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Abstract

In the present work, we consider the conservative Allen-Cahn model and applied it to two-phase flows
in a consistent and conservative manner. The consistent formulation is proposed, where the conservative
Allen-Cahn equation is reformulated in a conservative form using an auxiliary variable. As a result, the
consistency analysis is performed and the resulting two-phase model honors the consistency of reduction,
the consistency of mass conservation and the consistency of mass and momentum transport, which are
important to reproduce the physical momentum and kinetic energy transport, to achieve mass and
momentum conservation, and to satisfy the energy law of the two-phase system. A consistent and
conservative scheme is developed, and its properties are carefully analyzed and validated. In order to
honor the maximum principle of the conservative Allen-Cahn model, we proposed a boundedness mapping
algorithm, which preserves the properties of consistency and conservation of the scheme. The applications
of the consistent formulation and the proposed scheme to realistic two-phase flows show that they are
accurate, robust and effective for complicated two-phase problems. The applicability of the consistent
formulation and consistency analysis to multiphase flows and to the improved Cahn-Hilliard model is
discussed.

Keywords: The conservative Allen-Cahn model; Phase-Field; Consistent scheme; Conservative scheme;
Two-phase flow; large density ratio

1 Introduction

Two-phase flows are ubiquitous and have wide-spread applications. There are many challenges in studying
this kind of problem, for example, the strong interactions between the fluid phases, the motion and deforma-
tion of the interfaces, and the appearance of topological changes. As a result, numerical simulation becomes
a powerful tool to study this kind of problem. There have been many successful numerical models developed
and greatly improved in the recent decade. To locate the interface, one can use the Front-Tracking method
[67, 66], the Volume-of-Fluid (VOF) method [20, 55, 50, 49], the Level-Set method [48, 63, 56, 18], the
conservative Level-Set method [46, 47, 11], the ”THINC” method [69, 25, 70, 52], or their coupling. To
model the surface tension at the moving interface, one can use, e.g., the continuous surface force (CSF) [6]
or the ghost fluid method (GFM) [16, 36]. The balanced-force algorithm is developed in [17, 51] to improve
the numerical force balance between the surface tension and the pressure jump. All these methods are
categorized in the sharp-interface model [37], where the interface thickness is assumed to be zero. However,
some artificial interfacial regions may be introduced in the discretization to improve numerical stability.

Another popular model for two-phase flows is the Phase-Field (diffuse interface) model [4], where the
interface thickness is assumed to be small but finite. The interface thickness is maintained by the thermody-
namic compression and diffusion inside the interfacial region. In the Phase-Field model of two-phase flows,

∗Email: huan1020@purdue.edu
†Email: guanglin@purdue.edu; Corresponding author
‡Email: ardekani@purdue.edu; Corresponding author

1



most attention has been paid to the Cahn-Hilliard model [8], due to its property of global mass conservation,
which is physically essential in two-phase flows. Many theoretical or numerical studies have been performed
on the two-phase flow model using the Cahn-Hilliard equation, including the asymptotic analysis, e.g., in
[42, 1], scaling analysis, e.g., in [26, 75], consistency analysis [22], numerical scheme development, e.g., in
[26, 13, 15, 41, 58, 22]. This two-phase model has been extensively applied to study various two-phase prob-
lems, e.g., the jet pinching-off and drop formation [72], two-phase complex fluids[73], two-phase Newtonian
and viscoelastic fluids[74], Nematic Liquid Crystals[80], two-phase ferrofluid flows [45], and moving contact
lines [27, 53, 59]. Some recent work has extended the two-phase flow model to three- or multi-phase flows
e.g., in [5, 33, 14].

In the present work, we consider the so-called conservative Allen-Cahn model. It is another Phase-Field
model that is plausible for two-phase flows. The original Allen-Cahn model [3] does not conserve mass. To
resolve this issue, a Lagrange multiplier is added to enforce the conservation constraint, and the resulting
model is called the conservative Allen-Cahn model. The analysis of this model is available, e.g., in [10], and
it has been applied to two-phase flows, see a comprehensive review by Shen [57]. A more recent model of
this kind is proposed by Brassel and Bretin [7], where a weight function is assigned ahead of the Lagrange
multiplier so that the Lagrange multiplier is only effective in the interfacial region. They show that this
model not only conserves the global mass exactly but also conserves the mass enclosed by a specific contour,
e.g., the zero contour in the present work, at the order of η2, where η is the thickness of interface. This
is better than the previous conservative Allen-Cahn model without the weight, which conserves the mass
enclosed by the zero contour at the order of η. This property is validated in their numerical experiments.
A comparison study among the conservative Allen-Cahn models and the Cahn-Hilliard models in [38] also
shows that the conservative Allen-Cahn model with a weight outperforms in conserving the mass enclosed by
the zero contour. If the zero contour is understood as the interface between the fluid phases, it is desirable to
conserve the mass enclosed by the interface. Thus, the conservative Allen-Cahn model in [7] is plausible for
two-phase flow modeling. Jeong and Kim [29], and Joshi and Jaiman [32, 31] have coupled the conservative
Allen-Cahn equation with the Navier-Stokes equation to model the incompressible two-phase flows, while
the consistency conditions, the momentum conservation, and the energy law of the two-phase system were
not considered in their models or numerical implementations.

As it is shown in our previous work [22], it is important to satisfy the consistency of reduction, the
consistency of mass conservation, and the consistency of mass and momentum transport when applying a
Phase-Field model to two-phase flows. Otherwise, the physical transport of the momentum and kinetic energy
will be destroyed and the energy law of the two-phase system is violated even in the continuous level, and in
the discrete level, unphysical interface deformation and velocity fluctuations are introduced. The challenge of
applying the consistency analysis on the conservative Allen-Cahn equation is that the conservation constraint
is enforced by a Lagrange multiplier in that equation. As a result, the conservative Allen-Cahn equation has
a form of convection-diffusion-reaction equation, and is not in a conservative form, although it satisfies the
conservation constraint. To resolve this issue, the consistent formulation is proposed, where we introduce
an auxiliary variable whose governing equation is a Poisson equation. We show that the Poisson equation is
compatible with its boundary condition and, as a result, it is solvable. After including the auxiliary variable,
the conservative Allen-Cahn equation, whose original form is a convection-diffusion-reaction equation, is
reformulated in a conservative form and the consistency analysis can be directly applied. Consequently, the
consistent two-phase model using the conservative Allen-Cahn equation is developed, which honors the mass
conservation, momentum conservation, and energy law. A consistent and conservative scheme is developed
to solve the two-phase model and our numerical results show that the proposed model and scheme produce
physical results for complicated two-phase problems. To the best of the authors’ knowledge, this is the first
work that applied the conservative Allen-Cahn model to two-phase flows in a consistent and conservative
manner in both the continuous and discrete levels.

The rest of the paper is presented as follows. In Section 2, the conservative Allen-Cahn equation is first
introduced, followed by the consistent formulation and analysis. In Section 3, the numerical scheme to solve
the two-phase model is described, followed by the analyses of the properties of the scheme. In Section 4,
the properties of the model and scheme are first validated, followed by applications of the proposed model
and scheme to realistic two-phase flows. In Section 5, we discuss the possible application of the consistent
formulation and the proposed scheme to multiphase problems and to the improved Cahn-Hilliard model,
followed by an alternative scheme that preserves the maximum principle and the conservation constraint. In
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Section 6, we conclude our present work and comment on interesting and valuable future directions.

2 Governing equations

In this section, we summarize the governing equations for two-phase flows using the conservative Allen-
Cahn model. We first introduce the conservative Allen-Cahn equation, the momentum equation, and the
consistency conditions. Then, the consistent formulation is proposed, where the method to reformulate the
conservative Allen-Cahn equation, whose original form is a convection-diffusion-reaction equation, into a
conservative form is introduced, along with the analyses of the complete two-phase model on satisfying the
consistency conditions.

2.1 The conservative Allen-Cahn equation

The conservative Allen-Cahn equation for two-phase incompressible flows considered in the present work has
a form

∂φ

∂t
+∇ · (uφ) = Mλ∇2φ− Mλ

η2
g′(φ) +Wq(φ)q(t), (1)

where φ is the order parameter of the Phase-Field equation, u is the velocity, M is the mobility, λ is the
mixing energy density, g(φ) is the double-well potential function and g′(φ) is its derivative with respect to
φ, Wq(φ) is the weight function of q, and q is the Lagrange multiplier, only depending on time t, to enforce
the conservation constraint.

Specifically, the incompressibility requires that the velocity is divergence-free, i.e.,

∇ · u = 0. (2)

We consider the double-well potential function to be

g(φ) =
1

4
(1− φ2)2, (3)

and correspondingly the mixing energy density is

λ =
3

2
√

2
ση, (4)

where σ is the surface tension between the two fluid phases. From the conservation constraint, i.e., d
dt

∫
Ω
φdΩ =

0, along with the homogeneous Neumann boundary condition for φ, i.e., n · ∇φ = 0, and with the free-slip
boundary condition for u, i.e., n · u = 0, where n is the outward normal at the domain boundary, the
Lagrange multiplier q(t) is derived as

q(t) =

∫
Ω
Mλ
η2 g

′(φ)dΩ∫
Ω
Wq(φ)dΩ

. (5)

We majorly consider the weight function Wq(φ) to be 2
√
g(φ), which is proposed by Brassel and Bretin [7],

i.e.,

Wq(φ) = 1− φ2, (6)

although any other choice of Wq(φ) is acceptable in the present work. As a result, the Lagrange multiplier
q(t) is only effective in the interfacial region, i.e., −1 < φ < 1, while it has no influence on the bulk region,
i.e., φ = ±1. A simpler choice of the weight function is to let it be homogeneous, i.e., Wq(φ) ≡ 1. The
analysis of the conservative Allen-Cahn equation with Wq(φ) ≡ 1 without hydrodynamics can be found, e.g.,
in [10] and this model has been applied to two-phase flows, see the comprehensive review by Shen [57]. As
shown in [7], the benefit of using Eq.(6) is that not only the conservation constraint, i.e., d

dt

∫
Ω
φdΩ = 0 is

satisfied exactly, but also the conservation of d
dt

∫
φ>0

φdΩ is at the order of O(η2), better than O(η) with
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Wq(φ) = 1. The comparison between the two choices of Wq(φ) can be found in [7, 35], and the comparison
among different conservative Allen-Cahn and Cahn-Hilliard models is available in [38]. It should be noted
that the analyses and comparisons in [7, 35, 38] don’t include hydrodynamics.

Without the convection term in the left-hand side (LHS) and the last term in the right-hand side (RHS)
of Eq.(1), it becomes the original Allen-Cahn equation [3], which is derived from the Ginzburg-Landau free
energy,

EF =

∫
Ω

eF dΩ =

∫
Ω

λ

[
1

η2
g(φ) +

1

2
|∇φ|2

]
dΩ. (7)

The chemical potential, which is the functional derivative of the free energy, reads

ξ =
δEF
δφ

= λ

[
1

η2
g′(φ)−∇2φ

]
, (8)

and the first two terms in the right-hand side (RHS) of Eq.(1) is equivalent to −Mξ.
The order-parameter φ works as the phase indicator, such that it takes the value 1 in Phase 1 and −1 in

Phase 2. Thus, the density and viscosity of the fluid mixture can be computed as

ρ =
ρ1 + ρ2

2
+
ρ1 − ρ2

2
φ, (9)

µ =
µ1 + µ2

2
+
µ1 − µ2

2
φ, (10)

where ρ1 and µ1 are the density and viscosity of Phase 1, and ρ2 and µ2 are those of Phase 2. Thus, the
mass conservation, i.e., d

dt

∫
Ω
ρdΩ = 0, is implied by the conservation constraint on the order parameter, i.e.,

d
dt

∫
Ω
φdΩ = 0.

2.2 The momentum equation and consistency conditions

The motion of different fluid phases is governed by the momentum equation

∂(ρu)

∂t
+∇ · (m⊗ u) = −∇p+∇ ·

[
µ(∇u +∇uT )

]
+ ρg + fs + Su, (11)

where m is the mass flux, p is the pressure to enforce the divergence-free condition, i.e., Eq.(2), fs is the
surface force, which models the effect of surface tension, g is the gravitational acceleration, and Su is the
external momentum source.

