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ABSTRACT

Compressed videos constitute 70% of Internet traffic, and video

upload growth rates far outpace compute and storage improvement

trends. Past work in leveraging perceptual cues like saliency, i.e.,

regions where viewers focus their perceptual attention, reduces

compressed video size while maintaining perceptual quality, but

requires significant changes to video codecs and ignores the data

management of this perceptual information.

In this paper, we propose Vignette, a compression technique and

storage manager for perception-based video compression in the

cloud. Vignette complements off-the-shelf compression software

and hardware codec implementations. Vignette’s compression tech-

nique uses a neural network to predict saliency information used

during transcoding, and its storage manager integrates perceptual

information into the video storage system. Our results demonstrate

the benefit of embedding information about the human visual sys-

tem into the architecture of cloud video storage systems.
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formation systems→Multimedia information systems; Stor-

age management.
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1 INTRODUCTION

Compressed videos constitute 70% of Internet traffic and are stored

in hundreds of combinations of codecs, qualities, and bitrates [2, 11].

Video upload growth rates far outpace compute performance and
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storage production today, and this trend is predicted to acceler-

ate [12, 17, 43]. New domains of video production—e.g., panoramic

(360°), stereoscopic, and light field video for virtual reality (VR)—

demand higher frame rates and resolutions, as well as increased

dynamic range. Further, the prevalence of mobile devices with

high-resolution cameras makes it increasingly easy for humans to

capture and share video.

For decades, video codecs have exploited how humans see the

world, for example, by devoting increased dynamic range to spatial

features (low frequency) or colors (green) we are more likely to ob-

serve. One such perceptual cue, saliency, describes where in a video

frame a user focuses their perceptual attention. As video resolutions

grow, e.g., 360° video and 8K VR displays, the salient regions of a

video shrink to smaller proportion of the video frame [57]. Video

encoders can leverage saliency by concentrating bits in more per-

ceptually interesting visual areas. Prior work in saliency-enabled

encoders, however, focus only on achieving bitrate reduction or

quality improvement at the cost of complicated, non-portable proto-

types designed for a single codec implementation [22, 24, 40, 45]. In

this work, we address the challenges of storing and integrating this

perceptual data into cloud video storage and processing systems.

Large-scale video systems generally fall into two classes: enter-

tainment streaming, and social media video services; saliency-based

compression can provide benefits to both. For entertainment ser-

vices, which maintain small numbers of videos to be streamed at

many resolutions and bitrates, saliency-based compression reduces

the storage cost of maintaining many bitrates and resolution scales

of these videos. For social media services distributing a vast video

library from many users, it reduces outbound network bandwidth.

For both types of services, a system enabled to incorporate saliency

prediction can improve video compression, for instance, as an ini-

tially viral video decreases in popularity, or to reduce bandwidth

while streaming video to a 360° video player.

In this paper, we describe Vignette, a cloud video storage system

that leverages perceptual information to reduce video sizes and

bitrates. Vignette is designed to serve as a backend for large-scale

video services, such as content delivery systems or social media

applications. Vignette has two components: a compression scheme,

Vignette Compression, and a storage manager, Vignette Storage, as

shown in Figure 1. Vignette Compression leverages a new saliency-

based compression algorithm to achieve up to 95% lower bitrates

while minimally reducing quality. Vignette Storage uses a simple

API to trigger saliency-based compression when needed, allowing

applications to trade off between faster traditional compression and
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Figure 1: High-level architecture of Vignette. Vignette pro-

vides two features: Vignette Compression, a perceptual com-

pression algorithm, and Vignette Storage, a storage man-

ager for perceptually compressed videos. Integrating percep-

tual information with the storagemanager reduces network

bandwidth and storage costs.

Vignette’s smaller video sizes. The system uses low-overhead meta-

data, can be easily integrated into existing media storage structures,

and remains transparent to standard video applications.

Vignette is not a new standalone codec or compression standard.

Instead, it extends existing, modern codecs to take advantage of

the untapped perceptual compression potential of video content,

especially high-resolution video served in VR and entertainment

settings. As a result, off-the-shelf software and hardware acceler-

ators can decompress Vignette’s perceptually compressed videos

with no modifications. We implement Vignette as an extension to

LightDB [25], a database management system for video. Our proto-

type of Vignette demonstrates cost savings to cloud video providers

and power savings during mobile video playback.

This paper makes the following contributions:

(1) Systems support for perceptual video compression.Wepro-

pose Vignette, a system for producing andmanaging perceptually

compressed video data. Vignette videos are 80–95% smaller than

standard videos, consume 50% less power during playback, and

demonstrate little perceived quality loss.

(2) A forward-compatible perceptual encoding pipeline. Vi-

gnette leverages existing features of modern video codecs to

implement perceptual compression, and can be deployed in any

video processing system that supports such codecs, such as hevc

or av1.

(3) Custom storage for perceptual data. Vignette’s storage man-

ager efficiently stores and manages perceptually compressed

videos and is integrated in a modern video processing database

system. Vignette Storage supports both a heuristic-guided search

for fast perceptual compression and an exhaustive mode to com-

pute an optimal saliency-based compression configuration.

