
Brief Announcement: On Implementing So�ware Transactional
Memory in the C++ Memory Model

Matthew Rodriguez
Lehigh University
mar316@lehigh.edu

Michael Spear
Lehigh University
spear@lehigh.edu

ABSTRACT
High-performance software transactional memory (STM) imple-
mentations rely on nuanced use of synchronization variables to
coordinate speculative accesses to program data. We discuss some
consequences of the C++ memory model on STM, identify an easy-
to-�x implementation error, and describe an unavoidable formal
race condition that occurs in an important class of STM algorithms.

CCS CONCEPTS
• Computing methodologies ! Concurrent algorithms.

KEYWORDS
Synchronization, Speculation, Transactional Memory, C++
ACM Reference Format:
Matthew Rodriguez and Michael Spear. 2020. Brief Announcement: On
Implementing Software Transactional Memory in the C++ Memory Model.
In Symposium on Principles of Distributed Computing (PODC ’20), August
3–7, 2020, Virtual Event, Italy. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3382734.3405746

1 INTRODUCTION
Transactional Memory (TM) [12] is a concurrency control mecha-
nism in which programmers are responsible for determining which
regions of code need to run atomically with respect to each other,
but not how to achieve that atomicity. Instead, special hardware
(HTM) or a software run-time system (STM) monitors the execution
of a program’s transactions, ensuring that they have the same e�ect
as if they were executed serially, while running them concurrently
whenever possible.

C++ has robust concurrency support, and strictly de�nes data
races [1]. However, as discussed by Boehm [2], speculative synchro-
nization mechanisms are di�cult to implement correctly in C++:
Even if a synchronization mechanism identi�es that a read was racy
and avoids using its result, the mere fact that the data race occurred
means the program behavior is unde�ned. Furthermore, the C++
memory model provides weaker ordering than many programs
expect, especially for reads of synchronization data.

Boehm speculates that TM implementations in C++ are particu-
larly vulnerable to implementation errors.We a�rm this hypothesis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PODC ’20, August 3–7, 2020, Virtual Event, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7582-5/20/08. . . $15.00
https://doi.org/10.1145/3382734.3405746

First, we apply Boehm’s reasoning to memory accesses within trans-
actions. We discuss STM-speci�c implementation challenges, and
measure the overhead of complying with the C++ memory model.
Second, we consider the “privatization” problem [14], wherein a
transaction transitions a datum from a state in which it can be
accessed by transactions, to a state in which it is only accessed non-
transactionally. We show that one of the most scalable strategies
for privatization is incompatible with the C++ memory model.

2 PREVENTING RACES ON PROGRAM DATA
To avoid races, C++ STM implementations synchronize threads via
atomic variables (std::atomic<>) [5–9, 11, 17]. This is true even
for most blocking STMs, which use atomic variables to implement
custom lock objects (i.e., “ownership records”, or “orecs”). In these
STMs, transactions execute optimistically: they do not ensure mu-
tual exclusion before performing a write to a location. Instead, they
acquire “ownership”, and thus concurrent reads to that location
must “validate” to ensure they do not overlap in time with writes.
In the simplest case, where the STM uses a single lock to protect
all memory, this style of synchronization is indistinguishable from
a sequence lock.

Columns 1 and 2 of Figure 1 present a simpli�ed version of how
orec-based STM reads and writes memory. We consider both “undo
logging” (W01-W08) and “redo logging” (W09-W10) for writes. The
surprising instructions are R05 and W07, which cast accesses to
program data into atomic variable accesses. The C++memorymodel
requires these to be atomic: R05 and W07 are to program data, but
a writer could perform W01-W06 after a reader’s execution of R01-
R04. At that point, simultaneous execution of W07 and R05 would
constitute a race. It does not matter that the reader will detect the
race and not use the result of R05: if the two accesses are not via
atomic variables, program behavior is unde�ned. Thus to obey the
memory model, all accesses to program data by transactions must
be via atomic variables. This also includes “undoing” in the case of
an abort after line W08, or “redoing” at commit time, in the case of
implementations that uses W09-W10.

When accessing program data, a natural desire is to use a re-
laxed atomic, to avoid unnecessary fence instructions and allow
the compiler maximum opportunity to reorder instructions. How-
ever, the access at R05 cannot be relaxed. In C++, the strongest
ordering guarantee that a read can provide is “acquire” semantics.
Roughly, acquire semantics ensure that accesses after a read do not
get reordered to before the read. The fence at R04 ensures that R05
does not happen before R04. The fence at R06 ensures that R07-R12
do not happen before R06. Notice that neither fence prevents R05
from delaying until after R06. Making R05 a non-relaxed access (or
inserting an explicit acquire fence) is necessary to ensure a strict
order R04-R05-R06.

