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We investigate the self-propulsion of an inertial swimmer in a linearly density stratified
fluid using the archetypal squirmer model which self-propels by generating tangential
surface waves. We quantify swimming speeds for pushers (propelled from the rear) and
pullers (propelled from the front) by direct numerical solution of the Navier-Stokes
equations using the finite volume method for solving the fluid flow and the distributed
Lagrange multiplier (DLM) method for modelling the swimmer. The simulations are
performed for Reynolds numbers (Re) between 5-100 and Froude numbers (F'r) between
1-10. We find that increasing stratification reduces the swimming speeds of both pushers
and pullers relative to their speeds in a homogeneous fluid. The increase in the buoyancy
force experienced by these squirmers due to the trapping of lighter fluid in their respective
recirculatory regions as they move in the heavier fluid is one of the reasons for this
reduction. With increasing the stratification, the isopycnals tend to deform less which
offers resistance to the flow generated by the squirmers around them to propel themselves.
This resistance increases with stratification, thus, reducing the squirmer swimming
velocities. Stratification also stabilizes the flow around a puller keeping it axisymmetric
even at high Re, thus, leading to stability which is otherwise absent in a homogeneous
fluid for Re greater than O(10). On the contrary, a strong stratification leads to instability
in the motion of pushers by making the flow around them unsteady 3D which is otherwise
steady axisymmetric in a homogeneous fluid. A pusher is a more efficient swimmer than
a puller owing to efficient convection of vorticity along its surface and downstream. Data
for the mixing efficiency generated by individual squirmers explains the trends observed
in the mixing produced by a swarm of squirmers.

Key words:

1. Introduction

Movement driven by pervasive impulses acting across multiple spatial and temporal
scales, is a fundamental characteristic of all the Earth dwelling organisms since they
first learned to move some 565 million years ago (Liu & Brasier 2010). Depending on
their surrounding environment, locomotive organisms have developed various techniques
to roam around like running, flying, jumping, swimming, rolling, gliding to name a few.
This movement plays a crucial role in driving many of the evolutionary and ecological
processes (Baker 1978; Berg 1993; Isard & Gage 2001; Ardekani et al. 2017). Especially

in aquatic bodies, swimming organisms span across sizes ranging from a few microns to
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a several meters and exhibit a rich variety of locomotive organs (Childress 1981; Beckett
1986).

The magnitude of the Reynolds number Re = Upa/v, which is a dimensionless
number quantifying the relative strength of the inertial and viscous effects provides us
an insight into the underlying flow physics of swimming organisms. Here, Uy is the
velocity scale, a is the length scale and v is the kinematic viscosity of the fluid. For
swimming microorganisms, the Re ranges from 10~* for bacteria (Brennen & Winet
1977), 1073 for Chlamydomonas, 0.01 — 0.1 for Volvox (Drescher et al. 2009), 0.1 — 1 for
freely swimming zooplankton Daphnia magna (Wickramarathna et al. 2014), 0.2 — 2 for
Paramecia depending on swimming or escaping mode (Ishikawa & Hota 2006), O(10) for
Pleurobrachia, and 20 — 150 for copepods (Kigrboe et al. 2010). So, organisms employ
a wide range of swimming mechanisms. At low Re, they utilize the thrust generated by
the locomotive organs like cilia and flagella to oppose the viscous drag forces (Lighthill
1976). At high Re, they utilize the lift-forces generated by the flapping of fins and tails
(Childress 1981).

In many of these swimming microorganisms, the propulsion is produced by a cyclic
distortion of the body shape (Shapere & Wilczek 1989), e.g., oscillating cilia or flagella
(Childress 1981; Brennen & Winet 1977). The spherical squirmer model, first introduced
by Lighthill (1952) and later modified by Blake (1971) mimics the self-propulsion pro-
duced by the coordinated motion of dense array of cilia on its surface. These ciliary
deformations are axisymmetric resulting in radial (u}) and tangential (uj) velocity
components on its surface in a frame of reference translating with the squirmer with
radius a:

Ullr—a =Y An(t)Py(cost), (1.1)
n=0
s _ - -2 1 .
US| pea = nz:% at ) B, (t)P}(cosb), (1.2)

respectively. Here r is the distance from the center of the squirmer, 6 is the angle measured
from the direction of the locomotion, A, and B,, are the time dependent amplitudes of
ciliary deformations and P,, P! are the associated Legendre polynomials of degree n.
The swimming speed of a neutrally buoyant squirmer at Re = 0, i.e., in a Stokes flow
depends only on the first mode of each surface velocity component and is given by,
Uy = (2B; — Ay) /3. This swimming speed is independent of fluid viscosity and other
swimming modes (Lighthill 1952).

Magar et al. (2003) were the first to utilize the squirmer model in a computational study
to investigate the nutrient uptake by self-propelled organisms. After that, researchers
have investigated the hydrodynamic interactions between two squirmers (Ishikawa &
Hota 2006), rheology of suspensions of squirmers (Ishikawa & Pedley 2007), mixing by
swimmers (Thiffeault & Childress 2010) as well as swimming in non-Newtonian fluids
Zhu et al. (2012) using the squirmer model. However, all these studies were in the limit
of Stokes flow, i.e., Re = 0.

In the last decade, the focus has shifted on exploring the swimming dynamics of the
squirmer at a finite Re (Wang & Ardekani 2012a; Khair & Chisholm 2014). Numerical
investigations at a high Re (1-1000) show that inertia results in significant divergences
in the motion of a pusher and a puller. Specifically, pushers are stable and the flow
around them is steady axisymmetric for Re as high as 1000 (Chisholm et al. 2016; Li
et al. 2016). On the contrary, pullers become unstable and the flow around them becomes
3D at a critical Re which depends on the relative magnitudes of the swimming modes
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(Chisholm et al. 2016). The reasons behind these differences are: 1) distinct hydrodynamic
interactions between the swimmer bodies and the flow fields created by them, i.e., a
pusher will be attracted towards its original trajectory due to its interaction with the
flow field when it is perturbed sideways from its original straight-line path while the exact
opposite of this effect will be experienced by a puller (Li et al. 2016), and ii) the ineffective
advection of the vorticity generated by the puller as opposed to a strong and efficient
advection of the vorticity downstream by the pusher (Chisholm et al. (2016)). Fig. la
and 1b demonstrate these effects for a pusher and a puller moving in a homogeneous fluid,
respectively. Furthermore, inertia also affects the hydrodynamic interactions of squirmers
resulting in a variety of dissimilar trajectories for puller and pusher pairs depending on
Re and B. Inertia of the squirmers alters the time of contact and scattering dynamics of
two colliding pushers, and results in hydrodynamic attraction between a pair of puller
swimmers (Li et al. 2016).

Oceans and lakes are abundant with microorganisms and their motion in these aquatic
bodies leads to intense biological activity (Alldredge et al. 2002; Sherman et al. 1998;
Cloern et al. 1985). This makes studying the motion of swimmers in oceanic environment
an interesting problem. However, the problem becomes more complex as the upper layer
of the ocean, where these swimmers typically roam, observes a vertical variation in the
water density which is ubiquitous in other marine environments as well (Jacobson &
Jacobson 2005; MacIntyre et al. 1995). This density stratification (pycnoclines) can be
due to temperature (thermoclines) or salinity (haloclines) or both. Even though the
stratification length scale is O(km), the appropriate length scale to dictate the influence of
stratification on the swimmers’ motion is O(100um) (Ardekani & Stocker 2010). Marine
microplankton Ciliates with sizes ranging from 20 — 200um (Gemmell et al. 2015) are
abundant in such a stratified environments along with other meso-, macro- and mega-
planktonic organisms which have Re ranging from O(0.01 — 100) (Guasto et al. 2012;
Kigrboe et al. 2010).

Density stratification leads to accumulation of microorganisms (Harder 1968; Vili¢i¢
et al. 1989; Hershberger et al. 1997) or marine snow particles and formation of phyto-
plankton blooms (Sherman et al. 1998). The accumulation is significant for larger size
phytoplankton than the smaller ones (Vili¢i¢ et al. 1989) implying the role of swimmer
inertia is important for the accumulation. Experimental investigations of the flow fields
around inertial zooplanktonic organisms in a stratified fluid show that the fluid and
mass transport due to the swimming of zooplankton organisms can be comparable
to turbulence induced transports typical to stratified marine environments (Noss &
Lorke 2012). The collective vertical migration of swimmers in a stratified fluid generates
aggregation-scale eddies resulting from the coalescence of the individual organisms’
wakes. These eddies produce an apparent turbulent diffusivity up to thousand times
larger than the diffusivity of the stratifying agent demonstrating their capability to alter
the physical and bio-geo-chemical anatomy of the aquatic environment (Noss & Lorke
2014; Houghton et al. 2018; Wang & Ardekani 2015).

