2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS) | 978-1-7281-7002-2/20/$31.00 ©2020 IEEE | DOI: 10.1109/ICDCS47774.2020.00193

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

On Reading Fresher Snapshots in Parallel Snapshot Isolation

Masoomeh Javidi Kishi
CSE, Lehigh University
Bethlehem, PA, USA
maj717@lehigh.edu

Abstract—In this paper we briefly present FPSI, a dis-
tributed transactional in-memory key-value store whose pri-
mary goal is to enable transactions to read more up-to-date
(fresher) versions of shared objects than existing implemen-
tations of the well-known Parallel Snapshot Isolation (PSI)
correctness level, in the absence of a synchronized clock service
among nodes. FPSI builds upon Walter, an implementation of
PSI well suited for social applications. The novel concurrency
control at the core of FPSI allows its abort-free read-only
transactions to access the latest version of objects upon their
first contact to a node.

Keywords-Transactions; Consistency; Snapshot Isolation;

[. INTRODUCTION

Snapshot Isolation (SI) [1] is a widely adopted consistency
level often used as a practical alternative to Serializabil-
ity [2], the gold standard criterion for concurrency control
implementations, when building transactional systems [3],
[4]. A concurrency control that provides SI significantly
improves the level of concurrency and performance over
serializable concurrency controls because it allows for exe-
cutions where multiple transactions access the same set of
shared objects, as long as their sets of written objects are
disjoint.

One of the great advantages of SI is that a transaction
should not abort even though the set of values read (so called
reading snapshot), and not written, during its execution
has been overwritten by a concurrent transaction [1]. By
leveraging this property, along with a multi-versioned data
repository, most SI concurrency controls [4], [5] simply
define the reading snapshot as all the versions available at
the time a transaction starts.

When deployed on a distributed systems where nodes
do not share a synchronized clock and the communication
among them is asynchronous, SI transactions cannot simply
define a similar (up-to-dated) reading snapshot at the time
they start because of the absence of a shared notion of time
among nodes. In fact, in such a distributed system it is very
challenging to deterministically identify whether a version
is created before or after a certain point in time [4], [6], [5].

Walter [4] is a state-of-the-art distributed transactional
system whose concurrency control implements a variant of
SI, called Parallel Snapshot Isolation (or PSI), in which the
transaction reading snapshot can be arbitrarily outdated in

Roberto Palmieri
CSE, Lehigh University
Bethlehem, PA, USA
palmieri@lehigh.edu

order to deal with the aforementioned absence of shared
clocks among nodes. Walter logically assigns objects to
so called preferred node so that if a transaction reads a
version from the preferred nodes, its reading snapshot will be
guaranteed to be up-to-date. Any access to a non-preferred
node can result in outdated versions.

Walter attempts to patch the above issue related to access-
ing non-preferred node using asynchronous messages, sent
outside the transaction critical path, aimed at periodically
updating the logical clock of non-preferred nodes in the
system. Without these messages, two negative side effects
can occur. First, transactions attempting to write objects
from non-preferred nodes will be repeatedly aborted until
the above asynchronous messages are delivered. Second,
transactions reading from non-preferred nodes can return
arbitrarily old versions.

In this paper we shortly introduce Fresher Parallel Snap-
shot Isolation (or FPSI), a distributed transactional system
that uses logical (vector) clocks [7] to implement an im-
proved version of the original Walter’s concurrency control
with the goal of improving data freshness. Enabling trans-
actions to access up-to-date snapshots allows for alleviating
the undesirable behaviors that i) lead read-only transactions
(i.e., transactions that do not write) to read outdated values,
as in the previous example, and ii) lead update transactions
to be continuously aborted (degrading overall progress) by
implementing a technique called visible reads [8].

II. THE OVERVIEW OF FPSI CONCURRENCY CONTROL

A. The Challenge of Data Freshness in Walter

The major algorithmic challenge in achieving the data
freshness is to deal with the technique used by Walter
to update nodes’ logical (vector) clocks upon transaction
commits. In fact, since Walter’s transaction reading snapshot
can be arbitrarily old, vector clocks are updated without
propagating causal dependency with concurrent transactions
(which would instead be needed to preserve safety of
subsequent read operations of a transaction). Walter can
ignore that since its transactions do not read from concurrent
transactions.

2575-8411/20/$31.00 ©2020 IEEE 1205
DOI 10.1109/ICDCS47774.2020.00193

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on June 30,2021 at 15:28:44 UTC from IEEE Xplore. Restrictions apply.

