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ABSTRACT
We study the problem of ensuring the correctness of concurrent
programs that perform mutating foreach and range operations over
concurrent data structures. We introduce three algorithms which
vary in the location and the granularity of concurrency control
metadata. Our algorithms make the linearization of bulk operations
visible to concurrent elemental operations, which enables them to
scale well, keep overhead low, and operate within tight memory
bounds. In our experimental evaluation, we demonstrate that our
techniques do not hinder the performance of elemental operations
in elemental-only workloads, and allow scalability among concur-
rent mutating bulk operations. Furthermore, in mixed workloads,
our algorithms outperform the baseline, sometimes by an order of
magnitude or more.
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1 INTRODUCTION
Data structures are at the heart of software development, and con-
currency has become one of the most critical techniques for achiev-
ing high performance. Consequently, concurrent data structures
are a foundational building block for modern software. Modern
languages, like Java, provide entire libraries of concurrent data
structures, dozens of papers are published on the topic each year,
and there are even books dedicated to the topic [7].

Unfortunately, designing concurrent data structures is hard, and
one of the most common compromises is to focus on the perfor-
mance of elemental operations (e.g., insert, lookup, remove, and
update of a single element). Atomic bulk operations, such as foreach
and range, still pose a signi�cant scaling issue, with no clear single
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best solution—especially when those operations may mutate the
data structure. The simplest solution is two-phase locking [5], but
this restricts other threads from accessing large portions of the map
at a time, hurting the overall throughput of the system.

Existing research has already proposed and studied several so-
lutions for supporting read-only bulk operations. One common
technique is to create an atomic snapshot [1, 13], and perform the
bulk operation on that. While this mitigates the impact on through-
put, it can cost signi�cant processor time and memory to produce a
snapshot of a large map. Furthermore, although the bulk operation
sees a single, consistent, unchanging view of the data structure,
that view may be considerably out of date by the time the operation
completes. There is also no clear way to extend this technique to
support mutating bulk operations.

Another common technique is multi-versioning [3] It keeps mul-
tiple versions of each element in the data structure, so that when
a bulk operation reaches an element, it may use an older version
of it in order to preserve atomicity. As with atomic snapshots, this
comes at a signi�cant memory cost, and has no clear extension for
mutating bulk operations. Modern approaches to multi-versioning
can achieve high performance for read-only range queries by keep-
ing a history of every change ever made [6]. Other techniques,
which integrate more closely with a garbage collector, can reclaim
memory [2]. However, even these more practical approaches can
have a high worst-case memory overhead.

In this paper, we propose and evaluate three algorithms for per-
forming mutating atomic bulk operations in linearizable concurrent
maps. We are focused on solutions for systems software, and thus
(1) we must operate within strict memory bounds; we cannot leak
memory or rely on a garbage collector. (2) We are restricted to
single-version maps, as multi-versioning costs signi�cant space
and does not naturally support mutating bulk operations. (3) We
wish to support bulk operations with loop-carried data dependen-
cies, so parallelizing the bulk operation itself is impossible. And (4)
while we focus on maps, we seek generic algorithms that can be
applied to multiple di�erent map implementations—in this paper,
we explore their application to a practical hash table [9], and a
high-performance ordered map [12]. Naturally, as our concurrency
algorithms and data structure implementations support the map
interface, it is trivial to support the set interface as well.

At the heart of the problem lies one fundamental question: when
must a thread delay to preserve the correctness of an on-going
bulk operation? In order to answer this question, each of our algo-
rithms tracks metadata about each thread currently operating on
the map. Where they di�er is in the location of the metadata and
the granularity of the metadata.

Metadata can be stored in a shared global data structure accessed
by all threads, or spread apart and stored locally in the individual
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nodes of the data structure. Each choice has advantages and draw-
backs. If metadata are stored globally, contention is more likely.
However, if they are stored locally, there may be more overhead
required to keep metadata up-to-date in multiple places. Also, an
individual thread will only ever have access to the metadata present
in a single node at a time, and is therefore more likely to su�er
false waiting than if the metadata was stored globally. We de�ne
false waiting as the undesirable situation in which a thread could
correctly operate on a key in the map without violating lineariz-
ability, but is unable to be certain of that from the metadata it has
access to, and is therefore forced to wait unnecessarily. The exact
conditions where false waiting occurs vary by the algorithm, and
will be described in more detail in Section 3.

The other dimension is the granularity of metadata. With little
metadata, we again face the problem of false waiting due to a
lack of information. However, with more metadata, overhead must
increase. Furthermore, when metadata are stored locally in nodes,
the granularity of metadata is controlled directly by the number of
nodes. The granularity of metadata that is ideal for the performance
of bulk operations may not be the same as the granularity that is
ideal for the overall performance of the map—in such a case, a
compromise between the two will have to be made.

In Section 2, we introduce the challenges that our algorithms
aim to address. Section 3 then presents our three algorithms. We
discuss implementation issues in Section 4, and then conduct a
performance evaluation on a large multicore machine in Section 5.
Finally, we conclude with a discussion of future research opportu-
nities in Section 6.

2 DEFINITIONS AND CHALLENGES
Linearizability is one of the strongest correctness criteria for concur-
rent data structures [8]. To determine if a data structure’s operations
linearize, its behaviors must be related to the behavior of an equiva-
lent sequential data structure. Informally, two properties must hold:
(1) At any point in time, the state of the data structure must be
equivalent to one in which each operation happened at a unique in-
stant; and (2) For each operation on the data structure, the moment
at which the operation appeared to happen must obey real-time
order, e.g., it appears to happen after all preceding instructions
by the thread, and before subsequent instructions by the thread.
Operations that are not concurrent must happen in the real-time
order in which they were issued by the corresponding threads, but
operations that overlap may occur in an any order, so long as the
behavior is indistinguishable from a correct sequential history.

