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Neşet Ünver Akmandor
Department of Electrical and Computer Engineering

Northeastern University, Boston, MA, 02115, USA

Email: akmandor.n@northeastern.edu
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Abstract—This paper introduces a reactive navigation frame-
work for mobile robots in 3-dimensional (3D) space. The pro-
posed approach does not rely on the global map information
and achieves fast navigation by employing a tentacle-based
sampling and their heuristic evaluations on-the-fly. This reactive
nature of the approach comes from the prior arrangement of
navigation points on tentacles (parametric contours) to sample
the navigation space. These tentacles are evaluated at each time-
step, based on heuristic features such as closeness to the goal,
previous tentacle preferences and nearby obstacles in a robot-
centered 3D grid. Then, the navigable sampling point on the
selected tentacle is passed to a controller for the motion execution.
The proposed framework does not only extend its 2D tentacle-
based counterparts into 3D, but also introduces offline and online
parameters, whose tuning provides versatility and adaptability of
the algorithm to work in unknown environments. To demonstrate
the superior performance of the proposed algorithm over a
state-of-art method, the statistical results from physics-based
simulations on various maps are presented. The video of the
work is available at https://youtu.be/rrF7wHCz-0M.

I. INTRODUCTION

Towards realizing fully autonomous robots, motion and

path planning remains to be an active and still challenging

research direction in robotics. Especially because of their

mobility and flexibility, the real-world applications with

unmanned aerial vehicles (UAVs) have become the focus

of many academic [1], [2] or industrial projects [3], [4].

Based on their use cases, these applications involve highly

challenging tasks, such as mapping [5] and safe path planning

[1], [2], [6], [7], which commonly require considerable

amount of memory to store the data and computational power

to process them. In order to meet these requirements and

focusing on the autonomous navigation problem in unknown

environments, researchers [8], [9] develop algorithms that are

capable of both working on onboard systems and performing

online data processing.

A. Contribution

In a real-world scenario, one of the biggest challenges

in autonomous navigation problem is the lack of the prior

knowledge of a global map. Even the map is available,

the dynamic nature of the environment makes this prior

info impractical to use as a reliable source. To solve this

problem, we propose a reactive path planning framework

by extending tentacle-based navigation for 3D environment.

Without using any prior global map and planning the entire

path, at each iteration the robot’s next pose is determined by

the evaluation of the pre-calculated sampling points. To the

best of our knowledge, this is the first use of tentacle-based

sampling within a reactive navigation framework for 3D

environments. We divide the ego-centered volume around

the robot into voxels to provide direct mapping of the

occupancy data into a 3D grid. As our second contribution,

we introduce offline and online parameters to enhance

navigation performance in unknown environments. The

methodologies of tuning these parameters are discussed

throughout the paper. Third, we provide the implementation

details including computational complexity analysis to enable

the reproducibility of the algorithm. Last, we compared

our algorithm with the state-of-art method using benchmark

map datasets. Overall, our proposed reactive algorithm

outperforms two configurations of the other method in terms

of success rate and navigation duration. The open-source

implementation of the algorithm and the benchmarks can be

found at https://github.com/RIVeR-Lab/tentabot.

B. Related Work

Authors in [7] keep the local occupancy information around

the robot by a 3D circular buffer and adjust the local trajectory

represented by a B-spline. Despite having the possibility

of getting stuck at the local minima, the parameters of the

B-spline is calculated by optimizing a cost function which

pulls the robot towards goal and drive away from obstacles

while keeping the robot’s motion stable. Lin et al. [1] and

Gao et al. [6] require high computation power due to their

image processing and optimization steps. Both framework

estimate the 3D local map using the data from camera and

inertial measurement unit. Based on the map, the work in

[1] generates the local path by a sampling-based algorithm,

RRG [10]. Differently, Gao et al. [6] calculate Euclidean

Signed Distance Field and applies fast marching method to

obtain the path. Initializing with a given path, the non-linear

optimization solver ensures the smoothness and dynamical

feasibility of the final trajectory for each method. In [9],

Mohta et al. propose a trajectory planner in GPS-denied

and cluttered environments, providing detailed aspects on
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both hardware and software. Similar to the aforementioned

algorithms, they also combine a sampling-based method,

A* [11], with an optimization process to generate the robot

trajectory. To avoid local minima during trajectory calculation,

they propose a combined map structure that keeps the local

occupancy information in 3D while the global one is in 2D.