B. The Solution of FPSI

FPSI enriches Walter’s vector clock with additional meta-
data, called version-access-sets, aimed at capturing depen-
dency relations with concurrent transactions so that the latest
version of an accessed object can be safely read at its first
access. This goal is achieved by combining the version-
access-sets, which traces transactions’ write-after-read (anti-
)dependency, with Walter’s existing vector clocks [7] to
ensure transactions’ consistency.

More specifically, the version-access-set is associated to a
version, and it contains identifiers of read-only transactions
that read that specific version. During the commit phase of
an update transaction, the set of identifiers of concurrent
conflicting read-only transactions is collected. This set is
propagated to the version-access-sets of the newly created
versions of those update transactions.

In the following we overview the two policies used by
FPSI to handle read operations of update and read-only
transactions.

1) Read operations by Read-only Transactions: FPSI
allows read-only transactions to always access the latest
version of a shared object upon their first contact to a
node (whether preferred or not) by advancing their reading
snapshot. In other words, the reading snapshot of a read-
only transaction 7" is not defined when 7' starts. Instead, it
is established during its execution by means of attempting
to include the newest versions that still preserve PSI.

From the set of versions included in the advanced read-
ing snapshot of 7', those versions whose version-access-
set include 7T"’s identifier, should be excluded because that
means T has already established an anti-dependency with
the transactions that committed those versions. Among the
remaining versions, the newest (meaning the freshest among
them) is selected as the result of the read operation.

2) Read operations by Update Transactions: With respect
to the update transactions, FPSI reduces the abort rate by
deploying a similar technique to the one used for read-
only transactions. However, since update transactions can
abort during their execution, tracing (anti-)dependency using
version-access-sets would not be practical since aborted
transactions would then need an extra clean up phase that
would significantly degrade performance. FPSI approaches
this issue by deciding to read from a safe snapshot (inspired
by [9]), which might be older than the freshest in case a
previous read operation accessed a version committed by a
concurrent transaction with an established anti-dependency
with the executing update transaction.

More formally, an update transaction is guaranteed to
read the latest version of an accessed object upon its first
read. After that, the logical clock associated with the node
handling the first read operation is used to derive whether
subsequent read operations can or cannot access the latest
consistent versions.

1206

Note that FPSI by improving the reading snapshots of
update transactions causes the update transactions do not
repeatedly fail their validation due to the outdated reading
snapshot which is more likely possible in Walter than FPSI.

ITI. CONCLUSION

In this paper we briefly introduce FPSI, a novel distributed
concurrency control that provides an implementation of the
PSI correctness level in which we improve the level of
freshness of both update and read-only transactions. With
FPSI, it is possible to prevent transactions from reading
arbitrarily old versions, a significant drawback of current
state-of-the-art solutions.

ACKNOWLEDGMENT

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-17-1-0367 and by the National Science Foundation
under Grant No. CNS-1814974.

REFERENCES

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil, “A critique of ansi sql isolation levels,” in ACM
SIGMOD Record, vol. 24, no. 2. ACM, 1995, pp. 1-10.

[2] P. A. Bernstein and N. Goodman, “Concurrency control in dis-

tributed database systems,” ACM Computing Surveys, vol. 13,

no. 2, pp. 185-221, 1981.

[3] M. J. Kishi, S. Peluso, H. F. Korth, and R. Palmieri, “SSS:

scalable key-value store with external consistent and abort-free

read-only transactions,” in /CDCS, 2019, pp. 589-600.

[4] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional

storage for geo-replicated systems,” in SOSP, 2011, pp. 385—

400.

[5] J. Du, S. Elnikety, and W. Zwaenepoel, “Clock-si: Snapshot

isolation for partitioned data stores using loosely synchronized

clocks,” in SRDS, 2013, pp. 173-184.

[6] M. S. Ardekani, P. Sutra, and M. Shapiro, “Non-monotonic

snapshot isolation: Scalable and strong consistency for geo-

replicated transactional systems,” in SRDS, 2013, pp. 163-172.

[7]1 F. Mattern et al., Virtual time and global states of distributed

systems. Citeseer, 1988.

[8] S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and

F. Quaglia, “Disjoint-access parallelism: Impossibility, possi-

bility, and cost of transactional memory implementations,” in

PODC, 2015, pp. 217-226.

[9] D. R. Ports and K. Grittner, “Serializable snapshot isolation

in postgresql,” Proceedings of the VLDB Endowment, vol. 5,

no. 12, pp. 1850-1861, 2012.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on June 30,2021 at 15:28:44 UTC from IEEE Xplore. Restrictions apply.

