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Wastewater treatment plants (WWTPs) receive a confluence of sewage containing
antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and
pathogens and thus are a key point of interest for antibiotic resistance surveillance.
WWTP monitoring has the potential to inform with respect to the antibiotic resistance
status of the community served as well as the potential for ARGs to escape treatment.
However, there is lack of agreement regarding suitable sampling frequencies and
monitoring targets to facilitate comparison within and among individual WWTPs. The
objective of this study was to comprehensively evaluate patterns in metagenomic-
derived indicators of antibiotic resistance through various stages of treatment at a
conventional WWTP for the purpose of informing local monitoring approaches that are
also informative for global comparison. Relative abundance of total ARGs decreased by
~50% from the influent to the effluent, with each sampling location defined by a unique
resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent
were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage
patterns identified in assembled metagenomes were more similar to patterns in regional
clinical surveillance data than the patterns identified in the influent. Analysis of core and
discriminatory resistomes and general ARG trends across the eight sampling events
(i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along
with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for
surveillance. Relative resistome risk characterization further provided a comprehensive
metric for predicting the relative mobility of ARGs and likelihood of being carried in
pathogens and can help to prioritize where to focus future monitoring and mitigation.
Most antibiotics that were subject to regional resistance testing were also found in the
WWTP, with the total antibiotic load decreasing by ~40-50%, but no strong correlations
were found between antibiotics and corresponding ARGs. Overall, this study provides
insight into how metagenomic data can be collected and analyzed for surveillance
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of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring
point with relevance both to the local clinical condition and for assessing efficacy of
wastewater treatment in reducing risk of disseminating antibiotic resistance.

Keywords: shotgun sequencing, resistome, microbiome, antibiotics, antibiograms, resistome (ARGs and MGEs)

INTRODUCTION

Antibiotic resistance is a complex health threat that requires both
global and local action. Wastewater treatment plants (WWTPs)
are a promising point of surveillance and mitigation, as they
receive a confluence of sewage containing antibiotics, other
antimicrobials, antibiotic resistant bacteria (ARB), antibiotic
resistance genes (ARGs), and pathogens (Biirgmann et al., 2018).
However, clear guidance is lacking with respect to which stage(s)
of wastewater treatment and which monitoring targets are most
informative with respect to assessing the ARG content of a given
sewage. Of particular interest are the potential for ARGs to
mobilize and spread and the efficacy of WWTPs in reducing ARG
loads and associated human health risks prior to discharge or
reuse (Aarestrup and Woolhouse, 2020).

Recent research demonstrates that ARGs that enter a given
WWTP are reflective of various attributes of the local population,
including antibiotic use patterns and socioeconomic factors
(Hendriksen et al., 2019). These ARGs may exist on mobile
genetic elements (MGEs), such as plasmids and transposons
(Kim et al., 2014), which can facilitate their spread between
different bacteria, including human pathogens. Further, ARGs
may vary in clinical relevance of the antibiotic to which they
encode resistance (e.g., front-line versus last-resort antibiotics)
and may exist intracellularly (i.e., within ARB) or extracellularly
as naked DNA that could potentially be later assimilated via
transformation (Woegerbauer et al., 2020). Ideally, an effective
surveillance scheme will serve to capture the breadth and depth of
the full ARG profile as it changes through each stage of treatment,
while also providing the ability to link the observed ARG patterns
to clinical antibiotic resistance concerns, both on a local and
global scale (Huijbers et al., 2019).

Conventional WWTPs rely on the dense, highly microbially
active biological treatment step of activated sludge to efficiently
remove organic matter and attenuate pathogens present in
sewage. This reliance on activated sludge has brought about
concern that this stage of treatment may serve as a “hotspot”
for the mobilization of ARGs (Baquero et al., 2008; Zhang et al.,
2009; Rizzo et al., 2013). This concern largely stems from the
potential for the conditions within activated sludge to facilitate
horizontal transfer of ARGs to pathogenic host bacteria (Zhang
et al, 2011). Numerous studies have reported tracking ARB and
ARGs through WWTPs (Bréchet et al.,, 2014; Yang et al., 2014;
Mao et al., 2015; Guo et al., 2017; Joseph et al., 2019; Ju et al,,
2019). Shotgun metagenomic sequencing is a promising means
to gain such insight, as it enables direct profiling of total ARGs
representative of a given sample (i.e., the “resistome,” Wright,
2007), without biases associated with culture or primer-directed
gene amplification methods (e.g., quantitative polymerase chain
reaction (QPCR) or gPCR array).

A challenge of metagenomic surveillance approaches for
antibiotic resistance is that they support generation of data for
up to thousands of ARGs, making it difficult to systematically
and meaningfully assess and compare resistomes, both locally
for a given WWTP with time, and globally with other WWTPs
(Aarestrup and Woolhouse, 2020). The quantitative capacity of
metagenomics is also not well defined, which is important for
informing human health risk assessment (Manaia et al., 2018).
Furthermore, consensus is lacking with respect to ideal locations
within the WWTP to sample, frequency of sampling, and which
ARG targets are most informative with respect to potential for
ARGs to mobilize, efficacy of treatment for reducing ARGs,
and relevance to human health risk assessment. A few recent
studies have attempted to classify sewage (Hendriksen et al.,
2019; Pdrnénen et al., 2019) and final effluent (Pirninen et al.,
2019) by geographical region to predict antibiotic resistance
burden. Comprehensive metagenomic analysis within individual
WWTPs over time and comparison with trends relative to other
WWTPs can help clarify which ARGs and groups of ARGs are
most informative for linking to clinical resistance in a given
community, for assessing WWTP ARG removal performance,
and identifying potential anomalies that warrant further
attention. Given the monetary cost of metagenomic sequencing,
comprehensive longitudinal studies of WWTPs can help to
narrow down key sampling locations, sampling frequencies, and
replication needed for global comparative studies.

The overarching objective of this study was to
comprehensively assess the composition of the resistome
through the various stages of treatment and with time at a
conventional WWTP to identify candidate metagenomic-
derived targets for antibiotic resistance surveillance. This was
achieved through eight sampling events over an 18-month period
at a local WWTP followed by metagenomic sequencing. These
samples were then compared and bench-marked to various
dimensions of the resistome as they related to independent
quantitative measures of target ARGs, factors associated with
antibiotic use in the community and ARG selection (e.g.,
antibiotics), mobility (e.g., associations with MGEs), and local
clinical resistance information. Specifically, we examined the
core resistome (i.e., the full complement of ARGs detectable
across all treatment stages), discriminatory resistomes (i.e., ARGs
that separate the influent from effluent), specific ARGs of clinical
concern, and resistome risk scores (i.e., the extent to which ARGs
are predicted to occur on MGEs and in pathogens; Martinez
et al,, 2015; Oh et al., 2018) and compared these to independent
qPCR measurements of target ARGs, antibiotic measurements,
and local clinical resistance data. The findings provide insight
into informative sampling locations, frequencies, and targets
suitable for monitoring of antibiotic resistance flowing into and
emanating from WWTPs.
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MATERIALS AND METHODS

Site Description, Sample Collection, and

Sample Preservation

A three million gallons per day (MGD), on average, conventional
(anoxic/oxic process with enhanced nitrogen removal) WWTP
serving a population of approximately 21,500 in southwestern
Virginia, United States was subjected to approximately bi-
monthly sampling over the course of 18 months. The design
capacity of the WWTP is six MGD, treating approximately
95% municipal wastewater (as % of COD) and 5% pre-treated
industrial wastewater. Two industries contribute to the inflow
at the WWTP: (1) a machine and fabrication plant discharging
an average of 15,000 gallons per day (GPD) and (2) an
environmental waste industry discharging an average of 1,600
GPD out of an allowed 14,000 GPD (varies greatly depending
on weather conditions). Prior to discharge to a local river, the
final effluent is subject to ultraviolet disinfection, with secondary
effluent samples collected prior to UV and final effluent samples
collected following this treatment step. To explore seasonality in
subsequent analyses, samples were separated from the influent
(n = 8) and secondary effluent (n = 8) and containing two
sampling events in each season. Influent and secondary effluent
samples were also separated into grouped seasons as such:
winter/spring and summer/fall to capture a gradual transition
from one extreme season (i.e., summer or winter) to the
next. Details about the eight sampling events are provided in
Supplementary Table 1.