However, even though the global map is planar, the size of

the map and discrete nature of the A* algorithm limit their

framework for the real-world scenarios. Being one of the

most recent works in the autonomous navigation context,

Oleynikova et al. [5] propose a framework for mapping,

planning and trajectory generation. Having vision based

sensing, they compute the Truncated Signed Distance Field

to project the environment around the robot into a map which

represents the collision costs. For the path planning, they first

generate a deterministic graph in the free-space of their map

and then find the path using A*. In the last step, the trajectory

of the robot is calculated by the optimization considering

the trade-off between reaching to the goal and exploration.

In another recent Micro Aerial Vehicle (MAV) framework

[8], the local occupancy information is represented by linear

octree structure. Following that, the motion of the robot is

planned by RRT-Connect [10]. The trajectory generation,

which includes an offline stage of LQR virtual control

design and Lyapunov analysis, guarantees that the dynamic

constraints are satisfied.

The idea of reactive navigation has emerged to traverse

dynamic environments where agent does not have a prior

global map but only the local sensor information. Escobar

et al. [4] and Beul et al. [3] use visual perception and

reactive control algorithms to avoid obstacles and achieve

fast navigation towards the goal with a Unmanned Aerial

Vehicle (UAV) system. Their approaches differ from each

other such that Escobar et al. use potential fields to reach

the goal, while Beul et al. plan a path of poses using the

integration of A* and Ramer-Douglas Peucker algorithms.

For a 2D action space, the reactive navigation algorithm

[12] of the 2007 European Land Robot Trial winner and

DARPA Urban Challenge finalist team enables fast navigation

towards to a goal while avoiding obstacles in highly cluttered

environments. In their paper, Von Hundelshausen et. al. refer

pre-calculated trajectories as tentacles which are formed

with respect to vehicle’s coordinate frame. Additionally, they

present a methodology to use these tentacles as perceptual

primitives to map occupancy grid information into a tentacle

(trajectory) selection. Later, they extend their previous work

by accumulating LIDAR data into multi-layered occupancy

grid in [13] and updating their circular tentacle form to

clothoid considering steering angle in [14]. Integrating their

robot’s kinematics into circular tentacle calculation, Cherubini

et al. [15] use visual data for navigation while avoiding static

obstacles. Then they perform dynamic obstacle avoidance in

their following paper [16]. The work in [17] forms clothoid

version of tentacles and the selected tentacle is performed by

their vehicle using a lateral controller based on Immersion and

Fig. 1. The robot-centered grid G (shaded grey region) is formed by Nv

voxels with dimension dv . In each time step, local occupancy info around the
robot is mapped into G. While navigating towards the goal (red sphere), only
obstacles (yellow cubes) inside G is considered. Tentacles are formed by the
group of pre-calculated sampling points that are fixed to robot’s coordinate
frame. The occupancy around the robot determines whether the tentacle is
navigable (green), non-navigable (red) or temporarily navigable (blue).

Invariance principle. Similarly, forming clothoid trajectories,

study in [18] decides best tentacle at each step by Markov

Decision Process and in [19] they map occupancy information

into an evidential grid structure which enables to represent

sensor based uncertainties. Instead of a path planner, Zhang

et al. [20] use tentacle concept to ensure multiple UAV flight

formation and reactive obstacle avoidance. Most recently,

Khelloufi et al. [21] propose a tentacle-based obstacle

avoidance scheme for omni-directional mobile robots which

can visually track a target while navigating.