Looking at the locomotion of individual organisms can provide insights into the
collective hydrodynamic and biological impact of migrating swimmer schools in stratified
environments. At low Re, stratification affects the vertical migration of small organisms
by resulting in a smaller flow footprint and nutrient consumption as well as higher energy
spending (Doostmohammadi et al. 2012). Stratification lowers the swimming speed and
requires swimmers to expend more energy for swimming in Stokes regime (Dandekar
et al. 2019). Still, we know little about the effect of stratification on the motion of an
individual squirmer at finite Re.

The motion of self-propelling organisms in a stratified fluid is inherently different than
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that of a rigid object settling as there is a tangential velocity and an active vorticity
generation on the surface of the swimmers. To this end, we numerically investigate the
effect of density stratification on the motion of an inertial squirmer. First, we elaborate
on the governing equations and the computational methodology used to solve these
equations. Then we present the results on the steady state swimming speed of the
squirmers and the effect of stratification on these speeds for various 5 and Re. We present
the flow field and the evolution of pycnoclines around the squirmer to explain the results
on the swimming motion. Finally, we present the effect of stratification on the mixing
efficiency and energy expenditure of individual swimmers.

2. Governing equations and numerical method:

This section explains the governing equations and the computational methods imple-
mented to simulate the motion a squirmer through a linearly stratified fluid at finite Re.
We consider a squirmer moving through an incompressible Newtonian viscous fluid. The
fluid is linearly stratified and the density increases in the downward z direction as shown
in fig. lc.

The fluid flow is governed by the Navier-Stokes equations for an incompressible
Newtonian fluid and these equations are solved in the entire domain, (2. We utilise the
Boussinesq approximation for simplifying the Navier-Stokes equations for a fluid flow of
a density stratified fluid. So, the governing equations are,

Du

v —VP+uV*u+ (p—p)g+f, in 02, (2.1)

V.-u=0, in 2, (2.2)
where t is the time, u is the velocity vector, P is the hydrodynamic pressure, g is the
acceleration due to gravity, p is the dynamic viscosity of the fluid, pg is the reference fluid
density and p is the volumetric average of the density over the entire domain. D()/Dt is
the material derivative. We use the phase indicator function ¢ to distinguish the inside
and outside of the squirmer. ¢ is 1 inside the squirmer and 0 outside. So, the density,
p, can be written as, p = ps(1 — @) + ¢ps, where the subscript f stands for fluid and
s for squirmer. f in equation 2.1 is the body force which is required for imposing the
rigidity constraint inside the squirmer and accounts for fluid-solid interactions in the
Distributed Lagrange Multiplier (DLM) method (Glowinski et al. 2001). DLM has been
extensively used to investigate the motion of rigid particles and model swimmers in both
homogeneous and stratified fluids (Sharma et al. 2005; Ardekani et al. 2008; Ardekani &
Rangel 2008; Doostmohammadi et al. 2014; Wang & Ardekani 2015; Li et al. 2016).

The temporal and spatial evolution of the density is governed by,

DD—’; = kV?p, in 2, (2.3)
here k is the diffusivity of the stratifying agent and p is the density field. Prandtl
number Pr = v/k, describes the ratio of the momentum diffusivity to the diffusivity
of the stratifying agent. We discretized equations 2.1-2.3 on a non-uniform staggered
Cartesian fixed grid using a finite volume method (Aniszewski et al. 2019). We used
first order Euler method for temporal evolution while convection and diffusion terms in
momentum and density transport equations have been solved using QUICK (quadratic
upstream interpolation for convective kinetics) and central-difference scheme (Leonard
1979), respectively. We initialize the squirmer at a vertical location z; on the center-line
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Figure 1 a) Vorticity contours and streamlines for a 3 = —3 pusher at Re =5 in a

homogeneous fluid, b) vorticity contours and streamlines for a 8 = 3 puller at

Re =5 in a homogeneous fluid. The cartoons below (a) and (b) represent flow
around the squirmers. The flow around a 8 < 0 squirmer looks like the fluid is
being “pushed” by the squirmer, hence the name pusher. On the other hand, the
flow around a f > 0 squirmer looks like the fluid is being “pulled” away from the
squirmer, hence it is called puller. The red arrows show the hydrodynamic
interactions of the laterally perturbed squirmers with the flow field induced by
them. These interactions attract a pusher towards its original straight trajectory
making it stable as opposed to puller which is knocked away from the original
straight trajectory. The vorticity scale is same for both (a) and (b). The far-field
flow decays as ~ 2 for inertial squirmers (see fig. 6). Hence the streamlines away
from the squirmers are identical. However, the streamlines are distinct for a puller
and a pusher very close to their bodies. There is a recirculatory bubble in front of
the pusher and behind the puller. ¢) Problem setup for an inertial squirmer in a
linearly stratified fluid. z; is the vertical position where we initialize the squirmer.
The coordinate system is the same in the subsequent figures wherever relevant.

of the domain directed in the positive z direction in a domain 9d x 9d x 80d. The initial
density of the fluid varies linearly with depth z as py = po + 7(2), where 7 is the vertical
density gradient. We use periodic boundary conditions for velocity and density in x and
y directions while the boundary conditions for density and velocity on top and bottom
boundaries are gg = v and g—‘z’ = 0, respectively. The stratification strength can be

quantified by the Brunt—Véiséla frequency, N = (yg/ pg)l/ % the characteristic oscillation
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frequency of a fluid parcel displaced vertically from its neutrally buoyant position in a
density stratified fluid.

To model the swimmer, we use the squirmer model (Lighthill 1952; Blake 1971) which
has been widely used as a model for swimmers like Volvoz in the literature (Pedley 2016).
Recently, researchers have studied the effect of finite inertia on the motion of swimmers
by extending the squirmer model to low and intermediate Re number regimes (Li &
Ardekani 2014; Li et al. 2016; Wang & Ardekani 2015, 2012a,b; Chisholm et al. 2016).
The squirmer self-propels by wavelike motion of its surface.

For this study we consider a reduced order squirmer which has no radial velocity and
only the first two modes of the surface tangential velocity. A reduced order squirmer has
been used extensively in literature to study the mechanisms of locomotion in a variety
of flow conditions (Pedley 2016). The reduced order squirmer can be thought of as a
squirmer with only steady tangential motion on its surface (A,, = 0 and B,, = constant).
Further simplification is obtained by considering only the first two modes in the tangential
motion giving,

US| pegq = 0, (2.4)

ug(0) = Bisind + Basinfcosd, (2.5)

in the frame of reference moving with the squirmer. Here 6 is the angle with respect to
the swimming direction, and By and Bs are the first two squirming modes. In Stokes flow
limit, the velocity of a squirmer in an infinite domain is Uy = 2B;/3, we use this as the
velocity scale in this study. Furthermore, a reduced order squirmer can be categorised
based on the sign of 8 = By/B; (Ishikawa & Pedley 2007; Li et al. 2016). A squirmer
with 8 < 0 is called a pusher and a squirmer with 8 > 0 is called a puller. See fig. 1a
and 1b for details.