As an example, suppose that thread ta begins operation �a at
time ba , and completes the operation at time ca . Further, suppose
that tb performs �b from time bb to cb . If ca < bb , then the e�ect
of �a must be visible to �b . However, if ba < bb ^ ca > bb , then
�a and �b are concurrent. The behavior of the data structure must
be equivalent to one in which either �a or �b happens �rst, but
linearizability does not prescribe which. The �exibility this a�ords
is the basis for good scaling.

For the elemental operations of a concurrent data structure (get,
insert, remove, or update of a single element), linearizability is well
understood. Our focus is when a single operation on a concurrent
data structure depends on (and possibly changes) the values stored

ωF
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Figure 1: One thread performs elemental operations �1 and
then �2, as another thread performs bulk operation �F , cre-
ating a cycle in the execution history: �1 ! �2 ! �F ! �1.

at multiple elements. We de�ne a read-only bulk operation as one
whose result depends on the values of many elements in the data
structure, but which does not change those values. Amutating bulk
operation is like a read-only bulk operation, but also may change
values. For a bulk operation to be linearizable, the execution history
of the operation must be equivalent to one in which all of the
accesses of elements made during the operation happen without
any interleaving by other threads’ operations on the data structure.
That is, if operation �a operates on elements ei . . . ej , then the
result of�a should be indistinguishable from one in which no other
thread concurrently operated on elements ei . . . ej .

For a bulk operation on a map to be linearizable, it is often neces-
sary to restrict other threads from accessing certain elements. Such
restrictions typically begin before the bulk operation reaches those
elements, and/or continue after the operation is done accessing
those elements. We illustrate why using the example in Figure 1.

The horizontal line represents an ordered concurrent map. Two
threads are currently using the map. The �rst, t1, is performing �F ,
a foreach operation, which is a bulk operation which operates on
every single key in the map. �F is currently processing element e2.
Thus, it has already �nished with e1 and has not yet reached e3. A
second thread, t2, performs two elemental operations (e.g., lookup,
insert, or remove) on the map. The �rst elemental operation, �1,
accesses element e1. With its second, �2, it wants to modify e3.

Suppose it is allowed to do so. �F accessed e1 before �1 did,
which means it happened before it: �F ! �1. Next, because �2
accessed e3 before �F , we have �2 ! �F . Finally, because �1 and
�2 are two operations performed in order by a single thread, we
have �1 ! �2. This means we have �F ! �1 ! �2 ! �F ,
which makes a cycle, violating the linearizability of �F . Thus, it is
necessary to do one of two things. t2 must either be forbidden from
performing �2 until �F reaches e3, or it must be forbidden from
accessing e1 until �F is completely �nished.

The most well-known solution to this problem is two-phase lock-
ing [5] (2PL). 2PL requires that a thread lock each element before
accessing it, and also that an operation proceed in two phases: one in
which it acquires locks, and another in which it releases locks. There
are two common 2PL approaches. In eager acquisition, �F would
lock every element (e.g.,? . . .>) before operating on e1. Then, after
it �nished visiting an element ei , it could unlock that element before
moving on to ei+1. In lazy acquisition,�F would acquire locks when
operating on nodes, but would not release any locks until after it
�nished its operation on the last element (e.g., >). If li indicates
acquiring a lock on ei , oi indicates operating on ei , and ui indicates
releasing a lock on ei , then in Figure 1, eager 2PL’s history would be
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Figure 2: A new range operation�3 creates an order between
two range operations that do not overlap

{l?, l1, l2, l3, l>,o?,o1,u1,o2,u2,o3,u3,o>,u>}, whereas lazy 2PL’s
historywould be {l?,o?, l1,o1, l2,o2, l3,o3, l>,o>,u?,u1,u2,u3,u>}.

We observe that it is possible to maintain linearizability without
holding so many locks for so long. In this example, a cycle was
created when t2 went from performing an operation on an element
�F had already processed—its “left” side—to an element it had not
yet processed—its “right” side. If t2 had only performed operations
on one side of �F , there would have been no cycle. Furthermore,
if t2 had gone from performing operations on �F ’s right to per-
forming operations on its left, there still would have been no cycle
(provided that it did not then go back to performing operations on
its right side.) If t2 performs numerous elemental operations on
the map, with �n being its last operation on the right side of �F
and �n+1 being its �rst operation to the left of �F , this means �F ’s
linearization point is between the two: �n ! �F ! �n+1. Thus,
one way to preserve the linearizability of �F is to track whether
it has linearized, and forbid threads from accessing elements to its
right once it has. This is the �rst example of a metadatum that our
algorithms could track to o�er linearizable bulk operations.

Figure 2 presents a more complex example, involving range op-
erations. A range operation is a bulk operation which only operates
on keys within a speci�ed range, rather than every element in the
data structure as a foreach does. In this example, we have three
range operations, �1 through �3, each being performed by a dif-
ferent thread. At �rst, we only have �1 and �2. They are not yet
ordered, and there is indeed no need to order them—they operate on
disjoint ranges of elements ({? . . . e2} and {e3 . . .>}, respectively).
Then �3 on e1 through e4 begins, overlapping both �1 and �2. Sup-
pose �1 has not yet linearized, and has not yet reached e2. In this
case, it would be permissible for �3 to order itself before �1 and
begin immediately: �3 ! �1. However, if �2 has already accessed
e3, �3 will reach e3 after it and therefore �2 ! �3. Thus, we have
�2 ! �3 ! �1. By transitivity, we have �2 ! �1, even though no
ordering existed between them before. Thus, if �1 is to complete its
operation �rst, it must somehow �rst indicate that both �2 and �3
linearized before it. Even though �1 and �2 have disjoint ranges,
�1 is being forced to have an e�ect on �2’s state. Depending on the
implementation, this might sacri�ce disjoint access parallelism.