1

224

https://doi.org/10.1145/3382734.3405746
https://doi.org/10.1145/3382734.3405746
https://doi.org/10.1145/3382734.3405746

PODC ’20, August 3–7, 2020, Virtual Event, Italy Ma�hew Rodriguez and Michael Spear

R01 TM_Read(addr) W01 TM_Write(addr, value) // undo version P01 transaction { T01 transaction {
R02 lock_idx = hash(addr) % lock_table.size W02 lock_idx = hash(addr) % lock_table.size P02 if (!TM_Read(&flag)) T02 if (!TM_Read(&flag))
R03 lock_ref = &lock_table[lock_idx] W03 lock_ref = &lock_table[lock_idx] P03 TM_Write(&flag, true) T03 tmp = TM_Read(&sharedData)
R04 pre_check = lock_ref->read(acquire_fence) W04 if (!lock_ref->acquire(my_id)) P04 TM_Write(&found, true) T04 tmp *= 2
R05 val = *(atomic<>)addr; W05 abort() P05 } T05 TM_Write(&sharedData, tmp)
R06 post_check = lock_ref->read(acquire_fence) W06 undos.log(addr, *addr) P06 if (found) T06 }
R07 // ensure consistent read W07 *(atomic<>)addr = val P07 sharedData++
R08 if (invalid(pre_check) || W08 ... // logging, validation
R09 (post_check != pre_check))
R10 return TM_Read(addr) W09 TM_Write(addr, value) // redo version
R11 ... // logging, validation W10 writeset.insert(<addr, value>)
R12 return val

Figure 1: Simpli�ed transactional read and write pseudocode (columns 1/2). An example of privatization (columns 3/4).

In C++17, casting an address to std::atomic<> is not standards-
compliant [3]. The C++20 atomic_ref<> proposal [18] will provide
a standards-compliant solution. Until then, the best an STM im-
plementation can do is to (1) ensure variables do not span cache
lines, (2) limit TM_Read and TM_Write to primitive types that can be
read in a single atomic hardware instruction, and (3) verify that the
compiler produces the same assembly code as would be produced
via atomic_ref<>. Additionally, some STM implementations use
memcpy for redo and undo operations. These instructions can race
with R05, and thus until C++ adds support for atomic_memcpy,
STM implementations should not use memcpy on program data.

3 PRIVATIZATION
The above discussion focuses on the challenge of making sure
that concurrent accesses to a location, by two transactions, do
not cause unde�ned behavior. In this section we consider another
challenge. Columns 3 and 4 of Figure 1 depict a behavior known as
“privatization”. Thread)% , executing transaction % (lines P01-P05)
transitions a datum from a state in which it can be accessed bymany
transactions, to a state in which it is only accessed by)% (on lines
P06-P07). Another thread)) may be executing transaction) (lines
T01-T06) simultaneously. Past work observed that speculation can
lead to races between) and lines P06-P07. In particular: (1) If) is
using redo logging, has already reached T06, but has not yet written
back its update to sharedData, P07 can read stale data. (2) If) is
using undo logging and �nished T05 before % reached P06, then
) must abort. Until it cleans up, P07 could read a value written by
failed) . Our contribution is the observation that there is a third
problem: (3) If) is about to execute the read on line T03, then even
if) subsequently aborts, that read could race with P07. Note that
while our example is somewhat contrived, privatization bugs are
signi�cant. If sharedData was on the heap, and P07 was a free
instruction, then the access at T03 could cause a segmentation fault
if P07 returned memory pages to the operating system.

Clearly, it is inappropriate to transform P07 to use an atomic
variable: the data is logically private to the thread, and it is unrealis-
tic to require a programmer to transform arbitrary data (potentially
all data in the program) to be atomic. Furthermore, simply making
the access atomic would not remedy the �rst two problems.

There are three approaches that address the �rst two problems
with privatization. The �rst, quiescence, requires any committing
transaction to wait for all concurrent transactions to commit or
abort and clean up before its thread can execute nontransactionally.
That is, at line P05,)% would wait until) completed. Only then
could P06 execute. A slightly better approach, which does not work

for undo-based STM, provides a third condition upon which)%
may resume execution: once) starts validating,)% knows that if
) con�icted with % , then) will abort. If) does not abort, then)
does not con�ict with % , and thus it cannot access sharedData.