To our knowledge, this is the first work to consider storage man-

agement of perceptually-compressed video information. Using pre-

dicted saliency as a motivating perceptual cue, we evaluate the

limits of perceptual compression in a video storage system with a

collection of modern and high-resolution video datasets. Vignette’s

compression scheme uses a neural network trained to predict con-

tent saliency and an off-the-shelf hevc video encoder to reduce

bitrate requirements by 80–95%. Our results show that Vignette

can reduce whole-system power dissipation by 50% on a mobile

phone during video playback. Quantitative evaluation and user

study results validate that these bitrate and power savings come

with little perceived loss in video quality.

2 BACKGROUND: PERCEPTUAL
COMPRESSION USING SALIENCY MAPS

Saliency is a widely-utilized measure of the perceptual importance

of visual information. Saliency data encodes the perceptual impor-

tance of information in a video, such as foreground and background

or primary and secondary objects. Video codecs already use some

perceptual information, like motion and luminance, to improve

compression performance [58], but new modes of video viewing

(such as with a VR headset) introduce the opportunity to integrate

richer cues from the human visual system [36]. In this paper, we use

saliency as an example of one such perceptual cue to demonstrate

the potential of perceptual compression. This section provides back-

ground on saliency, compares methods for generating and encoding

saliency information, and introduces the machine learning tech-

nique Vignette uses to gather perceptual information about video

data. This section also describes tiles, the codec feature Vignette

uses to compress videos with saliency information.

2.1 Saliency Maps and Detection Algorithms

Saliency-detection algorithms visually highlight potential regions

or objects of significance in an image. A saliency map captures

likelihood of visual attention in the form of a heatmap, where the

map’s values correspond to the salience of pixels in the input. In

this paper, we visualize saliency prediction maps as grayscale video

frames or heatmaps for clarity.

In the past, algorithms could not predict saliency accurately

without detailed per-video annotation, such as hand annotation

or eye gaze logs. Moreover, the low latency and poor spatial res-

olution of eye-tracking devices prevented effective deployment

of eye-tracker-based saliency prediction [6]. VR headsets, how-

ever, allow for efficient deployment of eye tracking, and they have

motivated improvements in the performance and accuracy of eye

trackers [61]. Recent work in machine learning has produced ac-

curate saliency prediction models using neural networks trained

on eye tracker data that mimic the human visual system at levels

rivaling human prediction [9], motivating their use for saliency

prediction in this work.

To generate saliency maps for this paper, we used the neural net-

work model MLNet [13] running on the machine learning platform

Keras with Theano [10, 60]. MLNet is a state-of-the-art saliency

prediction neural network, and, when using the publicly-available

weights trained on the SALICON [29] dataset, achieves 94% ac-

curacy on the MIT300 saliency benchmark [7]. While the strong

performance of MLNet motivates its use in the design of Vignette,

our design allows for the replacement of MLNet with any other pre-

ferred saliency prediction method, as lower cost or higher accuracy

systems are developed.
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2.2 Systems Support for Perceptual Video
Compression

Prior work investigated many techniques for including predicted

saliency information in video compression, but these techniques

required significant changes to video codecs. For instance, some

maintain full-resolution, per-frame saliency maps to use as addi-

tional input [45], while others compute saliency prediction on-the-

fly at high computational cost [22] or solve complex optimization

problems to allocate video bits [40].

Rapid advances in both deep learning and video compression,

however, resulted in these integrated prediction-and-compression

codecs being quickly outmoded by the quality of both standard

video compression and saliency prediction techniques. Most criti-

cally for codecs, the saliency-enabled encoders lacked many latency

and quality optimizations of more recent codec releases and did not

guarantee functionality on already-existing hardware accelerators

on GPUs and mobile devices.

This paper takes a different approach, proposing a system that

supports software extensions for perceptual compression without

modifying the video codec. Instead of designing a new codec, we

propose shifting the burden from a single codec to the data man-

agement infrastructure, where decisions about hardware resources,

encoding optimization, and metadata management already occur.

2.3 Tiled Video Encoding

Vignette uses tiles to implement perceptual compression. Tiling a

video divides a single video stream into independent regions that are

encoded as separate decodable streams [49]. Encoders can code tiles

at separate qualities or bitrates, and decoders can decode tiles in par-

allel. Tiles are simple to express using standard encoding libraries,

like FFmpeg [5] and are supported by many video codecs. Restrict-

ing our implementation to native tiling features introduces some

loss of detail compared to designing a custom encoder. Standard

encoders only support rectangular tiles and cannot leverage motion

across tiles during encoding process. Using only native features,

however, guarantees that our compression scheme is compatible

with any modern codec that implements tiling, like hevc [58] or

av1 [18]. As video standards and codec efficiency improve, using

general codec features to perform encoding and manage storage

ensures that perceptual information remains useful.

3 VIGNETTE SYSTEM OVERVIEW

We designed Vignette to be easily deployed in existing video storage

systems and transparent to video applications that do not require

perceptual information. Figure 1 shows how Vignette can be de-

ployed on a video storage system, with Vignette Compression used

during the transcoding pipeline and Vignette Storage managing

the integration of perceptual information with video data.