Grab samples were collected using sterile materials at each
stage of treatment and stored on ice until further processing.
Temperature, dissolved oxygen (DO), and pH were measured
on site for each aqueous sample. Upon receipt at the lab,
aqueous samples were divided in triplicate by mixing vigorously
and subsequently measuring the same mass of water for each
replicate prior to concentrating on a 0.22-pum mixed-cellulose
ester membrane filter (Millipore, Billerica, MA, United States).
The volume of water (determined by mass) for the first replicate
to clog the filter was recorded. Filters were folded and stored
in a 50% ethanol solution in 2-mL O-ring tubes and preserved
at —20°C. At a later date, the filters were torn into ~0.1 cm?
pieces using sterile forceps, transferred to lysing tubes and DNA
extraction was performed using a FastDNA SPIN Kit for Soil (MP
Biomedicals, Solon, OH, United States).

Shotgun Metagenomic Analysis

Twenty-two samples were selected for shotgun metagenomic
sequencing, with pooling of triplicate DNA extracts in equal
mass proportions. These included influent and secondary effluent
(i.e., prior to disinfection) samples from each sampling event
and a cross section of each WWTP process (ie., influent,
primary effluent, activated sludge, secondary effluent, and
final effluent) for representative summer (August 2018) and
winter (February 2018) events. Sequencing was performed by
Diversigen, Inc. (Houston, TX, United States) on an Illumina
NovaSeq 6000 utilizing the NexteraXT DNA Flex library
preparation kit (Illumina, San Diego, CA, United States).

The target depth was 7 gigabases per sample, corresponding
to approximately 47 million reads (2 x 150 paired-end).
Metagenomic read statistics are detailed in Supplementary
Table 2. The samples were uploaded to the MetaStorm (Arango-
Argoty et al., 2016) pipeline whereby they were quality filtered
prior to annotation with the following databases: Comprehensive
Antibiotic Resistance Database (CARD) version 2.0.1 (Jia et al.,
2017) and Metagenomic Phylogenetic Analysis 2 (MetaPhlAn2)
(Truong et al., 2015). The manual curation of CARD used in
this study, as described in the Supplementary Material, can
be found in the Supplementary Data 1. CARD output from
MetaStorm is available in Supplementary Data 6, reported
as relative abundance (i.e., ARG copies per copies of 16S
rRNA genes identified from metagenomic data; Li et al,
2015). To determine calculated absolute abundance (i.e., ARG
copies/mL; Supplementary Data 7), relative abundance values
were multiplied by 16S rRNA gene copies as determined via
qPCR (Garner et al., 2018). To help inform monitoring targets,
four categories of ARGs were specified within the core resistome
according to their absolute differences in the influent and effluent:
(Category 1) detected only in the influent across all sampling
events, (Category 2) increased in the secondary effluent with
respect to the influent across all sampling events, (Category 3)
decreased across all sampling events in the secondary effluent
with respect to the influent, or (Category 4) detected only in
secondary effluent across all sampling events.

Reads were assembled in MetaStorm using the IDBA-UD
de novo assembler (Peng et al, 2012) according to default
parameters to generate contigs for gene contextualization and
clinically relevant pathogen-ARG screening. Contigs were filtered
for sequences >1000 bps then protein-coding open reading
frames (ORFs) were predicted using Prodigal version 2.6.3 with
the “-p meta” option (Hyatt et al, 2010). Predicted ORFs
were annotated with CARD and an in-house constructed MGE
dataset (Arango-Argoty et al.,, 2019) using blastp in Diamond
version 0.9.24 (Buchfink et al., 2015). Diamond alignments were
filtered for stringent ARG and MGE annotation (80% identity,
aa length > 100, e-value < le-10, bitscore > 50). Each contig
was assigned taxonomy using Kraken2 version 2.0.7 (Wood and
Salzberg, 2014) with the Kraken2 standard database of complete
bacterial, archaeal, and viral genomes in RefSeq.

The core resistome of the influent and secondary effluent
was determined as any ARG with a non-zero value relative
abundance detected across all sampling events. ExtrARG (Gupta
et al,, 2019), established based on the extremely randomized tree
algorithm, was utilized to identify discriminatory ARGs (i.e.,
ARGs that collectively distinguish different wastewater samples)
taking relative abundance into account.

Assessment of Relative Resistome Risk

Contigs were submitted to the MetaCompare pipeline (Oh
et al,, 2018). MetaCompare assigns relative resistome risk (i.e.,
the cumulative potential for ARGs to occur on MGEs and in
human pathogens, as inferred from assembled metagenomic
data; Martinez et al., 2015) scores based on the distance each
sample point is from an established theoretical, maximum risk
score in a 3-dimensional “hazard space.” A sample’s location
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in this 3-dimensional space is determined as: (1) the number
of occurrences of ARGs on assembled contigs, (2) the number
of co-occurrences of ARGs and MGEs, and (3) the number
of co-occurrences of ARGs, MGEs, and human pathogen-
like sequences, all of which were normalized to the total
number of contigs.

Local, Clinical Resistance Isolates

According to the Virginia Healthcare Emergency Management
Program, the WWTP in this study is located in the “Near
Southwest” region. Fourteen out of fifteen hospitals from this
region participated in the 2017 Virginia state and regional
cumulative antibiogram (Virginia Department of Health, 2017).
The 2017 regional data was used to identify the number of
resistant isolates by antibiotic and resistance class corresponding
to each species tested.

Quantitative Polymerase Chain Reaction

All qPCR assays were performed on a CFX96 Real Time System
(BioRad, Hercules, CA, United States) on triplicate DNA extracts.
Gene copies of total bacterial 16S rRNA genes (Suzuki et al.,
2000) and the following indicators ARGs of anthropogenic and
clinical relevance were quantified in triplicate reactions based
on previously published protocols: blaTEM (Bibbal et al., 2007),
ermB (Chen et al., 2007), sull (Pei et al., 2006), vanA (Dutka-
Malen et al.,, 1995), and intI1 (Hardwick et al., 2008). A 100-
fold dilution was determined as optimal to minimize inhibition
and applied to the corresponding influent, secondary, and final
effluent DNA extracts. On each qPCR plate, a triplicate negative
control and standard curve ranging from 10”7 to 10! gene
copies/iL were included for each target gene. Melt curves were
assessed to confirm specificity of the amplicons and standards.
Primers, R? values, and efficiencies of the standard curves of each
assay are reported in Supplementary Table 9.

Antibiotic Analysis

Aqueous samples were concentrated using solid phase extraction,
and the cartridges shipped to the University at Buffalo for
analysis using high performance liquid chromatography-tandem
mass spectrometry (HPLC-MS/MS), as described previously
(Singh et al, 2019). The analysis included the following
antibiotics: acetylsulfamethoxazole, anhydro erythromycin,
anhydrochlorotetracycline, azithromycin, chlorotetracycline,
ciprofloxacin, clarithromycin, erythromycin, enrofloxacin,
norfloxacin, oxolinic acid, oxytetracycline, roxithromycin,
sarafloxacin, spiramycin I, spiramycin II, spiramycin
I,  sulfachlorpyridazine, sulfadiazine,  sulfamethoxine,
sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole,
sulfamethoxydiazine, sulfathiazole, tetracycline, tilmicosin,
trimethoprim, and tylosin. Water samples were collected in
pre-combusted (at a temperature of 500°C) amber glass bottles.
Because sample collection and solid phase extraction protocols
required the use of amber glass bottles, the ability to detect
tetracyclines was lost due to their tendency to sorb to glass.