To impose the above given tangential velocity (eq. 2.5) on the squirmer surface, we set
the following divergence free velocity field inside the squirmer (Li & Ardekani 2014),

r\m r\m+1 r\m+1 r\m s

o= [ (5= ()] (o + G e om0 (5)™ = tm 2 (5) e

(2.6)
here a is the radius of the squirmer, r is the distance from the squirmer’s center, e,
and ey are the unit vectors in the radial and polar directions, and m is any integer.
The simulation results do not depend on the choice of m. This is because the expression
for u;, is divergence free and recovers eq. 2.4 and 2.5 at the squirmer surface locations
irrespective the value of m. The squirmer velocity is calculated by solving the following
equations:

M / ps(u — u;y,)dV, (2.7)

Lw= / rXx ps(u - uin)du (28)
\Z

P
where V,,, M), and I are volume, mass and the moment of inertia of the squirmer. U
and w is the translational and the rotational velocity of the squirmer. Finally, the force
f is calculated by the following iterative formula:

po

f—f*+ozA (U4 w xr+u; —u), (2.9)
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where f* is the force calculated in the previous iteration and « is a dimensionless factor
chosen in such a way that iterations for calculating f converge quickly (Doostmohammadi
et al. 2014; Li et al. 2016). The iterations are performed until the maximum of Euclidean
norm of (f — £*)/f and the normalized residue (fv,, |(U+w xr+uy, —uldV/UpV,) falls

below 1073, Many organisms utilize techniques like ion exchange (Boyd & Gradmann
2002; Sartoris et al. 2010), gas vesicles (Walsby 1994), and/or carbohydrate ballasting
(Villareal & Carpenter 2003) for buoyancy control (Guasto et al. 2012). Hence, for this
study in order to isolate the effect of stratification on the motion of a squirmer, we
consider the squirmer to be neutrally buoyant, i.e., there is no net buoyancy force acting
on them due to difference in the density with the background fluid. This is achieved by
setting the squirmer density equal to the background fluid density at its instantaneous
location. As a result, ps changes as the squirmers moves. We assume the k to be the
same for the squirmer and the fluid (Sanders & Childress 1988; Wang & Ardekani 2015).
The squirmer is free to move and rotate and its translational and angular positions are
calculated by integrating the translational and rotational velocities forward in time.

If we do not consider the swimmers to be neutrally buoyant, then they have a different
density compared to the background fluid. This means that, they will have two main
contributions which will determine their swimming speeds. 1) their self-propulsion due
to the surface velocity and 2) the settling/rising motion due to the difference in density
with the background fluid.

If the swimmers are close to their neutrally buoyant level in the fluid, i.e., the depth of
the fluid where the fluid density is equal to the squirmer density, then we expect them to
swim till they reach their neutrally buoyant level where they might either oscillate or stop
or get deflected in the horizontal direction depending on their S and the stratification
strength. This kind of mechanism might be leading to the accumulation of phytoplanktons
in the oceans. In all these cases, they get trapped at their neutrally buoyant levels due to
the reduction of their vertical swimming velocity to 0. This is similar to what happens
in the case of a heavy sphere settling Doostmohammadi et al. (2014) or a drop rising
Bayareh et al. (2013) in a stratified fluid. Their settling/rising velocity gradually decreases
and becomes 0 as they reach their neutrally buoyant levels. If the swimmers are far away
from their neutrally buoyant levels, then there will be a huge difference in the fluid and
swimmer density resulting in a strong heavy sphere like settling motion as the buoyancy
force will dominate. But they will not attain a steady state velocity as it will decrease
with time but at a slower rate than the first case. In any of these cases, we do not expect
the squirmers to reach a steady velocity. We discuss more on this in the appendix C.
Hence, we consider the squirmers to be neutrally buoyant so that we can specifically
study the effect of stratification on the swimmer motion.

In many real-life situations, the swimmers move in the vertical direction such that they
are parallel to the direction of the stratification or gravity mainly for grazing or in the
search of the sunlight during their diel cycles (Banse 1964; Luo et al. 2000; Steinberg
et al. 2008). In addition, the direction of the motion considered in this study is one of the
common situations for swimmers moving in oceans, e.g., bioconvection (Hill & Pedley
2005). So, we initialize the squirmers with their initial orientations in the direction of
gravity, i.e., downwards. Since the squirmers considered here are neutrally buoyant, they
will exhibit the similar dynamics even if they move against the direction of gravity,
i.e., upwards. We also performed a few simulations with the initial squirmer orientation
perpendicular to the direction of gravity, i.e., horizontal. In this case, the squirmers
move with similar speeds and exhibit the similar dynamics as they do in a homogeneous
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Figure 2 Effect of stratification on the velocity evolution of squirmers with Re = 25 for a
a) pusher, 8 = -1, b) puller, 8 = 1. The velocity has been normalized with the
steady state squirmer velocity in Stokes flow, i.e., Up = 2B1/3 and the time has
been made dimensionless with the time scale a/Us. H = homogeneous fluid. The
legends are the same for both the plots. These plots show that increasing the
stratification leads to a reduction in the squirmer swimming speeds.

fluid. More details on the effect of the initial squirmer orientation on their dynamics is
presented in Appendix D.

3. Results and discussion

This section presents the results for the motion of a squirmer at finite Re in a linearly
stratified fluid. The velocities are normalized by the velocity scale Uy and the time has
been normalized by the time scale a/Uj. The mesh size was chosen such that there
are 35 grid points across the diameter of the squirmer. We performed simulations for
Re = poUpa/p ranging from 5 to 100 and for § = £3,4+1. We vary the Froude number,
Fr =Upy/Na from 10 to 1 and also compare the velocities with the velocity of a squirmer
in a homogeneous fluid. The Brunt—Vaisila frequency, N = (yg/ po)l/ 2
density gradient.

The Prandtl number, Pr for salt stratified water is 700 and for temperature stratified
water it is 7. But, we set the Prandtl number Pr to be equal to 0.7. This has been
done mainly to resolve the density boundary layer which scales as O(d/v/ PrRe) where
d is the diameter of the object. This means as long as the velocity boundary layer is
resolved, the density boundary layer is also well resolved. Previous studies on the effect
of Pr on the settling velocity of a rigid sphere have shown that changing the Pr changes
the magnitudes of the flow variables and velocity of the object, but the overall behavior
and trends remain the same (Doostmohammadi et al. 2014). We also present results
for Pr = 7 to show that this is also true for a squirmer along with grid and domain
independence tests in the appendix A and B.

, where v is the

To explain the results we present the streamlines, vorticity field and the density
difference contours (isopycnals) in the frame of reference of a steadily moving squirmer.
We also study the effect of stratification on the power expenditure and the mixing
efficiency by a squirmer.
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Figure 3 Effect of stratification on steady state swimming speed U of a a) pusher, 8 = —1
(a=b=4.48), b) puller, 8 =1 (a = b= "7.11) for different Ri. The solid line
represents a curve fit with U/Uy = a/(Ri + b). The steady state state swimming
speed U has been normalized with squirmer’s steady state swimming speed in a
homogeneous fluid (Uy) at the same Re.

3.1. Stratification slows down the squirmer

Fig. 2 shows the time evolution of the swimming speed (U(t) denotes the time
dependent squirmer speed in the vertical or parallel to initial squirmer orientation) of
a pusher and a puller with Re = 25 in homogeneous and stratified fluids. It has been
shown that increasing the inertia leads to an increase in the swimming speed of pushers
and a reduction in the swimming speeds of pullers (Wang & Ardekani 2012a; Li et al.
2016; Chisholm et al. 2016) in a homogeneous fluid compared to their speeds in Stokes
flow limits. Thus, the results plotted in fig. 2 for homogeneous fluid are consistent with
the previous studies (Wang & Ardekani 2012a; Li et al. 2016; Chisholm et al. 2016).
We initialize the squirmer with a zero velocity orientated along the direction of gravity.
The velocity reaches a steady state after the initial transient dynamics. The steady state
squirmer velocity can be obtained by taking a time average once the transients die out. As
we increase the stratification strength, i.e., reduce the F'r, we observe that the swimming
speed of both pusher and puller decreases.

To quantify the effect of stratification on the the swimming speed reduction, we plot
the steady state swimming speed U, scaled by the steady state velocity of the squirmers in
a homogeneous fluid at the same Re as a function of Richardson number, Ri = Re/Fr?.
U is calculated by taking time-average of the squirmer velocity once it reaches a steady
state, i.e., from tUp/a = 20 — 60. Fig. 3 shows the effect of increasing the stratification
on the steady velocity of a pusher and puller for different Re and R:i values. The plots
indicate that for Ri = O(1) the reduction in the swimming speed is about 20 % while for
higher Ri ~ O(10) the reduction is more than 50 % from their velocities in a homogeneous
fluid. These results are consistent with low but finite Re (= 0.5) squirmer dynamics in
a stratified fluid (Doostmohammadi et al. 2012). Please note that the squirmers reach
a steady velocity only if they are stable. It has been shown that the squirmers remain
steady even at high inertia if |3] <= 1 (Chisholm et al. 2016). However, for § > 1,
the pullers become unstable in a homogeneous fluid for Re ~ O(10). Hence, we present
results for |5] = 1 in fig. 3 as the squirmers with |5] = 1 are stable at all Re investigated
in this study.