It should be noted that the single-phase dynamics should be recovered by the momentum equation Eq.(11)
away from the interface. For example, in the bulk-phase region of Phase 1, the single-phase incompressible
Navier-Stokes equation with density ρ1 and viscosity µ1, i.e.,

∂(ρ1u)

∂t
+∇ · (ρ1u⊗ u) = −∇p+ µ1∇2u + ρ1g + Su,

should be reduced from the momentum equation Eq.(11). Specifically in this example, m = ρ1u, ∇ ·
(µ1(∇u)T ) = 0, and fs = 0 should be true in the bulk-phase region of Phase 1. This property to recover the
single-phase dynamics is called the consistency of reduction.

The momentum equation should also be compatible with the mass conservation equation of the model,
which is achieved by appropriately choosing the mass flux m. Since the density of the fluid mixture is
computed from Eq.(9), along with Eq.(1), the mass conservation equation of the model can be written as

∂ρ

∂t
+∇ ·m = Sm, (12)

where Sm is the mass source. Depending on the definition of m, the corresponding Sm can be determined
from Eq.(9) and Eq.(1). An appropriate mass flux should lead to a zero mass source, i.e., Sm = 0, see the
analyses in [22], and this condition is called the consistency of mass conservation. To honor the physical
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coupling between the mass and momentum transport, the mass fluxes in the mass conservation equation
Eq.(12) and in the momentum equation Eq.(11) should be the same. This condition is called the consistency
of mass and momentum transport.

To summarize, three consistency conditions are considered, which are

• Consistency of reduction : the two-phase flow model should be able to recover the single-phase dynamics
away from the interface, i.e., m = ρu, ∇ · (µ(∇u)T ) = 0, and fs = 0, where ρ and µ are either ρ1 and
µ1 or ρ2 and µ2.

• Consistency of mass conservation : the mass conservation equation should be consistent with one
defined from the Phase-Field equation and the density of the fluid mixture. The consistent mass flux
m in the mass conservation equation should lead to a zero mass source, i.e., Sm ≡ 0.

• Consistency of mass and momentum transport : the mass flux in the inertial term of the momentum
equation should be the consistent mass flux obtained from the mass conservation equation.

These three consistency conditions are proposed in our previous work [22] for two-phase flows using the
Cahn-Hilliard model and are extended and applied to N -phase flows in [23]. The analyses and numer-
ical experiments show the significance of satisfying the consistency conditions in both continuous and
discrete levels. However, those analyses and schemes work only for the Phase-Field equations that can
be written in a conservative form, but the conservative Allen-Cahn equation Eq.(1) is outside the cate-
gory. If we directly applied the consistency conditions to Eq.(1), we obtain a non-zero mass source, i.e.,

Sm = ρ1−ρ2
2

(
−Mλ

η2 g
′(φ) +Wq(φ)q(t)

)
, which violates the consistency of mass conservation. As shown in

[22], a non-zero mass source interferes with the physical momentum and kinetic energy transport in the con-
tinuous level. In the discrete level, it introduces unphysical interface deformation and velocity fluctuations,
and, as a result, triggers numerical instability. These effects become more significant as the density difference
between the two phases increases. The consistent formulation in the upcoming section is proposed to resolve
this issue.

2.3 The consistent formulation

In order to satisfy the consistency conditions when the conservative Allen-Cahn equation Eq.(1) is used to
model two-phase flows, the consistent formulation is proposed. We introduce an auxiliary variable Q, which
satisfies

∇ · (WQ(φ)∇Q) = −Mλ

η2
g′(φ) +Wq(φ)q(t), (13)

where WQ(φ) is the weight function for Q. Along with the homogeneous Neumann boundary condition for
Q, i.e., n ·∇Q = 0, Eq.(13) is eligible and solvable by noticing that from the left-hand-side (LHS) of Eq.(13)∫

Ω

∇ · (WQ∇Q)dΩ =

∫
∂Ω

WQ(φ)n · ∇QdΓ = 0, (14)

and from the right-hand-side (RHS) of Eq.(13)

−
∫

Ω

Mλ

η2
g′(φ)dΩ + q(t)

∫
Ω

Wq(φ)dΩ = 0, (15)

after applying the definition of q(t), i.e., Eq.(5). Although the choice of WQ can be multiple, we let WQ = Wq

so that q(t) and ∇Q share the same effective region.
Thanks to Eq.(13), the conservative Allen-Cahn equation Eq(1) is reformulated in a conservative form

∂φ

∂t
+∇ ·mφ = 0, (16)

where mφ is the Phase-Field flux, defined as

mφ = uφ−Mλ∇φ−WQ(φ)∇Q. (17)
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As a result, all the analyses in our previous works [22, 23] are valid for the reformulated equation Eq.(16),
and the consistent mass flux can be straightforwardly obtained from the consistency analysis as

m =
ρ1 + ρ2

2
u +

ρ1 − ρ2

2
mφ. (18)

We refer interested readers to [22, 23] for detailed analyses and derivations.
The consistent mass flux, defined in Eq.(18), satisfies the consistency of mass conservation. By using

Eq.(9), Eq.(2), and Eq.(16), it can be easily shown that

∂ρ

∂t
+∇ ·m =

ρ1 − ρ2

2

(
∂φ

∂t
+∇ ·mφ

)
= 0. (19)

In order to satisfy the consistency of mass and momentum transport, the consistent mass flux Eq.(18) is
applied in the inertial term of the momentum equation. The significance of using the consistent mass flux
in the momentum equation has been analyzed and validated in [22], and not repeated here.

The surface force is derived from the energy law. Eq.(1) is multiplied by
(
ξ − Wq(φ)

M q(t)
)

, and then we

obtain the equation for the free energy per unite volume eF ,

∂eF
∂t

+ u · (ξ∇φ)−∇ ·
(
λ
∂φ

∂t
∇φ+ u

Wq(φ)

M
q(t)

)
= −M

(
ξ − Wq(φ)

M
q(t)

)2

, (20)

where W ′q(φ) = Wq(φ), and we have used
∂Wq(φ)
∂t = 0 [32] and the divergence-free condition, i.e., Eq.(2).

The equation of the kinetic energy per unite volume, eK = 1
2ρu · u, is obtained by the dot product of u and

Eq.(11), i.e.,

∂eK
∂t

+∇· (m1

2
u ·u) = −∇· (up) +∇·

[
µ(∇u +∇uT ) · u

]
− 1

2
µ(∇u+∇uT ) : (∇u+∇uT ) +u · fs, (21)

and we have used the mass conservation equation, i.e., Eq.(19), and the divergence-free condition, i.e., Eq.(2).
The total energy, i.e.,

∫
Ω

(eK + eF )dΩ is governed by the summation of Eq.(20) and Eq.(21). After assuming
all the flux terms vanished at the domain boundary, we obtain

∂

∂t

∫
Ω

(eK + eF )dΩ = −1

2

∫
Ω

µ(∇u +∇uT ) : (∇u +∇uT )dΩ−
∫

Ω

M

(
ξ − Wq(φ)

M
q(t)

)2

dΩ, (22)

by requiring the surface force to be

fs = ξ∇φ. (23)

The physical explanation of Eq.(23) is that the work done by the surface force should balance the change of the
free energy by convection [26]. The same result can be derived from the least-action principle [57, 73]. Notice
that the surface force in Eq.(23) has the same form as the one in the Cahn-Hilliard model [22], and thus, it
can be shown that the surface force defined in Eq.(23) is equivalent to a conservative form ∇· (−λ∇φ⊗∇φ)
with the free energy and the chemical potential defined in Eq.(7) and Eq.(8) [28, 26, 57, 23]. As a result,
from the momentum equation Eq.(11), the momentum of the two-phase system is conserved. It should be
noted that if the consistency conditions are violated, the mass conservation equation, i.e., Eq.(19), does not
hold. As a result, an unphysical source term, which is proportional to the density difference of the fluid
phases, will appear in Eq.(21) as well as Eq.(22). Consequently, the energy law is violated.

So far, the consistent mass flux Eq.(18) and the surface force Eq.(23) have been derived from the consis-
tency analysis and the energy law, respectively, with the help of the consistent formulation. Therefore the
momentum equation Eq.(11) is complete. The last analysis is on the consistency of reduction. Far away from
the interface, i.e., |∇φ| = 0, φ takes the value 1 (or −1). From Eq.(1), we obtain ∂φ

∂t = 0, since the velocity is
divergence-free, g′(1) = 0 (g′(−1) = 0) and Wq(1) = 0 (Wq(−1) = 0). Thus, φ remains to be 1 (or −1) and
the Phase-Field flux becomes mφ = u (or −u) from Eq.(17), thanks to WQ(1) = 0 (WQ(−1) = 0). Then, we
obtain the mass flux to be m = ρ1u (or ρ2u) from Eq.(18), which is the mass flux of the single-phase flow
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where the fluid density is ρ1 (or ρ2). Therefore, the consistent mass flux, defined in Eq.(18), satisfies the
consistency of reduction. Further, we can immediately obtain fs = 0 from Eq.(23) due to |∇φ| = 0, ρ = ρ1

(or ρ2) from Eq.(9), and µ = µ1 (or µ2) from Eq.(10). Noticing that ∇ · (µ(∇u)T ) = µ∇(∇ · u) = 0 from
Eq.(2) due to µ = µ1 (or µ2), the momentum equation Eq.(11) becomes

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+ µ∇2u + ρg + Su, (24)

where ρ and µ take either ρ1 and µ1 or ρ2 and µ2. Eq.(24) is exactly the single-phase incompressible
Navier-Stokes equation with the corresponding phase density and viscosity. Thus, the single-phase dynamics
is recovered away from the interface, and consequently, the consistency of reduction is satisfied by the
momentum equation Eq.(11). From the above analysis, the consistency of reduction casts an additional
constraint on Wq(φ) and WQ(φ) that Wq(±1) = WQ(±1) = 0. As a result, using the conservative Allen-
Cahn equation with Wq(φ) ≡ 1 violates the consistency of reduction.

2.4 Summary of the proposed model for two-phase flows

In summary, the locations of the fluid phases are described by the conservative Allen-Cahn equation Eq.(1).
Thanks to the consistent formulation, the conservative Allen-Cahn equation, whose original form is a
convection-diffusion-reaction equation, is reformulated into a conservative form by introducing the auxil-
iary variable Q and Eq.(13). As a result, the consistent mass flux Eq.(18) is derived from the consistency
analysis, and the surface force is derived from the energy law of the two-phase system. Finally, the monument
equation is coupled with the Phase-Field equation through material properties, i.e., Eq.(9) and Eq.(10), the
consistent mass flux Eq.(18), and the surface force Eq.(23). We show that, with our choice of Wq(φ) and
WQ(φ), the whole system satisfies the consistency of reduction, the consistency of mass conservation, the
consistency of mass and momentum transport, the mass and momentum conservation, and the energy law.

3 Discretization

In this section, we introduce the scheme to solve the governing equations in Section 2. We consider the
collocated-grid arrangement, where the order parameter, velocity components and pressure are stored at cell
centers (xi, yj) and, additionally, the cell-face velocity, which is the velocity component normal to cell faces,
is stored at cell faces (xi+1/2, yj) and (xi, yj+1/2). Details of the spatial discretization and the treatments
of different kinds of boundary conditions are available in [22]. In summary, we use the 5th-order WENO
scheme [30] for the convective-type operators and the 2nd-order central difference for the diffusive-type and
gradient operators.

The major focus will be on the scheme for the conservative Allen-Cahn equation Eq.(1) and on the
properties of the scheme. To solve the momentum equation Eq.(11) along with the incompressibility constrain
Eq.(2), we use the 2nd-order semi-implicit projection scheme, which has been successfully applied in two-
phase flows [22] and in N -phase flows [23].

