ 1dap Vdipin © tur. us) A, (6.22)
g M

where {us}s~0 are the mollifications in (1.32). As noted in Remark 1.3, we may
take the kernel p > 0 nearby zero. Given x € M, observe using the non-negativity
of w, the formula (6.20), and Fubini’s theorem that

/ dyp|[Vdypll (Zy @ Tur, o) dH'
M

—y\ dH"(x)dH!
z/ / dap |V p1CO 1w () - 12 () (’“ . y) Sl
ye(si xeMNIP;

for each i. According to (6.22), the lefthand side tends to zero as § — 0. Regarding
the righthand side, note that dyp|[Vdyp]| and |7y - ﬁiLl are bounded away from
zero within the integral. Also, A;(y) — ¢; as y — zi along £,,. Using that p > 0
nearby zero, we find upon sending § — 0 that

ci =0 Vi (6.23)

With this, we can easily control the remaining {¢;}. Since n|{; > O there holds
A; = 0, and then using that A; (zx) = ¢; = 0 we see that d;, A; (zx) = ¢; > 0. It now
follows from the third part of (6.21) that

¢i =0 Vi (6.24)
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Looking back to (6.20) once more, we see that u|Ly = 0O for each k. Hence,
wlL = 0 and (6.19) is proved.

It is no accident that these last few steps followed along the same lines as the
proofs of Corollaries 5.2 and 5.3. Our task was, once again, to show that p vanishes
on certain leftover stable lines. The constraints (6.23) and (6.24) entered as Cauchy
data analogous to, e.g., (5.66) in Corollary 5.2. We imagine a similar approach may
be used to control p in other circumstances where the formulas from Section 5.3
do not directly apply.

Our final example is the half-disc in Panel (b) of Fig. 2. It is the only of our
examples in which M ends up being curved.

Example 6.9. (negatively curved half-disc) Consider a disc of radius a centered at
the origin and let

Dy = {(xl,xz) : x12 —I—xg < a2,)C2 > O} .
Note dyp, is smooth away from the medial axis

M = {(xl,xz):2ax2=a2—x%,x2 >0}

which is the unique parabolic arc passing through the corners (£a, 0) and (0, 5).
Denote the part of D below M by D g and the part above M by D,N. Then,

VVe_ =& ®é11p,dx + ‘;’ée ®é9lp,y dx
+dyp., !éz + ér| by @Dy H' M on D..
We see that ¢_ partitions D4 according as
=M, O=D,\M, F=U=90.

The stable lines are parallel to Vdyp, = é; in Dis and Vdyp, = —eé, in DyN.
A straightforward application of Corollary 5.2 proves that optimal p are unique.
The conditions (5.58)—(5.62) hold for ¢ = ¢_ and for

1 xeD+S ~ él X€D+s
V=D+7 é‘:{a UZi

- x€D+N’

, ep x € DN

In particular, the medial axis is smooth and the quantities |e; + €|, [Ty - €1], and
|Tas - €g| are uniformly positive there. Also, ¢ > 0 uniformly on D.. Finally, we
see that o = cg(x1) in Dyg and o = ¢y (0)r in D4y due to the fact that the stable
lines describe either parallel lines or rays (the functions cg and cy depend on the
index set I'). Applying Corollary 5.2, we conclude that optimal u satisfy

w=>Asés ®é21D+s dx + Anég ®éng+N dx on Dy,
where

—3021s = det VVp in Dy o —5-02(rAN) = det VVp in Din
As = dis =0 at M AN =0AN =0 atM

These systems determine optimal p uniquely for the negatively curved half-disc.
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We close with a general conjecture on the uniqueness of optimal w. Although
optimal p turned out to be unique in each of the negatively curved examples above,
the reader may yet wonder whether the convexity of €2 is crucial for this, or if it
is simply an artifact of our examples. We believe the latter is true. In fact, based
on our method of stable lines, we expect optimal p will be unique whenever there
exists an optimal ¢ that is nowhere locally affine (regardless of the curvature).
Here is a more concrete version of this conjecture specialized to simply connected,
negatively curved shells. Recall the medial axis M from (6.3) and the change of
measure factor ¢ from (5.13).

Conjecture 6.1. Suppose that 2 is simply connected and let det VVp < 0 a.e.
Assume the paths of quickest exit from 2 do not meet at d<2. Then optimal u are
unique, and moreover satisfy

w=AVidyo ® Vidygdx onQ,

1 - -
where 20 anE)Q (oA) = detVVp OHE\M .
or = dvay, (01) =0 at M
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