II. 3D REACTIVE NAVIGATION FRAMEWORK

A. Context

Our navigation framework is defined in 3D workspace

which is assumed to consist of either free or occupied

subspaces in a fixed Cartesian coordinate frame W . The

occupied space contains both static and dynamic objects

including our robot. In order to locate these objects and

update their recent positions, pW(x,y,z), let us also define the

local robot frame R and the sensor frame S with respect to W .

The main objective of our algorithm is to find a navigable

path from a start position pstart to a goal position pgoal, mean-

while satisfying multiple objectives such as; closest proximity

to the goal, collision-free path and minimum navigation time.

B. Robot-Centered 3D Grid

Enhancing the 2D approach from [12], 3D grid, G, is

formed around the robot by aligning both coordinate frames

as shown in Fig. 1. The robot-centered grid is composed

of Nv cubic voxels. The number of voxels, nv
{x,y,z}, for

each axes is determined by Nv = nv
zn

v
yn

v
z . The width,

length and height {w, l, h}G of the grid is calculated as

{w, l, h}G = dvnv
{x,y,z} by the given voxel dimension, dv .

As an input to our framework, the point cloud data, D,

is assumed to be received at a specified frequency fS . This

data could be obtained by any sensor that measures spatial
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occupancy information around the robot and it is assumed

in the form of D = {[pSm(x, y, z), ρm] | m = 1, ..., ND}.

Here, pSm(x, y, z) is the coordinate of an occupied point with

respect to sensor frame S and ρm is the probabilistic belief

value that sensor supplies. Each received occupancy point m
is mapped into its respective voxel which keeps the average

belief value as ρavg . Although our proposed framework

does not keep a global map, we store some history of the

point cloud data to compensate the lack of the occupancy

information in the close range of the robot. Taking into

account the minimum range of the sensor starts from some

threshold, the occupancy history plays a crucial role to avoid

obstacles, especially when the robot changes its orientation

rapidly.

Since our proposed algorithm is designed to navigate in 3D

space unlike in [12], we need to keep point cloud information

without any planar mapping. On the other hand, considering

memory efficiency, our algorithm also keeps the point cloud

data, in a linear array format. The mapping, M : SE(3) →
SE(1), from Cartesian coordinates to linearized index is given

in the Eq. (1) where {x, y, z} are given with respect to R in

light of the coordinate frame transformation from S. From

the programming perspective, this data could also be stored

by a memory efficient tree structure Octomap [22]. However,

since run-time of a search in this tree structure has O(nlog(n))
compared to constant O(1) time in linear array, we prefer

faster call over memory efficiency in our implementation.

A(oi) = ρavg , where (1a)

oi = oix + oiyn
v
x + oizn

v
xn

v
y (1b)

oi{x,y,z} =
nv
{x,y,z}
2

+ floor(
{x, y, z}

dv
). (1c)

C. Tentacles

Tentacles are pre-calculated paths that are fixed to robot’s

coordinate frame starting from the volumetric center of the

3D grid. Assuming the constant lateral and angular velocity,

[12] generates these tentacles as circular arcs since drivable

paths of their ”bicycle modeled” ground vehicle are circular.

When omni-directional robots are considered, linear paths

can be considered as the common ground since they sample

the space more uniformly than its counterparts and they

are simpler in terms of computation. Although it is not

strictly necessary, generating these tentacles by considering

the dynamical structure of the robotic platforms tends to

improve the performance of the navigation algorithm. The

generated tentacles do not necessarily match with the feasible

path solutions, because they are also used to sense the

environment. Hence, instead of kinodynamically sampling

the tentacles, in our framework the feasibility of the selected

path is left to be validated by the motion execution block.