2PL avoids this problem. Without loss of generality, assume the
threads use 2PL with lazy acquisition. In the above example, �1
will block when it attempts to lock e1, which is locked by �3, but
�3 will block when it attempts to lock e3, which is locked by �2.
�3 cannot make progress until �2 completes, and �1 cannot make
progress until �3 completes. Hence �1 need not interact with �2’s
metadata, but the ordering �2 ! �3 ! �1 is preserved.

Listing 1: Data types used by Aggressive Ordering
Type AOGlobalMetadata
lastID : AtomichInteger64i
linearizedID : AtomichInteger64i

Type AOPartitionLock extends AtomichInteger64i
lastVisitorID : Bit[63]
lockBit : Bit

There is an opportunity cost involved in the behavior of 2PL.
Consider a scenario where two threads are performing foreach op-
erations, �1 and �2, with �1 ! �2. Assuming no other operations
occur in the data structure concurrently with �1 and �2, there is
no reason �2 should not be able to "convoy" behind �1, acquiring
and processing each element immediately after it is released by �1.
However, with 2PL, �2 cannot acquire or operate on even the �rst
element in the map until the �rst, �1, has acquired every lock in
the map and progressed to its release phase. As this waiting is more
coarse than necessary in this scenario, we call it false waiting.

3 COORDINATING LINEARIZABLE BULK
OPERATIONS

We now present three algorithms for enabling concurrent bulk
linearizable operations, which are designed to reduce false waiting
as compared to 2PL. The algorithms consider trade-o�s between
two issues: the granularity of metadata and the location of metadata.
Our algorithms are applicable to a variety of ordered and unordered
map and set implementations.

We assume that the universe of keys stored by a map (or set) can
split into “partitions”, such that a bulk operation can easily �nd and
operate on one partition at a time, according to a predetermined
order. Many data structures have natural, inherent partitions; ex-
amples include the “buckets” of a closed-addressing hash table [11]
or the leaf nodes of a B+ tree [4]. Associating concurrency control
metadata with partitions, instead of individual key/value pairs, re-
duces the overhead of metadata manipulation for bulk operations.
Visiting partitions in an agreed-upon order prevents deadlocks and
cycles. Section 4 discusses implementation challenges related to
partitioning in high-performance data structures.

3.1 Aggressive Ordering
Our Aggressive Ordering (AO) algorithm assigns a total global order
to all bulk operations, even when they are read-only or operate
on disjoint ranges. In terms of our design considerations, AO uses
coarse grained global metadata, coupled with a small amount of
extra state in each partition.

The metadata for AO appears in Listing 1. The global metadata
consists of two atomic integers. lastID generates IDs for new bulk
operations. In our discussion of AO, the notation �i will denote
a bulk operation with the ID i . All bulk operations are ordered
by their ID, ascending—8n,m 2 N, if n < m, then �n ! �m .
The local metadata for AO is a single integer colocated with each
partition in the data structure. Our AO implementations, which use
spinlocks, colocate this integer with the lock. The colocation is not
a requirement, but it o�ers good performance in the common case.
Listing 1 presents the AOPartitionLock as the combination of an
atomic integer (lastVisitorID) and a lockBit. lastVisitorID records
the ID of the last bulk operation to visit the partition.
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Listing 2: Operation coordination for Aggressive Ordering
function elemental (k)

1 �P  linearizedID // get earliest linearization time
2 p �etPar tit ion(k)

// wait for preceding, active bulk ops to visit p
3 while p.lastVisitorID < �P do wait
4 p.acquireLock ()
5 . . . // perform elemental operation
6 �L  p.lastVisitorID // remember preceding bulk ops
7 p.r eleaseLock ()

// linearize all preceding bulk ops
8 atomic linearizedID max (linearizedID, �L )

function bulk ()
// get order for this op

9 �  lastID.incrementAndFetch()
10 foreach p 2 partitions do

// wait for preceding bulk ops to visit p
11 while p.lastVisitorID < � � 1 do wait
12 p.acquireLock ()
13 . . . // perform operations on p

// allow subsequent ops to access p
14 p.lastVisitorID �
15 p.r eleaseLock ()

// ensure all ops know this bulk op has linearized
16 atomic linearizedID max (linearizedID, �)

Listing 2 sketches how this metadata is used to coordinate op-
erations. We begin by discussing bulk operations. Since AO gives
a total order to each operation, each bulk operation begins by ob-
taining a unique order (line 9). As bulk operation �n+1 traverses
partitions, it waits until a partition’s lastVisitorID equals n; only
then is it allowed to operate on the partition. When it completes,
it updates lastVisitorID, which enables the next bulk operation to
proceed with the partition. When a bulk operation �nishes with
its last partition, it updates linearizedID. Delays between lines 15
and 16 can result in threads attempting to update linearizedID out
of order. The problem is avoided by atomically updating the value
only if the update would increase linearizedID.

Elemental operations use linearizedID to place a lower bound
on the logical time at which they can linearize. An elemental op-
eration �e begins by reading linearizedID and storing its value in
�P (line 1). �P represents the set of bulk operations that must be
ordered before �e , making it the set of �e ’s predecessors. In AO,
�P consists of all bulk operations �i where i  P , and so it can be
implemented simply and inexpensively as an integer that stores the
value P . �e must wait for each of them to �nish with p before it
operates on it; this is achieved on line 3. As discussed in Section 2,
an elemental operation can occur to the right of a bulk operation
which has not yet linearized. Suppose �e on key K in partition p
sees linearizedID = P on line 1, telling us that �P is the last bulk
operation that linearized before �e . Then suppose that on line 3,
p.lastVisitorId = L, telling us that �L is the last bulk operation that
visited p, and therefore it and all its predecessor must be linearized
by �e before it returns, if they are not already. Note that while we
know 8i 2 N where i  P , �i has linearized, we do not know if it
has �nished; it may have linearized itself upon completion, or been
linearized by some other elemental operation �e 0 , either directly
or transitively by linearizing a later bulk operation.