Statistical Analysis and Data

Visualization

To determine differences between stages of treatment, a paired
Wilcoxon rank-sum test was utilized using the wilcox.test in R
version 3.5.1 (R Core Team, 2018) with the built-in stats package.
To compare differences among groups based on sampling
event, stage of treatment, and seasonality one-way analysis of
similarities (ANOSIM) based on Bray-Curtis dissimilarity was
conducted in R using the anosim function of the vegan (Oksanen
et al, 2019) R package. Procrustes analysis was conducted using
the procrustes function in the vegan R package. Correlation
analyses were performed using the Spearman option in rcorr
contained within the Hmisc R package. A significance level of
a = 0.05 was used for all statistical analyses. Coefficients of
variation, utilized to assess relative variability on resistance class
abundance in the influent or secondary effluent, was calculated
by dividing the standard deviation by the mean. Nonmetric
multi-dimensional scaling analysis was applied to visualize and
compare relative abundances of ARGs and taxonomic ranks
across samples. Graphics were generated using the ggplot2
(Wickham, 2016), circlize (Gu et al., 2014), and RColorBrewer
(Neuwirth, 2014) packages in R.

RESULTS

Wastewater Physiochemical Parameters
Correlations were examined between several wastewater
physiochemical parameters measured at the time of sampling
or monitored by the WWTP (e.g., daily TSS measurements,
Supplementary Table 1). Influent water temperature, ambient
temperature, DO, pH, and TSS were not strongly correlated with
any individual ARGs (Supplementary Data 5).

Assessment of Metagenomic
Sequencing Data and Comparison to
qPCR

Metagenomic sequencing yielded an average of approximately
37 million (range: 3.7-54.5 million) paired-end reads per
sample (Supplementary Table 2). A total of 953 ARGs were
identified across all 22 samples collected over the eight
sampling events. A Spearman rank order correlation analysis was
performed to explore the relationship between ARG abundance
as determined by qPCR (Supplementary Figure 1) and the
calculated absolute abundance (i.e., ARG copies/mL) of ARGs
derived from metagenomic data (Supplementary Data 7).
Significant correlations were observed for ermB (R = 0.87,
Bonferroni-corrected p < 0.001), sull (R = 0.83, Bonferroni-
corrected p < 0.001), and aggregate blaTEM genes (blaTEM-
17, blaTEM-57, blaTEM-75, blaTEM-91, blaTEM-166, blaTEM-
176, blaTEM-194, blaTEM-195, blaTEM-207, blaTEM-215)
(R = 0.84, Bonferroni-corrected p < 0.001) versus corresponding
ermB, sull, and bIaTEM measurements by qPCR. vanA, a
vancomycin ARG, was only detected by metagenomics in
one effluent sampling event (December 2017) and therefore
could not be correlated to qPCR data. These results supported
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further quantitative evaluation of metagenomically derived (minimum = 2.15, maximum = 2.76). ARGs corresponding to
measurements of the resistome. the following classes represented the majority of ARGs detected:
multidrug (range: 26.7-30.7% of total ARGs), macrolide-
. . lincosamide-streptogramin (MLS, 25.3-34.1%), and beta-lactam
Trends in ARG Abundance Detected in (9.9-12.4%) (Figpureg 1). Across all secondary effluent samples,
Influent and Effluent there were 637 ARGs detected and an average total ARG
There were 859 ARGs detected across all influent samples relative abundance of 1.20 (minimum = 0.48, maximum = 1.75).
and an average total ARG (ie., all ARGs detected) relative = ARGs corresponding to the following resistance classes were
abundance (i.e., normalized per 16S rRNA gene copies) of 2.35 most abundant: multidrug (range: 24.7-39.6% of total ARGs),
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FIGURE 1 | (A) Total ARG (i.e., all ARGs detected) relative abundance [copies per copies of 16S rRNA normalized as previously described (Li et al., 2015)], grouped
by antibiotic resistance class, across all 22 samples subject to shotgun metagenomic sequencing and (B) calculated absolute abundance (units: logip[gene
copies/mL sample]; relative abundance multiplied by 16S rRNA gene copies quantified by gPCR) of each resistance class. ARGs were identified via annotation
against CARD version 2.0.1 (Jia et al., 2017). “Multi-drug” represents ARGs conferring resistance to antibiotics corresponding to at least two drug classes, whereas
the “other” category comprises genes conferring resistance to non-antibiotics (e.g., antimicrobials, antifungals). MLS indicates resistance to macrolides,
lincosamides, and streptogramins.
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FIGURE 2 | Magnitude of change (based on absolute difference) between influent and secondary effluent for each ARG grouped by antibiotic resistance class.
Change was calculated as the difference between the relative abundance of the secondary effluent and the relative abundance of the influent. MLS indicates
resistance to macrolides, lincosamides, and streptogramins.

MLS (8.6-14.9%), aminoglycoside (6.6-16.7%), beta-lactam (6.1-
12.4%) and quinolone (3.0-12.4%) (Figure 1).

ANOSIM confirmed that there was a distinct shift in the
resistome composition from influent to effluent, while there
was no significant separation between the secondary versus
final effluent (Supplementary Tables 4, 5). Focus on secondary
effluent provides a more consistent DNA vyield and presents
the advantage of comparability across WWTPs, as not all
WWTPs employ effluent disinfection. For each sampling event,
there was a decrease in total ARG relative abundance from
influent to secondary effluent (Wilcoxon, paired; p = 0.007813),
corresponding to an average removal of 1.15 ARG copies/16S
rRNA gene copies or approximately 50% reduction (Figure 1).

The change in relative abundance between the influent to
the secondary effluent by antibiotic resistance class ranged
between 8.15 x 107> to 0.76 ARG copies/16S rRNA gene copies
(Figure 2). The total number of mapped reads by resistance
class in the influent and secondary effluent can be found in
Supplementary Table 10. On average, the magnitude of observed
changes was ~2,200 reads. MLS ARGs decreased to the greatest
extent, with an average removal of 0.49 ARG copies/16S rRNA
gene copies. However, a net increase in the relative abundance of
ARGs conferring resistance to several classes of antibiotics was
indicated through the secondary clarification process for some
sampling events (# events): aminocoumarin (8), glycopeptide (4),
phenicol (2), rifamycin (8), sulfonamide (6), trimethoprim (4),
and other (4) (Figure 2).

There was a similar magnitude of decrease in absolute
abundance (i.e., ARG copies/mL) of various ARG classes across
the WWTP (Figure 1). Absolute abundances were calculated
from relative abundances of ARGs (ARGs/16S rRNA genes)
based on independent measurements of 16S rRNA gene copies
per mL via qPCR, which decreased more than 2-log;o from
influent to secondary effluent (Figure 1).

Core Resistome Composition and

Behavior

The “core WWTP” resistome, defined as ARGs detected across
each treatment process and all sampling events, consisted of
111 ARGs. However, when considering only the influent and
secondary effluent, there were 143 ARGs identified across all
sampling events. The 25 ARGs with the highest mean relative
abundance in the influent and secondary eftfluent are presented
in Tables 1, 2, respectively. There were 34 ARGs that overlapped
between the top 25 ARGs in the influent and the top 25
ARGs in the effluent (Supplementary Figure 2). There was
an increase in relative abundance of 26 of these 34 ARGs
from influent to effluent in all or certain sampling events.

TABLE 1 | Top 25 most abundant core influent ARGs (detected in all sampling
events), based on mean relative abundance, that were also detected in secondary
effluent core resistome determined by metagenomics.

Antibiotic resistance
genes

Antibiotic resistance
class

Aminocoumarin parY in Streptomyces

rishiriensis
Aminoglycoside aac(6')-Ib7
Beta-lactam blaOXA-210
MLS macB, mphD, mphG,
msrB, msrkE, ermB, ermF
Peptide pmrE, rosB
Quinolone qacH, gnrS2
Sulfonamide sult, sul2
Tetracycline tet39, tetQ

Multidrug

aded, adeK, cpxR in
Pseudomonas aeruginosa,
crp, mdtB, mexK, msbA,
muxB
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TABLE 2 | Top 25 most abundant core secondary effluent ARGs (detected in all
sampling events), based on mean relative abundance, that were also detected in
the influent core resistome determined by metagenomics.

relatively small number of ARG types that appeared in the
WWTP secondary effluent that were not detected in the influent.