Stratification affects the motion of a pusher more than a puller which is apparent as
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(a) Re =50, (b) Re=50, Fr=7 (c) Re=50, Fr=5 (d) Re=50, Fr=3
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Figure 4 Normalized density difference ((p — po)/(va)) contours (isopycnals) for a pusher
(B = —3) at different F'r. The lines with arrows are the streamlines in the frame
of reference attached to the swimmer. A pusher entrains lighter density fluid in
the vorticity bubble in its front. This results in a higher buoyancy force as it
moves down in a heavier fluid and hence a reduction in its swimming speed.
Stratification also leads to expansion of this vorticity bubble which means the
vorticity generated at the pusher’s surface cannot advect to the downstream as
easily as it does in a homogeneous fluid. As a result, a pusher becomes unstable
and the flow around it breaks axisymmetry in strong stratifications. The
coordinate system is the same as in fig. 1c hence not shown here.

reduction in the velocity for a pusher is more for the same Ri. Plotting the data against
Ri reveals that Ri is the fundamental parameter determining the velocity of the squirmer
(See Fig. 3) compared to their swimming velocities for the same Re in a homogeneous
fluid. We fit the data with the following equation:

U a

Us Ri+b
where a and b are the fitting constants which depend on the value of 5. Thus giving us
an O(Ri~') dependence for the swimming speed of the squirmers.

A pusher propels forward by “pushing” the fluid on its sides to in front and behind
it as shown in the cartoon in fig. la. In a homogeneous fluid, the pusher (shown by
dashed lines in fig. 1a) is pushed forward by the flow field generated by itself at an earlier
time (shown by solid lines in fig. 1a). This results in a rise in the swimming speed of a
pusher as its inertia increases in a homogeneous fluid. However, as the pusher moves in a
stratified fluid, it experiences a higher resistance in maintaining the flow field around it.
This is due to the fact that, it essentially needs to push the packets of fluid around it to
regions where the fluid packets experience higher buoyancy forces. The fluid which the
pusher pushes upwards, i.e., behind it, is heavier than the fluid it is getting pushed into,
i.e., fluid at the top and vice versa for the fluid which the pusher pushes downwards.

The hindrance in maintaining the flow field around the pusher increases with increasing
the stratification. This is because the exigency of the isopycnals to return to their neu-
trally buoyant positions as the squirmers deform them, increases with the stratification
strength. The secondary flow generated due to this phenomenon directly opposes the
primary flow generated by the squirmers to propel themselves. As the stratification
increases, the isopycnals can return to their neutrally buoyant positions quickly, resulting
in smaller isopycnal deformations and hence, offer higher resistance to the flow generated

(3.1)
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(a) Re =50, (b) Re=50, Fr=7 (c) Re=50, Fr=5 (d) Re=50, Fr=3
Fr — o

Figure 5 Normalized density difference ((p — po)/(va)) contours (isopycnals) for a puller
(B8 = 3) at different F'r. The lines with arrows are the streamlines in the frame of
reference attached to the swimmer. A puller entrains lighter density fluid in the
vorticity bubble in its rear. This results in a higher buoyancy force as it moves
down or in a heavier fluid and hence a reduction in its swimming speed. A puller
also pulls the heavier fluid around it upwards as it swims. These heavier
isopycnals assist the swimming of the puller as they drag the puller with them
while they try to resettle to their neutrally buoyant positions. Stratification also
leads to contraction of this vorticity bubble size which means the resistance to the
vorticity advection to the downstream decreases as we increase stratification. As a
result, a puller becomes stable and the flow around it remains axisymmetric even
at high Re for a strong stratification. The coordinate system is the same as in
fig. 1c hence not shown here.

by the squirmers which reduces its swimming speed. This becomes clear by comparing the
deformations in the isopycnals just behind the pusher as we increase the stratification.
The hindrance to the flow field generated by the pusher is higher if the isopycnals
undergo little deformations. The isopycnals with increasing stratification are plotted in
fig. 4. The isopycnals offer higher resistance to their deformation as the stratification
increases which essentially resists the pushing of the fluid by a pusher. This is expected
as the exigency of the deformed isopycnals to return to their neutrally buoyant positions
increases with increasing the stratification strength. This is one of the reasons which
leads to the reduction in the swimming speed of a pusher with increasing stratification
as shown in fig. 3a.

As the inertia of the pusher increases in a homogeneous fluid, the recirculatory region
in front of and behind it shrinks leading to efficient downstream advection of the vorticity
generated on its surface. As a result, its swimming speed increases with increasing the
inertia in a homogeneous fluid. However, in a stratified fluid, the size of these recirculatory
regions increases as we increase the stratification (see fig. 5 and 10). In addition, the
pusher entrains the lighter fluid in this recirculatory bubble in front of it. So, as the
pusher moves, it has to push this blob of the lighter fluid into a heavier fluid in front of
it. This results in a higher buoyancy force opposite to the motion of a pusher reducing its
swimming speed. Increasing the stratification strength increases the size of this blob of
the lighter fluid in front of the pusher owing to the increase in the size of the recirculatory
region. This effect can be seen by comparing the size of the lighter fluid blobs in front
of the pushers in fig. 4b, 4c and 4d or the size of the vorticity bubbles in front of the
pushers in fig. 9b, 9¢ and 9d.

Unlike the pusher, a puller propels forward by “pulling” the fluid in front and behind
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its body to its sides as shown in the cartoon in fig. 1b. In a homogeneous fluid, the puller
(shown by dashed lines in fig. 1b) is pulled back by the flow field generated by itself
at an earlier time (shown by solid lines in fig. 1b). In addition, the fluid flow behind
the puller obstructs the downstream advection of the vorticity generated on the pullers
surface with increase in the inertia of the puller. The combined impact of these effects is
the reduction in the puller’s velocity as its inertia increases in a homogeneous fluid. Thus,
any hindrance to the flow field generate by a puller in front and behind it will result in an
inefficient downstream advection of the vorticity resulting in a slower swimming puller.

Similar to a pusher in a stratified fluid, the density stratification offers a significant
resistance to generate the flow field around a puller as it swims. This is because the
puller has to pull the fluid packets in front and behind it from their neutrally buoyant
positions to a region where the fluid packets experience a buoyancy force. E.g., the fluid
which the puller pulls downwards behind it is lighter than the fluid it is getting pulled
into, i.e., the fluid on the sides of the puller and vice versa for the fluid which the
puller pulls upwards. Again, the hindrance to the flow field generation by a puller can
be visualized in terms of the deformations of the isopycnals around a puller at various
stratification strengths. The isopycnals around a puller with increasing stratification are
plotted in fig. 5. The deformations in the isopycnals significantly reduce with increasing
the stratification strength which becomes clear by comparing the deformations of the
isopycnals in the wake of the pullers in fig. 5b, 5¢ and 5d.

A puller entrains a lighter fluid in its rear recirculatory region. Thus, a puller has
to drag this lighter blob of fluid with it as it moves into the heavier fluid below it.
This results in a buoyancy force on the puller in the opposite direction to its motion
resulting in a reduction in its swimming speed. But unlike the case of a pusher, the size
of this recirculatory region behind a puller decreases with an increase in the stratification
strength. This shrinkage can be seen by comparing the size of the lighter fluid blobs
behind the pullers in fig. 5b, 5¢ and 5d or the size of the vorticity bubbles behind the
pullers in fig. 10b, 10c and 10d. As a result, the size of the blob of the lighter fluid that
a puller has to pull with it also reduces which is opposite to what happens in the case of
a pusher moving in a stratified fluid. This explains the relatively lower reduction in the
swimming speed of a puller than a pusher at the same Ri.