Each tentacle is formed by the sampling points, pR(x,y,z),
which are initiated on the xy-plane with respect to robot’s

coordinate frame, R. Each tentacle has lt length and is formed

by ns sampling points. The angular coverage, ϕ, of total

tentacles along the yaw (z-axis) is sampled by nϕ number

of tentacles. Then these planar tentacles are extended to 3D

by either rotating around pitch (x-axis) or roll (y-axis). Hence,

the respective θ or ψ angles are sampled by either nθ or nψ

number of tentacles. For each tentacle j, the position of each

sampling point pRk (x, y, z) are stored in the set Tj . Hence,

the total set, Q, of N t tentacles contains Ns sampling points

as shown in Eq. (2), where N t = {nϕnφ|φ ∈ {θ, ψ}} and

Ns = N tns.

Q = {Tj | j = 1, ..., N t} (2a)

Tj = {pRk (x, y, z) | k = 1, ..., ns}. (2b)

D. Support and Priority Voxels

For each tentacle j, the set of voxels are determined

based on the distance between the sampling points on

the tentacle and voxel positions in G. The voxel structure

consists of four variables where v = (o, β, s, c). These

variables are adjusted prior to the navigation to enable fast

computation of the heuristic values. The first variable, o,

is the index of the of the corresponding voxel position in

the linearized array, A. The second variable, β, keeps the

occupancy weight based on the shortest distance between

the voxel and the jth tentacle. The third variable, s holds

the index of the closest sampling point on the jth tentacle

to the voxel. Last variable, c indicates the class type of the

voxel which can be either Priority (c = 1) or Support (c = 0).

In the robot-centered grid, the subset of voxels in the close

range of each tentacle, are classified as either Support Sv

or Priority P v , corresponding to ”Support and Classification”

areas in [12]. These voxels are extracted as in the Eq. set

(3), based on the distance thresholds τS
v

and τP
v

where

τS
v

> τP
v

. Each tentacle j has its own set of Support and

Priority voxels which are determined by the closest sampling

point, pmin ∈ Tj which satisfies the Eq. (3a). Hence, the set,

Υ, which contains support, Sv , and priority, P v , voxels for all

tentacles can be defined as Υ = {Sv
j ∪P v

j | j = 1, ..., N t}.

The Fig. 2 shows the extracted Priority and Support voxels for

a particular tentacle.

vi ∈
{
P v if |M−1(oi)− pmin| < τP

v

Sv if τP
v

< |M−1(oi)− pmin| < τS
v (3a)

ci =

{
1 if vi ∈ P v

0 if vi ∈ Sv , where
(3b)

Sv ∩ P v = ∅ & Sv ∪ P v ⊆ G, (3c)

|M−1(oi)− pmin| < |M−1(oi)− pk|. (3d)

The occupancy weight for each voxel βi is calculated by

the function in Eq. (4). For ∀vi ∈ P v the equation gives the
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Fig. 2. Each tentacle has its own set of Support Sv (magenta) and Priority P v

(red) voxels inside the robot-centered grid. Tentacles are evaluated based on
the occupancy in these voxels. If the occupied voxel is in Sv , its weight β has
higher value when it is closer to the tentacle. The weight gets its maximum
when the voxel is in P v .

maximum weight βmax, since Priority voxels are the closest

ones to the corresponding tentacle and any occupancy on them

might imply a high-impact collision risk. When vi ∈ Sv ,

the value of the weight become decreasing for farther voxels,

where the rate can be adjusted by the parameter αβ > 0.

βi =

{
βmax if vi ∈ P v

βmax

αβ |M−1(oi)−pmin| if vi ∈ Sv.
(4)

E. Tentacle Evaluation

In every cycle of the algorithm, each tentacle j is

evaluated by five heuristic metrics derived from the path

planning literature. In this paper, we address these metrics

as Navigability Πnav
j , Clearance Πclear

j , Nearby Clutter

Πclut
j , Goal Closeness Πclose

j and Smoothness Πsmo
j . Our

interpretation of these heuristic functions are given in the

following subsections:

1) Navigability: For each tentacle j, Πnav
j assigns whether

it is navigable (1), non-navigable (0) or temporarily navigable

(−1) using the Eq. (5a). Here, the variable lt is the tentacle

length. The crash distance threshold τ crash can be adjusted by

the rate parameter αcrash > 0 as in Eq. (5b). lobsj in Eq. (5c) is

the distance from the first sampling point to the first occupied

sampling point at kobs which satisfies the Eq. (5d) given the

occupancy error threshold τDerr . The function Hkj
projects

the occupancy information of the Priority voxels onto the

sampling points on the corresponding tentacle. To do that, first,

the occupied Priority voxels, corresponding to the sampling

point k on the tentacle j, are determined. This is equivalent

to find vij ’s in the Eq. (5e) and form the occupancy bins as

in the example shown in Fig. 3. Then, the projection function,

Hkj
, is computed by the Eq. (5e) where the constraints are

given in the Eq. (5f) and (5g).

Πnav
j =

⎧⎪⎨
⎪⎩
1, if lobsj = ltj
0, if lobsj < τ crash

−1, if τ crash < lobsj < ltj

(5a)

where

τ crash =
ltj

αcrash
(5b)

lobsj =
ltjk

obs
j

ns
(5c)

kobsj = min
j

kj , s.t. Hkj
> τDerr ∀kj (5d)

Hkj =
∑
vij

1 (5e)

vij = (oij , βij , sij , cij ) ∈ P v (5f)

M−1(oij ) = pmin ∈ Tj , s.t. A(oij ) > 0. (5g)

Fig. 3. Given the planar navigation scenario where the Support (magenta)
and Priority (red) voxels are extracted for the two tentacles. Suppose that the
crash distance is up to the second sampling point, the left tentacle becomes
non-navigable since index of the sampling point, whose occupancy bin is not
empty, is less than the crash distance. On the other hand, the right tentacle is
classified as temporarily navigable due to the index of its first occupied bin
is higher.

2) Clearance: Πclear
j reflects proximity of an obstacle on

the tentacle. It is obtained by the ratio of lobsj and the tentacle

length ltj as shown in Eq. (6). The value range of the function

changes from 0 (totally clear path) to 1 (occupied) based on

the closest occupancy determined by the variable lobsj which

is already calculated while obtaining Navigability function.

Πclear
j = 1− lobsj

ltj
. (6)

3) Nearby Clutter: In order to evaluate the nearby clutter

value Πclut
j for each tentacle j, the total weight Ωtot

j and the
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total occupancy weight Ωobs of Priority and Support voxels

are calculated as in Eq. (7).

Πclut
j =

Ωobs

Ωtot
, where, (7a)

Ωtot =
∑
vi

βi (7b)

Ωobs =
∑
vi

βiA(oi) (7c)

vi = (oi, βi, si, ci) ∈ P v ∪ Sv. (7d)

4) Goal Closeness: Πclose
j is calculated by the Euclidean

distance between a specified sampling point on the tentacle

pRs and the goal point pgoal such that:

Πclose
j = |pWs − pgoal|, pRs ∈ Tj . (8)

5) Smoothness: Πsmo
j is used for smoother tentacle transi-

tions. The function assigns lower values to the tentacles which

are closer to the previously selected tentacle j = best as shown

in the following equation. Similar as in the Goal Closeness

function, pRkj
is the specified sampling point on the tentacle j.

Πsmo
j = |pRkj

− pRkbest
|, pRj ∈ Tj . (9)

F. Tentacle Selection and Execution

The cost function of each tentacle, Fj , is calcu-

lated by the weighted sum of four heuristic func-

tions, Πclear
j ,Πclut

j ,Πclose
j ,Πsmo

j and the adjusted weights

λclear, λclut, λclose, λsmo respectively shown in the Eq. (10).

The tentacle j which is evaluated as the minimum of Fj and

classified as completely or temporary navigable by Πnav
j is

selected as the best tentacle as in the Eq. 11.