3.1 Scheme for the conservative Allen-Cahn equation

A three-step scheme is developed to solve the conservative Allen-Cahn equation Eq.(1).
Step1: solve the provisional order parameter φ∗ at all the cell centers (xi, yj) from

γtφ
∗ − φ̂
∆t

+ ∇̃ · (u∗,n+1φ̃∗,n+1) = Mλ∇̃ · ∇̃φ∗ − Mλ

η2
g̃′(φ∗), (25)

with the homogeneous Neumann boundary condition, i.e., n · ∇̃φ∗ = 0 used, unless otherwise stated. In

Eq.(25), γt and the linear operator (̂·) depend on the time discretization scheme, and, unless otherwise

specified, we use the 2nd-order backward difference, i.e., γt = 1.5 and (̂·) = 2(·)n − 0.5(·)n−1, where (·)n
represents the data at time level tn. (·)∗,n+1 approximates (·)n+1 with the previous time level data, and we
use the 2nd-order extrapolation, i.e., (·)∗,n+1 = 2(·)n − (·)n−1. ∇̃ · (·) and ∇̃(·) are the discrete divergence
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and gradient operators, whose definitions are in [22] and not repeated here. (̃·) represents the result of the
WENO scheme. g̃′(φ∗) is approximating g′(φ∗) with Taylor expansion, i.e.,

g̃′(φ∗) = g′(φn) + g′′(φn)(φ∗ − φn). (26)

It should be noted that Eq.(25) is solving the original Allen-Cahn equation, which doesn’t include the
Lagrange multiplier.

Step2: compute the Lagrange multiplier q∗ from

q∗ =

∑
i,j [

Mλ
η2 g̃

′(φ∗)∆Ω]i,j∑
i,j [Wq(φn)∆Ω]i,j

, (27)

where ∆Ω is the volume of the discrete cells.
Step3: Update the order parameter at n+ 1 time level at all the cell centers (xi, yj) from

γtφ
n+1 − γtφ∗

∆t
= Wq(φ

n)q∗. (28)

In Eq.(28), we input φn, instead of φ∗,n+1, to Wq(φ) because φn is bounded in [−1, 1] with the help of the
boundedness mapping algorithm introduced in Section 3.6. φ∗,n+1, which is the 2nd-order extrapolation,
can be outside [−1, 1] and result in a negative weight value, even though both φn and φn−1 are bounded in
[−1, 1]. So far, we complete the scheme for the conservative Allen-Cahn equation.

Before solving the momentum equation Eq.(11), the consistent mass flux in the discrete level has to be
specified first. Thus, the consistent formulation needs to be applied. The auxiliary variable Q is solved at
all the cell centers (xi, yj) from

∇̃ ·
(
WQ(φn+1)∇̃Q

)
= −Mλ

η2
g̃′(φ∗) +Wq(φ

n)q∗, (29)

where (·) represents the linear interpolation, with the homogeneous boundary condition, i.e., n · ∇̃Q = 0,
unless otherwise specified. It should be noted that both sides of Eq.(29) are zero away from the interface,
which leads to all-zero rows in the coefficient matrix of the discretized linear system of Eq.(29). In practice,
to avoid getting all-zero rows, WQ in Eq.(29) is set to be a small value δQ where |φn+1| is larger than (1−δQ),

due to WQ(1 − δQ) ∼ δQ. Consequently, Eq.(29) reduces to the Laplace equation, i.e., ∇̃ · ∇̃Q = 0, away
from the interface, and the gradient of Q becomes zero there. It should be noted that such a modification of
WQ is effective only far away from the interface and it does not change the behavior of Eq.(29) there since

WQ∇̃Q is still zero away from the interface. Although Eq.(29) is a variable-coefficient elliptic equation, after
the modification of WQ, most of the rows in the coefficient matrix is representing the discretized Laplace
equation, which has constant coefficients and is diagonally dominant, since the domain is majorly occupied by
the bulk-phase regions away from the interface. We choose δQ to be 10−6 since the locations where |φn+1| is
larger than (1−10−6) are about 10η away from the interface. This is adequately far away from the interface,
considering that the length scale of the computational domain is about 100η normally. In the present study,
all the linear systems are solved to the round-off error by the direct solver in MATLAB, i.e., the ”\” operator.
It takes about 15% of the time in each time step to solve the conservative Allen-Cahn equation with the
scheme in Section 3.1, which includes one matrix inversion, about 20% to solve the consistent formulation,
i.e., Eq.(29), which includes again one matrix inversion, and about 65% to solve the momentum equation with
the scheme in Section 3.2, which includes three matrix inversions for two-dimensional problems. Therefore,
the cost of solving Eq.(29) is similar to solving other linear systems in the scheme.

Finally, at each cell face (xi+1/2, yj) or (xi, yj+1/2), the discrete Phase-Field flux is

m̃φ = u∗,n+1φ̃∗,n+1 −Mλ∇̃φ∗ −WQ(φn+1)∇̃Q, (30)

which is the discrete counterpart of Eq.(17).
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3.2 Scheme for the momentum equation with the incompressibility constrain

We summarize the scheme, proposed in our previous work [22], for the momentum equation with the incom-
pressibility constraint.

Step1: Solve the provisional velocity u∗ at cell centers (xi, yj) from

γtρ
n+1u∗ − ρ̂u

∆t
+ ∇̃ · (m̃⊗ ũ∗,n+1) = ρn+1Gn + ∇̃ ·

(
µn+1∇̃u∗

)
+ ∇̃ ·

(
µn+1(∇̃ũ∗,n+1)T

)
. (31)

Step2: Solve another provisional velocity u∗∗ at cell centers (xi, yj) from

γtu
∗∗ − γtu∗

∆t
= −Gn. (32)

Step3: Solve the provisional velocity u∗ at cell faces (xi+1/2, yj) and (xi, yj+1/2) from

γtu
∗ − γtu∗∗

∆t
= − 1

ρn+1
∇̃pn + Gn+1

s . (33)

Step4: Solve the pressure correction p′ at cell centers (xi, yj) from

γt
∆t

(∇̃ · un+1 − ∇̃ · u∗) = −∇̃ ·
(

1

ρn+1
∇̃p′

)
, (34)

with the incompressibility constraint in the discrete level, i.e.,

∇̃ · un+1 = 0. (35)

Step5: Solve pn+1, the pressure at the new time level, at cell centers (xi, yj) from

pn+1 = pn + p′. (36)

Step6: Solve the cell-face velocity at the new time level, i.e., un+1 at cell faces (xi+1/2, yj) and (xi, yj+1/2)
from

γtu
n+1 − γtu∗

∆t
= − 1

ρn+1
∇̃p′, (37)

Step7: Solve the cell-center velocity at the new time level, i.e., un+1 at cell centers (xi, yj) from

γtu
n+1 − γtu∗∗

∆t
= Gn+1. (38)

In the above steps, ρn+1 and µn+1 are computed from Eq.(9) and Eq.(10), respectively, with φn+1

obtained in Section 3.1. The consistent mass flux in the discrete level is

m̃ =
ρ1 + ρ2

2
u∗,n+1 +

ρ1 − ρ2

2
m̃φ, (39)

where the discrete Phase-Field flux m̃φ is available from Eq.(30) after solving the conservative Allen-Cahn
equation. Both G and Gs are defined at the cell faces (xi+1/2, yj) and (xi, yj+1/2). Gs has the form

Gs =
1

ρ
fs + g +

1

ρ
Su, (40)

and G is

G = −1

ρ
∇̃p+ Gs. (41)
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The surface force can be discretized by either the balanced-force method or the conservative method, which
are proposed in [23]. Specifically, in two-phase flows, the balanced-force method reads

fs = ξ∇̃φ = λ

(
1

η2
g′(φ)− ∇̃ · ∇̃φ

)
∇̃φ, (42)

and the conservative method reads

fs = λ

(
1

η2
∇̃g(φ)− ∇̃ · ∇̃φ∇̃φ

)
. (43)

So far, we completed the scheme for solving the momentum equation with the incompressibility con-
straint. The boundary conditions for the velocity and pressure are problem-dependent and will be specified
in individual cases in Section 4.

3.3 Formal order of accuracy

The fully-discretized equations for the conservative Allen-Cahn equation and the momentum equation are

γtφ
n+1 − φ̂
∆t

+ ∇̃ · (u∗,n+1φ̃∗,n+1) = Mλ∇̃ · ∇̃φ∗ − Mλ

η2
g̃′(φ∗) +Wq(φ

n)q∗, (44)

and

γtρ
n+1un+1 − ρ̂u

∆t
+ ∇̃ · (m̃⊗ ũ∗,n+1) = ρn+1Gn+1 + ∇̃ ·

(
µn+1∇̃u∗

)
+ ∇̃ ·

(
µn+1(∇̃ũ∗,n+1)T

)
. (45)

The formal order of accuracy of the momentum equation is 2nd-order, which has been analyzed and
numerically validated in [22].

Outside the interfacial region, there is no contribution from the Lagrange multiplier, and we have φn+1 =
φ∗. In Eq.(44), (φn+1 − φ∗,n+1) ∼ O(∆t2) and from Eq.(26) (g̃′(φ∗) − g′(φ∗)) ∼ O(φ∗ − φn)2 ∼ O(∆t2).
In addition, the correction introduced by the Lagrange multiplier is effective only in the interfacial region,
which occupies a small portion of the domain, and is expected to be small in one time step. As a result, the
scheme for the conservative Allen-Cahn equation is expected to be 2nd-order accurate, which is examined
numerically in Section 4.1.1.

3.4 Consistency in the discrete level

In this section, we show that the proposed scheme satisfies the consistency conditions, which are the con-
sistency of reduction, the consistency of mass conservation and the consistency of mass and momentum
transport, in the discrete level.

3.4.1 Consistency of reduction

We define the location far away from the interface to be the one where φn = φn−1 = 1 (or −1) is true in its
neighborhood. We are going to show that the single-phase dynamics is recovered in this location. We only
consider the case of φn = φn−1 = 1 and the case of φn = φn−1 = −1 is the same.

Based on the given condition, we can immediately obtain φ∗,n+1 = 1, φ̃∗,n+1 = 1 and φ̂ = γt. Since
the cell-face velocity is divergence-free at all the time levels, i.e., Eq.(35), we obtain ∇̃ · (u∗,n+1φ̃∗,n+1) =
∇̃ · u∗,n+1 = 2∇̃ · un − ∇̃ · un−1 = 0. As a result, from Eq.(25), we have φ∗ = 1, by noticing that
g′(φn) = g′(1) = 0 and g′′(φn) = g′′(1) = 2. Since Wq(φ

n) = Wq(1) = 0, we have φn+1 = φ∗ = 1, from
Eq.(28).

Consequently, we can obtain ρ = ρ1 and µ = µ1 from Eq.(9) and Eq.(10), respectively, m̃φ = u∗,n+1

from Eq.(30) thanks to WQ(φn+1) = WQ(1) = 0, m̃ = ρ1u
∗,n+1 from Eq.(39), and fn+1

s = 0 due to

∇̃φn+1 and ∇̃g(φn+1) are zero. For the viscous terms, we have ∇̃ ·
(
µn+1∇̃u∗

)
+ ∇̃ ·

(
µn+1(∇̃ũ∗,n+1)T

)
=

µ1∇̃ · ∇̃u∗ + µ1∇̃
(
∇̃ · u∗,n+1

)
= µ1∇̃ · ∇̃u∗. The scheme that grantees ∇̃ · (∇̃ũ∗,n+1)T = ∇̃

(
∇̃ · u∗,n+1

)
10



is designed in our previous work [22]. Combine everything together, and the fully-discretized momentum
equation Eq.(45) becomes

γtρ1u
n+1 − ρ1û

∆t
+ ∇̃ · (ρ1u

∗,n+1 ⊗ ũ∗,n+1) = (−∇̃pn+1 + ρ1g + Su
n+1) + µ1∇̃ · ∇̃u∗, (46)

which is exactly the fully-discretized incompressible Navier-Stokes equation with constant density ρ1 and
viscosity µ1. Consequently, away from the interface, the single-phase dynamics is recovered in the discrete
level. In other words, the consistency of reduction is satisfied in the discrete level.