In addition to the squirmer speed, it is also interesting to look at the far-field velocity
away from the squirmers. The far-field velocity for squirmers in a homogeneous fluid at
Re = 0. i.e., in the absence of inertia decays as |w| ~ r~2. If the squirmers posses a
finite inertia, then the fluid velocity in the swimming direction of the squirmers decays
as |w| = 773 (Li et al. 2016; Chisholm & Khair 2018). We observe the same far-field flow
structure in the squirmer swimming direction, i.e, |w| ~ r=3, for the squirmers moving
in a homogeneous fluid with a finite inertia as shown in fig. 6. Introducing stratification
further hastens this decay with r from the squirmer in the swimming direction as shown
in fig. 6a and 6b for pushers and pullers, respectively. Figure 6 shows that the decay
exponent of the far-field velocity in the swimming direction of the squirmers reduces
significantly from ~ —3 in a homogeneous fluid to ~ —10 in a strongly stratified fluid
with Fr = 1. These results are consistent with previous studies which show that the
effect of stratification is to suppress the vertical motion of the fluid (Ardekani & Stocker
2010; Doostmohammadi et al. 2014; More & Balasubramanian 2018). The velocity field
decays less rapidly for a pusher as compared to a puller at higher stratification strength
owing to the increase in the vorticity bubble ahead of a pusher which expands as the
stratification strength increases.
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Figure 6 Effect of stratification on the far-field flow structure in the swimming direction of
the inertial squirmers (Re = 25) with increasing stratification strength. a) Pusher
with 8 = —1. b) Puller with 8 = 1. Here r/a = 1 is at the velocity at the squirmer
surface and increasing r/a gives the locations in front of the squirmers in the
downward direction along their axes (shown by dash-dotted lines in fig. 1). H in
the legends stands for homogeneous fluid. The black solid lines are for comparison
and show =2 and r~'° decay. The velocity has been made dimensionless by the
steady state squirmer speeds in a homogeneous fluid, Ug.

3.2. Strong stratification stabilizes a puller but destabilizes a pusher at intermediate Re

In a homogeneous fluid, a pusher is stable at high Re in the sense that the flow around
it maintains a steady axisymmetry and it does not become unsteady 3D as opposed to
the flow around a puller which becomes unsteady 3D at Re ~ O(10) (Chisholm et al.
2016; Li et al. 2016). This breaking of the flow axisymmetry eventually makes the puller
unstable beyond a critical Re. For the purpose of this study, we say that a squirmer is
unstable once the axisymmetry of the flow around it breaks and it becomes unsteady.

A look at the flow fields around the squirmers predicts that the hydrodynamic inter-
actions between the velocity fields induced by the inertial squirmers with their bodies
is the reason behind these observations. An inertial puller (pusher) perturbed from its
straight line trajectory is pushed away (pulled towards) the original trajectory due to
these hydrodynamic interactions making it unstable (stable) at high Re (Li et al. (2016),
& fig. la, 1b). To gain further insight into why this is the case, we need to look at
the vorticity field around a puller and a pusher. Pullers form a recirculatory region just
behind them which is shown in fig. 5a (streamlines are not shown inside the recirculatory
region for the neatness of the plot). As we increase Re for a puller, the size of this bubble
increases. At some critical Re determined by [, this bubble becomes so large that it
hinders the convection of the vorticity produced on the surface of the squirmer to the
downstream leading to instability and breaking the axisymmetry of the flow around the
puller. On the contrary to pullers, pushers have the recirculatory region in front of them
(fig. 4a) and its size reduces with increasing Re. As a result, the vorticity produced on
pusher’s surface can be easily advected to the downstream making it eternally stable in a
homogeneous fluid (Chisholm et al. (2016) & fig. 4a, 5a). We observe the same behavior
for pullers and pushers with high Re in a homogeneous fluid. The puller fails to attain
any steady velocity, becomes unsteady and suddenly follows a 3D motion while a pusher
is always steady in a homogeneous fluid (fig. 8a & 8b for F'r — o).

At intermediate Re, we expect the puller to become stable at high enough stratification
strengths and a pusher to be unstable at strong stratification strengths which is exactly
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(a) Puller in weak (b) Puller in strong  (c¢) Pusher in weak (d) Pusher in strong
stratification stratification stratification stratification

Figure 7 Competition between the inertial and the stratification effects for a puller (a, b)
and a pusher (c, d) in a weak and strong stratification. Curved arrows with filled
heads (blue) denote the velocity fields induced by the squirmers (i.e., inertial
effect) and arrows with hollow heads (red) denote the flow field induced by the
exigency of the displaced isopycnals to return to their original position (i.e.,
stratification effect) at an earlier time, i.e., by the squirmer shown by solid lines.
Sizes of the horizontal arrows on the perturbed squirmers show the relative
magnitudes of these competing effects on the squirmer at the present time, i.e., on
the squirmer shown by dotted lines. The laterally perturbed squirmer (denoted by
dotted outline) is either attracted towards its original trajectory (b & c, stable
squirmers) or is knocked away from the original trajectory (a & d, unstable
squirmers) depending on the relative strength of these competing effects. Vertical
arrows show the tendency of the squirmers to propel forward (blue) and the effect
of stratification which hinders the forward propulsion of the squirmers (red). The
vertical arrows are just for showing the directions of the respective effects and are
not scaled. The flow-field description here is approximate and is not up to scale.
The coordinate system is the same as in fig. 1c hence not shown here.

opposite of what is observed in a homogeneous fluid. For an inertial squirmer in a
stratified fluid, there are two competing effects which influence the stability of the
squirmer: i) the hydrodynamic interactions between the squirmer body and the flow
field induced by its motion (inertial effect), and ii) the secondary flow generated by the
exigency of the isopycnals displaced by the motion of the squirmer to resettle to their
original positions (stratification effect). These two effects are competing because the flow
field induced by the squirmers displaces the density stratified fluid around it in such a
way that it has to go against the squirmer induced primary velocity field to return to
its neutrally buoyant position creating a secondary flow, e.g., a pusher pushes the fluid
around it downwards and upwards. The isopycnal that is pushed downwards (upwards)
is flowing into a heavier (lighter) fluid, so as it tries to return to its original position, it
has to flow opposite to the primary flow induced by the pusher.

In fig. 7, we visualize the effects of the primary and the secondary flows on the squirmers
by arrows showing directions of the flows with their sizes indicating the strengths of these
effects. For a puller (pusher) perturbed from its initial straight line trajectory, the inertial
effect tries to push it away (pull it closer) while the stratification effect tries to pull it
closer to (push it away from) the original trajectory. Consequently for a particular Re,
at low enough F'r, the stratification effect wins making the motion of the puller (pusher)
stable (unstable). This is indeed true and can be seen easily in fig. 8a and 8b which
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Figure 8 Effect of stratification on velocity history of squirmers. Swimming velocity
evolution in vertical (U(t)) and horizontal direction (V' (¢)) for a a) puller with j3
= 3 and b) pusher with 8 = -3. Pullers become unstable and the flow around
them becomes 3D as we increase their inertia in a homogeneous fluid. Increasing
stratification makes the motion of a puller steady and stable. On the other hand,
a pusher is stable and the flow around it is axisymmetric for Re as high as 1000
in a homogeneous fluid. Pushers are stable at low stratification strength, but
become unstable for a strong stratification or at a large Ri. The other
components of velocity remain 0 hence not shown.

show that a puller which is unsteady in weak stratification becomes steady in strong
stratifications and vice versa for a pusher.

Stratification affects the stability of squirmers at finite Re in interesting ways compared
to the homogeneous case as discussed earlier. Pullers which are unstable in a homogeneous
fluid at high Re become stable and the flow around them remains axisymmetric for a high
enough stratification. A puller with 8 = 3 at Re = 50 is unstable in a homogeneous fluid
and for a weak stratification (F'r = 10), but it becomes stable for higher stratifications
(Fr < 8) (See fig. 8a). The effect of the stratification is to reduce the size of the vorticity
bubble behind the pullers. The exigency of the heavier isopycnals pulled upwards by the
puller to go back to their neutrally buoyant level is the reason behind this reduction
in its size. This reduction in the recirculatory bubble size with increasing stratification
is apparent from fig. 5 and 10. Thus the advection of the vorticity produced at the
puller’s surface improves with increasing stratification which consequently makes the
puller stable.