Fj = λclearΠclear
j + λclutΠclut

j

+λcloseΠclose
j + λsmoΠsmo

j

(10)

jbest = argmin
j

Fj , ∀j. (11)

To determine the next robot position, we consider kinematic

constraints of the robot such as maximum lateral and angular

speeds. Instead of sending the first sampling point on the

selected tentacle to the motion controller, we interpolate the

point between current robot position and the sampling point at

the crash distance of the selected tentacle. At each processing

time dt, the computed pose command is sent to the motion

control unit where the lower level actuation is executed.

G. Implementation Details

We implement the proposed algorithm and the data struc-

tures in ROS Kinetic using C++. The pseudo-code is demon-

strated in Algorithm 1 which enables the autonomous navi-

gation in an unknown map perceived by the robot’s sensors.

In this context, we assume that the global positioning and

odometry information of the robot and the goal(s) are available

throughout the navigation.

Algorithm 1: Tentacle-based reactive navigation

input : global coordinate frame W , goal point pgoal,
point cloud data D, robot parameters χR,

ofline parameters χoff , online parameters χon

begin
A ← InitializeLinearGrid(D, χR, χoff );

Q ← GenerateTentacles(χR, χoff );

Υ ← ExtractSupportPriorityVoxels(χoff , Q);

while goalNotReached or t < Tlimit do
A ← UpdateLinearGrid(D, χR, χoff );

for each tentacle j do
Hj ,Ω

tot
j ,Ωobs

j ← UpdateOccInfo(χoff ,

χon, Υ, A);

Πnav
j ← UpdateNavigability(χoff , χon,

Hj);

Πclear
j ← UpdateClearance(χoff , Πnav

j );

Πclut
j ← UpdateClutter(Ωtot

j , Ωobs
j );

Πclose
j ← UpdateCloseness(W, χR, χon,

pgoal);
Πsmo

j ← UpdateSmoothness(χR, jbest);
Fj ← UpdateCost(Πnav

j , Πclear
j , Πclut

j ,

Πclose
j , Πsmo

j );

end
jbest ← SelectBestTentacle(Fj);

χR ← ExecuteMotion(χR, jbest);
end

end

Given as the input to the framework, structure of robot

parameters χR includes volumetric, and kinematic information

of the robot along with occupancy sensor specifications as

described in Table I. In order to enable utilization across

robotic platforms, instead of considering exact volume of the

robot, we adopt a bounding box model. The maximum lateral

and angular velocity parameters affect the tentacle generation

process. Similarly, the resolution and the range information of

the navigation sensor define the size of the robot-centered 3D

grid.

The remaining input parameters, which directly affect

the performance of the proposed navigation algorithm, are

grouped into two categories and named as offline χoff and

online χon as given in Table I. Since the reactive nature

of the algorithm is empowered by the fast computation, the

offline parameters are adjusted only before the navigation. On

the other hand, online parameters can be updated during the

navigation without causing much computational burden but

to improve the performance. In essence, the general form of

the tentacles and the robot-centered grid are formed by χoff

while navigation preferences such as greediness towards the

goal or timidness while avoiding obstacles are tuned by χon.

Before the main navigation loop, the algorithm begins

with the initialization of the robot-centered grid structure,
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TABLE I
PARAMETERS

Robot Parameters χR Description
wR, lR, hR Width, length, height of the robot
vlat Max forward lateral velocity of the robot
ωϕ, ωθ, ωψ Max angular velocity of the robot in yaw,

pitch and roll
ds Resolution of the navigation sensor
ρx, ρy , ρz Maximum range of the navigation sensor in

x, y and z axes.

Offline Parameters χoff

dv Voxel dimension
nv
{x,y,z} Number of grid voxels in each axes

nϕ, nθ, nψ Number of tentacles in yaw-pitch-roll
ns Number of sampling points on a tentacle

lt Tentacle length
ϕ, θ, ψ Covered angle of tentacles in yaw, pitch and

roll

τP , τS Distance thresholds with respect to Priority
and Support voxels

βmax Max occupancy weight of Priority voxels
αβ Occupancy weight scale of Priority and

Support voxels

Online Parameters χon

αcrash Crash distance

λclear Clearance weight

λclut Nearby clutter weight

λclose Goal closeness weight
λsmo Smoothness weight

which consist of a two linear array of size (Nv). First array

allocates memory for the occupancy information projected

into the grid. The second one keeps positions of the voxel

centers to enable mapping between 3D and linear indices.