3.1 Vignette Compression

Vignette Compression uses native features found in modern video

codecs. Our implementation of Vignette Compression produces

videos that work out-of-the-box with any system that supports

hevc [58], including hardware accelerators. Vignette Compression

perceptually compresses videos by enumerating configurations

of video tiles and saliency-quality correspondences to maximize

quality while minimizing video size. The algorithm has three high-

level steps: generate a perceptual data map (e.g., saliency prediction

map) for a given video file (§4.1), determine the optimal number of

rows and columns, or a “tile configuration”, to spatially partition

the video into (§4.2), and select a mapping of saliency values to

encoder qualities for each tile (§4.3).

3.2 Vignette Storage

Vignette Storage manages perceptual information as simple meta-

data embedded within videos or maintained in the storage system.

This reduces storage complexity for data management and ensures

Vignette data is transparent to saliency-unaware video applications

such as VLC or Optasia [44]. The storage manager supports the

following features: low-overhead perceptual metadata transmit-

ted alongside video content, without impeding the functionality

of applications that choose not to use it (§5.2), storage manage-

ment policies to trigger one-time perceptual compression during

“open loop” mode, and a heuristic-based search for faster perceptual

compression (§5.4).

4 VIGNETTE PERCEPTUAL COMPRESSION
DESIGN

Vignette Compression uses off-the-shelf video codec features to

encode perceptual information and improve coding efficiency. Our

technique takes a video as input, generates a per-frame percep-

tual map for the video, and aggregates the per-frame maps into a

single video saliency prediction map.1 Vignette Compression then

transcodes the input video with a tiled encoding, where the qual-

ity of each tile corresponds to the saliency of the same tile in the

video’s saliency prediction map. It uses only the native features

of the hevc [58] codec to ensure compatibility with other video

libraries. Whenever possible, it overestimates saliency to minimize

the potential of degrading video quality in areas of interest.

4.1 Automatically Generating Saliency Maps

Vignette Compression uses MLNet [13] to automatically generate

a corresponding saliency map for a video input. Figure 2 shows the

saliency map generated for a video frame and how the generated

maps capture the visual importance of a given video frame. The

process requires decoding the video and processing each frame

through the neural network to produce output saliency maps. Vi-

gnette Compression accumulates the per-frame saliency maps into

a single map by collecting the maximum saliency for each pixel in

the frame across the video file. These aggregated saliency values

produce a single saliency map of importance across the video. This

method uses more compute time than only generating saliency

maps for keyframes or at a fixed timestep, but it more generously

accommodates motion and viewpoint changes during a scene.

One concern for these aggregate heatmaps is that pixels may be-

come “saturated”. A “saturated” pixel contains its maximum value

(255), after which any additional saliency information would not

register during aggregation. Computing aggregate saliency maps

for long videos would potentially result in many “oversaturated”

1For clarity, we will use saliency prediction map and saliency map interchangeably in
the remainder of the paper, acknowledging that the maps used in discussion visualize
predicted saliency and not actual human-annotated saliency.
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pixels from scene changes and motion. But video storage systems

slice videos into short segments (10-20 seconds) for coding effi-

ciency; as a result, these short-duration aggregate saliency maps

can be collected without oversaturating the saliency heatmap.

In comparison to a single video frame, Vignette’s aggregated

video saliencymap can indicate manymore salient pixels, especially

for videos that have fast-moving salient objects across frames. We

considered more motion-tolerant metrics like moving average, but

found that, for the domain of video distribution platforms, using

the most generous metric of maximum saliency provided the best

quality guarantee. In this case, using aggregate video saliency maps

with maximum saliency functions as a “worst-case” estimate of

salient regions.

4.2 Leveraging Saliency With Tiled Encodings

Once Vignette Compression produces a saliency map for a video, it

can perceptually encode videos with the tiling feature in hevc [58].

To produce saliency-based tiled video encoding, Vignette divides a

video segment spatially into tiles and then map each tile to a quality

setting. The saliency map’s value at each tile determines the tile’s

quality setting. For simplicity and generality, the tiling patterns used

are rectangular tiles with uniformwidth and height across the video

frame. Vignette uses the same tile configuration throughout the

entire 10-20 second video segment for coding simplicity. Intuitively,

larger tiles have better compression performance, but would allow

for less saliency levels to be encoded in the video. Vignette selects

the size and number of tiles in a tiling configuration based on either

an exhaustive search of all tile configurations or a heuristic-guided

search, described in §5.4.

While tiling is simple and provides coding benefits, a given tile

configuration can incur overheads from introducing suboptimal

encoding boundaries. Tiles are self-contained video units that can

be decoded separately. They cannot compress information beyond

per-tile boundaries. As a result, information that may be efficiently

coded using partial frames in a standard encoding must be repeated

if it appears in multiple tiles. A poor tile configuration produces

larger videos than a standard encoding pass with no tiling, espe-

cially for fast-moving scenes. We investigated this compression

inefficiency by encoding our test videos at various tiling configura-

tions with no change in quality (e.g. lossless encoding). We found

that the inclusion of tiling with no change in quality incurred ∼6-

15% overhead, depending on motion in the video sequence and

number of tiles used.

Vignette minimizes the penalty of adding tile boundaries in areas

that would benefit from being encoded together by exhaustively

enumerating all tile configurations. Vignette evaluates across all

row-column pairs a video frame allows to find the per-video best

tiling configuration. The hevc standard constrains the minimum

size of row and column tiles, which restricts the row-column tile

configurations allowed. In practice, we enumerate tile configura-

tions ranging from 2×2 to 10×10, compress the tiles according to

their saliency values, and measure the resulting bitrate and video

quality achieved. This exhaustive enumeration takes about 30 min-

utes per 15-second video to find the best tile configuration with our

experimental setup.