A pusher which is always stable in a homogeneous fluid for Re as high as 1000,
however becomes unstable at very strong stratification (See fig. 8b) as the flow around it
becomes unsteady 3D. With increasing stratification, there are two mechanisms at play:
i) more rapid restoration of the disturbed isopycnals to their neutrally buoyant level, ii)
more entrainment of lighter fluid in the recirculatory region. For a particular Re, as we
increase the stratification, both these effects lead to increase in resistance for the vorticity
advection for a pusher, eventually breaking axisymmetry of the flow around it. This is
because, the size of the recirculatory region in front of a pusher increases as more lighter
fluid is trapped (See fig. 4). In addition, the need of the isopycnals to go back to their
original level in the downstream of the pusher results in lateral expansion of the vorticity
wake behind it (See fig. 9).

Fig. 4, 5 and fig. 9, 10 reveal the similarity between the flow fields generated by the
motion of a bubble (Bayareh et al. 2013) and a rigid sphere (Doostmohammadi et al.



16 R. V. More, and A. M. Ardekani
- BN .
— — 0
-y ‘. -
(a) Re =50, (b) Re=50, Fr=7 (c) Re=50, Fr=5 (d) Re=50, Fr=3
Fr — oo
Figure 9 Effect of stratification on the vorticity field around a pusher with 8 = —3.
Colorbar shows the y-vorticity value. Increasing stratification leads to
accumulation of the vorticity in front of a pusher which hinders the advection of
vorticity generated in the front part of a pusher to the downstream. (a) shows the
vorticity advection in a homogeneous fluid and hence isopycnals are not shown. In
(b), (c) and (d) the solid lines denote density differences compared to the
reference density po and normalized by ~a, i.e., £ ;’1’0. Spacing between the lines is
1 unit and darker shade of grey denotes higher density value. The coordinate
system is the same as in fig. 1c hence not shown here.
™ 0 ™ 0 ™ 0
o 0 0
(a) Re =50, (b) Re =50, Fr=7 (c) Re=50, Fr=5 (d) Re=50, Fr =3
Fr — o
Figure 10 Effect of stratification on the vorticity field around a puller with 8 = 3. Colorbar

shows the y-vorticity value. Increasing stratification leads to shrinking of the
vorticity bubble behind the puller which facilitates the advection of vorticity to
the downstream. (a) shows the vorticity advection in a homogeneous fluid and
hence isopycnals are not shown. For (b), (¢) and (d) the solid lines denote
density differences compared to the reference density po and normalized by ~a,
ie., £ ;50. Spacing between the lines is 1 unit and darker shade of grey denotes
higher density value. The coordinate system is the same as in fig. 1¢c hence not
shown here.

2014) in a stratified fluid with the flow fields around pushers and pullers, respectively.
This resemblance in the corresponding flow fields generated by a pusher and a puller
with that of a inviscid spherical bubble and a rigid towed sphere is also observed in the
case of a homogeneous fluid (Chisholm et al. 2016). A rising bubble and a pusher have
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Figure 11 A polar phase diagram indicating the effect of stratification and inertia on the
stability of the squirmers. Open symbols (A) indicate stable squirmer motion,
while filled symbols (A) indicate unstable squirmer motion. Each quarter
(separated by dash-dotted lines) is for a fixed 8 value indicated by legends in
the corners. The black dotted lines separate the stable cases from the unstable
ones. Each quarter is for a fixed 8 squirmer. Each circle (radial direction)
represents a constant F'r value which increases as we go outward. Innermost
circle is the maximum stratification strength while outermost circle is for a
homogeneous fluid. A fixed polar coordinate represents a fixed Re with values
indicated on the outermost circle.

a mobile surface which causes the advection of the vorticity downstream. This avoids
formation of any wake eddy in the downstream flow of a pusher giving it a long trailing
vorticity wake which is similar to that of a rising bubble. On the other hand, the trailing
vorticity wake bubble in the case of a puller is similar to the vorticity field behind a
settling rigid sphere in a stratified fluid. This is caused by the reversal of the tangential
surface velocity of the pusher and is akin to the effect caused by the no-slip boundary
condition on the surface of the settling sphere.

Fig. 11 summarizes the stable-unstable squirmer motion at all the Re — F'r values
explored in this study. We observe that, if a puller is stable in a homogeneous for a given
Re, it remains stable in a stratified fluid too (pullers with low |3|, e.g., S = 1). However,
at higher j, pullers become unstable in a homogeneous fluid for Re O(10). We observed
that, at high Re, the pullers are unstable in a homogeneous fluid and weak stratifications,
but gradually their motion transitions to a steady state as we increase the stratification.
Thus, if a puller is unstable at a particular Re in a homogeneous fluid, it remains unstable
in weak stratifications for the same Re but becomes stable if stratification is sufficiently
strong. But the critical stratification strength required for a puller to be stable increases
with Re. For the pushers, we observed that, the instability in their motion ensues for
Fr £ 1 for Re > 5 explored in this study. F'r gives the relative magnitude of the inertial
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forces with the effect of the secondary flow due to the displacement of the isopycnals. So,
it is expected that as Fr $ 1, a pusher becomes unstable due to the increase in the relative
importance of the destabilizing effects due to the density stratification. Also, the finite
time required for the onset of instability from the initial time (as can be seen in fig. 8)
is due to the time required for the flow solver to reach a solution where initial transients
in the velocity field die down. This is consistent with previous studies in a homogeneous
fluid (Li et al. 2016; Chisholm et al. 2016). The onset path/wake instabilities in a settling
no-slip sphere also require a finite time which is expected as it takes some time for the
flow field to develop fully (Rahmani & Wachs 2014).

3.3. Swimming and Mizing efficiency
For a body moving in a linearly stratified fluid, the energy equation in a quasi steady
state can be written as,

P= 7{ (u-o) -ndS = 2uE : Ed2 — wp'gdf?, (3.2)
s -0, -0,
where o is the stress tensor, S is the squirmer’s surface, n is the normal unit vector to
S, E is the strain rate tensor, p’ is the perturbation from the initial linear background
density py and {2, is the squirmer domain, i.e., ¢ = 1. The first term on the right hand
side is the viscous dissipation (@) over the entire fluid domain while the second term is the
rate of creation of the gravitational potential energy (APE). Together, these two terms
give us the energy expended by the squirmer for its locomotion in a linearly stratified
fluid in a steady state. The energy expended by the squirmer for its steady state motion
is dissipated in the form of mechanical energy in the surrounding fluid and hence can be
calculated as in equation 3.2.
The swimming efficiency (n.) of the squirmers is defined as the ratio of the power
necessary to move the spherical squirmer body (P* = 6ruU2%a(l + 3/8Re)) at its
swimming speed U to the power expended by the squirmer P (Wang & Ardekani 2012a):

Ne = (33)

Fig. 12a shows the swimming efficiency of the squirmers in a stratified fluid at a constant
Re = 25. Earlier studies for the motion of an inertial squirmer in a homogeneous fluid
observed that a pusher is more efficient than puller (Wang & Ardekani 2012a; Chisholm
et al. 2016) which is also true in a stratified fluid. In addition, increasing the magnitude
of |B] results in a reduction in the swimming efficiency. The viscous dissipation as well
as the gravitational potential energy generation increases with increasing |3| resulting
in a lower swimming efficiency. This is expected as the gradients in the velocity as well
as the magnitude of density perturbations increase with the squirmer |3| value. This
observation is consistent with earlier studies in an inertial regime but in a homogeneous
fluid (Wang & Ardekani 2012a; Chisholm et al. 2016).

A pusher observes a higher reduction in its swimming velocity in a stratified with
respect to its swimming velocity in a homogeneous fluid than a puller for the same Re
and F'r as discussed in Sec. 3.1. Still, a pusher swims faster than a puller for the same
Re and Fr values (see fig. 2). This is due to the effective vorticity advection by the flow
field around a pusher as compared to a puller. As can be seen by comparing fig. 9 and 10,
pullers have a long wake behind them which indicates the efficient vorticity advection
downstream. However, the wake becomes shorter with increasing the stratification for
a puller signifying resistance to the vorticity advection downstream. This is also the
reason why a pusher swims more efficiently that a puller in a stratified fluid for the same
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Figure 12 a) Effect of stratification on the swimming efficiency of the squirmers for
swimming. Here, P = 6wuU2a (1 4 3/8Re)) (Wang & Ardekani 2012a), which is
the power required to tow the squirmer body in a homogeneous fluid at the
same Re and the velocity U. b) Effect of stratification on the mixing efficiency
(I") of squirmers. Re = 25 for both plots. Open symbols: pullers. Filled symbols:
pushers.