There are three cases to consider. (1) When L > P , since �L has
visited p, and �P ! �L , we can conclude �P has also visited the
partition. That is, �e is left of �L , and transitively �P , and so it can

proceed. However, because �e by de�nition must linearize before
it returns, and because �L ! �e , it also must linearize �L and all
its predecessors before it returns (line 8). (2) When L = P , since
�L and �P are two names for the same operation, �P has already
visited p, and line 8 will be a no-op, as it has already linearized. (3)
When L < P , we have �L ! �P ! �e . Thus p is to the right of
�P . Since �P is linearized, but has not accessed P yet, �e waits on
line 3, until L reaches or exceeds P .

It is important to note that line 1 sets the earliest point when �e
may happen, but due to concurrent bulk operations,�e may happen
much later without violating linearizability: concurrent operations
can correctly complete in any order. Note, too, that the order of
elemental operations with respect to each other is simply the order
in which they reach line 5, and the order of bulk operations is the
order in which they complete line 9.

When there are no bulk operations, AO should introduce little
overhead: elementals perform a single extra global memory read
of an unchanging value (line 1) and a single extra test (line 3); the
store on line 8 will be a no-op. Similarly, concurrent bulk operations
only access global metadata twice (lines 9 and 16), and only wait
for each other when they con�ict on the same partition. This is a
signi�cant advantage relative to 2PL: in a bulk-only workload, it is
possible to achieve concurrency equal to the number of partitions.

However, AO will always order two bulk operations, even when
they should be able to correctly run in parallel, such as when they
are both read-only or operate on disjoint ranges. Thus, one oper-
ation may be unnecessarily ordered with and forced to wait on
another operation.

Related is the problem that there is no e�cient way to perform
range operations in AO—a thread performing a range operation �i
will have to go from the very start of the map to the very end, and
increase the lastVisitorID of every single partition to i , whether
the partition contains elements in its range or not, to unblock any
operations that may be waiting for that partition’s lastVisitorID
to reach i . This particular pathology is unique to AO—the other
two algorithms presented later in the paper do not su�er from
it. Finally, it is not always best to order all bulk operations by
their start time. AO solves the three-range problem discussed in
Section 2 in a rather unsatsifying way: because �3 starts after �1,
it is unavoidably ordered after it. Thus, �3 will have to wait until
�1 is �nished with the partition containing e1 before it can start,
delaying it unnecessarily.

3.2 Dynamic Ordering
Our second algorithm, Dynamic Ordering (DO), uses signi�cantly
more global metadata than AO. Since many of AO’s shortcomings
are caused by a lack of information about whether bulk operations
require ordering, DO is designed to utilize its additional metadata
to order bulk operations more carefully. The metadata for DO ap-
pears in Listing 3. Note that DO does not require any metadata
in each partition. For consistency, we represent this by including
per-partition spinlocks (DOPartitionLock).

BulkOpMetadata holds the metadata for a single bulk operation
�. startKey and endKey specify the range of �. If � is a foreach
operation, these are? and> respectively. If we know ahead of time
that� will not modify any element in the map, then readOnly is set.
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Listing 3: Data types used by Dynamic Ordering
Type DOGlobalMetadata
bulkOps : ListhSethBulkOpMetadataii

Type BulkOpMetadata
const startKey : Key
const endKey : Key
const readOnly : Boolean
lastKey : Key
linearized : Boolean

Type DOPartitionLock
isLocked : AtomichBooleani

Listing 4: Operation coordination for Dynamic Ordering
function elemental (k)

// get all linearized ops that must precede this elemental
1 �P  atomic bulkOps.quer�Pred (k)
2 p �etPar tit ion(k)

// wait for preceding, active bulk ops to pass k
3 foreach �P 2 �P do atomic �P .waitU ntilPast (k)
4 p.acquireLock ()
5 . . . // perform elemental operation
6 p.r eleaseLock ()

// �nd the set of bulk ops linearized by this elemental
7 �L  atomic bulkOps.quer�Past (k)
8 atomic foreach �L 2 �L do �L .markLinear ized ()

function bulk (start, end, ro)
// establish order for �

9 atomic �  bulkOps.insEar l�(start, end, ro, ?, false)
10 foreach p 2 partitions do
11 lockedP false
12 while ¬lockedP do
13 atomic

// Check if � can access p
14 if ¬bulkOps.an�Blockers(�, p) then
15 p.acquireLock ()
16 � .lastKey p.maxKe�()
17 lockedP true

18 . . . // perform operations on p
19 p.r eleaseLock ()

// recursively mark � and preceding bulk ops linearized
20 atomic bulkOps.markLinear ized (�)
21 bulkOps.r emo�e(�)

Otherwise, � is mutating and readOnly is cleared. The linearized
boolean is cleared at the start, and set once� has linearized. Finally,
lastKey represents the last key that � can be certain it has �nished
with. startKey, endKey, and readOnly are immutable. The use of
the lastKey �eld represents a signi�cant di�erence from AO—the
progress of a bulk operation through the keys of the map is tracked
by lastKey rather than some visitorID stored in the partitions.

The global metadata consists of bulkOps, a list of sets of BulkOp-
Metadata objects. Bulk operations in the same set are unordered
with respect to each other. Bulk operations �i and �j only require
ordering if their ranges overlap and at least one of them is mutating.
If two operations are ordered, then the operation ordered earlier
must be placed closer to the head of the list than the other. In this
way, bulkOps behaves somewhat like a queue.

Although an improvement over AO, representing the ordering
as a list of sets still enforces some arbitrary ordering—the ordering
between bulk operations is, theoretically, a directed acyclic graph
rather than a list of sets. We implemented a true DAG as well, but
its performance was unacceptable. Using a list of sets leads to a few
edge cases being missed, but signi�cantly improves performance.