Notably (in 7/8 events), ~90% of the ARG types detected in the

Antibiotic resistance
class

Antibiotic resistance
genes

secondary effluent were also found in the influent (i.e., were not
removed by the treatment train). There were only two ARGs in

Aminocoumarin

parY in Streptomyces

Category 1: aph(3')-VI (aminoglycoside) and oprZ (multidrug).
Eleven ARGs fell into Category 2 belonging to the following
classes: one beta-lactam (blaOXA-46), three rifamycin (arr-1,
rphA, rphB), two tetracycline [tap, tetA(48)], four multidrug
(efpA, mexN, mtrA, muxC), and one mupirocin, classified as
“other” (ileS in bifidobacteria). Sixty-one ARGs were included in
Category 3 (Supplementary Table 3) and no ARGs were included
in Category 4 when collectively considering all sampling events.
However, between 22 and 93 ARGs uniquely appeared in the

rishiriensis

Aminoglycoside aac(6')-Ib7, aac(6')-1b8,
kapE

MLS macB, mphD, msrB, msrE

Peptide pmrE, rosB

Quinolone qacH, gnrS2

Sulfonamide sult, sul2

Multidrug adeF, cpxRin
Pseudomonas aeruginosa,
crp, mdtB, matC, mexK,
msbA, muxB, mtrA, smeR,
ogxB

Other ileS in bifidobacteria

For example, sull increased in six sampling events, excluding
April 2018 and August 2018, when the relative abundance
decreased. Likewise, the relative abundance of sul2 increased
in six sampling events, excluding February 2018 and April
2018, when the relative abundance decreased. Interestingly, the
calculated absolute abundances (i.e., ARG copies/mL) of sull and
sul2 were perfectly correlated (R = 1.00, p < 0.001). February
2018 represented the sampling event with the greatest number of
ARGs exhibiting an increase in relative abundance from influent
to secondary effluent (Figure 3).

Categorizing Core ARGs Based on
Tendency to Increase or Decrease

During Treatment

An average of approximately half (41.1-68.0%) of the total ARGs

that entered the WWTP on any given sampling date persisted
through the secondary effluent (Table 3). There were only a

secondary effluent when considering individual sampling dates.
The greatest number of unique ARGs (i.e., highest diversity) that
were detected in the secondary effluent, but not the influent,
corresponded to the October 2018 sampling event. Thus, we
analyzed the shared ARGs between the October 2018 sampling
event and all other sampling events (Table 4). A substantial
number of these shared ARGs encoded resistance to beta-lactams,
although the total relative abundance of this resistance class
decreased with each sampling event.

Discriminatory Resistome Composition

and Behavior

Thirty-two ARGs were found to most effectively distinguish the
influent versus the secondary effluent based on their magnitude
of change in relative abundance: one aminocoumarin (novA),
three aminoglycoside (acrD, ant(3"”)-Ilc, aph(6)-1d), ten beta-
lactam (blaADC-15, carO, blaFOX-10, blaGES-22, oprD in
Acinetobacter baumannii, blaOXA-211, blaOXA-212, blaOXA-
309, blaOXA-333, blaOXA-334), two MLS (mphD, msrE), seven
tetracycline (adeA, tet32, tet39, tet40, tetO, tetQ, tetW), eight
multidrug (abeM, adel, ade], adeK, adeN, emrA, emrB), and
farB, conferring resistance to antibacterial free fatty acids (other)
(Figure 4). All of the aforementioned ARGs decreased in relative
abundance from influent to effluent in each sampling event,
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FIGURE 3 | Magnitude of change (based on absolute difference) in relative abundance between influent and secondary effluent of top 34 ARGs pertaining to the
core resistome (ARGs detected across each treatment process and all sampling events). Change was calculated as the difference between the relative abundance of
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TABLE 3 | ARGs detected in the influent only, effluent only, or shared between
influent and effluent determined by metagenomics.

Sampling event # of unique # of unique # of ARGs
(total ARGs in ARGs ARGs detected in
influent/effluent) detected in detected in influent and
the influent the effluent effluent (% total
(% total ARGs (% total ARGs ARGs in
in influent) in effluent) influent/effluent)
July 2017 334 (58.0) 29 (10.7) 242 (42.0/89.3)
(576/271)
October 2017 318 (47.5) 39 (11.8) 292 (52.5/88.2)
(670/331)
December 2017 309 (51.8) 43 (13.0) 287 (49.2/87.0)
(596/330)
February 2018 298 (50.9) 22 (7.1) 287 (41.1/92.9)
(585/309)
April 2018 253 (46.3) 33 (10.1) 293 (53.7/89.9)
(546/326)
June 2018 250 (38.9) 48 (10.9) 393 (61.1/89.1)
(643/441)
August 2018 219 (39.7) 49 (12.9) 332 (60.3/87.1)
(5651/381)
October 2018 109 (32.0) 93 (28.6) 232 (68.0/71.4)
(341/325)

except novA and tetQ. mphD and msrE, which underwent the
greatest decrease in relative abundance between influent and
effluent, followed by tet39.

Clinically Relevant ARGs

A database of 931 ARGs known in clinical isolates was compiled
to help prioritize selection of core and discriminatory ARGs for
further monitoring (Supplementary Data 2). Eleven clinically
relevant ARGs (blaOXA-3, blaOXA-5, blaOXA-16, blaOXA-
46, blaOXA-74, blaOXA-118, blaOXA-129, blaOXA-145,
blaOXA-205, blaOXA-210, gnrS2) (Supplementary Table 7)
were detected in the core resistome across all samples. Within
the discriminatory resistome of the influent and secondary
effluent, there were four clinically relevant ARGs (blaGES-22,
blaOXA-212, blaOXA-309, blaOXA-333) (Supplementary
Table 7) detected. Notably, 189 of the 954 total ARGs
detected across all samples were also found in the database
of clinically relevant ARGs.

Shift in Microbiome Through the WWTP

In most influent samples, Arcobacter, Acinetobacter, and
Enhydrobacter comprised greater than 50% of the genera detected
(Figure 5). This was not the case during the months of
December 2017 and February 2018, when Enhydrobacter was
much lower in relative abundance compared to other sampling
events. While the influent and primary effluent were quite
similar, there was a sharp shift in the composition of the
microbial community in the activated sludge stage. Thereafter,
the composition of the secondary effluent and final effluent
mirrored that of the activated sludge (for the two events where
activated sludge was analyzed. Some of the more dominant
genera found from activated sludge onward included: Thiomonas,

TABLE 4 | ARGs detected only in the effluent that were also detected in the
October 2018 sampling, which yielded the highest number of unique ARG
detections determined by metagenomics.

Sampling event (# ARGs shared ARGs shared

with October 2018 sampling)

July 2017 (8) blaF, blaCARB-12, blaVIM-23,
blaLRA-19, blaOXA-224,
blaOXA-29, dfrB2, vatA
AAC(6')-1Ib, blaF, blalMP-19,
blalMP-44, blaLRA-10, blaVIM-23,
dfrA2d, dfrB2, dfrB6, oleC, srmB,
sul3, vanM, vanXO, vatA
AAC(3)-llic, abeS, arr-3, blaF,
blaIMP-19, blaLRA-10, blaLRA-19,
blaVIM-23, dfrA15, dfrB2, dfrB6,
mfpA, oleC, tirC, vatA, murA in
Chlamydia trachomatis

blaF, blaIMP-19, blaLRA-19,
blaVIM-2, blaVIM-23, fosA7, tet(Y),
vanM

AAC(6')-1Ib, blaF, blaFEZ-1,
blaLRA-10, blaLRA-19, blaOXA-29,
blaVIM-2, blaVIM-23, dfrA16,
dfrB2, dfrB6, iri, oleB, oleC,
qnrB72, vatl, murA in Chlamydia
trachomatis

AAC(Q)-llic, blaFEZ-1, blaIMP-19,
blaLRA-10, blaOXA-29, blaVIM-2,
blaVIM-23, dfrA2d, dfrB6, oleB,
sul3

arr-2, arr-3, arr-5, blaLRA-10,
dfrB6, oleC, gepA, qepA3, sul3,
tetB(48)

October 2017 (15)

December 2017 (16)

February 2018 (8)

April 2018 (17)

June 2018 (11)

August 2018 (10)

Thauera, Nitrospira, Polaromonas, and Limnohabitans. Notably,
there appeared to be more variability in the abundance of the
top 20 genera in activated sludge, secondary effluent, and final
effluent as compared to influent and primary effluent (Figure 5).
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FIGURE 4 | Magnitude of change (based on absolute difference) in relative
abundance between influent and secondary effluent of ARGs (n = 32)
detected in the discriminatory resistome (ARGs which most effectively
distinguish the influent versus the secondary effluent) as determined by
ExtrARG (Gupta et al., 2019). Change was calculated as the difference
between the relative abundance of the secondary effluent and the relative
abundance of the influent.
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FIGURE 5 | Relative abundance (as percentage) of the top 20 and “other” genera, as annotated using MetaPhlAn2 (Truong et al., 2015) across all 22 samples
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Trends in Taxonomic Annotations
Corresponding to Locally Monitored

Clinical Pathogenic Bacteria

As a means of linking the WWTP and local clinical data,
we compared the abundance of genetic markers corresponding
to the nine genera containing pathogens monitored by the
regional antibiogram using MetaPhlAn2 (Truong et al., 2015)
in the influent and secondary effluent across the eight sampling
events (Figure 6). Genetic material corresponding to several of
these organisms could still be found in the effluent, including:
Acinetobacter, Escherichia, Klebsiella, Enterobacter, Pseudomonas,

Enterococcus, Streptococcus, and Stenotrophomonas. Of these, all
but Acinetobacter increased in relative abundance from influent
to effluent in at least one sampling event.