Enumerate tile 
configurations

20%

100%

20%

75%

20% 20% 20%

60% 100% 60%

 Select Pareto-optimal 
tiling configuration

Input video

Figure 2: Overview of Vignette Compression algorithm.

4.3 Mapping Saliency to Video Quality

Each hevc tile is encoded at a single ‘quality‘ or bitrate setting

throughout the video stream, requiring Vignette Compression to

select per-tile encoding qualities. Vignette deconstructs saliency

maps into per-tile parameters by mapping the highest encoding

quality to the maximum saliency value in the tile’s saliency map.

Selecting the video encoding quality that corresponds to a tile’s

saliency value is less straightforward. To do so, Vignette must

determine both how to express video quality during encoding and

how saliency should correspond with that quality metric.

hevc exposes different modes of controlling quality and bitrate,

such as constant bitrate or constant rate factor, with varying levels

of effort and efficiency. For evaluation simplicity, Vignette uses a

perceptually-controlled version of a target bitrate, where the target

bitrate either corresponds to the bitrate of the original video or is

specified by the API call. The highest-saliency tiles in the video

are assigned the target bitrate, and tiles with lower saliency are

assigned lower bitrates, with a minimum bitrate of 10% the original

video bitrate. As shown in Figure 2, Vignette Compression encodes

a 0-255 saliency map as discrete bitrates corresponding linearly

from the minimum to the target bitrate or quality. Because Vignette

supports standard codec features, target bitrate could be replaced

with a codec’s quality control, i.e. constant rate factor, as well.

5 VIGNETTE STORAGE SYSTEM DESIGN

We now describe Vignette’s storage manager for maintaining per-

ceptual video information. Vignette Storage uses low overhead

metadata to encode perceptual data and a heuristic-guided search

to reduce the compute load of generating perceptual transcodings.

Vignette Storage’s metadata representation reduces full-resolution

frames to a small number of bytes, and its heuristic search algo-

rithm reduces the time taken to find an optimal tile configuration

by ∼30× in our experiments.

5.1 Overview of Vignette Storage

Vignette Storage exposes perceptual video compression to applica-

tions by providing three features: (1) transparent perceptual meta-

data, (2) simple storage management policies, and (3) a search algo-

rithm that reduces transcoding cost. Vignette embeds perceptual

metadata as a side channel within the video container. Standard

video containers (i.e., mp4) encapsulate saliency information along

with video content, so that applications with and without percep-

tual support can decode Vignette videos. A 360° video player, for

example, can initialize videos to be oriented in the direction of a
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Figure 3: Vignette supports conventionally video transcoding pipelines as well as automatically generating saliency maps for

perceptually-aware video video transcoding.
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Figure 4: Physical layout of video metadata in LightDB.

Vignette-specific features are highlighted.

high-saliency region it decodes from Vignette metadata, but the

videos can also be played traditionally in a standard video player

like VLC.

Vignette Storage operates like similar large video management

services [28, 43, 47]. Upon upload, it chunks videos into segments,

typically 6-12 seconds in length. Each video segment consists of one

keyframe and an ensuing set of predicted frames. Vignette Storage

can perform perceptual compression on a per-video basis, or across

the video library when a specified condition is met (e.g., low storage

capacity, or video popularity decreasing beneath a threshold).

5.2 Saliency Map Metadata

Video storage systems maintain containers of compressed video

data that store relevant video features in metadata. Vignette Stor-

age adopts this approach, and injects a small amount (∼100 bytes)

of saliency metadata inside each video container. This map is en-

coded as a bitstring that includes fields for the number of rows

and columns used for tiled saliency and the saliency weights for

each tile. These bitstrings typically range in size from 8–100 bytes.

Figure 4 shows how this metadata is included as a saliency trak,
similar to other metadata atoms in a video container.

5.3 Vignette Storage API

The Vignette Storage API is shown in Figure 3. Table 1 shows the

programming interface for Vignette, which includes three perception-

specific operations: vignette_transcode(), vignette_squeeze(),

and vignette_update(). Each API operation ingests a video and

some required parameters and outputs a video with any generated

perceptual metadata encapsulated in the video container.

The Vignette API is linked into LightDB as a shared library.

System developers using Vignette Storage to manage video data

can write storage policies or preconditions to execute Vignette

Storage functions for a specific video or collection of videos. For

instance, a social media service could apply perceptual compression

as videos decrease in popularity to reduce storage capacity. A VR

video-on-demand service that ingested eye tracking information

could apply perceptual compression as new perceptual information

is collected for certain videos.

5.3.1 Transcode Functions. Transcode operations express the most

basic Vignette Storage function, video transcoding. When a new

video is uploaded to the storage system, the storage manager trig-

gers the general-purpose transcode() function to transcode the

video to any specified bitrates and formats for content delivery.

This function takes as input a video and target quality parame-

ter, expressed either by CRF or bitrate, and produces a regularly

transcoded video.