3.4.2 Consistency of mass conservation

We first consider the identity

γtφ
n+1 − φ̂
∆t

+ ∇̃ · m̃φ =
γtφ

n+1 − φ̂
∆t

+ ∇̃ · (u∗,n+1φ̃∗,n+1)−Mλ∇̃ · ∇̃φ∗ − ∇̃ ·
(
WQ(φn+1)∇̃Q

)
(47)

=
γtφ

n+1 − φ̂
∆t

+ ∇̃ · (u∗,n+1φ̃∗,n+1)−Mλ∇̃ · ∇̃φ∗ +
Mλ

η2
g′(φ∗)−Wq(φ

n)q∗ = 0,

which is the discrete counterpart of Eq.(16), and we have used Eq.(29) and Eq.(44). Then it is straightforward
to show that

γtρ
n+1 − ρ̂
∆t

+ ∇̃ · m̃ =
ρ1 + ρ2

2

(
γt − 1̂

∆t
+ ∇̃ · u∗,n+1

)
+
ρ1 − ρ2

2

(
γtφ

n+1 − φ̂
∆t

+ ∇̃ · m̃φ

)
= 0, (48)

which is the discrete counterpart of Eq.(19), and we have used 1̂ = γt, ∇̃ · u∗,n+1 = 0, and Eq.(47).

3.4.3 Consistency of mass and momentum transport

The consistent mass flux in the discrete level Eq.(39) has been applied in Eq.(45) and thus the consistency
of mass and momentum transport is satisfied in the discrete level. This is important to honor the following
physical configuration. We consider the case without viscosity and surface tension, where the initial velocity
and pressure are homogeneous, i.e., u|t=0 = u0 and p|t=0 = p0. This initial configuration will persist, i.e.,
u ≡ u0 and p ≡ p0, ∀t > 0, since there is no relative motion and the net force acting on the fluid is zero. We
can show that, as long as the consistency conditions are satisfied, this physical configuration is maintained
in the discrete level, independent of the initial shape of the interface, the density ratio, and the number of
phases. We refer interested readers to [23] for the complete proof.

3.5 Conservation in the discrete level

In this section, we consider the mass and momentum conservation of the proposed scheme in the discrete
level. Only the periodic domain is considered and, as a result, the summation of the discrete divergence
operator over all the cells is zero, i.e.,

∑
i,j [∇̃ · (·)∆Ω]i,j = 0, which is shown in [22, 23].

3.5.1 Mass conservation

From Eq.(9), the mass conservation is implied by showing that φ is conserved in the discrete level.
Given

∑
i,j [φ

n∆Ω]i,j =
∑
i,j [φ

n−1∆Ω]i,j = ... =
∑
i,j [φ

0∆Ω]i,j , we are going to show that
∑
i,j [φ

n+1∆Ω]i,j =∑
i,j [φ

0∆Ω]i,j . From the given condition, we can immediately obtain ̂∑
i,j [φ∆Ω]i,j = γt

∑
i,j [φ

0∆Ω]i,j . The
summation of the fully-discretized conservative Allen-Cahn equation Eq.(44) over all the cells is

γt
∑
i,j [φ

n+1∆Ω]i,j − ̂∑
i,j [φ∆Ω]i,j

∆t
= −

∑
i,j

[
Mλ

η2
g̃′(φ∗)∆Ω]i,j + q∗

∑
i,j

[Wq(φ
n)∆Ω]i,j = 0, (49)

and we have used Eq.(27). As a result, we obtain
∑
i,j [φ

n+1∆Ω]i,j =
∑
i,j [φ

0∆Ω]i,j , which implies the mass
conservation in the discrete level.
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3.5.2 Momentum conservation

The momentum conservation is considered by summing the fully-discretized momentum equation Eq.(45)
over all the cells. Noticing that the remaining term

∑
[ρG∆Ω] satisfies

∑
[ρG∆Ω] =

∑
[ρG∆Ω] =

∑
[(−∇̃p+

fs)∆Ω] =
∑

[fs∆Ω], the momentum is conserved in the discrete level, i.e.,
∑
i,j [ρ

n+1un+1∆Ω]i,j =
∑
i,j [ρ

0u0∆Ω]i,j ,
without surface tension, i.e., fs ≡ 0.

It has been shown in [23] that
∑

[fs] = 0 when using the conservative method, while the balanced-force
method performs better on the numerical force balance. In addition, we expect that the non-conservative er-
ror introduced by the balanced-force method to be small. First, the surface force is a local force, i.e., it is only
non-zero in the interfacial region. Second, the difference between the two methods is from g′(φ)∇̃φ−∇̃g(φ),
which has a zero leading order since both g′(φ)∇̃φ and ∇̃g(φ) are approximating ∇g(φ). Consequently, when
using the conservative method, the momentum is conserved in the discrete level even when there is a surface
tension, while it is essentially conserved in the discrete level when using the balanced-force method.

The more detailed proof of the momentum conservation of the present scheme for the momentum equation
is available in [23] and the proof is generalized for N -phase flows. We refer interested readers to that paper
[23].

3.6 A consistent and conservative boundedness mapping algorithm

The conservative Allen-Cahn equation, Eq.(1), honors the maximum principle [2]. Specifically in our case,
given φ ∈ [−1, 1] at t = 0, φ ∈ [−1, 1] at t > 0, where φ is the solution of Eq.(1). In the discrete level,
the maximum principle should be held at every cell and at all the time levels. However, due to a numerical
error, the maximum principle may not hold. In numerical practice, we observe that the numerical solution
may slightly go beyond the interval [−1, 1]. Simply clipping the solution breaks down the consistency and
conservation of the scheme. To resolve the issue of violating the maximum principle while maintaining the
consistency and conservation of the scheme, we propose a consistent and conservative boundedness mapping
algorithm.

Given φn+1, which is the solution of Eq.(44) and satisfies the conservation constraint, i.e.,
∑
i,j [φ

n+1∆Ω]i,j =∑
i,j [φ

0∆Ω]i,j , we specify a mapping from φn+1 to φb, such that φb satisfies the maximum principle, i.e.,

|φb| 6 1 at every cell, the conservation constraint, i.e.,
∑
i,j [φ

b∆Ω]i,j =
∑
i,j [φ

n+1∆Ω]i,j , and the consistency

constraint, i.e., φb = 1 (or −1) at the locations where φn+1 > 1 (or 6 −1). Since we have shown in Section
3.4.1 that φn+1 = 1 (or −1) inside the bulk-phase region, the out-of-bound solution can first appear only in
the interfacial region. The consistency constraint restricts the mapping to be only effective in the interfacial
region, and that the mapping doesn’t modify the solution in the existing bulk-phase region. This constraint
avoids generating fictitious interfaces inside the existing bulk-phase region after the mapping.

Such a mapping from φn+1 to φb can be defined as

φb = φb∗ +
Wb(φ

b∗)∑
i,j [Wb(φb∗)∆Ω]i,j

∑
i,j

[(φn+1 − φb∗)∆Ω]i,j , (50)

where φb∗ is the clipped Phase-Field function, i.e.,

φb∗ =

 1, φn+1 > 1
−1, φn+1 6 −1
φn+1, else

, (51)

and Wb(φ) is a weight function which is non-zero only in the interfacial region. We let Wb(φ) = Wq(φ).
It is straightforward to show from Eq.(50) that φb satisfies the conservation constraint, i.e.,

∑
i,j

[φb∆Ω]i,j =
∑
i,j

[φb∗∆Ω]i,j+

∑
i,j [Wb(φ

b∗)∆Ω]i,j∑
i,j [Wb(φb∗)∆Ω]i,j

∑
i,j

[(φn+1−φb∗)∆Ω]i,j =
∑
i,j

[φn+1∆Ω]i,j =
∑
i,j

[φ0∆Ω]i,j .

(52)

The consistency constraint is also satisfied by φb. At the locations where φn+1 > 1 (or 6 −1), φb∗ = 1 (or
−1), from Eq.(51). Since Wb(±1) is zero, φb = 1 (or −1) wherever φn+1 > 1 (or 6 −1). Although Eq.(50)
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doesn’t guarantee the maximum principle, i.e., φb ∈ [−1, 1], we can iteratively apply Eq.(51) and Eq.(50)
sequentially until |φb| 6 1. During the iteration, it should be noted that φn+1 in Eq.(51) is replaced by the
newly obtained φb. Notice that the risky locations of |φb| > 1 are where |φb∗| is less but close to 1. However,
at those locations, Wb(φ

b∗) is close to zero. In addition, the difference between φb∗ and φn+1 is small, on
the order of truncation error, since the out-of-bound error is introduced by discretization. As a result, the
chance of φb being outside the range [−1, 1] is small. We did not observe any need to iterate Eq.(51) and
Eq.(50) in numerical practice.

After obtaining φb from Eq.(50), the consistent formulation is performed once more to enforce the con-
sistency conditions. The following Poisson equation,

∇̃ ·
(
WQ(φb)∇̃Q

)
=
γtφ

b − γtφn+1

∆t
, (53)

is supplemented. After summing both sides of Eq.(53) over all the cells, the left-hand side (LHS) is zero
since both φb and φn+1 satisfy the conservation constraint, and the right-hand side (RHS) is also zero due
to the homogeneous Neumann boundary condition. As a result, Eq.(53) is solvable. After replacing φn+1

by φb and m̃φ by m̃φ −WQ(φb)∇̃Q, Eq.(47) holds, and, thus, the consistency of mass conservation and the
consistency of mass and momentum transport are maintained in the discrete level. Notice that WQ(φb) = 0
inside the bulk-phase region, where φb = 1 (or −1), the consistency of reduction is again preserved. The
analysis of momentum conservation is not influenced by the boundedness mapping algorithm.

Consequently, the boundedness mapping algorithm is consistent and conservative. It can be directly
applied to other high-order schemes for the conservative Allen-Cahn model [39], to other Phase-Field models,
e.g., the Cahn-Hilliard model[22] and the conservative Phase-Field model [12], and to the Volume-of-Fluid
(VOF) method, whenever the numerical solution needs to be mapped into a physical interval. In the
conservative Allen-Cahn model, we can avoid solving the additional Poisson equation Eq.(53) for Q by
combining Q in Eq.(29) and Q in Eq.(53) together, i.e.,

∇̃ ·
(
WQ(φb)∇̃Q

)
= −Mλ

η2
g̃′(φ∗) +Wq(φ

n)q∗ +
γtφ

b − γtφn+1

∆t
. (54)

The methods to sovle Eq.(53) and Eq.(54) are the same as that for Eq.(29).
In summary, the boundedness mapping algorithm is performed after φn+1 is solved, and then we obtain

φb. After solving Eq.(54), φn+1 is replaced by φb, and then everything else in Sections 3.1 and 3.2 remains
the same.

3.7 Summary of the proposed scheme for two-phase flows

Here, we summarize the consistent, conservative, and bounded scheme for two-phase flows using the con-
servative Allen-Cahn equation. Given the data at previous time levels, φn+1, un+1, and pn+1 are obtained
from the following steps.

1. Solve the conservative Allen-Cahn equation with the scheme, i.e., Eq.(25), Eq.(27), and Eq.(28), in
Section 3.1 to obtain φn+1.

2. • if max|φn+1| 6 1, solve Q from Eq.(29),

• if max|φn+1| > 1, perform the boundedness mapping, i.e., Eq.(51) and Eq.(50), in Section 3.6 to
obtain φb. Iteration might be needed so that max|φb| 6 1. After that, compute Q from Eq.(54)
and then φn+1 = φb.

3. Compute ρn+1 from Eq.(9), µn+1 from Eq.(10), m̃ from Eq.(39), and fn+1
s from either Eq.(42) or

Eq.(43).

4. Solve the momentum equation from Eq.(31) to Eq.(38) in Section 3.2 to obtain un+1 and pn+1.

Then, we can proceed to the next time level.
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4 Validations and applications

In this section, we first validate the proposed scheme in Section 4.1, and then we show its capability to model
two-phase dynamics in Section 4.2.