To start a new bulk operation �, thread t invokes the function
bulk() in Listing 4, and passes in parameters that indicate the range
of the op and if it is read-only. Using these parameters, it initializes
a BulkOpMetadata object for � and then invokes insEarl�() to
�nd the appropriate place for it in bulkOps (line 9). insEarl�()
will start from the tail of bulkOps and work its way towards the
head. For each set it examines, it will iterate through the bulk
operations in the set and sort them into three types, depending on
their relationship to �. The �rst type, �U , is operations that ought
to be unordered with respect to �; they have no need to be ordered
with respect to � unless other bulk operations force a transitive
ordering between them. The second type, �B , is for operations
which must be ordered before �, either because they have already
linearized or have already processed elements in�’s range. The last
type, �A, is for operations which must have some ordering with
�, but for which either ordering—� �rst or � second—is still valid.
DO will always choose to order these after after �.

insEarl�() tries to place � as far forward in bulkOps as it can,
ahead of any sets that contain no operations of type �B , and poten-
tially splitting an existing set if it is a mix of multiple types. If the
tail set consists only of operations of �B , or bulkOps is an empty
list, then � becomes the tail. To illustrate how insEarl�() works,
consider the three-range problem described in Section 2. �1 begins,
and, seeing bulkOps empty, initializes it with �1. When �2 begins,
it categorizes �1 as �U , as they operate on disjoint ranges. It then
places itself into the same set, to represent that they are unordered.
When �3 begins, it categorizes �2 as �B , as it has already operated
on e3. Then, it categorizes �1 as �A. It cannot categorize it as �U ,
as their ranges overlap and they are both mutating. However, even
though they are not unordered, either ordering is still valid, as
�1 has not yet linearized nor locked the partition containing e1.
�3 ! �1 allows concurrency between the two operations, and so
DO chooses this ordering by categorizing �3 as �A. Thus, �3 splits
the set containing �1 and �2 into two and inserts itself in a new
set between them, resulting in �2 ! �3 ! �1.

Once � places itself into the appropriate place in bulkOps, it can
then operate on each partition in its range, in order (line 10). To lock
partition p, � must ensure no other operation blocks it by invoking
an�Blockers() (line 14). This method checks every operation �P
in every set ahead of � in the list, and returns true if even one of
them blocks� from accessing p. A bulk operation�P blocks� from
operating on p if �P is in a set ahead of � in bulkOps, there exists
a key K in p which is in both operations’ ranges and which �P has
not yet accessed, and at least one of � and �P is mutating. If there
are none, then � will acquire the lock on p, and update its lastKey
�eld to inform other operations of its progress (lines 15-16). All of
this must be done in an atomic block to ensure no other operation
inserts itself into bulkOps ahead of � in the meantime (line 13). As
the lock will not be taken until an�Blockers() returns false, this is
tried repeatedly in a loop until it is successful (line 12). Once the
lock is successfully taken, � can operate on the elements in the
partition and release the lock (lines 18-19). Once � has processed
all partitions in its range, it will atomically and recursively mark
� and all of its predecessors linearized if they are not already, and
�nally it will remove itself from bulkOps (lines 20-21).

When te starts elemental operation �e on key K, it atomically
searches in bulkOps and saves the set �P of bulk operations that



ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ma�hew Rodriguez and Michael Spear

Listing 5: Data types used by Localized Ordering
Type OLPartitionLock
started : Atomic�euehThreadIDi
completed : Atomic�euehThreadIDi

Listing 6: Operation coordination for Localized Ordering
function elemental (k)

1 p �etPar tit ion(k)
// Order this operation within p, then await turn

2 p.started.enqueue(self)
3 while p.started.head () , self do wait
4 . . . // perform elemental operation

// Allow subsequent ops, but obey ordered departure
5 p.completed.enqueue(self)
6 p.started.dequeue()
7 while p.completed.head () , self do wait
8 p.completed.dequeue()

function bulk (startKey, endKey)
9 pre�  nil

10 foreach p 2 partitions(startKey, endKey) do
// Order this operation within p

11 p.started.enqueue(self)
// Allow subsequent ops on prev

12 if pre� , nil then pre� .started.dequeue()
13 pre�  p

// Wait for permission in p
14 while p.started.head () , self do wait
15 . . . // perform operations on p

// Prevent subsequent ops from �nishing on p
16 p.completed.enqueue(self)
17 if pre� , nil then pre� .started.dequeue()

// Let other ops �nish on partitions this bulk visited
18 foreach p 2 partitions(startKey, endKey) do
19 while p.completed.head () , self do wait
20 p.completed.dequeue()

block it (line 1). Ongoing bulk operation �P blocks �e if �P has
linearized,K is in�P ’s range,�P has not yet processedK, and either
�e or �P is mutating. te then invokeswaitUntilPast() on each, as
above (line 3), before proceeding to lock the partition, perform �e ,
and unlock it (lines 4-6). When �e completes, it must ensure that
any bulk operations that processed K are linearized (lines 7-8). For
simplicity, all of the other bulk operations in that set are linearized
as well. Transitivity applies: all predecessors of an operation that
�e linearizes must be linearized as well.

3.3 Localized Ordering
Our third algorithm, Localized Ordering (LO), is built around the
following observation: 2PL achieves linearizability by delaying
operations from starting, but the su�cient condition is to delay
them from returning. Our LO algorithm relaxes 2PL by adding more
per-partition metadata, without the need for any global state.

Listings 5 and 6 show the metadata and code for LO. To coordi-
nate access to partitions, we make use of two queues, started and
completed. We assume that each is thread-safe. These two queues
combine ideas from queue locks [10] and ticket locks [7].