Re and Fr values. Furthermore, with increasing the stratification, the APFE increases
by 1-2 orders of magnitude while @ increases only slightly. Thus, as the stratification
increases, more energy is expended by the squirmer in APFE resulting in the lowering of
its swimming efficiency with increase in the stratification strength.

The mixing efficiency (I"), which is the ratio of the potential energy generated to the

total energy expended in producing the mixing, is an important parameter to quantify
the mixing generated by bodies in a stratified fluid. It can be defined as,
B —fQ_QSwp’ng B —fQ_stp'ng -
N $o_q (u-0)-ndS B f(z—(zs 2uE : EdS2 — fQ—Qs wp'gd’ (34)
The mixing efficiency induced by organisms has been an active area of study in the
recent years (Dewar et al. 2006; Visser 2007; Katija & Dabiri 2009; Katija 2012; Wang
& Ardekani 2015; Kunze 2019). Thus, looking at the mixing efficiency of an individual
swimmer can help us in understanding the mixing produced by a school of swimmers.
Fig. 12b gives the mixing efficiency for pushers and pullers at various Ri and shows that
increasing stratification increases the mixing efficiency for both pushers and pullers. A
pusher (puller) with higher magnitude of 8 has a larger mixing efficiency. This is obvious
as a squirmer with higher |3] has a higher velocity leading to higher vertical mass flux
and hence achieves larger mixing.

The mixing efficiency induced by an individual micron size microorganism in a marine
environment is O(1078) (Wagner et al. 2014) which means in absence of swimmer inertia,
its motion does not lead to any significant mixing. Wang & Ardekani (2015) calculated
I" for a swarm of squirmers at finite inertia. They observed that I increases with Re
and the squirmer concentration. They also observed that, at a lower Ri, a puller exhibits
higher I" while at a high value of Ri, a pusher has higher I'. However, it is not clear as to
why the mixing efficiency increases with increasing Ri for the swarm of squirmers. The
reason for this becomes clear if we look at the mixing efficiency generated by individual
squirmers in fig. 12b. At low Ri (< 2), the mixing efficiency is more for a puller compared
to a pusher with the same Re and . However, at higher Ri (> 2), pusher has a higher

r
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Figure 13 Effect of stratification on the gravitational potential energy generated by
squirmers at low and high stratification strengths normalized by its maximum
value for Re = 25. Potential energy is generated mainly in the recirculatory
regions of pushers and pullers. The coordinate system is the same as in fig. 1c
hence not shown here.

I" than a puller. This trend in I" at the individual level of the squirmers is what leads to
the same behavior for a swarm of squirmers.

As mentioned before, we observed that, with increasing the stratification, the APFE
increases by 1-2 orders of magnitude while @ increases only slightly. Also, the calculations
show that & >> APFE. Thus, we can conclude that, it is the numerator term that
governs the behavior of mixing efficiency generated by a single squirmer moving in a
stratified fluid. Hence, to explain the trends in I', we plot the gravitational potential
energy generated, i.e., the numerator term in eq. 3.4. As can be seen in fig. 13, most
of the gravitational potential energy is generated in the recirculatory regions of the
squirmers. With increasing the stratification, the amount of APFE generated by a puller
(can be seen by maximum APE value in the contours) increases significantly but the
size of its recirculatory region also decreases. However, this increase in the amount of
APE generated by a puller is significantly higher (= 4 folds) than the shrinking (&~ 2
folds) of its rear recirculatory region as can be seen in fig. 13a and 13c. This results in the
higher I" at higher R: for a puller. On the other hand, with increasing the stratification
strength, the size of the recirculatory region as well as the amount of APFE generated by
a pusher increases as can be seen from fig. 13b and 13d. Thus, the I" by a pusher also
increases with increase in the stratification strength of the background fluid.

The switching in the relative magnitudes of I" for a puller and a pusher for Ri > 2 can
also be explained by looking at the APFE contours in fig. 13. At low Ri values, i.e., high
Fr values (fig. 13a and 13b), the puller generates more APE compared to a pusher owing
to the bigger size of its recirculatory region. However, this scenario changes completely
with increasing the stratification strength. At high Ri values, i.e., low F'r values (fig. 13¢
and 13d), the recirculatory region behind a puller shrinks while the recirculatory region
in front of the pusher gets bigger as compared to the lower R: case. In addition, the
amount of APFE (can be seen by comparing the maximum APE value in the contours),
also increases significantly for a puller as compared to a pusher at high stratification
strengths. This results in the higher I" for a pusher than a puller at high Ri values as
shown in fig. 12b. We observed similar trends for other Re values investigated in this
study as well.
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4. Conclusions

We present a direct numerical simulation study on the locomotion of a single neutrally
buoyant swimmer with finite inertia in a linearly stratified fluid. For modelling the
swimmer locomotion mechanism, we use the reduced squirmer model which produces
propulsion by periodic deformations of an array of cilia present on its surface. The
problem of self-propulsion of such a squirmer with finite inertia in a linearly stratified
fluid is more complex than a squirmer moving in a homogeneous fluid. This complexity
gives rise to interesting phenomena and significantly changes the motion of squirmers as
compared to their movement in a homogeneous fluid.

We use the Richardson number Ri = Re/Fr? to quantify the stratification strength.
We observe that, irrespective of the value of [, stratification leads to reduction in
the steady state swimming speed for squirmers. The reason for this is the trapping of
lighter density fluids in the recirculatory regions by the pullers (8 > 0) and the pushers
(8 < 0). This results in buoyancy force on the squirmers in the opposite direction to
their swimming motion which reduces their swimming speed. In addition, the resistance
offered by the isopycnals to their deformations to to the flow fields generated by the
squirmers increases with increasing the stratification. This also results in the reduction
of the swimming speeds of the squirmers.

Another significant deviation from the homogeneous case is regarding the stability of
the squirmers. The flow around the pullers become unsteady 3D at high Re making them
unstable, while pushers remaining stable for very high Re in a homogeneous fluid. The
reason for this is the increasing size of the recirculatory region in the rear of the pullers
with Re which hinders the vorticity advection to downstream causing the instability,
while the recirculatory region in front of the pushers shrinks with increasing inertia
leading to an efficient vorticity advection to the downstream making them eternally
stable. The effect of stratification is exactly the opposite from the effect of inertia.
Stratification leads to shrinking of the rear recirculatory bubble for a puller as a puller
“pulls” heavier fluid from its sides upwards. In the exigency by these heavier isopycnals to
move to their neutrally buoyant level lead to shrinking of the vorticity bubble behind the
pullers. On the contrary, stratification leads to the expansion of the front recirculatory
bubble of a pusher as it “pushes” lighter fluid trapped in front of it to heavier fluid. So
high enough stratification makes a puller stable while a very strong stratification breaks
the axisymmetry of the flow around a pusher making it unstable.

The energy calculations for a pusher and a puller show that, a pusher is more efficient
at swimming in a stratified fluid as compared to a puller considering the differences in
their swimming speeds. Again, the efficient advection of the vorticity to the downstream
by the pushers is the reason for this trend. The mixing efficiency of the puller is higher
at low Ri (< 2) while the mixing efficiency of a pusher is higher at high Ri (> 2). The
reason for this is the similar trend in the generation of the gravitational potential energy
by pullers and pushers in the respective Ri regimes.

These results hint towards the fascinating role of density stratification on the loco-
motion of the marine organisms like ciliary zooplanktons and provide possible clues for
the reasons behind the preferential accumulation of larger sized planktons at pycnoclines
(Vilici¢ et al. 1989). The speed of larger organisms with higher inertia, when encounter
a density jump or a strong stratification during the vertical migratory motion in oceans,
significantly reduces and the energy required for the propulsion also goes up. In addition,
the swimmers stray from their straight vertical trajectory and start swimming in the hori-
zontal direction due to the onset of instability (e.g., high Re pullers in a weak stratification
or a pusher in a very strong stratification). This might lead to the accumulation of the
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swimmers at the density interface. These mechanisms come into picture only at a finite
Re. At low Re, the swimmers are always stable (Li et al. 2016; Chisholm et al. 2016) and
stratification might lead to increase in their speeds, e.g., pullers (Doostmohammadi et al.
2012), thus resulting in negligible accumulation which is true for smaller sized planktons
(Vilicié et al. 1989). Stratification also increases the mixing efficiency generated by an
individual swimmer, an effect which amplifies when we consider swarms of swimmers
(Wang & Ardekani 2015; Houghton et al. 2018).