Variation of Resistome and Microbiome
Through the WWTP and With Time

According to the coefficients of variation, as percent of the total
ARG relative abundance of influent (9.1%) versus secondary
effluent (30%) samples, the influent exhibited less variability in
resistome composition with time than the secondary effluent
(Table 5). Influent samples were consistently less variable than
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TABLE 5 | Coefficient of variation, as percent (%), in influent and secondary
effluent metagenomic samples.

Antibiotic resistance Influent (N =8) Secondary effluent (n? = 8)

class

Total ARG relative 9.1 30
abundance

Aminocoumarin 24 91
Aminoglycoside 16 43
Beta-lactam 8.7 54
Elfamycin NDP NAC
Fosfomycin 22 66
Glycopeptide 25 67
MLS 15 42
Peptide 15 40
Phenicol 12 63
Quinolone 19 60
Rifamycin 41 48
Sulfonamide 21 45
Tetracycline 12 58
Trimethoprim 20 77
Multidrug 11 30
Other 20 34

an = number of samples.
bARGs conferring resistance to this antibiotic class not detected in any samples.
CARGs conferring resistance to this antibiotic class detected in only one sample.

secondary effluent samples across all antibiotic resistance classes.
Variability ranged from: 8.7-41% in the influent and from 30 to
91% in secondary effluent (Table 5).

NMDS analysis of total ARG relative abundance indicated
distinct resistomes associated with each stage of treatment
(ANOSIM; #ARGs = 953, R=0.708, p = 0.001; Figure 7). Influent
samples were separated from activated sludge (ANOSIM;
#ARGs = 953, R = 1, p = 0.022), secondary effluent (ANOSIM;
#ARGs = 953, R = 0.933, p = 0.001), and final effluent (ANOSIM;
#ARGs = 953, R = 1, p = 0.022), but not from primary effluent
(ANOSIM; #ARGs = 953, R = 0.228, p = 0.178). Activated
sludge samples were not separated from secondary effluent
(ANOSIM; #ARGs = 953, R = 0.151, p = 0.267) or final effluent
(ANOSIM; #ARGs = 953, R = 0.25, p = 0.333). The ANOSIM
R statistic and significance level of each pairwise test between
each stage of treatment based on relative abundance is available in
Supplementary Table 4. ARGs that were not detected in at least
one sample in a subset were excluded from ANOSIM analysis.
When only influent and secondary effluent samples were grouped
by stage of treatment, ARG profiles were separated based on
relative abundance (ANOSIM; #ARGS = 916, n = 8, R = 0.933,
p=0.001).

Taxonomic profiles at the genus level followed a similar
trend as ARGs and were also uniquely separated by stage of
treatment (ANOSIM; R = 0.6547, p = 0.001). Influent samples
were separated from activated sludge (ANOSIM; R= 1, p=0.019),
secondary effluent (ANOSIM; R = 0.801, p = 0.002), and final
effluent (ANOSIM; R = 1, p = 0.024), but not from primary
effluent (ANOSIM; R = 0.31, p = 0.136). Activated sludge samples
were not separated from secondary effluent (ANOSIM; R = 0.289,

p = 0.15) or final effluent (ANOSIM; R = 0.25, p = 0.667). The
ANOSIM R statistic and significance level of each pairwise test
between each stage of treatment based on genus level relative
abundance is available in Supplementary Table 5.

A Procrustes analysis was performed on the ARG and
taxonomic NMDSs of all 22 samples, assuming symmetry,
resulting in a Procrustes Sum of Squares value equal to 0.261
(R = 0.86, p = 0.001). This low value suggests that ARG and
taxonomic profiles behave similarly across the WWTP with time.
Influent samples did not exhibit distinct separation based on
relative abundance of ARGs when grouped by season (ANOSIM;
#ARGS = 859, R = 0.1458, p = 0.241) or grouped seasons
(ANOSIM; #ARGS = 859, R = 0.2396, p = 0.064). Abundance
of genera also did not exhibit distinct separation based on
grouped seasons (ANOSIM; R = 0.1354, p = 0.213). However,
more distinct separation of the taxonomic profile as a whole was
observed by season (ANOSIM; R = 0.5208, p = 0.04). Similar
trends of no distinct separation of resistome or microbiome
were observed based on relative abundances in secondary
effluent samples: ARG profiles grouped by season (ANOSIM;
#ARGS = 637, R = —0.1667, p = 0.785), ARG profiles based
on grouped seasons (ANOSIM; #ARGS = 637, R = —0.04167,
p = 0.63), taxonomic profiles grouped by season (ANOSIM;
R = —0.1458, p = 0.775), and taxonomic profiles based on
grouped seasons (ANOSIM; R = —0.1146, p = 0.789).

Relative Resistome Risk

As would be expected based on the WWTP achieving its intended
purpose of reducing pathogens, MetaCompare indicated that
there was a higher resistome risk associated with influent and
primary effluent samples relative to activated sludge, secondary
effluent, and final effluent (Figure 8). Influent relative resistome
risk scores were significantly higher than those of the secondary
effluent (Wilcoxon, paired; p = 0.007813). Overall, there was a
consistent and high rate of metagenomic assembly incorporated
into the resistome risk score determination (Supplementary
Table 6). The percent of sequences successfully assembled across
samples ranged from 24 to 69% (only four samples with <40%).
A higher percent assembly was generally achieved for secondary
effluent samples (Kruskal-Wallis, p = 0.0229).

Comparison to Locally Available Clinical

Resistance Data

Overall, there were 45 co-occurrences of ARGs, MGEs, and
human pathogen-like sequences on assembled contigs recovered
from the influent and 38 from the effluent that corresponded to
antibiotic resistant pathogens tested in the regional antibiogram
(Supplementary Data 3). Among the assembled contigs, there
were none found in both the influent and effluent. Nonetheless,
the same resistance classes associated with human pathogen-
like sequences were found in the effluent, including tetracycline
resistance in E. faecium and S. aureus, beta-lactam resistance in
K. pneumoniae, and aminoglycoside resistance in P. aeruginosa.
Multidrug resistance genes were excluded from subsequent
analysis because antibiogram data were only available based on
single organism-antibiotic combinations.
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FIGURE 7 | NMDS analysis of (A) ARG profiles (ANOSIM; R = 0.708, p = 0.001) and (B) taxonomic profiles (ANOSIM; R = 0.6547, p = 0.001) across WWTP

sampling locations and sampling dates according to shotgun metagenomic sequencing. Influent samples were separated from activated sludge (ANOSIM; R = 1,
p = 0.022), secondary effluent (ANOSIM; R = 0.933, p = 0.001), and final effluent (ANOSIM; R = 1, p = 0.022), but not from primary effluent (ANOSIM; R = 0.228,
p = 0.178). Secondary and final effluent samples were not separated (ANOSIM; R = -0.306, p = 0.911). ARGs were annotated via CARD (Jia et al., 2017) and the

The greatest number of co-occurrences of ARGs with
taxonomic markers of antibiogram pathogens in the influent
were approximately equal among the MLS (11 co-occurrences),
beta-lactam (10 co-occurrences), and aminoglycoside (9
co-occurrences) resistance classes (Figure 9). E. faecium
contained the greatest number of co-occurrences, associated
with glycopeptide and MLS resistance classes, followed by

K. pneumoniae, associated with aminoglycoside and beta-
lactam resistance classes. In contrast, the effluent was largely
dominated by beta-lactam (14 co-occurrences) and quinolone
(8 co-occurrences) resistance classes, with fewer co-occurrences
associated with aminoglycoside and MLS resistance classes.
E. coli comprised the greatest number of co-occurrences
in the effluent and, unlike in the influent, was associated
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with quinolone, beta-lactam, and aminoglycoside resistance
classes (in descending order). Remarkably, the trends apparent
in the effluent were more similar to those of the regional
antibiogram data than those apparent in the influent, especially
the aforementioned associations with E. coli and MLS resistance
in S. aureus (Figure 9). The number of resistant isolates
determined from the regional antibiogram can be found in
Supplementary Data 4.