The vignette_transcode() function is the default saliency-

based API call. It takes as input a video and an optional quality

or bitrate target, and produces both a video and its correspond-

ing generated saliency metadata. When vignette_transcode is

triggered, Vignette Storage generates new saliency maps, and then

compresses the video according to the target quality expressed.

Vignette Storage’s transcode functions use similar signatures,

letting the system easily switch between regular and perceptual

compression when storage system pressure changes. Including

saliency information as a metadata stream included in the video file

container makes it transparent to saliency-agnostic applications or

commands like mediainfo or ffprobe.

5.3.2 Quality Modulation Functions. As noted in §4.3, Vignette

Compression maps saliency to quality levels for each tile. A call to

vignette_squeeze() will re-compress a video using a specified,

reduced bitrate or quality threshold. It takes in a video, target bi-

trate, and saliency mapping and produces the newly compressed

video. This function only executes transcoding and compression

with pre-generated saliency metadata, but does not update or gener-

ate new saliency metadata. The vignette_squeeze() function will
recompress videos from a higher quality mapping to a lower one,
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Table 1: Vignette API

Function Compression Type Data required

transcode General <IN video, IN CRF/target bitrate, OUT video>
vignette_transcode Perceptual <IN video, (IN CRF/target bitrate,) OUT video, OUT saliency metadata>
vignette_squeeze Perceptual <IN video, IN CRF/target bitrate, OUT video>
vignette_update Perceptual <IN video, IN fixation map, OUT video, OUT saliency metadata>

but it will not transcode low-quality videos to a higher-quality map-

ping to avoid encoding artifacts. For example, a call to vignette_-
squeeze(input.mp4,100k) transcodes a video previously encoded
with saliency at a higher bitrate to a maximum of 100kbps in the

most salient regions. By leveraging the saliency metadata attached

to videos in Vignette Storage, vignette_squeeze() can avoid re-

encoding tiles that already are lower than the threshold bitrate. A

system can invoke vignette_squeeze() before video data is sent

to smaller cache or in preparation for distribution to devices with

smaller displays.

5.3.3 Functions for Updating Perceptual Maps. Vignette Storage

also supports updating saliency map with new information, such as

from eye tracking devices. To invoke this mode, Vignette Storage

uses the vignette_update() function to ingest and re-process

videos with new perceptual information. A 2-dimensional eye

tracker map can be used in the same way as the saliency map

input used in Vignette Compression, or it could be aggregated with

the existing saliency map metadata. Similar to how Vignette con-

structs per-video saliency maps, vignette_update() updates the

video’s saliency map with eye tracker information by executing a

weighted average of the original map and the input eye tracker map.

The update function takes in a fixation map and generates a new

metadata bitstream of saliency information that is attached to the

video container. Should a client want to re-encode a video based on

the updated saliency metadata, it could call vignette_squeeze()
after a vignette_update() call.

5.4 Heuristic Search for Tiling

Most of Vignette’s computation overhead comes from the exhaus-

tive search over tile configurations for a given video. This exhaus-

tive search is typically performed once, upon video upload, but

consumes significant processing time. Vignette Storage contributes

a lower cost search algorithm that achieves near-optimal results

with a ∼30× performance improvement, for situations where fast

saliency-based transcoding is required. Vignette Storage can switch

between the exhaustive search for optimal results or heuristic-

guided search for faster processing.

Vignette’s search technique uses motion vector information from

encoded video streams to estimate the size of video tiles. It enumer-

ates tile configurations that group regions of high motion together,

and selects a configuration minimizing the difference in motion

vector values across tiles. Vignette computes this difference by

evaluating the average standard deviation of motion vector values

within tiles and comparing to the best result seen. This heuristic

approximates the observation that high-motion areas should not

be divided across multiple tiles. We define the algorithm in more

detail in Algorithm 1.

Algorithm 1 Heuristic-based search for selecting a near-optimal

saliency tile configuration

1: procedure GenTileConfig(v) �Generate tiling for video v
2: bestStdDev← ∞ �Initialize values

3: lastStdDev ← ∞

4: bestConf iд ←null

5: {maxRows,maxCols} ← {10, 10}

6: motionVectors ← MPEGFlow(v) �Extract motion vectors

7: for all {rows, cols} ← {1, 1}, {maxRows,maxCols} do
8: avдStdDev ← avgStdDev(motionVectors, rows, cols)
9: if avдStdDev ≤ bestStdDev then

10: bestStdDev ← avдStdDev
11: bestConf iд ← {rows, cols}
12: end if

13: lastStdDev ← avдStdDev
14: ΔavдStdDev(motionVectors) ← lastStdDev−avдStdDev
15: if ΔavдStdDev(motionVectors)) ≥ .1 then
16: break

17: �Break if ΔavgStdDev is below difference threshold

18: end if

19: end for

20: return bestConf iд �Return best tile configuration

21: end procedure

The algorithm extracts motion vector information from encoded

videos using MPEGflow [34] and requires one transcoding pass.

Similar to the tile configuration search from §4.2, this heuristic

search exhaustively evaluates tile configurations of the motion

vectors. The search evaluates themotion encapsulated by tiles under

a configuration and chooses the configuration with the minimum

deviation of motion vectors in each tile. This heuristic approximates

the result of exhaustive encoding by leveraging the observation

good tile configurations are able to encapsulate redundant motion

or frequency information with a single tile, rather than replicate it

across tiles. Compared with an exhaustive search, which transcodes

a video hundreds of times to empirically produce the optimal tile

configuration, Vignette Storage’s algorithm produces a result ∼30×

faster than the exhaustive method and within 1 decibel (dB) of

the best-PSNR result when executed over the videos used in our

evaluation.