4.1 Validations

The formal order of accuracy of the proposed scheme is validated by the manufactured solution problem
in Section 4.1.1. The steady drop problem, in Section 4.1.2, is performed to quantify the numerical force
balance between the pressure gradient and the surface force which is discretized by either the balanced-
force method or the conservative method. The convergence behavior of the numerical Phase-Field solution
to the sharp interface solution is studied in Section 4.1.3. The significance of satisfying the consistency
conditions is illustrated through the large-density-ratio advection problem in Section 4.1.4. Finally, the
mass and momentum conservation and the energy law of the scheme are validated, and the effectiveness of
the boundedness mapping algorithm is illustrated by the horizontal shear layer problem in Section 4.1.5.
Two more cases, which are the reversed single vortex problem [54] and the Zalesak’s disk problem [77],
are supplemented in Appendix to validate the conservative Allen-Cahn model as an interface capturing
method. Since these two cases are not coupled with the momentum equation, there is no issue related to
the consistency conditions. We use h to denote the grid/cell size. The L2 error is defined as the root mean
square of (f − fE) and the L∞ error is the maximum of |f − fE |, where f is the variable of interest and fE
is the corresponding reference value.

4.1.1 Manufactured solution

The manufactured solution problem is performed to validate the formal order of accuracy of the proposed
scheme. Specifically, we assume that the exact solutions of the dependent variables are

φE = cos(x) cos(y) sin(t), (55)

QE = cos(x) cos(y) sin(t),

uE = sin(x) cos(y) cos(t),

vE = − cos(x) sin(y) cos(t),

pE = cos(x) cos(y) sin(t).

As a result, the following source terms

Sφ =
∂φE
∂t

+∇ · (uEφE)−Mλ∇2φE +
Mλ

η2
g′(φE)−Wq(φE)qE (56)

SQ = ∇ · (WQ(φE)∇QE) +
Mλ

η2
g′(φE)−Wq(φE)qE

Su =
∂(ρEuE)

∂t
+∇ · (mE ⊗ uE) +∇pE −∇ ·

[
µE(∇uE +∇uTE)

]
− ρEg − fEs ,

where qE , ρE , µE , mE and fEs are computed from Eq.(5), Eq.(9), Eq.(10), Eq.(18) and Eq.(23), respectively,
are added to the right-hand side (RHS) of Eq.(25), Eq.(29), and Eq.(31), respectively.

The domain considered is [−π, π] × [−π, π] with the free-slip boundary. It should be noted that the
exact velocity is divergence-free, i.e., ∇ · uE = 0, the free-slip boundary condition is consistent with the
exact solution, and

∫
Ω
φEdΩ is independent of time. The cell size is ranging from 2π

8 to 2π
128 . The material

properties and parameters are ρ1 = 3, ρ2 = 1, µ1 = 0.02, µ2 = 0.01, g = {1,−2}, η = 0.1, λ = 0.001 and
M = 0.001. The initial condition is from the exact solutions Eq.(55) by setting t = 0. All the computations
are stopped at t = 1.

In the first case, the time step ∆t is fixed to be 0.001 and the spatial convergence is considered. The
results of using the balanced-force method are in Table 1 and those using the conservative method are in
Table 2. The 2nd-order convergence is clearly observed. We conclude that the proposed scheme is formally
2nd-order accurate in space. In the second case, the time step is proportional to the cell size, i.e., ∆t = h

2π .
The results of the balanced-force and the conservative methods are listed in Tables 3 and 4, respectively. We
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Table 1: Results of the manufactured solution problem using the balanced-force method and ∆t = 0.001

Table 2: Results of the manufactured solution problem using the conservative method and ∆t = 0.001

Table 3: Results of the manufactured solution problem using the balanced-force method and ∆t = h
2π

Table 4: Results of the manufactured solution problem using the conservative method and ∆t = h
2π

again observe 2nd-order convergence, which implies that the proposed scheme is formally 2nd-order accurate
in time.

4.1.2 Steady drop

The steady drop problem is performed to quantify the numerical force balance between the pressure gradient
and the surface force which is discretized by either the balanced-force method or the conservative method.
With a circular interface surrounded by quiescent fluids, in the continuous level, the surface tension is exactly
balanced by the pressure jump, and thus the fluid remains stationary. However, such an exact force balance
is seldom achievable in the discrete level, and the force imbalance introduced by the discretization drives the
fluid to move, generating the so-called spurious current.

We consider the domain of [1 × 1] with free-slip boundary. A circular drop with a radius 0.2 is placed
at the center of the domain and the velocity is initially zero. The cell size is ranging from 1

16 to 1
128 and

the time step is ∆t = 10−3. The material properties are ρ1 = ρ2 = 1000, µ1 = µ2 = 0.1, and σ = 1. The
Phase-Field parameters are set up as those in [44, 22], i.e., η = η0(h/h0)2/3 and M = M0(η/η0)3/2, where
η0 = h0 = 1/32 and M0 = 10−7. The strength of the spurious current is evaluated at t = 10, by measuring
the L2 and L∞ norms of the total velocity, i.e., V =

√
u2 + v2.

Fig.1 shows the convergence behavior of the total velocity in L2 and L∞ norms. We can observe that
the spurious current is small and converges to zero as the cell is refined, no matter which method is used.
The balanced-force method has a better performance in achieving the numerical force balance. The spurious
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Figure 1: Results of the steady drop problem. a) L2 norm of V , b) L∞ norm of V .

current is smaller than the one from the conservative method. In addition, the spurious current converges
to zero with a rate that is close to 2nd-order when using the balanced-force method, while it is more close
to 1st-order when the conservative method is applied. The behavior of the two methods observed in the
present work is consistent with the results in [23].

4.1.3 Rising bubble: a convergence test

The convergence behavior of the numerical solution of the Phase-Field model to the sharp-interface solution
is studied in a problem including large density ratio, large viscosity ratio, surface tension, and gravity. There
are two convergence criteria when numerically applying a Phase-Field model to two-phase problems. The
first one is the convergence of the numerical solution to the exact solution of the Phase-Field model with
fixed interface thickness η by reducing the cell size, which has been studied in Section 4.1.1. The second one
is the convergence of the Phase-Field model to the sharp-interface model by reducing the interface thickness
η, which, for the conservative Allen-Cahn model, has been studied, e.g., in [7, 10] without hydrodynamics.
In this section, we focus on the overall behavior where the interface thickness is reduced as the cell size is
reduced.

The domain considered is [1 × 2], whose left and right boundaries are free-slip and the top and bottom
ones are no-slip. The cell size h is ranging from 1

16 to 1
256 , and the time step is ∆t = 0.128h. A circular

bubble (Phase 1) with a radius 0.25 is initially released at (0.5, 0.5) inside a quiescent fluid (Phase 2). The
material properties are ρ1 = 1, ρ2 = 1000, µ1 = 0.1, µ2 = 10, σ = 1.96 and g = {0,−0.98}. The interface
thickness reduces as fast as the cell size, i.e., η = η0(h/h0), where η0 = h0 = 1/32, and the mobility is
M = M0(η/η0) with M0 = 10−7. Three benchmark quantities, which are the circularity ψc, the center of
mass yc and the rising velocity vc, are defined as

ψc =
Pa
Pb

=
2
√∫

φ>0
πdΩ

Pb
, (57)

yc =

∫
Ω
y 1+φ

2∫
Ω

1+φ
2

, (58)

vc =

∫
Ω
v 1+φ

2∫
Ω

1+φ
2

, (59)

where Pa is the perimeter of the circle whose area is identical to the bubble, and Pb is the perimeter of
the bubble. The sharp-interface solutions using either the Level-Set method or the Arbitrary Lagrangian-
Eulerian (ALE) method are available in [24], which are considered as the reference solution.
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Figure 2: Results of the convergence test from the balanced-force method. a) The bubble shape at t = 1, b)
ψc versus t, c) yc versus t, and d) vc versus t. Blue solid line: h = 1

16 , red dashed line: h = 1
32 , yellow dotted

line: h = 1
32 , purple dash-dotted line: h = 1

128 , green solid line: h = 1
256 , and black solid line: Reference

solution from [24].

Figs.2 and 3 show the results from the balanced-force method and the conservative method, respectively.
No matter which method is used, the convergence of the numerical Phase-Field solution to the sharp-
interface solution (the Reference) can be clearly observed during successive cell refinement. To quantify the
convergence behavior, the L2 errors of the circularity ψc, the center of mass yc, and the rising velocity yc
are computed, considering the sharp-interface solutions as the reference values, and they are listed in Table
5. The difference between the two methods is tiny although the conservative method slightly outperforms
the balanced-force method. The circularity, which quantifies the shape of the bubble, has a convergence rate
close to 2nd-order, while it is around 1.6th-order for the center of mass and the rising velocity. In summary,
the numerical Phase-Field solution converges to the sharp-interface solution with a rate between 1.5th- and
2nd-order.

In Section 4.1.1, we demonstrate that the scheme is formally 2nd-order accurate although W (φn) is used
in Eq.(28). To further investigate its effect on the accuracy of the scheme in a realistic two-phase flow
problem, we repeat the convergence test but fix both η and M , i.e., η = η0 and M = M0, as the grid
is refined. As a result, the numerical solution converges to the exact solution of the Phase-Field model.
L2 errors of the benchmark quantities are computed using the finest-grid solution as the reference and are
listed in Table 6. We again observe 2nd-order convergence. Therefore, using W (φn) in Eq.(28) has little
effect on the accuracy of the scheme. The slowing down of the convergence rate in Table 5 is attributed to
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Figure 3: Results of the convergence test from the conservative method. a) The bubble shape at t = 1, b)
ψc versus t, c) yc versus t, and d) vc versus t. Blue solid line: h = 1

16 , red dashed line: h = 1
32 , yellow dotted

line: h = 1
32 , purple dash-dotted line: h = 1

128 , green solid line: h = 1
256 , and black solid line: Reference

solution from [24].

Table 5: L2 error of the convergence test

approximating a sharp-interface problem with a Phase-Field model.
We then consider the effect of the mobility. We first fix the grid size to be h = 1

128 but change M0 from
10−3 to 10−9. The results are shown in Fig.4. Although the mobility changes in a wide range, the difference
among the solutions is negligible. Therefore, the two-phase flow model shows good tolerance to the value of
the mobility. Since the asymptotic analysis of the present two-phase flow model is not available, we have
borrowed the analysis to the model using the Cahn-Hilliard equation [26, 27] and related the mobility to the
interface thickness as M = M0(η/η0), whose results are shown in Fig.2, Fig.3, and Table 5. The convergence
of the numerical solution to the sharp-interface solution has been observed and quantified. Another suggestion
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Table 6: L2 error of the convergence test with fixed η and M

Table 7: L2 error of the convergence test with M = M0(η/η0)2

is to relate M to η as M = M0(η/η0)2 [42, 71]. Since the model is not sensitive to the mobility, we can infer
that changing the correlation of the mobility will not make a big difference in the convergence behavior to the
sharp-interface solution, and the results, obtained from M = M0(η/η0)2 with M0 = 10−3, in Table 7, confirm
the statement. It should be noted that these observations are based on a practical and numerically affordable
set-up and the interface thickness considered is probably not small enough to reach the asymptotic regime.
Therefore, they are useful for numerical implementation but not necessarily representing the behavior of the
model in the asymptotic regime. Numerically reaching the asymptotic regime is challenging since it normally
requires a tremendous number of grid points to resolve the interface thickness which can be a million times
smaller than the length scale of the problem [76]. Therefore, the asymptotic analysis is a more appropriate
tool to study the behavior of the model inside the asymptotic regime, but it is outside the scope of the present
study. Fortunately, we demonstrate that satisfactory results can be obtained even outside the asymptotic
regime, which makes the proposed model practical and computationally affordable to study two-phase flows
numerically.

4.1.4 Large-density-ratio advection

The large-density-ratio advection problem is performed to validate the analysis in Section 3.4.3, and to
illustrate the significance of satisfying the consistency conditions. The domain considered is [1 × 1] with
a periodic boundary condition. A circular drop with a radius 0.1 is initially located at the center of the
domain and both the x- and y-components of the velocity are unity. The cell size h is 1

128 and the time
step is ∆t = 0.1h. The fluids are inviscid and there is no surface tension between them. We set η = 3h and
M = 10−7. Based on the analysis of Section 3.4.3, the drop should return to its original location without
any deformation, and the velocity should not be changed.