To understand LO, consider a simpler algorithm, with one queue
per partition. In that algorithm, an elemental operation �e would
acquire a lock on partition p by enqueueing its thread ID, and then
waiting for its entry to reach the head of the queue. To unlock, �e
would dequeue itself. A bulk operation �B would enqueue itself
into every partition before dequeueing itself from any partition,

hence ensuring two phases for its lock acquisitions and releases.
The queue e�ectively serves as a spinlock, and the correctness of
the algorithm follows directly from the correctness of 2PL.

Suppose an elemental operation �e wishes to operate on a parti-
tion pi after�B �nishes with it. We have�B ! �e , but because�B
has �nished with pi , it can correctly do so immediately. However,
�e cannot return from operating on pi , because its thread might
then go on to execute some operation �e 0 to a partition pj that is
in the range of �B , but which �B has not yet reached. Correctness
would be violated because �e 0 is to the right of the in-progress �B .

The same problem arises if bulk operation�B0 attempts to access
pi , and pi is the last partition in �B0 ’s range. However, bulk opera-
tions introduce a second issue. Suppose that �B has completed its
operation on pi , and is about to operate on pi+1. Let �B0 operate
on pi . Clearly �B ! �B0 in partition pi . We must therefore ensure
that �B ! �B0 in partition pi+1.

The role of the second queue is to increase concurrency in both of
these cases, without sacri�cing correctness. To acquire permission
to operate on partition pi , operation � must enqueue in pi .started
and wait until it reaches the head position. However, it now en-
queues in pi .completed before dequeueing from pi .started. This
has the e�ect of relinquishing permission to access the data in pi .
� then waits until it is the head of pi .completed, at which point it
can dequeue and return. To ensure consistent ordering of �B and
�B0 on partitions pi and pi+1, �B does not dequeue from pi .started
until it has enqueued in pi+1.started (lines 9, 11-12, and 17).

For workloads consisting only of elemental operations, these
changes are uninteresting: �j waits on line 7 only if �i ! �j and
�i delays between line 6 and line 8. However, in the presence of
bulk operations, it achieves three properties. First, when�e is to the
right of�B , it can order before�B . Second, when�e is to the left of
�B , it can operate on its partition, but must wait before returning.
Third, when �B ! �B0 , �B0 can access its partitions before �B
completes: for each partition pi , it will access pi after �B , and it
will also return only after �B has completed its operation on every
pi accessed by both operations.

4 IMPLEMENTATION CHALLENGES
It is simplest to think of our algorithms in the context of a closed-
addressing hash table with a �xed number of buckets. However,
real data structures introduce important considerations, especially
with regard to partitioning. We consider two data structures in our
evaluation, which introduce real-world challenges. The �rst is the
Interlocked Hash Table (IHT) [9], an unordered map implemented
as a lo�(lo�(n))-depth tree of nodes with increased arity. The second
is a variant of the concurrent unrolled skip list [12].

4.1 Unordered Maps
In the IHT, data is stored in leaf nodes, called Element Lists, or ELists.
These immediately serve as the partitions. ELists can split, but
they never merge. Additionally, since there is no inherent ordering
among keys, it can only support foreach operations, not range.

When an EList becomes full and splits, it becomes an internal
node (a Pointer List, or PList) with twice as many children as its
parent. In the AO algorithm, the last �F to visit the EList is stored
in the AOPartitionLock. This state must be replicated to all of the
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children of the new PList. The LO algorithm is more complicated:
The LOPartitionLock can hold an arbitrary number of (elemental
and bulk) operations that have not started operating on the EList
yet, and an arbitrary number of operations that are awaiting order
on the EList. Our solution is to remove elemental operations from
the started queue, and then replicate both queues into every child
of the new PList. A bulk operation in started detects the change
from EList to PList and recurses; an elemental operation in started
detects the change and restarts; and both types of operations in
completed recurse into the children of the PList and wait to remove
themselves from every descendent. This corner case is rare for large
unordered maps. Lastly, in the DO algorithm, no state is stored in
partitions, so splitting and merging is trivial.

4.2 Ordered Maps
In our chunked skip list, partitions can split andmerge, and there are
range operations in addition to foreach. The splitting and merging
occurs in order to keep partitions within an acceptable range of
the target partition size, a tunable parameter discussed further in
Section 5, even if the skip list is not a�orded the luxury of a uniform
key distribution.

Our solution to splitting is the same as in the IHT. With regard
to merging, AO does not present any challenges: when a node must
be merged, we merge it with its predecessor. Since bulk operations
do not revisit the node to release locks, and since we lock partitions
in a hand-over-hand manner, there is no further bookkeeping.

When merging in the LO algorithm, our solution is to employ
lazy merging. That is, when partition Pj should be merged into its
predecessor Pi , we delay the merge until the next time an operation
accesses Pi . This simpli�es the four merge cases substantially. (1) If
elemental operation �e is in the started queue of Pj , we �lter �e
from the queue when wemerge Pj into Pi , and we ensure�e detects
the merge and restarts. (2) If �e is in the completed queue of Pj ,
we merge Pj but leave it as an empty partition; it is reclaimed once
the queues become empty. (3) A bulk operation �B never enqueues
itself into Pj when Pj is ready to merge: the merge is intiated by
an operation on Pi , and at the time when �B enqueued itself in
Pj .started, it held the lock on Pi , and determined that a merge was
not necessary. (4) When �B is in Pj .completed and Pj should be
merged, we follow the same approach as in case 2.

5 EVALUATION
In this section, we measure the e�ectiveness of the AO, DO, and
LO algorithms on improving the performance of bulk operations.
We explore four questions:

(1) Does tuning a data structure con�guration for e�cient bulk
operations harm the performance of elemental operations?

(2) Do the new algorithms hurt elemental performance in the
absence of bulk operations?

(3) Are the new algorithms e�ective in improving the scalability
of bulk operations?

(4) Do the algorithms provide robust performance when there
is a mixture of bulk and elemental operations?