6 METHODOLOGY

We next describe the datasets, quality metrics, and technical setup

for our evaluation. We benchmarked across a range of video work-

loads (§6.2) and considered video quality metrics (§6.3) to holisti-

cally evaluate compression, quality, and performance.
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(a) Input video frame from the

Netflix dataset [39].

(b) Saliency map produced

by MLNet [13], overlaid on input.

(c) Perceptually-compressed Vignette

video, 85% smaller at iso-quality.

Figure 5: Example video still, neural network-generated saliency map, and output Vignette video.

6.1 Implementation

We implemented Vignette by extending LightDB [25], a database

management system for VR videos. LightDB lets developers declar-

atively express queries over large-scale video and uses a rule-based

optimizer to maximize performance. Developers can easily express

hevc-based saliency encoding in LightDB’s query language by

combining its Encode, Partition, and Subquery operators:

Decode("rtp://...")
>> Partition(Time,1,Theta,π/rows,Phi,2π/cols)
>> Subquery([](auto& partition) {

return Encode(partition, saliency_mappinд(
partition) })

>> Store("output");

In this example, Partition divides the input video into tiles, Encode
transcodes each tile with the corresponding saliency_mapping
value as an argument, and Subquery executes the given operation

over all the partitioned tiles. We also wrote our object recognition

queries for §7.2 in LightDB to simulate video analytics workloads.

In our experiments, we compared Vignette against the HEVC

encoding implementations included with FFmpeg. We configured

FFmpegwith support for software-based coding andNVENCODE [52]
GPU-based encoding of hevc video, as both are supported by large-

scale video services and devices [14].

Some datasets provided overencoded videos, or, reference videos

encoded at an very high bitrate that could be re-encoded to identi-

cal quality at a lower bitrate. To ensure against overencoding, we

transcoded each video using CPU-based hevc encoder and vary the

rate factor, selecting the highest PSNR-quality result as our base-

line for evaluation. We ran Vignette Compression on top of FFmpeg
version n4.1-dev, and use the GPU-based NVENC HEVC encoder

for tiled encoding. Unless otherwise specified, we targeted a con-

strained bitrate using maximum bitrate mode (VBV); while VBV

does not provide the best-quality archival results, it is commonly

used for entertainment or livestreaming due to its combination of

speed and quality.

We performed all experiments on a single-node server running

Ubuntu 16.04 and containing an Intel i7-6800K processor (3.4 Ghz, 6

cores, 15 MB cache), 32 GB DDR4 RAM at 2133 MHz, a 256 GB SSD

drive (ext4 file system), and a Nvidia P5000 GPU with two discrete

NVENCODE chipsets.

6.2 Video Datasets

We used a collection of video datasets, listed in Table 2, to evalu-

ate the impact of our techniques across different classes of video.

Table 2: Video datasets used to characterize Vignette.

Type Benchmark Description Bitrate (Mbps) Size (MB)

Standard
vbench [43] YouTube dataset 0.53–470 757

Netflix [39] Netflix dataset 52–267 1123

VR
VR-360 [42] 4K-360 dataset 10–21 1400

Blender [21] UHD / 3D movies 10–147 6817

Standard video formats and emerging VR formats comprise our

evaluation datasets. The former include representative workloads

from Netflix [39] and YouTube [43]. The VR and emerging video

datasets highlight demands of ultra high-definition (UHD) formats

such as 360◦ video [42] and the Blender stereoscopic and UHD

open source films [21]. To construct a representative sampling of

Blender video segments, we partitioned the movies in the Blender

dataset (“Elephants Dream”, “Big Buck Bunny”, “Sintel”, and “Tears

of Steel”) into 12-second segments, and selected five segments that

covered the range of entropy rates present in each film.

In this collection of datasets, we found that the vbench “desktop”
video, a 5-second computer screencast recording, performed poorly

during all compression evaluations because of its low entropy and

content style, so we excluded this outlier video from our evaluation

results. We discuss this style of video in relation to Vignette further

in §8. We also replaced Netflix’s single “Big Buck Bunny” video

segment with the same video content from Blender’s stereoscopic,

4K, 60 frames-per-second version of the video.

6.3 Quantitative Quality Metrics

We measured video encoding quality using two quality metrics,

peak signal-to-noise ratio (PSNR) and eye-weighted PSNR (EWP-

SNR). PSNR reports the ratio of maximum to actual error per-pixel,

in decibels (dB), by computing the per-pixel mean squared error

and comparing it to the maximum per-pixel error. PSNR is popular

for video encoding research, but researchers acknowledge that it

fails to capture some obvious perceptual artifacts [39]. Acceptable

PSNR values fall between 30 and 50 dB, with values above 50 dB

considered to be lossless [43]. For saliency prediction evaluations,

researchers developed eye-weighted PSNR to more accurately rep-

resent human perception [40]. EWPSNR prioritizes errors perceived

by the human visual system rather than evaluating PSNR uniformly

across a video frame. We computed EWPSNR using the per-video

saliency maps described in §4 as ground truth. While calculating
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Figure 6: Aggregate storage savings by dataset. Vignette

Compression reduces videos to 1–15% of their original size.