Antibiotic Detection and Correlation With
Corresponding ARG Classes

All antibiotic classes tested in the regional antibiogram
were detectable in the WWTP samples, except beta-lactams,
due to analytical challenges. Analysis of targeted antibiotics
indicated a tendency to reduce from the influent to the final
effluent (Figure 10 and Supplementary Table 8). However,
among the antibiotics tested, the MLS and trimethoprim
antibiotics appeared to be the most persistent and difficult
to remove. Cumulative total measured antibiotic loading in
the influent ranged between 2,614 and 12,780 ng/L, while
final effluent ranged between 1,045 and 7,665 ng/L. The
highest antibiotic loading in the influent occurred in the
month of February 2018 (12,780 ng/L), closely followed
by December 2017 (12,584 ng/L). The highest antibiotic
loading in the final effluent occurred in December 2017
(7,665 ng/L), corresponding to a removal efficiency of
approximately 39%. Total antibiotic concentration between the
two stages of treatment were significantly different (Wilcoxon,
paired; p = 0.0078), exhibiting an approximate 40-50%
removal efficiency.

Sulfamethoxazole and acetylsulfamethoxazole were the
only sulfonamides detected among the influent and effluent
samples, however, the concentration of sulfamethoxazole was
never greater than the proposed no effect concentration

(PNEC) (Bengtsson-Palme and Larsson, 2016), below
which no selection of antibiotic resistance bacteria is
anticipated (Supplementary Table 8). The concentration of
acetylsulfamethoxazole was greater than sulfamethoxazole in
all sampling events, except August 2018, and the two were
not strongly correlated (R = 0.1557, p > 0.05). Aggregate
sulfonamide antibiotics and sulfonamide ARGs were not
correlated (R = 0.14, Bonferroni-corrected p > 0.05).
Sulfonamides and trimethoprim antibiotics showed a strong
correlation in the influent (R = 0.95, Bonferroni-corrected
p = 0.0021). Trimethoprim exceeded the PNEC in seven out
of eight sampling events (Supplementary Table 8), although
of the ARGs detected within the trimethoprim resistant
dihydrofolate reductase (dfr) gene family, only two ARGs
correlated in the influent at R > 0.5, although the associated
Bonferroni-corrected p-values were > 0.05. All Spearman
rank correlation coeflicients and p-values are available in
Supplementary Data 5.

Of the MLS antibiotics, azithromycin was the most persistent
from influent to final effluent, furthermore, azithromycin and
clarithromycin appeared to be somewhat negatively correlated
(R = —0.69, Bonferroni-corrected p > 0.05). In five out of
eight sampling events, azithromycin or clarithromycin were not
detected simultaneously. Anhydro erythromycin and respective
MLS ARGs did not correlate, while erythromycin was not
detected. Aggregate values of MLS ARGs and MLS antibiotics
were not strongly correlated (R = 0.52, Bonferroni-corrected
p > 0.05).

There were no strong correlations of ciprofloxacin, the
only quinolone antibiotic detected of those screened, with
individual or aggregate quinolone ARGs in the influent
(Bonferroni-corrected p > 0.05). This was the case even
though the concentration of ciprofloxacin exceeded the
PNEC in all sampling events in which it was detected
(Supplementary Table 8).
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Influent

FIGURE 9 | Comparison of ARG-pathogen combinations identified in the assembled metagenomic data and in the 2017 corresponding state and regional cumulative
antibiogram (Virginia Department of Health, 2017). The values on the outer rings indicate the frequency of co-occurring antibiotic resistance genes (ARGs) grouped
by resistance class, mobile genetic elements (MGEs), and human pathogen-like sequences in all (A) influent and (B) secondary effluent samples (Supplementary
Data 3). (C) The values on the outer ring represent each antibiotic-pathogen combination which was tested in the regional antibiogram, aggregated by antibiotic
resistance class (i.e., a single connection is indicative of one isolate conferring resistance to one antibiotic within a given class; Supplementary Data 4).
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Given that sulfamethoxazole/trimethoprim, ciprofloxacin,
and macrolides (anhydro-erythromycin, azithromycin, and
clarithromycin) were readily detectable in the wastewater
samples, resistances to these classes of antibiotics were further
examined in the available regional clinical resistance data
(Virginia Department of Health, 2017). As a percentage of
isolates across multiple medical facilities in the near-southwest
region of Virginia, Acinetobacter baumannii (36% of 239
isolates), Enterobacter cloacae (15% of 454), Escherichia coli
(23% of 23,761 isolates), Klebsiella pneumoniae (11% of 3,759
isolates) and Staphylococcus aureus (4% of 7,455 isolates)
conferred resistance to sulfamethoxazole/trimethoprim. Similar
percentages were observed for resistance to ciprofloxacin:
Acinetobacter baumannii (33% of 151 isolates), Enterobacter
cloacae (11% of 442 isolates), Escherichia coli (23% of 23,387
isolates), Klebsiella pneumoniae (5% of 3,274 isolates), and
Pseudomonas aeruginosa (18% of 2,245 isolates). Erythromycin
was the least effective against tested isolates: Staphylococcus
aureus (64% of 7,692 isolates), Streptococcus pneumoniae (46%
of 232 isolates, and Streptococcus agalactiae (65% of 122 isolates).

Although erythromycin was not directly detected, its secondary
metabolite was readily detected and at levels exceeding the PNEC
(Oct 2018). As expected, antibiotics being prescribed in the
local clinical environment were detectable in wastewater along
with gene markers of organisms resistant to those antibiotics.
While selection pressure in the WWTP is a possibility, this
likely indicates these antibiotics and ARGs originate from
the same sources.

DISCUSSION

This study provides comprehensive insight into the composition
and variance of the antibiotic resistome across eight sampling
events conducted at a small conventional WWTP over an
18-month period. Metagenomic sequencing targeting various
stages of treatment, along with core and discriminatory ARG
analysis, enabled assessment of which ARGs are most effectively
removed (i.e., Categories 1 and 3) versus which increase in or
are unique to the effluent (Categories 2 and 4, respectively).
Further, observed patterns in composition and removal of ARGs,
as well as genera containing key pathogens of antibiotic resistance
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FIGURE 10 | Concentrations of antibiotics (ng/L) detected via high
performance liquid chromatography-tandem mass spectrometry in influent
and final effluent samples grouped by resistance class. The methods applied
were as described previously (Singh et al., 2019). MLS indicates antibiotics
belonging to the macrolide, lincosamide, and streptogramin classes.
Tetracycline and other (i.e., tylosin) antibiotics were tested but not detected in
wastewater samples.