To evaluate these questions, we conducted a set of microbench-
mark experiments. We consider two baselines. The �rst is 2PL. We
only present 2PL with lazy acquisition: it performed better for bulk

Table 1: Best con�gurations for IHT and skip list

Concurrency Elemental Foreach Compromise
Algorithm Tuning Tuning Tuning

Two-Phase Locking 32 4096 128
Aggressive Ordering 32 4096 128
Dynamic Ordering 32 4096 512
Localized Ordering 32 4096 128
Non-Linearizable 32 1024 128

(a) Interlocked Hash Table

Concurrency Elemental Foreach Compromise
Algorithm Tuning Tuning Tuning

Two-Phase Locking 32 2048 256
Aggressive Ordering 32 2048 512
Dynamic Ordering 32 8192 1024
Localized Ordering 32 2048 512
Non-Linearizable 32 2048 1024

(b) Unrolled Skip List

operations than eager acquisition, and also is more similar to our
LO algorithm. The second baseline, NL, does not provide lineariz-
able bulk operations: like 2PL, it uses hand-over-hand locking of
partitions. However, it does not hold locks on partitions that it
has �nished processing, and thus can observe the anomalies in
Section 2. NL serves as an upper bound on performance.

We evaluate the IHT on three workloads. In elemental experi-
ments, we pre-�ll the map with half of the keys in a 20-bit range,
then perform a mix of 80% contains, 10% insert, and 10% remove
operations, using keys drawn from a uniform distribution. In the
foreach workload, the map is pre�lled in the same way, but threads
perform a mix of 80% read-only and 20% mutating foreach. In the
mixed workloads, either one or two threads executes the foreach
workload while all others execute the elemental workload.

We evaluate the unrolled skip list using the same elemental and
foreach workload mixes. We also conducted range-L workloads,
where all threads execute range operations, starting from a random
key k 2 {0 . . . 220 � L} and continuing to key k + L. We present
results for a small and large value of L; 80% of range operations are
read-only. The skip listmixed-foreach workloads are con�gured the
same as IHT foreach;mixed-range-L replaces foreach with a range-L.

We measured performance on a machine running Ubuntu 18.04.4
on two 2.1GHz Intel Xeon Platinum 8160 processors with 192GB
of RAM. Each processor has 24 cores / 48 threads, for a total of 96
hardware threads. All code was written in C++, and compiled with
g++ 7.3.0. Each experiment was run for 5 seconds, and we report
the average of �ve trials. We did not observe signi�cant variance.

5.1 Tuning
The IHT EList size and root PList size are con�gurable, as is the size
of skiplist data layer chunks. An important consideration is how
to tune these settings. If partitions are too large, then concurrency
su�ers for both elemental and bulk operations. If partitions are too
small, then latency su�ers for bulk operations. To understand the
impact of partition size, we varied it per workload per algorithm.
The values we considered in our tuning were powers of 2 between
8 and 8192. Table 1 reports the best partition sizes for elemental
operations and for bulk operations. Tuning was performed based
on peak performance, not 96-thread performance.

Small partition sizes work best for elemental operations, with
32 consistently providing the best performance in both the skip
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Figure 3: Impact of tuning on skip list, DO algorithm

list and IHT. For bulk operations, values � 1024 always performed
best. Figure 3 presents a snapshot of the performance impact of this
con�guration on the skip list with the DO algorithm, for elemental
and foreach workloads. For elemental workloads, a poor choice
can degrade performance by almost an order of magnitude. In the
foreach experiments, the impact is 2-3 orders of magnitude. While
the trends are unsurprising, the magnitude necessitated that we
choose a compromise con�guration for each data structure and
concurrency algorithm.

Typically, compromise tunings o�ered around half of the per-
formance of the ideal tuning for each workload. Our compromise
tunings ended up being scattered between 128 and 1024 elements
per partition. In Figure 3, we see that a tuning value of 1024 has
middling performance for both workloads. 512 is another option
which has better performance for elementals, but 1024’s lead in
bulk operations is much wider than 512’s lead for elementals, so
1024 was chosen. Table 1 reports these compromise partition sizes.1

In the IHT, it is also possible to adjust the size of the root PList.
We calculated the value that would give us the desired number of
buckets at the desired depth, based on the chosen EList size. For
example, with 219 elements in total, a target of 256 elements per
EList, and desired depth of 2, then that means we should have 211
ELists in total. Choosing a root PList size of 32 yields exactly that
many buckets in PLists in the second layer of the IHT, and so that is
the value that is used. Our tuning experiments showed that having
two layers of PLists was ideal for all EList sizes of 32 or more.

5.2 Elemental-Only Workloads
Our �rst set of experiments considers the overhead our algorithms
introduce in workloads that do not perform bulk operations. Fig-
ure 4a shows elemental throughput on an IHT elemental workload
with compromise tuning. The overhead of most of our algorithms
is low, with AO only slightly behind 2PL, and LO following closely
behind. DO su�ers, but that is due entirely to the compromise
tuning—Figure 4b shows the same experiment but with elemental
tuning, and DO is able to keep pace with the other algorithms.

Figure 4c and Figure 4d show the same results for the unrolled
skip list. Again, the gap between our algorithms and 2PL is mostly
due to compromise tuning. When elemental tuning is used, the
gap narrows considerably. Furthermore, the shape of the curves is
similar, suggesting that degraded elemental performance is not due
1Note to reviewers: we plan to release the full suite of results across all tuning sizes as
a companion technical report.
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Figure 4: Elemental-only workload throughput
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Figure 5: Foreach-only workload throughput

to new scalability bottlenecks, but to increased interaction with
metadata. This suggests that elemental tuning is probably best for
workloads where bulk operations are rare.