EWPSNR in this way does not faithfully measure “true” eye fixa-

tions, it still can assess “correctness” of our compression pipeline

and thus the efficacy of Vignette as a system for leveraging saliency.

7 EVALUATION

We designed our evaluation to answer the following questions:

(1) Storage: What storage and bandwidth savings does Vignette

provide? How do tile configurations affect compression gains

and quality? How does Vignette compare against traditional

saliency-based encoders?

(2) Quality of Service: How does Vignette’s compression tech-

nique affect quality of service (QoS) of video services like video

streaming (perceptual quality user study) or machine learning

(speed, accuracy)?

(3) Compute Overhead: What is the computational overhead of

Vignette’s compression algorithm and storage manager?

(4) Data Center & Mobile Cost: How do Vignette’s storage and

network bandwidth savings impact video storage system and

mobile viewing costs?

7.1 Storage and Bandwidth Savings

To evaluate the storage and bandwidth benefits of Vignette, we

applied Vignette Compression to the corpus of videos described in

§6. We transcoded our video library at iso-bitrate in salient regions

and decreased bitrate linearly with saliency to a minimum 10%

target bitrate in the lowest saliency tiles, as illustrated in Figure 2.

In these experiments, we examine how our transcoding performs

across a range of resolutions and workloads, as is expected in a

video storage system.

7.1.1 Impact of Tiling on Compression and Quality. We first ex-

amined the impact of tiling on compression benefits using a fixed

saliency map. We used an exhaustive tile configuration search and

evaluated all tile sizes to identify an optimal number of tiles for each

video. Our goal was to determine whether the number or shape of

video tiling affects resulting size. The smallest tile size we evaluated

were 64 pixels in breadth, but most videos performed best with

tiles having a breadth of 300–400 pixels. We observed that, given a

fixed saliency map, optimal tile configurations to maximize storage

savings and quality varied based on entropy and video content.

We found the optimal tile configuration varies from four tiles to

forty and per-video tile configuration is an important component

of tile-based compression. Some videos benefited from many small

tiles, while others performed best with fewer large tiles.

7.1.2 Overall Compression, Bandwidth, Quality. We next explored

peak compression, bandwidth, and quality savings by applying Vi-

gnette to our video corpus and measuring compression and quality.

We used the results of our exhaustive tile search to identify the

best compression-quality configurations for each video. Figure 6

shows aggregate storage savings, partitioned by dataset. Overall,

we find that Vignette Compression produces videos that are 1–15%

of the original size when maintaining the original bitrate in salient

regions. These compression savings include the fixed overhead

of perceptual metadata, which is <100 B for all videos. Datasets

with higher video resolutions (Blender, VR-360) demonstrated the

highest compression savings. The vbench dataset, which is algorith-

mically chosen to have a wide variance in resolution and entropy,

exhibits a commensurately large variance in storage reduction. Of

the videos with the lowest storage reduction, we find that each

tends to have low entropy, large text, or other 2D graphics that are

already efficiently encoded.

Figure 7a shows the average reduction in bitrate and resulting

quality, measured in PSNR and EWPSNR. Our results show that EW-

PSNR results are near-lossless for each benchmark dataset, while

the PSNR values—which do not take the human visual processing

system into account—nonetheless remain acceptable for viewing.

Figure 5 highlights a Vignette video frame from the Netflix dataset,

with an output PSNR of 36 dB and EWPSNR of 48 dB. Overall,

the results indicate that Vignette Compression provides acceptable

quality for its compression benefit.

7.1.3 Comparison with Saliency-based Encoder. Vignette differs

from traditional encoder-based solutions for incorporating saliency

information into the video compression pipeline. To evaluate the

performance of Vignette Compression relative to a custom saliency-

based encoder, we use the x264_saliency_mod fork of h.264 from

Lyudvichenko et al. [45]. Although the rest of our evaluation uses

hevc as the baseline codec, no existing saliency-based encoders

use hevc, so we instead compare with Vignette Compression using

h.264, the same encoder Lyudvichenko et al.modified. Because

Vignette can extensibly be used with any codec, it is straightforward

to switch Vignette Compression to use h.264 instead of hevc, as

we did for other experiments. For this experiment, we transcoded

benchmark videos to a target bitrate of 20% the original bitrate using

(1) h.264, (2) a saliency-based encoder, and (3) Vignette Compression

using h.264 as a base codec. As in §7.1.2, we measured achieved

bitrate reduction over the baseline videos and the resulting PSNR

and EWPSNR.

Figure 7b details the results. As expected, when tasked with re-

ducing video bitrate to 20%, the standard h.264 encoder generally

meets that bitrate reduction. Overall, the saliency-based encoder

and Vignette Compression perform favorably in bitrate reduction

compared to h.264: for vbench and Netflix, Vignette Compression

videos are smallest, but the custom encoder outperforms Vignette

Compression for the higher-resolution VR-360 and Blender bench-
marks. Examining quality, however, the custom encoder maintains

a higher PSNR and EWPSNR than Vignette Compression across
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(a) Vignette Compression with hevc.