Then, the tentacles are generated by defining sampling points

and their group (such as linear, circular, etc.) structure.

The whole sampling points, (x, y, z), are stored in a 2D

vector of size (N tns), where each group of sampling points

corresponds to the same tentacle. Having the robot-centered

grid and tentacle information, Support and Priority voxels

v = (o, β, s, c) are extracted and kept in a 2D array of size

(N tnSP ) where nSP ⊆ Nv . Hence, the order of growth of

the whole pre-navigation functions can be given as O(N tnv).

The reactive navigation algorithm iterates until all of the

goal points are reached or the time limit is exceeded. In

the first step of each iteration, the linear occupancy grid is

updated with the most recent point cloud information, D,

which contains ND data point. This takes O(ND) processing

time in our implementation. Then for each tentacle j where

j ∈ {1, ..., N t}, the heuristic functions are calculated. Since

these functions are evaluated based on the sampling points,

each of these functions also have a loop of size equal to the

number of samples ns. Therefore, computation time of all cost

functions is bounded by O(N tns) where the best tentacle

selection is O(N t). In the last step of each iteration, the

execution of the pose command is performed by the controller

developed by [23] to generate the rotor actuation of the UAV

in the physics-based simulations.

III. RESULTS

For the benchmark, two types of maps in Gazebo environ-

ment, which are available in the code repository of [7], are

used. The first type, shown in the top left of the Fig. 4, consists

of cylindrical obstacles in 20x20m2 area. We keep the same

goal positions, as in [7], which are determined to maximize

the travelled distance. The second type of map, provided by

the ”forest gen” ROS package [2], contains tree shaped

obstacles whose density is 0.2trees/m2 inside of a 10x10m2

area. To enable rotor dynamics in our simulations, the AscTec

Firefly model is used from the ”rotors simulator” package

[24] where the RGB-D sensor is mounted on the robot.

Fig. 4. For the benchmark, two types of maps in Gazebo environment are
used. (Top left) The first type consists of cylindrical obstacles in 20x20m2

area. (Top right) The second type of map contains tree shaped obstacles whose
density is 0.2trees/m2 inside of a 10x10m2 area. (Bottom) Rviz is used
to observe status of the navigation including the occupancy, the trajectory of
the robot, formation and navigability of tentacles.

Before running the simulations, the χR, χon, χoff are

adjusted based on the robot model, sensor specifications and

the navigation task. The range of the sensor regulates the

tentacles’ length and covered angles along yaw and pitch.

Hence, tl, ϕ, θ are set to 10m, 60o and 45o respectively. The

priority distance threshold τP is adjusted to 0.4m to encircle

the bounding box of the robot while the support distance

is set approximately twice more, τP = 1m, empirically.

Having specified the tentacle length and priority distance,

the number of sampling points on a tentacle is assigned to

ns = 30 in order to keep the robot inside of the priority

voxels throughout the tentacle. The occupancy weight scale

of the priority and support voxels is adjusted to αβ = 10.

The max occupancy weight is set to βmax = 1 to keep the

occupancy weights in the range of [0, 1].

To analyze the effect of the remaining offline parameters

on the computation time, 3 sets of simulations are performed

and the results are given in the Table II. Having the sensor

with the resolution of 0.15m, we test the voxel dimension dv

for 0.2m and 0.1m. In order to match the grid dimensions
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with the tentacles’ length, the number of voxels in each axis

nv
x,y,z are doubled when the dv is scaled down to half. This

increases the total number of voxels in the grid by 8 times.