concern, were compared to antibiotic measurements and regional
clinical resistance patterns. The approach provided insight into
the efficacy of each stage of treatment for ARG removal,
while also identifying indicator ARGs and other metagenomic-
derived metrics (e.g., resistome risk) relevant to treatment
and clinical resistance that should be considered as future
candidates for metagenomic surveillance of WWTPs. Notably,
strong correlations between all targeted ARGs (excluding vanA)
measured by qPCR are an encouraging indication that shotgun
metagenomic sequencing yields quantitative information that
can be compared within and across WWTPs with time.
However, the discrepancy between vanA measured via qPCR
and metagenomics suggests that caution should be taken
in recognizing that there could be biases in metagenomic
sequencing. We also recognize that there are inherent limitations
in the detection limit of metagenomics and note that the
sequencing applied in this study was deeper than most prior
WWTP resistome studies. Finally, given that the number of
features detected by metagenomics will always be greater than
the sample size, there are inherent challenges in making statistical
inferences (Jonsson et al., 2016; Bengtsson-Palme et al., 2017).
About 50% reduction in total ARG relative abundance was
observed from influent to final effluent (i.e., 2-fold difference)
across all sampling events, along with a distinct shift in the
resistome composition. Approximately the same magnitude of
reduction in total ARG relative abundance was reported in
a previous study of three Swedish WWTPs serving 150,000
800,000 people, each sampled once (Bengtsson-Palme et al.,
2016). Changes in relative abundance are a useful indicator of the
relative degree of selection pressure for carriage of ARGs across a
microbial community, although it is important to acknowledge
that unrelated factors shaping taxonomy will also affect the
resistome composition. Overall, this study is consistent with
others that suggest that, while some ARGs persist or increase

during wastewater treatment, the general tendency is loss or
reduction in ARGs through activated sludge treatment and
secondary settling (Gao et al., 2012; Bengtsson-Palme et al.,
2016; Lira et al., 2020). Further, it is important to consider that
there is a sharp decrease in total bacterial loads from influent
to effluent, which will further decrease loads of ARGs in the
effluent and likely any associated risks. In the present study,
bacterial abundances (16S rRNA gene numbers) decreased by 2-
orders of magnitude. Bengtsson-Palme et al. (2016) noted that
accounting for the removal of total bacteria resulted in a ~50-
fold decrease in absolute abundance (i.e., ARG copies/mL) of
total ARGs from influent to effluent, while 2-3 log;o removal
in absolute abundance was observed in the present study. Here
we find that both relative abundance and absolute abundance
estimations are useful, with the latter considered to be more
informative for risk assessment.

The number of ARGs (i.e., ARG diversity) detected from
influent to secondary effluent was observed to decrease across
all sampling events, from 859 to 637 (a loss in detection of
25% of ARGs). Lira et al. (2020) examined the metagenome at
a 9.5 MGD conventional WWTP in Portugal over three sampling
events and observed a much sharper loss in detection of ARG
types from influent to final effluent (post-UV disinfection) of
about 75% of ARGs, although only 259 ARGs were detected
across the study. This lower detection rate is likely due to the
much shallower sequencing depth obtained via MiSeq sequencing
(maximum 8.2 million reads per sample reported in the Lira
study, versus 37 million average reads per sample in present
study) and higher stringency applied in ARG annotation (95%
identity, versus 80% identity). While general trends in ARG
removal determined via metagenomics were consistent across
the present study and others, this highlights that differences in
sequencing approach (e.g., platform, library prep, sequencing
depth, sequence length) and analysis approach (e.g., databases,
search criteria) will influence precisely which ARGs are detected
and could lead to false positives or false negatives, especially for
less abundant ARGs.

Based on this study, multidrug ARGs were found to be the
most persistent, accounting for up to 40% of total ARG relative
abundance in the secondary effluent. The most substantial
reduction occurred in the MLS resistance class. Aminocoumarin,
glycopeptide, phenicol, rifamycin, sulfonamide, trimethoprim,
and other resistance classes experienced an overall increase
in ARG relative abundance in at least four sampling events.
February 2018 exhibited the greatest number of individual core
ARGs that increased from influent to effluent (Category 2 ARGs),
while June 2018 accounted for the least reduction in total ARG
relative abundance.

The discriminatory resistome was comprised of ARGs that
most effectively distinguished the secondary effluent from the
influent. Important to note is that the discriminatory ARGs
identified by the ExtrARG randomized tree algorithm (Gupta
et al, 2019) are distinct from those identified based on the
above comparisons of ARG detections in the secondary eftluent
versus influent. For example, there were several abundant core
ARGs that appeared in the discriminatory resistome due to the
magnitude of change in relative abundance from influent to
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secondary effluent. These shared ARGs included: mphD, msrE,
tet39, tetQ, ade], adeK, of which all but tetQ decreased in
relative abundance during each sampling event (the relative
abundance of fetQ increased in June 2018). Such genes could
be monitored in future to verify consistent removal of these
ARGs. Further, clinically relevant ARGs of concern that are also
discriminatory could also be prioritized, including multiple OXA
beta-lactamases, as well as the MLS ARGs mphD and msrE.

The relatively tight clustering of influent samples, visualized
by NMDS analysis, indicated that the incoming resistome was
relatively stable across the 18-month study period. Greater
variability was observed in the resistome of the secondary
effluent, which was further indicated by the higher COVs for
each antibiotic resistance class. These results suggest that the
sewage resistome of a given community served by a WWTP
is relatively stable compared to that of the effluent, which is
influenced by day-to-day treatment variability. Furthermore, this
finding suggests locational reproducibility, and thus relatively
infrequent influent sampling may be sufficient for the purpose
of comparison of global trends across WWTPs. For the two
sampling events when activated sludge was sequenced in this
study (February 2018 and August 2018), it was noted that there
was a sharp decrease in subsequent total ARG relative abundance,
emphasizing the efficacy of this biological treatment stage for
ARG attenuation. Still, although it was difficult to link precise
changes in the influent to precise shifts in the effluent, it is
important to note that ~90% of secondary effluent ARGs were
also found in the influent. The effluent also largely reflected
the activated sludge, suggesting that it is heavily influenced by
microbes escaping settling. The finding demonstrates that the
activated sludge barrier does not completely erase the influence of
the influent on the effluent resistome. This suggests that policies
aimed at restricting what is discharged to WWTPs could in
fact influence input of ARGs to receiving environments. Future
studies aimed at assessing how influent resistomes shape eftluent
resistomes would be of interest.

Considering the results in terms of clinical resistance
information helps to further refine potential metagenomic
monitoring approaches. For example, ARGs of known clinical
concern that are also found in the core and discriminatory
resistomes, primarily OXA beta-lactamases, could be prioritized
for monitoring and compared against the typical trends denoted
by Categories 1-4 as an indicator of potential local resistance
concerns and overall WWTP performance. Further, it was
quite remarkable that the ARG-pathogen linkages noted in
the assembled effluent metagenomes were more similar to
regional patterns of clinical resistance than those found in
the influent. This was especially the case in June 2018 and
August 2018, both summer sampling events, with the most
occurrences of increased abundance of pathogen-containing
genera of local clinical importance. The tendency of achieving
greater percent assembly of secondary effluent metagenomes
could have attributed to higher frequency of identification of
co-occurring ARG, MGE, and pathogen-like annotations than
in the influent. We also acknowledge that MGE annotation is
challenging due to out-of-date, incomplete, and disparate public
databases, thus improving the accuracy of databases used for

annotation should be prioritized in future research. Regardless,
these results highlight that WWTP effluent monitoring also
has the potential to shed light on local clinical antibiotic
resistance concerns, as has been recently proposed with respect to
monitoring sewage influents (Aarestrup and Woolhouse, 2020).
Effluent monitoring also presents the advantage that it can aid in
assessing WWTP performance and provides a measure of loading
to the environment and potential associated exposures. Given
that the variability of the effluent was higher than the influent,
this suggests that it may also be possible to better detect and act
upon anomalies of concern than by influent monitoring alone.

In terms of a comprehensive indicator of the potential
for ARGs to spread and be present in human pathogens,
MetaCompare showed promise in this study. In particular,
MetaCompare analysis provided a comprehensive metric that
takes into account ARGs, their mobility, and potential presence
in pathogens. In this way, relative comparisons of resistome risk
can be made in time or space for a given system to prioritize
further investigation or action. Consistent with reduction of
pathogens from influent, resistome risk scores also consistently
decreased through the WWTP in this study. Still, taxonomic
markers corresponding to the genus-level of all nine pathogens
monitored in the local clinical antibiotic surveillance could be
detected in the effluent and sometimes even increased in relative
abundance. Escherichia stood out in this study both as having
the most ARG connections on assembled contigs in common
with local antibiogram data and tending to increase in relative
abundance in the effluent. Extended-spectrum beta-lactamase
producing E. coli are regularly isolated from treated wastewater
effluent globally and are being considered by the World Health
Organization (2021) and others as a standardized monitoring
target for antibiotic resistance in wastewater (Diallo et al., 2013;
Bréchet et al., 2014; Li et al., 2019; Marano et al., 2020).