The most ambitious approach, which also only works for redo-
based STM, does not require waiting [5, 17]. Suppose that some
mechanism was in place to serialize all writing transactions’ com-
mits. Then one transaction could not commit until the previous had
released all its locks, and every transaction could validate whenever
it detected that some new transaction had committed. In a redo-
based STM, the �rst of our problems above could not happen. To
avoid the third problem, thread P could count on the fact that while
thread T might observe the nontransactional change to sharedData
within its TM_Read operation (e.g., if T03 was concurrent with P07),
it would not use that value, because of the validation that would
happen on account of transaction P committing. As appealing as
the third approach appears, it is incorrect in C++: a write on line
P07 to a non-atomic variable could be concurrent with a read on
line R05. Even when R05 casts to atomic, P07 does not.

Furthermore, we present one case in which the second approach
is incorrect. Many STM and Hybrid HTM/STM algorithms [4, 5,
13] use “value-based validation”, where transactions validate by
checking program data, not by checking orecs or other metadata.
In these systems, % cannot wait for concurrent transactions to
start validating; they must must complete a validation; otherwise,
validation reads could race with P07.

4 EVALUATION
We brie�y assess the cost of adhering to the C++ memory model, us-
ing a small suite of STM algorithms and the STAMP [15] benchmark
suite. Figure 2 presents the results of our experiments. We compare
an undo STM with orecs (Eager), a redo STM with orecs (Lazy), and
a non-orec STM (NOrec). We consider incorrect implementations
that do not cast to atomic (Incorrect), and correct implementations
(Fixed). NOrec_Incorrect and NOrec_NoPriv use a privatization
strategy that is not compatible with the C++ memory model. All
“Fixed” algorithms use quiescence. All experiments were performed
on a Xeon 8160 CPU with 24 cores/48 threads. Code was compiled
with Clang/LLVM 10.0, using -O3 optimizations and the TM plugin
for LLVM [19]. Results are the average of three trials.

The experiments show that atomic variables themselves have
negligible overhead. Eager_Fixed and Lazy_Fixed are almost indis-
tinguishable from their Incorrect counterparts. While a positive
result, we caution that the Xeon 8160 is a TSO processor, and thus
read-read ordering does not require a memory fence instruction. On

2

225

Brief Announcement: On Implementing So�ware Transactional Memory in the C++ Memory Model PODC ’20, August 3–7, 2020, Virtual Event, Italy

1 2 4 8 16 24 32 48
Number of Threads

0

5

10

15

20

E
xe

cu
ti
on

T
im

e
(s

ec
)

(a) Genome

1 2 4 8 16 24 32 48
Number of Threads

0

20

40

E
xe

cu
ti
on

T
im

e
(s

ec
)

(b) Intruder

1 2 4 8 16 24 32 48
Number of Threads

0

5

10

15

20

E
xe

cu
ti
on

T
im

e
(s

ec
)

(c) KMeans (High Contn.)

1 2 4 8 16 24 32 48
Number of Threads

0

20

40

E
xe

cu
ti
on

T
im

e
(s

ec
)

(d) KMeans (Low Contention)

1 2 4 8 16 24 32 48
Number of Threads

0

10

20

30

40

E
xe

cu
ti
on

T
im

e
(s

ec
)

Eager Fixed

Eager Incorrect

Lazy Fixed

Lazy Incorrect

NOrec Fixed

Norec NoPriv

NOrec Incorrect

(e) Labyrinth

1 2 4 8 16 24 32 48
Number of Threads

0

20

40

E
xe

cu
ti
on

T
im

e
(s

ec
)

(f) SSCA2

1 2 4 8 16 24 32 48
Number of Threads

0

20

40

E
xe

cu
ti
on

T
im

e
(s

ec
)

(g) Vacation (High Contn.)

1 2 4 8 16 24 32 48
Number of Threads

0

10

20

30

40

E
xe

cu
ti
on

T
im

e
(s

ec
)

(h) Vacation (Low Contention)

Figure 2: Experimental results on STAMP benchmark suite.

a CPU with relaxed memory consistency, such as ARM or POWER,
R05 and W07 would incur fence instruction overheads. Further
experimentation is left as future work.

However, converting NOrec to use a correct privatization strat-
egy had a measurable impact on scalability. The result is most pro-
nounced for Genome, but can also be seen in Intruder and KMeans
(though KMeans had less consistent behavior in general). For classic
STM, this is not a particularly signi�cant outcome, since NOrec was
rarely the best algorithm for these workloads. However, NOrec is
the most promising foundation for HTM-accelerated “Hybrid” TM,
and further experimentation is needed to determine if the impact
on scalability carries forward to hybrid TM.

5 CONCLUSIONS
Our work reveals nuanced relationships between STM implemen-
tations and the C++ memory model. We showed that in addition to
long-standing but oft-overlooked guidance about sequence locks,
the need for atomic casting limits the ability to use memcpy or to ac-
cess large primitive types nonatomically. To some degree, C++20’s
atomic_ref will reduce this burden. We also showed that scalable

support for the privatization idiom is incompatible with the C++
memory model, obviating a key bene�t of some STM algorithms.