5.3 Bulk-Only Workloads
Figure 5a shows foreach performance for an IHT with compromise
tuning. As expected, 2PL does not scale at all. DO and LO signif-
icantly outperform 2PL, but their scaling is limited by extensive
interaction with metadata (DO) or contention for per-partition
queues (LO). AO performance is on par with NL, despite providing
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Figure 6: Range-only workload, compromise tuning

much stronger correctness guarantees. In fact, the compromise tun-
ing is the entire reason for the gap: with ideal tuning (Figure 5b),
AO matches or surpasses NL, and DO and LO performance improve
signi�cantly. Figures 5c and 5d show similar results for the un-
rolled skip list: our algorithms scale while providing linearizability,
and AO, which is best suited for this workload, is on par with the
non-linearizable baseline (NL).

As the skip list is an ordered data structure, we also present
range-L workloads with L = 212 and L = 217, chosen to illustrate
small and large ranges, respectively (Figure 6). Despite its inabil-
ity to scale at all in a foreach workload, 2PL scales well for the
smaller L value, since threads typically perform non-overlapping
operations. When there is not much overlap, false waiting seems
to not be a signi�cant issue for 2PL. LO manages to keep pace with
2PL, and even outperform it signi�cantly at 96 threads. In contrast,
AO performs poorly: it does not have enough metadata to take
advantage of the fact that ranges rarely overlap, instead treating
each range operation as a foreach. DO also does not perform well,
despite being designed to address this shortcoming in AO. As the
number of threads increases, so does contention on the global data
structure, and thus DO only scales up to 8 threads.

With a larger L value, the range operations behave more like
foreach operations. When ranges cover 217 keys (thus operating on
216 elements on average), 2PL performs worst, AO and DO provide a
measurable advantage, and LO achieves about half the performance
of the non-linearizable NL algorithm.

5.4 Mixed Workloads
Lastly, we investigate the performance of our algorithms on mixed
workloads. For all experiments in this section, the elemental per-
formance of NL was omitted: by sacri�cing linearizability, it can
achieve performance more than an order of magnitude higher than
2PL or our algorithms, which impacts the readability of the �gures.
Note, too, that there are a �xed number of foreach/range threads,
with all additional threads performing elemental operations. Thus
elemental throughput is able to scale as the thread count increases,
but bulk throughput can only decline, as the threads performing
bulk operations will contend with more andmore elemental threads.

Figures 7a and 7b show elemental and bulk throughput of a
mixed workload with 1 thread performing foreach operations on an
IHT with compromise tuning. In this workload, the foreach thread
is always able to make progress, but elemental operations have a
50% chance of having to wait on the foreach. The algorithms all
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Figure 7:Mixed workloads, IHT, compromise tuning

allow the elemental operations to make progress, but elemental
throughput is much lower than in previous experiments. LO foreach
performance is the worst: it experiences contention when releasing
locks, due to the presence of other operations in the queues, and
thus unlocking becomes a more signi�cant overhead than in 2PL.
In contrast, DO performs very well, because the sole foreach thread
does not experience contention on the global data structure.

Figures 7c and 7d show a similar experiment, but with two
threads performing foreach operations. In this workload, the two
foreach threads e�ectively have the entire data structure locked at
all times in 2PL and LO, which prevents elemental operations from
making progress (or, in the case of LO, returning after completing
their operation). Thus we see an extreme drop in elemental per-
formance for these algorithms, whereas AO and DO perform well.
AO and DO also provide the best performance for the bulk threads,
which are able to execute concurrently with each other.

Figure 8 shows the results of the same experiment on the un-
rolled skip list. The trend of DO delivering the best performance
to elemental threads remains, but this comes at a decrease in for-
each performance: DO naturally gives more priority to elementals
than any of the other algorithms, and the impact increases when a
second foreach thread is added. Again, we see poor performance
for 2PL, with the relative merit of LO increasing on account of its
ability to exploit parallelism among the foreach threads.

Lastly, Figure 9 presents themost complex con�guration: a mixed
workload consisting of two threads performing range operations
of length 217, on a skip list with compromise tuning. Again, DO
delivers the best performance for elemental operations, with com-
petitive foreach performance. While the pathological behavior of
LO disappears once bulk operations do not con�ict with every ele-
mental, AO now experiences its pathology: since it does not track
ranges, every bulk operation behaves like a foreach.
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Figure 8:Mixed workloads, skip list, compromise tuning
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6 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced three algorithms that enable scalable,
linearizable bulk operations on concurrent maps, with better per-
formance than two-phase locking. The novel idea is to make the
linearization of a bulk operation into a state that is visible to con-
current operations. This allows operations to know when they can
overtake each other without violating correctness. This, in turn,
reduces false waiting. Our algorithms vary in how much metadata
they store, and whether they store it globally or in the partitions of
the data structure itself.

Our experiments explore the complex space of data structure tun-
ing, and show that tuning for elemental operations can be at odds
with tuning for bulk operations. We then show that our algorithms
do not introduce signi�cant overhead for elemental operations,
but do enable signi�cant scalability for bulk operations. In mixed
workloads, at least one of our algorithms always outperformed

two-phase locking. However, there was no single best algorithm
for all workloads.

As future work, we believe it will be important to devise heuristic
strategies, perhaps based on machine learning, that can choose the
best approach on a workload-by-workload basis, or even dynami-
cally switch between algorithms and alter tuning parameters on-
the-�y. The algorithmic support for dynamically switching among
strategies appears tractable, since the per-partition and global meta-
data required by each strategy can be combined with little added
space overhead. Learning how to make good selections at run time
will, at the very least, use metrics like frequency of bulk operations,
and range size. Our experiments show separation for the algorithms
based on these metrics, and thus we are cautiously optimisic that
a small set of relatively straightforward features will provide a
satisfactory workload characterization. While we believe that dy-
namically choosing algorithms will be straightforward, altering the
partition size may be more di�cult: it could require an expensive
restructuring of the entire data structure if performed eagerly.
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