Fig.5 a) shows the result of the density ratio 109 from the proposed consistent scheme at t = 1. The
physical solution is well reproduced. The interface at t = 1 is on top of the one at t = 0, and the velocity
vectors are all pointing towards 450 from the x axis. For comparison, the result of the density ratio 103 from
the inconsistent scheme, i.e., m̃ = ρu is depicted in Fig.5 b). One can observe strong compression of the
interface along the flow direction and the streamlines are distorted.

4.1.5 Horizontal shear layer

The horizontal shear layer is performed to validate the mass and momentum conservation of the scheme,
after which the energy law and the effectiveness of the boundedness mapping algorithm are discussed. The
domain considered is [1×1] with a periodic boundary condition. The cell size h is 1

128 in default and the time
step is ∆t = CFLh, with CFL = 0.1. The material properties are ρ1 = 10, ρ2 = 1, µ1 = 0.01, µ2 = 0.001,
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Figure 4: Results of the convergence test with fixed grid size h = 1
128 but different M0. a) The bubble shape

at t = 1, b) ψc versus t, c) yc versus t, and d) vc versus t.

Figure 5: Results of the large-density-ratio advection problem. a) Result from the consistent mass flux with
a density ratio 109, b) result from the inconsistent mass flux with a density ratio 103. Black solid line:
interface at t = 0, blue arrow lines: streamlines at t = 1, red dashed line: interface at t = 1.
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Figure 6: Time histories of the changes of the mass and momentum in the horizontal shear layer problem.
a) Change of Φ versus t, b) change of Momentumx versus t, c) change of Momentumy versus t. 256: results
from a finer grid size h = 1

256 .

σ = 0.1. Initially, a horizontal shear layer is

u|t=0 =

{
tanh( y−y1δ1

), y ≤ y0

tanh( y2−yδ1
), y > y0

(60)

along with a vertical perturbation

v|t=0 = δ2 sin(kx), (61)

and we set φ|t=0 = u|t=0. The parameters are y0 = 0.5, y1 = 0.25, y2 = 0.75, δ1 = 1/30, δ2 = 0.05, and as a
result, η = δ1/

√
2.

We first consider the case without performing the boundedness mapping algorithm. The time histories
of Φ =

∑
i,j [φ∆Ω]i,j , Momentumx =

∑
i,j [ρu∆Ω]i,j and Momentumy =

∑
i,j [ρv∆Ω]i,j minus their initial

values are shown in Fig.6. It is clear that the mass is conserved in the discrete level due to Φ is conserved.
Since the set up of the problem is symmetric with respect to the y axis, the Momentumy is also conserved
no matter whether the balanced-force method or the conservative method is used. However, Momentumx is
conserved only when the conservative method is used, as expected. A finer grid resolution of the balanced-
force method is performed, and the momentum non-conservative error is greatly reduced. Considering the
initial value of Momentumx is 3.9, the maximum change of Momentumx is less than 0.05% from the default-
grid solution. As a result, the scheme using the balanced-force method leads to the essential conservation of
momentum. The results in Fig.6 are consistent with our analyses in Sections 3.5.1 and 3.5.2.

The time histories of the kinetic energy, computed by EK =
∑
i,j [

1
2ρ(u2 + v2)∆Ω]i,j , the free energy,

computed by EF =
∑
i,j

[
λ
(

1
η2 g(φ) + 1

2∇̃φ · ∇̃φ
)

∆Ω
]
i,j

, and the total energy, ET = EK + EF , are shown

in Fig.7. In Fig.7 a), we consider the case without viscosity and surface tension. As a result, the free energy
is zero, and the right-hand side (RHS) of the energy law, i.e., Eq.(22), is zero. In other words, the total
energy, which is the same as the kinetic energy in this case, should not change with time. The decay of the
total energy, as well as the kinetic energy, in Fig.7 a) is attributed to the numerical dissipation introduced
by the backward difference for time discretization, the WENO scheme for the convection terms, and the
linear interpolation of the pressure gradient in the momentum equation. The numerical dissipation should
be reduced after the grid size is refined, and we can observe that the decay of the energy happens latter and
its amount is smaller in a fine-grid solution. The second case is inviscid but it includes the surface tension
and the results are shown in Fig.7 b). From Eq.(22), the total energy decays only due to the second term on
the right-hand side (RHS), introduced by the conservative Allen-Cahn model. It can be observed that the
decrease of the kinetic energy corresponds to the increase of the free energy. However, the decrease of the
kinetic energy is always larger than the increase of the free energy, leading to the decay of the total energy.
Fig.7 c) shows the results of the case including both the viscosity and surface tension. From Eq.(22), the
total energy decays due to both the viscosity of the fluids and the conservative Allen-Cahn model. We again
observe the energy transfer from the kinetic energy to the free energy and the decay of the total energy.
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Figure 7: Time histories of the kinetic energy, free energy and total energy in the horizontal shear layer
problem using the conservative method. a) without viscosity and surface tension, b) without viscosity but
surface tension, c) with viscosity and surface tension. 256: results from a finer grid size h = 1

256 .

Figure 8: Effectiveness of the boundedness mapping algorithm. a) Time histories of max(|φ| − 1) using
the conservative method, b) zoom of a). NB: the boundedness mapping algorithm is not activated, B: the
boundedness mapping algorithm is activated. 128: grid size h = 1

128 , 256: grid size h = 1
256 .

The results from a finer grid are also included in Fig.7 b) and c), and the difference between the fine-grid
solution and the default-grid solution is small. Thus, the contribution of the numerical dissipation to the
energy decay is negligible. The balanced-force method gives almost identical results so we only present the
results from the conservative method. In summary, the energy law, i.e., Eq.(22), is reproduced by the scheme
in the discrete level.

The effectiveness of the boundedness mapping algorithm is illustrated in Fig.8, where the time history of
max(|φ|− 1) is shown. From the maximum principle, φ should be in the range of [−1, 1]. Thus, max(|φ|− 1)
should always be negative. We observe that before t = 1.5, φ satisfies the maximum principle, and the
boundedness mapping algorithm is not activated. After t = 1.5, φ slightly goes beyond the interval [−1, 1]
without the boundedness mapping algorithm. When we refine the grid, φ stays in [−1, 1] longer and the out-
of-bound error becomes smaller. In Fig.8 b), which is the zoom of Fig.8 a), we observe that before t = 1.5,
there is no difference between the solutions with and without the boundedness mapping algorithm since the
algorithm is not activated. After t = 1.5, φ remains to be in [−1, 1] with the help of the boundedness mapping
algorithm while it is outside [−1, 1] without the boundedness mapping algorithm. The balanced-force method
gives almost identical results so we only present the results from the conservative method. The changes of
Φ and momentum versus time are shown in Fig.9 and the boundedness mapping algorithm is included. The
boundedness mapping algorithm doesn’t change the properties of the mass and momentum conservation of
the scheme, which is consistent with our analysis in Section 3.6. The time histories of the kinetic energy,
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Figure 9: Time histories of the changes of the mass and momentum in the horizontal shear layer problem
including the boundedness mapping algorithm. a) Change of Φ versus t, b) change of Momentumx versus t,
c) change of Momentumy versus t.

Figure 10: Time histories of the kinetic energy, free energy, and total energy in the horizontal shear layer
problem using the conservative method with or without the boundedness mapping algorithm. B: the bound-
edness mapping algorithm is activated, NB: the boundedness mapping algorithm is not activated.

free energy, and total energy are shown in Fig.10, along with the results without the boundedness mapping
algorithm. The energy law is preserved when the boundedness mapping algorithm is included, and there
is no observable difference between the results with and without the boundedness mapping algorithm. The
balanced-force method gives almost identical results so we only present the results from the conservative
method.

4.2 Applications

We apply the proposed scheme to three realistic two-phase flow problems, which are the Rayleigh-Taylor
instability, the dam break, and the axisymmetric rising bubble. These problems include different challenging
aspects of two-phase flow simulations, e.g., large density and viscosity ratios, surface tension, topological
change, and complicated interfacial evolution. Our results show that the proposed scheme is accurate and
effective for two-phase flow simulations. Unless otherwise specified, we set η = 0.01 and Mλ = 10−7 in this
section.
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Figure 11: The locations of the interface at the center and the lateral edge of the domain for the Rayleigh-
Taylor instability problem.

4.2.1 Rayleigh-Taylor instability

The Rayleigh-Taylor instability problem is presented, where the surface tension is ignored. When a heavier
fluid (Phase 1) stays above a lighter one, any small perturbation on the interface will trigger the instability
where the heavier fluid moves downward, taking the place of the lighter one. The domain considered is
[1× 4], whose left and right boundaries are periodic and the top and bottom ones are free-slip. The heavier
fluid stays on the upper half of the domain and the interface is initially perturbed by a sinusoidal wave
whose amplitude and wavenumber are 0.1 and 2π, respectively. The material properties ρ1 = 3, ρ2 = 1,
µ1 = µ2 = 10−3, and g = {0,−1}, which leads to an Atwood number At = ρ1−ρ2

ρ1+ρ2
= 0.5. The domain is

discretized by [128× 512] cells and the time step is ∆t = 5× 10−4/
√
At.

The early dynamics of the problem is quantified by measuring the locations of the interface at the center
and at the lateral edge of the domain versus time, which is presented in Fig.11, along with the results from
[65, 19, 13, 22]. The present results agree very well with the previous studies. The evolution of the interface is
shown in Fig.12 up to t

√
At = 10. The amplitude of the initial perturbation keeps growing, and a secondary

instability is triggered at the two sides of the front of the heavier fluid after t
√
At = 1.25. As a result,

the interface has a mushroom-like shape. As the heavier fluid moves downward, some small structures are
generated by the instability. Further, there are new instabilities appearing on the small structures, resulting
in topological changes. Consequently, we can observe a complicated interface configuration in the long-time
dynamics of the problem.

4.2.2 Dam break

The dam break problem is presented, where a square water column collapses due to gravity. The domain
considered is [4a × 2a], where a is the initial height of the water column (Phase 1), and all the boundaries
are no-slip. Initially, a square water column stays at the left of the domain, having a height and a width a =
5.715cm (2.25in). The density and viscosity of the water are 998.207kg/m3 and 1.002× 10−3Pa · s, and they
are 1.204kg/m3 and 1.78× 10−5Pa · s for the air. The surface tension between them is σ = 7.28× 10−2N/m
and the gravity is 9.8m/s2, pointing downward. The equations are non-dimensionalized by a density scale
1.204kg/m3, a length scale 5.715cm, and a acceleration scale 9.8m/s2. The domain is discretized by [256×128]
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Figure 12: The evolution of the interface of the Rayleigh-Taylor instability problem at t
√
At = 0, t

√
At = 0.5,

t
√
At = 0.75, t

√
At = 1,..., t

√
At = 10 from left to right and from top to bottom.

cells and the time step is ∆t = 10−4. Both the balanced-force method and the conservative method are
applied to this problem.

The early dynamics of the problem is quantified by measuring the front and the height of the water
column versus time, which is presented in Fig.13, along with the experimental data from [43]. The results
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Figure 13: The front and the height of the water column versus time. a) The front of the water column
versus time, b) the height of the water column versus time

from the balanced-force method and from the conservative method overlap with each other, and both of
them agree well with the experimental measurements. The evolution of the interface is shown in Fig.14 up
to t = 10, where both of the results from the two methods are presented. The water column collapses towards
the right of the domain and climbs up the right wall. The rising motion is slowed down by gravity, while the
water at the bottom is still pushed upward. As a result, there is a bump in the middle of the climbing water.
This bump collapses onto the bottom water and pushes it moving backward. Consequentially, a water jump
is developed and moves toward the left, along with complicated interface configurations. At the end of the
simulation, the water jump reaches the left wall and the bottom water is pushed to move to the right again.
Although both the balanced-force method and the conservative method give a similar physical picture of the
problem, it can be observed that the balanced-force method tends to break the interface when the length
scale of the interfacial structure is close to the cell size. As a result, more topological changes are observed
in the results using the balanced-force method. Our results also show that the conservative method is more
stable than the balanced-force method. We use a time step that is 5 times larger, and the conservative
method is stable for the whole simulation, while the balanced-force method is only stable before the water
touches the top wall.