Reflectively, the computation time of the initialization process

of the linear grid, when dv = 0.1, is measured 8 times more

than when dv = 0.2. The second and third column of the Table

II demonstrate the linear relationship between the number of

tentacles and the total computation time of the ”GenerateTen-

tacles” and ”ExtractSupportPriorityVoxels” steps. As expected,

the computation time is measured twice as much when the

N t is doubled. The duration of the main iteration steps,

especially for the ”UpdateOccInfo” and ”UpdateHeuristics”

steps, are harder to analyze since the calculations also depends

on the momentary environment around the robot. Nevertheless,

the statistical computation times, shown in Table II, indicate

logical results with respect to the changes in dv and nv
x,y,z .

Moreover, the total processing time of each simulation set

proves that the algorithm is capable of running within the

range of frequency from 10 to 60 Hz successfully.

TABLE II
AVERAGE COMPUTATION TIME STATISTICS OF THE INITIALIZATION AND

THE MAIN ITERATION STEPS OF THE ALGORITHM WITH RESPECT TO THE

VOXEL DIMENSION dv AND NUMBER OF TENTACLES Nt

Initialization Steps Time [s] Time [s] Time [s]
dv = 0.2
Nt = 651

dv = 0.1
Nt = 651

dv = 0.1
Nt = 1271

InitializeLinearGrid 0.2 0.11 0.11
GenerateTentacles + 2.8 24.03 46.83
ExtractSupportPriorityVoxels

Total 2.82 24.14 46.95

Main Iteration Steps Time [ms] Time [ms] Time [ms]
UpdateOccInfo 6.77 11.51 9.46
UpdateHeuristics 7.95 79.33 108.07
SelectBestTentacle 0.002 0.002 0.003
ExecuteMotion 0.02 0.01 0.02

Total 14.73 91 117.55

Our proposed algorithm is also benchmarked with the

implementation of the work in [7] within the 10 maps

(cylinders map + 9 forest maps). For the first comparison, we

keep their default parameters as they provided in their code

repository. For the second one, we increase only the number

of optimization points, C, from 7 to 9 since it gives the best

result according to their paper [7]. To test the robustness,

all configurations are run 10 times for each map without

changing any parameter.

As discussed earlier in this section, the offline parameters

can be mostly adjusted by the robot and the occupancy sensor

specifications. For the benchmark simulations, we set the

offline parameters same as given and keep them fix for all

maps. On the other hand, the tuning of the online parameters

highly depends on the given task and the environment due to

the reactive nature of our proposed algorithm. Hence, based

on the goal location relative to the obstacles and the density

of the each map, the online parameters are manually tuned to

get the best performance. Although this might be considered

as a weakness of the algorithm, the overall tuning process

becomes quite straightforward when the logic behind the

heuristic functions are comprehended. Considering that and

as a future work, the online tuning process can be learned

from the previous experiences and automatically tuned during

the navigation.

Overall, the simulation results reveal that our proposed

algorithm has higher success rate and enables faster navigation

as demonstrated in the first two plots in Fig. 5. Remarkably,

our method succeeds in all successive trials for all maps, while

both of the configurations of the state-of-art algorithm are

failed at all in the Forest4 map. Although our average path

length is slightly higher than the other algorithm, the third

plot shows that ours is capable of finding shorter paths for the

half of the maps. Noting that our algorithm is reactive and

does not keep the global map or path history, its instability of

finding the optimal path is quite expected. Besides, we adjust

the online parameters to prioritize the safety over greediness

to the goal.

IV. CONCLUSION

In this paper, we present a reactive navigation algorithm

for 3D environments that does not rely on a global map

information. This is achieved by the pre-determined group of

points, named as tentacles, which sample the space around

the robot. The robot-centered grid structure is formed to keep

the occupancy information. In order to evaluate the tentacles

and select the best possible next point, five heuristic functions

are defined. This paper also introduces offline and online

parameters to enhance the reactive navigation performance.

The approach of tuning these parameters are explained along

with the other implementation details including computational

complexity analysis. We perform the physics-based simula-

tions using benchmark datasets. Overall, our proposed reactive

algorithm outperforms two configurations of the state-of-art

method in terms of success rate and navigation duration.
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