There did not appear to be distinct grouping of influent
resistomes by season (winter, spring, summer, fall) or grouped
seasons (winter/spring, summer/fall) based on ARG profiles.
This finding is consistent with no observed seasonality in
the monthly sampling of activated sludge at a Hong Kong
WWTP over 9 years, although the authors hypothesized that
this was due to minimal local shifts in temperature (Yin et al.,
2019). The distinct separation of influent from activated sludge,
secondary effluent, and final effluent in the NMDS plots is
consistent with the trends in mobile ARGs and plasmid replicons
observed among three sampling events over 6 months at the
Portuguese WWTP noted above (Lira et al., 2020), consistent
with the above observation of relatively stable resistome in
the influent that subsequently shifts and increases in variability
in the effluent. Interestingly, it was noted that the activated
sludge resistome shifted in composition every 2-3 years at
the Hong Kong WWTP (Yin et al., 2019), a turnover period
that would not have been captured over the duration of the
present study. Still, the fact that the effluent resistome was
generally more variable over the period of this study than
the influent resistome suggests that there may have been
some variability in the activated sludge resistome of the prior
treatment stage as well (although it was only sequenced on two
sampling dates).
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While the microbiome was also distinct in composition for
each stage of treatment, its stability mirrored that of the resistome
throughout the 18-month sampling period. The dominance of
Arcobacter and Acinetobacter in the influent was not unlike
a previous metagenomic study comparing the resistome and
microbiome of coastal beach versus sewage waters in Uruguay
(Fresia et al., 2019). In contrast, Pseudomonas was the most
abundant genera in the sewage waters in this study, whereas
Pseudomonas was one of the lesser dominant genera in the
top 20 most abundant. Enhydrobacter was not a discussed
in the Uruguayan study. Although the relative abundances
of Arcobacter and Acinetobacter decreased from the influent
through activated sludge, their average abundances remained
similar to the core OTUs found in activated sludge compartments
globally (Wu et al., 2019): Arcobacter (0.28%, versus 0.43% in
global study) and Acinetobacter (1.07%, versus 0.22% in global
study). Of the more dominant genera found from activated sludge
onward, only Nitrospira was present as a core global OTU (Wu
et al., 2019). Fresia et al. (2019) also utilized MetaPhlAn2 for
taxonomic annotation, while Wu et al. (2019) relied on 16S rRNA
amplicon sequencing.

Total measured antibiotic load also decreased by ~40-50%,
by the same order of magnitude of total ARG relative abundance.
Otherwise, the fate of antibiotics was not predictive of the fate
of respective ARGs. For example, MLS antibiotics, especially
azithromycin, were the most persistent among the measured
antibiotic classes and sometimes even increased in concentration
from influent to final effluent. MLS ARGs, on the other hand,
consistently decreased from influent to secondary effluent.
Even for antibiotic concentrations greater than the PNEC, in
most cases there were not significant correlations with ARGs.
For example, the concentration of ciprofloxacin was greater
than the PNEC in seven sampling events, yet no significant
correlations with corresponding quinolone ARGs were observed.
We acknowledge that difficulty detecting clinically relevant
quinolone ARGs, due to exclusion of resistance due to point
mutation (which is often the case for clinically relevant quinolone
ARGs) in the metagenomic analysis, could have influenced this
analysis. One limitation of the current study is difficulty in
detecting beta-lactams, which represented a large portion of the
discriminatory resistome and Category 4 ARGs. However, beta-
lactams degrade rapidly under environmental conditions and
few studies have reported their detection in WWTPs (Singh
et al,, 2019). Generally, other studies have similarly noted lack
of correlation between antibiotic residues and ARG abundance
(Bengtsson-Palme et al., 2016; Hendriksen et al., 2019; Parnédnen
et al., 2019; Riquelme et al.,, in preparation). Thus, growing
consensus among several studies supports the overall conclusion
that selection pressures for carriage of ARGs across the microbial
community are generally diminished through the WWTP. This
is consistent with the reduced total ARG relative abundance
from influent to effluent consistently observed across this study.
Still, monitoring antibiotics can be informative to gain insight
into which antibiotics are being used in a given community,
which is difficult to ascertain from publicly available data
(Morgan et al, 2011; Auta et al, 2019), is also important
surveillance information.

CONCLUSION

Based on this intense 18-month study of a conventional
WWTP and comparison to locally available clinical resistance
information, metagenomic analysis was found to yield rich
information about resistomes and associated microbiomes that
can be mined to inform effective strategies for antibiotic
resistance surveillance. In terms of metrics that are worthy
of consideration for future monitoring efforts, both core
and discriminatory resistome analysis revealed several ARGs
of clinical concern, while MetaCompare analysis provided a
comprehensive metric for relative comparison of the degree to
which ARGs are predicted to be mobile and carried in pathogens
(i.e., resistome risk).

Overall, it was observed that most antibiotic resistance
indicators of concern decreased during wastewater treatment,
including: measured antibiotics (although some macrolides
increased), relative abundance of total ARGs, absolute abundance
of total ARGs, and resistome risk. Together with Category 1
and Category 3 ARGs, which are either completely removed
or decrease during treatment, such metrics could routinely
be monitored to verify that a given WWTP is performing
according to baseline. On the other hand, monitoring Category
2 ARGs, which tend to increase during treatment, could be
informative for optimizing WWTP for maximal attenuation of
ARGs. Further, this study provided insight into the behavior
of specific ARGs of clinical relevance. Clinically relevant
ARGs that are also discriminatory (e.g., blaOXA) could be
prioritized for surveillance, either through metagenomics or
qPCR-based methods.

Remarkably, it was observed that linked ARG-MGE-
taxonomic information found on assembled contigs in the
WWTP effluent were more similar to antibiotic resistant
pathogens identified to be of local concern, relative to
those found on contigs from the influent sewage. These
results suggest that monitoring WWTP effluent can also
provide valuable surveillance information, as has recently
been proposed for WWTP influents. The fact that effluent
resistomes were also more variable than influent resistomes
further suggests that more frequent monitoring of effluents
may be warranted than for influents and could serve to
identify important upsets or anomaly events. Effluent is also
valuable to monitor given that it also represents the worst
case of what can be discharged to the environment and
result in exposure, either through recreation in receiving
waters or water reuse. Based on the findings of this study,
we emphasize the following specific considerations for
metagenomic-based surveillance of antibiotic resistance in
WWTPs:

e Metagenomic-based surveillance of antibiotic resistance
can be economized by less frequent sampling of sewage
influents if the purpose is global comparison.

e Metagenomic surveillance of effluents is a promising
approach to assessing both efficacy of WWTP for
mitigation, but also for assessing the local clinical antibiotic
resistance condition.
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e Core and discriminatory resistomes can be compared within
and among WWTPs with time to identify similarities and
differences. About 50% reduction in relative abundance of
total ARGs was achieved across the WWTP and several
specific ARG types were consistently observed to be removed
or to increase. Diversity of ARGs consistently decreased.
Such measures could be used to benchmark WWTP
performance and assess potential operational deficiencies
or upsets.

e Core and discriminatory ARG analysis comparing influent
and secondary effluent identified a collection of “indicator”
ARGs that are also clinically relevant; such as blaOXA,
blaGES, mphD, msrE, and gnrS, that should be further
considered as targets for antibiotic resistance monitoring
in WWTPs.

e Metagenomic analysis of co-occurrences of ARGs, MGEs,
and pathogen gene markers was notably consistent
with patterns in resistance of locally available E. coli
monitoring data, suggesting value in coordinating with
recent initiatives to target E. coli for antibiotic resistance
surveillance of water environments. S. aureus harboring
MLS ARGs also emerged as a target worth exploring in
future research.

e While antibiotics generally tended to decrease across
the WWTP, they were not generally predictive of
patterns observed in corresponding ARG increase or
removal.
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