4.2.3 Axisymmetric rising bubble

The axisymmetric rising bubble is presented to show the applicability of our consistent scheme to other
coordinate systems. A spherical bubble with a radius R is released at z = 2R in an axisymmetric domain
[4R × 8R] with a free-slip boundary condition at z = 0, z = 8R, and r = 4R. We consider R = 0.01m, the
density of the liquid is ρL = 1000kg/m3, and the gravity along the negative z axis is gz = 10m/s2. Other

parameters are specified as the density ratio 1000, the viscosity ratio 100, the Bond number Bo = ρLgzR
2

σ =

200, and the Reynolds number Re = ρLR
√
gzR

µL
= 100. The equations are non-dimensionalized by using R,

ρL and gz as the length, density and acceleration scales. The domain is discretized by [200 × 400] cells, and
the time step is ∆t = 10−3.

Figs.15 and 16 show the results from the balanced-force method and the conservative method, respectively.
In this case, both of the methods give the same evolution of the bubble. The buoyancy effect drives the
bubble upward. The bottom part of the bubble moves faster, and at the end catches up with its top. As
a result, the topological change happens, and the bubble becomes a band ring. The present results are
comparable to those in [62], where the same case is considered using the Level-Set method.
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Figure 14: The evolution of the interface of the dam break problem at t = 0, t = 1, t = 1.5, t = 2, t = 2.5,...,
t = 10 from left to right and from top to bottom. a) The balanced-force method, b) the conservative method.

5 Discussions

5.1 Extension to multiphase flows

Recently, Kim and Lee have extended the conservative Allen-Cahn equation Eq.(1) to the conservative
vector-valued Allen-Cahn equation [34] which is used to model multiphase flows. In this section, we are27



Figure 15: Results of the axisymmetric rising bubble using the balanced-force method at t = 0, t = 0.2,
t = 0.4,..., t = 3increment, from left to right and from bottom to top.

going to show that our consistent formulation can be straightforwardly applied to this case.
Considering that there are N phases and that each phase has its own order parameter φk, the conservative

vector-valued Allen-Cahn equation reads

∂φk
∂t

+∇ · (uφk) = Mλ

(
∇2φk −

1

η2
g′(φk) +

1

η2
α

1 + φk
2

)
+Wqqk(t), (62)

where the Lagrange multiplier α is to enforce the constraint
∑N
k=1

1+φk

2 = 1, and the Lagrange multiplier
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Figure 16: Results of the axisymmetric rising bubble using the conservative method from t = 0 to t = 3 with
0.2 increment, from left to right and from bottom to top.

qk(t) is to enforce the constraint d
dt

∫
Ω
φkdΩ = 0 for all k. As a result, α and qk(t) are

α =
N∑
k=1

g′(φk), (63)

and

qk(t) =

∫
Ω
Mλ
η2

(
g′(φk)− α 1+φk

2

)
dΩ∫

Ω
WqdΩ

, (64)
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where

Wq =
N∑
k=1

2
√
g(φk) =

N∑
k=1

(1− φ2
k). (65)

The consistent formulation in Section 2.3 can be directly applied by defining a set of auxiliary variables
{Qk}Nk=1 that satisfy

∇ · (WQk
∇Qk) = −Mλ

η2

(
g′(φk)− α1 + φk

2

)
+Wqqk(t), 1 6 k 6 N, (66)

where WQk
can be chosen as WQk

= 2
√
g(φk) = (1−φ2

k). Along with n ·∇Qk = 0 at the boundary, Eq.(66)
is solvable by considering that

0 =

∫
∂Ω

WQk
n · ∇QkdΓ =

∫
Ω

∇ · (WQk
∇Qk)dΩ = −

∫
Ω

Mλ

η2

(
g′(φk)− α1 + φk

2

)
dΩ + qk(t)

∫
Ω

WqdΩ = 0. (67)

As a result, the Phase-Field flux is

mφk
= uφk −Mλ∇φk −WQk

∇Qk, (68)

and the consistent mass flux is

m =

N∑
k=1

ρk
2

(u + mφk
). (69)

It can be easily shown that

∂ρ

∂t
+∇ ·m =

∂

∂t

N∑
k=1

ρk
1 + φk

2
+∇ ·

N∑
k=1

ρk
2

(u + mφk
) =

N∑
k=1

ρk
2

(
∂φk
∂t

+∇ ·mφk
) = 0. (70)

Thus, the mass flux defined in Eq.(69) satisfies the consistency of mass conservation, i.e., Eq.(70), and should
be applied to the inertial term of the momentum equation.

With some minor modifications, the scheme for the conservative Allen-Cahn equation in Section 3.1 can
be applied to the conservative vector-valued Allen-Cahn equation Eq.(62). Step 1 is the same as Eq.(25). In
Step 2, the two Lagrange multipliers α∗ and q∗k are computed as

α∗ =
N∑
k=1

(
g̃′(φ∗k)− η2∇̃ · ∇̃φ∗k

)
(71)

and

q∗k =

∑
i,j

[
Mλ
η2

(
g̃′(φ∗k)− α∗ 1+φn

k

2

)
∆Ω
]
i,j∑

i,j [W
n
q ∆Ω]i,j

. (72)

Finally, in Step 3, φn+1
k is updated as

γtφ
n+1
k − γtφ∗k

∆t
=
Mλ

η2
α∗

1 + φnk
2

+Wn
q q
∗
k. (73)

It can be easily shown that the scheme honors the conservation constraint, i.e.,
∑
i,j [φ

n+1
k ∆Ω]i,j =

∑
i,j [φ

0
k∆Ω]i,j .

To satisfy the summation of the volume fractions to be unity, i.e.,
∑N
k=1

1+φn+1
k

2 = 1, the convection scheme
proposed in [23] for multiphase incompressible flows should be used.

An example of three-phase Rayleigh-Taylor instability is presented here, where an additional phase is
placed on the top, whose density is 4.5. We name the fluids Phases 1, 2, and 3 from the top to bottom, and
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Figure 17: Results of the three-phase Rayleigh-Taylor instability. a) The locations of the interface between
Phases 2 and 3 at the center and the lateral edge of the domain, b) (Φk−Φk|t=0) versus t, c) max |

∑
k

1+φk

2 −1|
versus t.

we have two Atwood numbers, which are At1,2 = 0.2 and At2,3 = 0.5. As a result, the total height of the
domain is 6. We use 64 × 384 cells and the time step is ∆t = 10−3. The rest of the set up is the same as
those in Section 4.2.1. The result is shown in Fig.17. Since the two interfaces are far separated, the initial
dynamics of Phases 2 and 3, whose Atwood number is 0.5, should be the same as the one in Section 4.2.1 (see
Fig.17 a)). Fig.17 b) and c) show that the scheme satisfies the conservation constraint and the summation
of the volume fractions is unity everywhere. The evolution of the interfaces is shown in Fig.18, where the
complicated interactions among the three phases are observed.

5.2 Application to the improved Cahn-Hilliard model

Some recent studies have focused on improving the Cahn-Hilliard model for incompressible two-phase flows.
One common way to do that is to include a flux corresponding to the interfacial profile correction [40, 79, 78].
Since the equation is written in a conservative form, the consistency analysis can be directly applied, which
has been discussed in [22]. Another way is to add some Lagrange multipliers to enforce the constraints.
As a result, the equation is not in a conservative form, which casts challenges on satisfying the consistency
conditions. Thanks to the consistent formulation proposed in the present work, we can reformulate the
equation in a conservative form, after which the consistency analysis can be performed. As an example, we
consider the improved Cahn-Hilliard model recently proposed by Hu et al.[21], and it reads

∂φ

∂t
+∇ · (uφ) = ∇ · (M∇ξ) + S[γ1(t), γ2(t)], (74)

where the newly added term S[γ1(t), γ2(t)] is the Lagrange multiplier to enforce the conservation of total
mass, i.e., d

dt

∫
Ω
φdΩ = 0, and the conservation of the mass enclosed by the interface, i.e., d

dt

∫
Ω
H(φ)dΩ = 0,

with H(φ) the Heaviside function. We refer interested readers to [21] for the definition of S[γ1(t), γ2(t)].
After applying the consistent formulation to S[γ1(t), γ2(t)], and we obtain

S[γ1(t), γ2(t)] = ∇ · (WQ(φ)∇Q). (75)

The global mass conservation implies that
∫

Ω
S[γ1(t), γ2(t)]dΩ = 0 from Eq.(74). When we integrate Eq.(75)

in the domain of interest, along with the periodic or homogeneous Neumann boundary condition for Q,
both sides of Eq.(75) are zeros. Thus, Eq.(75) is solvable. Consequently, Eq.(74) is reformulated into a
conservative form, after which the consistency analyses can be performed. The Phase-Field flux becomes

mφ = uφ−M∇ξ −WQ(φ)∇Q, (76)

and the consistent mass flux is defined the same as Eq.(18). A consistent scheme can be developed, following
the procedures in [22] for the Cahn-Hilliard model.
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Figure 18: Evolution of the interfaces in the three-phase Rayleigh-Taylor instability problem at t = 0, t = 1,
t = 1.5, t = 2,..., t = 10, from left to right and from top to bottom.

5.3 Maximum principle in the discrete level

In section 3.6, we proposed a consistent and conservative boundedness mapping algorithm to enforce the
maximum principle in the discrete level. An alternative way is to design a scheme that satisfies the maximum
principle directly. Weng and Zhuang [68] proposed an operator splitting scheme along with the Fourier
spectral method to solve the conservative Allen-Cahn equation without convection. They show that their
scheme satisfies the maximum principle, while it does not conserve mass exactly. Joshi and Jaiman [32, 31]
introduced the positivity preserving stabilization term to the variational form of the conservative Allen-
Cahn equation in order to enforce the maximum principle with the finite element method (FEM). Shen et
al. [60] proposed a maximum-principle-preserving finite difference scheme for the Allen-Cahn equation with
convection and variable mobility while without the Lagrange multiplier to enforce mass conservation. In the
following, we propose a 1st-order scheme that preserves both the maximum principle and mass conservation.
We use ‖ · ‖∞ to denote the standard infinity norm of a function, a matrix, or a vector.
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Lemma 5.1. Let B = (brs) ∈ RN×N and A = aI − B, where a is a positive constant and I is the identity
matrix. If B is a negative diagonally dominant (NDD) matrix, i.e.,

brr 6 0, brr +
∑
s6=r

|brs| 6 0, ∀r, (77)

then A is invertible and its inverse satisfies

‖A−1‖∞ 6
1

a
. (78)

The proof of Lemma 5.1 is available in [60].

Lemma 5.2. Let f(φ) to be

f(φ) = φ− Mλ∆t

η2
g′(φ) +

Mλ∆t

η2

Wq(φ)∑
i,j [Wq(φ)∆Ω]i,j

∑
i,j

[g′(φ)∆Ω]i,j , (79)

where g(φ) and Wq(φ) are defined by Eq(3) and Eq.(6), respectively. If

φ ∈ [−1, 1],
Mλ∆t

η2
6

1

4
, (80)

then

‖f(φ)‖∞ 6 1. (81)

Proof. We first show that the summation term
∑

i,j [g′(φ)∆Ω]i,j∑
i,j [Wq(φ)∆Ω]i,j

is bounded.∣∣∣∣∣
∑
i,j [g

′(φ)∆Ω]i,j∑
i,j [Wq(φ)∆Ω]i,j

∣∣∣∣∣ =

∣∣∣∣∣
∑
i,j [φ(φ2 − 1)∆Ω]i,j∑
i,j [(1− φ2)∆Ω]i,j

∣∣∣∣∣ 6
∑
i,j [|φ|(1− φ2)∆Ω]i,j∑
i,j [(1− φ2)∆Ω]i,j

6

∑
i,j [(1− φ2)∆Ω]i,j∑
i,j [(1− φ2)∆Ω]i,j

= 1. (82)

As a result, f(φ) is bounded by f+(φ) and f−(φ), i.e., f−(φ) 6 f(φ) 6 f+(φ), where

f±(φ) = φ− Mλ∆t

η2
g′(φ)± Mλ∆t

η2
Wq(φ) = φ+

Mλ∆t

η2
(1− φ2)(φ± 1). (83)

Notice that f±(±1) = ±1, so if f± are monotonically increasing functions for φ ∈ [−1, 1], then −1 6 f−(φ) 6
f(φ) 6 f+(φ) 6 1, or equivalently ‖f(φ)‖∞ 6 1. The derivative of f+(φ) is

f ′+(φ) = 1− 3
Mλ∆t

η2

(
(φ+

1

3
)2 − 4

9

)
, (84)

and its minimum for φ ∈ [−1, 1] is
(

1− 4Mλ∆t
η2

)
at φ = 1. With a similar procedure, the minimum of f ′−(φ)

for φ ∈ [−1, 1] is
(

1− 4Mλ∆t
η2

)
at φ = −1. Thus f±(φ) are monotonic increasing when Mλ∆t

η2 6 1
4 . As a

result, ‖f(φ)‖∞ 6 1.