A few STM algorithms are immune to some of the concerns we
discussed: TLRW [7] and InvalSTM [10] use pessimistic locking,
and thus reads are never concurrent with writes; cohorts [16] uses
phased commits to prevent redo concurrent with reads. These ap-
proaches are also privatization-safe. As future work, we believe
that it will be worthwhile to re-investigate STM design decisions
and implementations following the �nalization of C++20.

ACKNOWLEDGMENTS
This work was supported in part by the NSF under Grant CNS-
1814974. Any opinions, �ndings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily re�ect the views of the NSF.

REFERENCES
[1] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.

Mathematizing C++ Concurrency. In Proceedings of the 28th POPL. Austin, TX.
[2] Hans-J. Boehm. 2012. Can Seqlocks Get Along with Programming Language

Memory Models?. In Proceedings of the 2012 MSPC. Beijing, China, 12–20.
[3] Hans-J. Boehm. 2014. N4013: Atomic operations on non-atomic data. http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4013.html
[4] Luke Dalessandro, Francois Carouge, SeanWhite, Yossi Lev, MarkMoir, Michael L.

Scott, and Michael Spear. 2011. Hybrid NOrec: A Case Study in the E�ectiveness
of Best E�ort Hardware Transactional Memory. In Proceedings of the 16th ASPLOS.
Newport Beach, CA.

[5] Luke Dalessandro, Michael Spear, and Michael L. Scott. 2010. NOrec: Stream-
lining STM by Abolishing Ownership Records. In Proceedings of the 15th PPoPP.
Bangalore, India.

[6] Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional Locking II. In Proceed-
ings of the 20th DISC. Stockholm, Sweden.

[7] David Dice and Nir Shavit. 2010. TLRW: Return of the Read-Write Lock. In
Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures. Santorini, Greece.

[8] Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic Performance
Tuning of Word-Based Software Transactional Memory. In Proceedings of the
13th PPoPP. Salt Lake City, UT.

[9] Keir Fraser. 2003. Practical Lock-Freedom. Ph.D. Dissertation. King’s College,
University of Cambridge.

[10] Justin Gottschlich, Manish Vachharajani, and Jeremy Siek. 2010. An E�cient
Software Transactional Memory Using Commit-Time Invalidation. In Proceedings
of the 8th CGO. Toronto, ON, Canada.

[11] Maurice P. Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III.
2003. Software Transactional Memory for Dynamic-sized Data Structures. In
Proceedings of the 22nd PODC. Boston, MA.

[12] Maurice P. Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architec-
tural Support for Lock-Free Data Structures. In Proceedings of the 20th ISCA. San
Diego, CA.

[13] Alexander Matveev and Nir Shavit. 2015. Reduced Hardware NORec: A Safe
and Scalable Hybrid Transactional Memory. In Proceedings of the 19th ASPLOS.
Istanbul, Turkey.

[14] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai,
Richard Hudson, Bratin Saha, and Adam Welc. 2008. Practical Weak-Atomicity
Semantics for Java STM. In Proceedings of the 20th SPAA. Munich, Germany.

[15] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008.
STAMP: Stanford Transactional Applications for Multi-processing. In Proceedings
of the 2008 IISWC. Seattle, WA.

[16] Wenjia Ruan, Yujie Liu, Chao Wang, and Michael Spear. 2013. On the Platform
Speci�city of STM Instrumentation Mechanisms. In Proceedings of the 11th CGO.
Shenzhen, China.

[17] Michael Spear, Maged M. Michael, and Christoph von Praun. 2008. RingSTM:
Scalable Transactions with a Single Atomic Instruction. In Proceedings of the 20th
SPAA. Munich, Germany.

[18] Daniel Sunderland, H. Carter Edwards, Hans Boehm, Olivier Giroux, Mark Hoem-
men, David Hollman, Bryce Adelstein Lelbach, and Jens Maurer. 2018. p0019R8:
Atomic Ref. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0019r8.
html

[19] Pantea Zardoshti, Tingzhe Zhou, Pavithra Balaji, Michael Scott, and Michael
Spear. 2019. Simplifying Transactional Memory Support in C++. ACM TACO 16,
3 (July 2019), 25:1–25:24.

3

226

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4013.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4013.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0019r8.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0019r8.html

	Abstract
	1 Introduction
	2 Preventing Races On Program Data
	3 Privatization
	4 Evaluation
	5 Conclusions
	Acknowledgments
	References