Even though these organisms dwell in a density stratified environment, most of the
experimental studies on their locomotion have been done in a homogeneous fluid. More
experimental studies are thus needed to investigate the effect of stratification on the
motion and flow fields of individual marine organisms. In addition, real marine organisms
have a wide variety of shapes, create jets as they swim and show a wide variety of other
variations. Studying the effect of these variations on the swimming dynamics of organisms
in a stratified fluid is also an interesting problem to investigate.
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Appendix A. Grid and domain independence

This appendix is dedicated to the grid and domain independence tests of the computer
program utilized for this study.

Fig. 14a shows the effect of three grid sizes with 70 grid points per diameter, 35 grid
points per diameter and 25 grid points per diameter on the velocity evolution of a pusher
with 8 = —1 moving at Re = 25. The change in the swimming speed from 25 grid points
to 35 grid points is 5.2 % which reduces to 1.5 % from 35 grid points to 70 grid points per
diameter. So we run all the simulations for a grid size with 35 grid points per squirmer
diameter in all the cases.

Fig. 14b shows the effect of changing the domain size. We tested two domain sizes
4.5d x 4.5d x 40d and 9d x 9d x 80d. The results are the same for both the domain
sizes with less than 0.1 % deviation. Hence we run all the simulations for a domain size
9d x 9d x 80d.

Additional validations can be found in Doostmohammadi et al. (2014) (for dynamics
of a spherical object in a linearly stratified fluid) and Li et al. (2016) (for dynamics of
inertial squirmers in a homogeneous fluid).

Appendix B. Effect of Prandtl number

This study investigated the locomotion of a squirmer in a linearly stratified fluid with
the fluid having a Pr = 0.7. This was done in order to resolve the density boundary
layer without making the simulations computationally too expensive. Here we present
results for Pr = 7 and compare them with the results for Pr = 0.7. It has been shown
for the case of a spherical object settling in a linearly stratified fluid, changing the Pr
only changes the magnitudes of the flow variables with their behavior and trends being
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Figure 14 a) Grid independence test for three different grid sizes. The plot shows
z-velocity evolution for a pusher with 8 = —1 at Re = 25. b) Domain
independence test for two different grid sizes. The plot shows z-velocity
evolution for a pusher with § = —1 at Re = 25 and Fr = 5.
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Figure 15 Effect of Pr on the velocity evolution of the squirmers. Changing Pr merely

changes the magnitude of the velocity but the overall behavior for the velocity is
the same. This observation is similar to the effect of changing Pr on a rigid
sphere settling in a stratified fluid. This plot shows even at a higher Pr
increasing stratification reduces the swimming speed. -O-: Re =5, Fr =5,

B=-3, Pr=0.7,-xy-: Re=5, Fr =5, § = -3, Pr =T7;-A-: Re =25, Fr =5,
B8=-1, Pr=0.7;-%-: Re=25, Fr =5, = —1, Pr =T7;-0-: Re =25, F'r =3,
B=-1, Pr=0.7,-[0-: Re=25 Fr=3,=—-1, Pr=T,

similar (Doostmohammadi et al. 2014). We expect similar effect of changing Pr on the
motion of a squirmer as well.

Fig. 15 shows that increasing Pr changes the magnitude of steady state swimming
velocities but the overall behavior of the velocity time history is similar in both cases.
The plot shows that squirmer velocity does not experience a notable change before
reaching the maximum value after which it attains a smaller steady state swimming
speed at higher Pr. These observations are similar to the effect of changing Pr in the
case of a sphere settling in a linearly stratified fluid (Doostmohammadi et al. 2014). The
effect of stratification on the swimming speed of a squirmer is similar at higher Pr, i.e.,
stratification reduces the swimming speed of squirmers.
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Figure 16 a) Swimming speed evolution of non-neutrally buoyant squirmers with ps/po =
1.04 with Re = 15.6 in a homogeneous fluid (H) and a stratified fluid with
Fr = 3. The squirmers were initialized at a distance 40d above their neutrally
buoyant positions (i.e., z at which p(z) = p,). b) Validity of Boussinesq
approximation. The plot shows the swimming speed evolution for a pusher with
(©) and without (dashed line, ——) the Boussinesq approximation as well as for
a puller with (O) and without (solid line, —) the Boussinesq approximation.
Here, |3] = 3, Re = 25 and F'r = 5.

Appendix C. Locomotion of non-neutrally buoyant squirmers in a
stratified fluid and the validity of Boussinesq
approximation

In this appendix, we present the motion of non-neutrally buoyant squirmers and the
validity of using the Boussinesq approximation in eq. 2.1. Fig. 16a shows the swimming
speed evolution of a pusher and a puller in a homogeneous and a stratified fluid with
Fr = 3. The squirmers are not neutrally buoyant in this plot. They have ps/pg = 1.04.
Please note that, pg = py in a homogeneous fluid. As a result of this, they experience
a buoyancy force in the direction of their motion due to the density difference with
the background fluid. In a homogeneous fluid, this density difference leads to a higher
swimming speed of the squirmers compared to their swimming speeds when p;/po = 1.
In a stratified fluid, the squirmer velocity increases first, reaching a maximum and it
decreases gradually after that to become 0 when the squirmers reach their neutrally
buoyant positions.

For the results presented in this paper, we have assumed the Boussinesq approximation
is valid in the Navier-Stokes equations (Eq. 2.1). The validity of using the Boussinesq
approximation in the case of a settling no-slip sphere is presented in (Doostmohammadi
et al. 2014). To test this assumption for squirmers as well, we present the comparison
of the velocity evolution for a pusher and a puller with |3] = 3 and Re = 25 in a
stratified fluid with Fr = 5 in fig. 16b. The plot shows that there is only a small
change in the squirmer velocity if we relax the Boussinesq approximation. The solution
with the Boussinesq approximation slightly under-predicts the swimming velocity for the
squirmers. These results show that the Boussinesq approximation is valid in the present
study.
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Figure 17 a) Swimming speed evolution of squirmers with initial orientations vertically
down (direction of gravity) and up (opposite to the direction of gravity),
respectively. Here, Re = 25 and || = 3. Hollow symbols and solid lines represent
pushers while filled symbols and dotted lines represent pullers. b) Swimming
speed evolution of squirmers with initial orientations horizontal (perpendicular
to the direction of gravity). Here, Re = 50 and || = 3. Increasing the
stratification reduces the swimming speed of the squirmers but this reduction is
small compared to the case when they move in the direction of gravity.

Appendix D. Effect of squirmer orientation

The results presented in the manuscript are for squirmers swimming downwards,
i.e., parallel to the direction of the gravity and in a heavier fluid. However, in reality
they might swim in various other orientations too. So, in this appendix we present
swimming speed evolution for squirmers with Re = 50 in other orientations. The other
orientations considered are: 1) Opposite to the direction of gravity, or vertically upwards,
2) Perpendicular to the direction of gravity, or horizontal. In both these cases, the
qualitative behavior of the squirmer swimming is similar as shown in fig. 17a and 17b.

Fig. 17a shows the swimming speed evolution for a puller and a pusher with |3| = 3
and Re = 25 at two different F'r moving parallel to (downward) and opposite to (upward)
the direction of the gravity. The swimming speed evolution is similar in both cases. The
squirmer swimming speed decreases with increasing the stratification compared to its
swimming speed in a homogeneous fluid even if it is moving opposite to the direction of
gravity. We observe that, the squirmer swimming upward in a stratified fluid has slightly
smaller velocity that the same squirmer swimming downward for the same conditions.

Fig. 17b shows the swimming speed evolution for a pusher and a puller with |3] = 3
and Re = 50 in a homogeneous fluid and a stratified fluid with two different F'r moving
in a direction perpendicular to the direction of gravity, i.e., horizontal. Increasing the
stratification decreases the swimming speed of the squirmers compared to their speeds in
a homogeneous fluid. But this reduction is small compared to the case when they move
vertically. In addition, the stratification does not stabilize a puller even in a strongly
stratified fluid at high Re if it moves in the horizontal direction.
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