The maximum-principle-preserving and conservative scheme for the conservative Allen-Cahn equation
reads,

φn+1−∆t
(
Mλ∇̃ · ∇̃φn+1 − ∇̃ · (unφ̃n+1)

)
= φn−Mλ∆t

η2
g′(φn)+

Mλ∆t

η2

Wq(φ
n)∑

i,j [Wq(φn)∆Ω]i,j

∑
i,j

[g′(φn)∆Ω]i,j ,

(85)

where φ̃ represents the 1st-order upwind scheme. The left-hand side (LHS) of Eq.(85) can be represented as
Aφn+1 = (I − B)φn+1, where B is the discrete Laplace operator minus the 1st-order upwind operator and
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is a NDD matrix [60]. The right-hand side (RHS) of Eq.(85) is f(φn), where f(φ) is defined in Lemma 5.2.
Given ‖φ‖∞ 6 1 up to time level n and Mλ∆t

η2 6 1
4 , ‖φn+1‖∞ = ‖A−1f(φn)‖∞ 6 ‖A−1‖∞‖f(φn)‖∞ 6 1 with

the help of Lemma 5.1 and Lemma 5.2. Thus, the maximum principle is preserved in the discrete level.
When we sum Eq.(85) over all the cells, the remaining term on the left-hand side (LHS) is

∑
i,j [φ

n+1∆Ω]i,j
and the remaining term on the right-hand side (RHS) is

∑
i,j [φ

n∆Ω]i,j . Consequently,
∑
i,j [φ

n+1∆Ω]i,j =∑
i,j [φ

n∆Ω]i,j . If the mass is conserved up to time level n, i.e.,
∑
i,j [φ

n∆Ω]i,j =
∑
i,j [φ

0∆Ω]i,j , then we

have
∑
i,j [φ

n+1∆Ω]i,j =
∑
i,j [φ

0∆Ω]i,j , which implies the mass conservation in the discrete level.
Although the scheme in Eq.(85) preserves the maximum principle and mass conservation, it is only 1st-

order accurate. Designing a higher-order scheme that preserves the maximum principle is non-trivial and
could be a future direction of study.

6 Conclusions and future works

In the present work, we consider the conservative Allen-Cahn model and applied it to two-phase flows in a
consistent and conservative manner. Our major focus is on the model proposed by Brassel and Bretin [7],
where the Lagrange multiplier, enforcing the conservation constraint, is effective only in the interfacial region.
Three consistency conditions, which are the consistency of reduction, the consistency of mass conservation,
and the consistency of mass and momentum transport, proposed by Huang et al. in [22], are implemented.
These consistency conditions are important for producing physical solutions of two-phase flow problems.
However, the conservation constraint is enforced by a Lagrange multiplier in the conservative Allen-Cahn
equation. As a result, the conservative Allen-Cahn equation has a form of convection-diffusion-reaction
equation, and is not in a conservative form, although it satisfies the conservation constraint. Consequently,
the consistency analysis can not be directly applied. To resolve this issue, we propose a consistent formulation,
where the conservative Allen-Cahn equation, whose original form is a convection-diffusion-reaction equation,
is reformulated in a conservative form with the help of defining an auxiliary variable. The auxiliary variable
is governed by a Poisson equation, whose source term is compatible with its boundary condition. As a result,
the consistency analysis is performed on the reformulated equation, and a consistent two-phase model using
the conservative Allen-Cahn equation is developed, which is shown to satisfy all the consistency conditions,
mass and momentum conservation, and the energy law of the two-phase system.

A consistent and conservative scheme is developed to solve the proposed two-phase model. The scheme
is decoupled, semi-implicit, and formally 2nd-order accurate. One can show that the scheme satisfies all the
consistency conditions as well as mass conservation in the discrete level. The momentum is conserved in
the discrete level when using the conservative method to compute the surface force while it is essentially
conserved when using the balanced-force method. The two methods are proposed in [23] for multiphase
flows. A consistent and conservative boundedness mapping algorithm is proposed to enforce the maximum
principle of the conservative Allen-Cahn model, while the consistency and conservation properties of the
scheme are not influenced. The aforementioned properties of the scheme are carefully validated. In addition,
the numerical force balance of the scheme is examined and the balanced-force method outperforms in this
case. The convergence behavior of the numerical Phase-Field solution to the sharp interface solution is also
studied in a case including large density and viscosity ratios, surface tension, and gravity, and the result
shows that the convergence rate is between 1.5th to 2nd order. This behavior is also observed in the pure
advection tests without hydrodynamics. Our numerical experiments show that the energy law is preserved
in the discrete level by the scheme no matter whether the boundedness mapping algorithm is activated. The
significance of the consistency conditions on preserving the physical momentum transport is also illustrated.
Three realistic two-phase flow problems, which include strong interactions between the fluid phases, a large
difference of material properties, and topological changes, are performed. In these applications, we observe
that the balanced-force method has a larger tendency to break to small interfacial structures, resulting in
more topological changes, while the conservative method is more stable, i.e., accepting a larger time step.
The consistent formulation and the proposed scheme can be easily applied in different coordinate systems,
e.g., the axisymmetric coordinate, and the axisymmetic rising bubble is performed to show the flexibility of
our scheme. In addition, the consistent formulation can be straightforwardly extended to the conservative
vector-valued Allen-Cahn equation [34] for multiphase flows, and the proposed scheme can be applied to those
problems with some minor modifications. The three-phase Rayleigh-Taylor instability problem is presented
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as an example. Its application to the improved Cahn-Hilliard model [21] is discussed, and an alternative
1st-order scheme that preserves both the maximum principle and conservation is proposed. In summary,
the proposed scheme is accurate, robust, and effective for complicated two-phase flows, and it is flexible and
generalized for multiphase problems and for other Phase-Field models.

Although the analyses and numerical results presented in the present work are two-dimensional, the
proposed scheme can be readily applied to higher dimensions without changing its properties. However,
those computations require efficient parallel programming, which is outside the scope of the present work,
and we leave it to future works. Another attractive future direction is to extend the present scheme to
the adaptive time and space refinements, which would be especially beneficial for the problems including
a wide range of time and length scales. However, preserving the consistent and conservative properties of
the scheme can be non-trivial. There are many Phase-Field models that are plausible for two-phase flow
problems, while the quantitative comparisons among them are rare. Which Phase-Field model performs
best in two-phase flows is still an open question, and the pros and cons of each model are far from clear.
Some recent works related to that include the comparisons between different conservative Allen-Cahn models
[7, 35], the comparisons among the conservative Allen-Cahn models and the Cahn-Hilliard models [38], the
comparisons between the conservative Allen-Cahn model and the conservative Phase-Field model [9], and the
comparisons among the Cahn-Hilliard model and its variants [61, 21]. It should be noted that the comparisons
in [7, 35, 38, 9] do not include hydrodynamics, while the consistency conditions are not considered in [61, 21]
and the major focus in [61] is on the matched density cases. So far, all the Phase-Field models either are
written in a conservative form or can be reformulated in a conservative form using our consistent formulation.
As a result, the consistency analysis in [22] can be performed. A valuable future work would be a careful
comparison among different Phase-Field models for two-phase flows under the consistent and conservative
framework and for problems including a large difference in material properties. We believe such studies can
shed light on choosing the Phase-Field model appropriate for two-phase problems.

Appendix

Two additional cases, which are the reversed single vortex problem [54] and the Zalesak’s disk problem [77],
are supplemented to validate the conservative Allen-Cahn model as an interface-capturing method.

Reversed single vortex

We follow the set up in [54]. The domain is [1 × 1] and a circle with a radius r = 0.15 is initially at
(xr, yr) = (0.5, 0.75). The velocity is derived from the streamfunction

ψs =
1

π
sin2(πx) sin2(πy) cos(

πt

T
), (86)

where T = 2. The cell size h is ranging from 1
25 to 1

200 and the time step is determined by the CFL constraint,
i.e., CFL = |u|max∆t/h = 0.1. η and M are set exactly the same as those in Section 4.1.3, i.e., η = η0(h/h0)
and M = M0(η/η0), with η0 = h0 = 1/32 and M0 = 10−7. The maximum deformation happens at t = T/2,
after which the flow reverses. At t = T , the interface should return to its initial location and shape. To
quantify the performance of the conservative Allen-Cahn model as an interface-capturing method, the L2

norm, i.e., the root mean square, of Er is computed. Er is defined as

Er = r −
√

(xs − xr)2 + (ys − yr)2, (87)

where (xs, ys) are the points of the zero contour of the order parameter at t = T , i.e., φ(xs, ys, T ) = 0.
The results are shown in Fig.19, where the interfaces at t = 0, t = T/2, and t = T are plotted. One can

observe the convergence of the Phase-Field solution to the exact solution as the cell size is reduced. The L2

norm of Er is listed in Table 8 and the convergence rate is above 1.5th-order, which is consistent with the
results in Section 4.1.3.
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Figure 19: Results of the reversed single vortex problem at t = 0 (black solid line), t = T
2 (blue dashed line),

t = T (red dashed line). a) h = 1
25 , b) h = 1

50 , c) h = 1
100 and d) h = 1

200 .

Table 8: L2 error of the reversed single vortex problem

Zalesak’s disk

The Zalesak’s disk problem proposed in [77] is performed. The domain is [1 × 1] and the velocity is defined
from the streamfunction below

ψs =
1

2
Ω0[(x− x0)2 + (y − y0)2], (88)

where Ω0 = 1, x0 = 0.5 and y0 = 0.5. The cell size h is ranging from 1
25 to 1

200 and the time step is determined
from the CFL constraint, i.e., CFL = Ω0∆t/h = 0.1. η and M are η = η0(h/h0) and M = M0(η/η0) with
η0 = h0 = 1/32 and M0 = 10−7, which is the same as those in Section 4.1.3. A circle with a radius
r = 0.15 is notched by a rectangle whose width is 0.05 and length is 0.2. This notched circle is initially
at (xr, yr) = (0.5, 0.75) and will rotate rigidly around (0.5, 0.5). At t = 2π, the notched circle finishes one
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Figure 20: Results of the Zalesak’s disk problem at t = 0 (black solid line), t = 2 (blue dashed line), t = 4
(red dashed line), and t = 2π (yellow dashed line). a) h = 1

25 , b) h = 1
50 , c) h = 1

100 and d) h = 1
200 .

Table 9: L2 error of the Zalesak’s disk problem

period of rotation and should return to its initial position. To evaluate the performance of the conservative
Allen-Cahn model as an interface-capturing method, the L2 norm of Er is used. Er is defined as

Er =
√

[xI(s; t = 2π)− xI(s; t = 0)]2 + [yI(s; t = 2π)− yI(s; t = 0)]2, (89)

where xI(s; t) and yI(s; t) are the cubic spline interpolants using the points (xs, ys) at time t satisfying
φ(xs, ys, t) = 0.

Fig.20 shows the interfaces at t = 0, t = 2, t = 4, and t = 2π. The convergence of the Phase-Field
solution to the exact solution with grid refinement is obvious. The L2 norm of Er is listed in Table 9. The
convergence rate is fast, and this can be attributed to the rigid body motion of the problem.
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