Bitrate PSNR Eye-weighted

Benchmark Reduction (dB) PNSR (dB)

vbench 85.6 % 39 51

Netflix 98.6 34 45

VR-360 98.8 36 45

Blender 98.2 39 49

(b) Saliency-based compression with h.264 targeting 20% bitrate reduction.

Bitrate Reduction PSNR (dB) EWPSNR (dB)

Benchmark x264 [44] Vignette x264 [44] Vignette x264 [44] Vignette

vbench 23.3% 27.0% 7.6% 30 50 32 40 53 40

Netflix 32.0 12.4 5.1 28 34 32 40 47 43

VR-360 28.9 2.4 10.7 28 35 37 38 49 48

Blender 24.2 3.7 8.18 29 36 39 39 46 49

Figure 7: Bitrate reduction and quantitative quality metrics comparing (a) hevc and Vignette Compression using hevc, and

(b) h.264, a custom saliency-based encoder extending h.264, and Vignette Compression with h.264. For PSNR and EWPSNR, >

30 dB is acceptable for viewing, 50 dB+ is lossless.

all benchmarks. This quality gain can be attributed to the custom

encoder’s ability to finely tune quality on a per-macroblock scale.

We also observe saliency-based encoders also bear the additional

burden of full-size saliency information; even the test saliency

image provided by the saliency-based encoder, a single saliencymap

replicated for the length of the video, is 56KB. Vignette Storage’s

metadata, on the other hand, can be reduced to 100B bytestreams.

7.2 Quality of Service

To understand the impact of perceptual compression on common

video system workloads, we evaluated the quality of service (QoS)

delivered by Vignette for two applications: entertainment streaming

with a user study and evaluation of a video analytics application

that performs object recognition. These applications optimize for

different QoS metrics: perceptual quality for entertainment video;

throughput and accuracy for object recognition.

7.2.1 Perceptual Quality User Study. We we received IRB approval

to run a user study to quantify viewer perception of our saliency-

based compression. The study presented users with two versions of

the same video: one encoded with hevc at 20 Mbps (as our baseline),

the other with Vignette Compression. The Vignette Compression

videos were randomly chosen to be either 1 Mbps, 5 Mbps, 10 Mbps,

or 20 Mbps. For each video target bandwidth, we predicted saliency

and encoded the most-likely salient tiles of the video to the target

bitrate (1,5,10,20Mbps) and other tiles at lower bitrates, as in earlier

experiments. The study asked users their preference between the

matched pairs for 12 videos. The goal was to discover if viewers

prefer Vignette Compression to hevc, and, if so, if those preferences

are more or less pronounced at different bitrate levels for Vignette.

The 12 videos included three videos from each dataset, selected

to cover a range of entropy levels, and all videos’ original bitrate ex-

ceeded 20Mbps, except two from vbench. Each video was encoded

at a target bitrate (1Mbps, 5Mbps, 10Mbps, or 20Mbps), and the ques-

tionnaire randomly selected which bitrate to serve. We distributed

the questionnaire as a web survey and ensured videos played in

all browsers by losslessly re-encoding to h.264. Users viewed the

study videos in the web browser on their personal devices; devices

used ranged from phones on WiFi to laptops and wired desktops.

To eliminate concerns of buffering or network quality, the study

website pre-loaded all videos before allowing playback.

We recruited 35 naive participants aged 20–62 (51% women, 49%

men) from a college campus to participate in the study. Figure 8
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Figure 8: Results of perceived quality preference user study,

averaged across participants and videos by bitrate.

Table 3: Vignette Speedup and Accuracy Compared to hevc

Baseline on YOLO Object Recognition.

Decode Total Speedup Average

Speedup (Decode + YOLO) Accuracy

34.6% ± 14.3% 2.6% ± 2.2% 84% ± 14%

shows the results averaged across subjects and videos. When Vi-

gnette videos are encoded at 1 Mbps in the most salient regions, 72%

users preferred the hevc baseline. However, for Vignette videos en-

coded at 5, 10, and 20 Mbps, users either could not tell the difference

between hevc and Vignette, or preferred Vignette videos 60%, 79%,

and 81% of the time, respectively. This suggests that video systems

can deliver Vignette-encoded videos at 50-75% lower bitrate with

little perceived impact.

7.2.2 Object classification. Video storage and processing systems

often perform analytics and machine learning tasks on their video

libraries at scale [53, 56, 62]. To evaluate any performance degrada-

tion in latency or quality from using Vignette Compression, we pro-

file Vignette while running YOLO [54], a popular fast object recog-

nition algorithm used in recent video analytics systems [27, 31–33].

We compare against baseline hevc-encoded videos to evaluate if

Vignette incurs any additional cost in a video processing setting,

and run YOLO inference on the GPU. Table 3 shows that using

Vignette-compressed videos provides some speedup when decod-

ing videos for object recognition, but this benefit is overshadowed

by the fixed cost of running YOLO.
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Examining accuracy, we find that Vignette videos maintain 84%

accuracy on average, compared to the baseline hevc videos. We

find that accuracy on the YOLO task is lowest for the videos in

the VR360 suite, and tends to correspond to the areas where the

video is distorted from the equirectangular projection. Overall, we

find saliency-compressed videos can provide slight benefits for

video analytics latency, especially if video decoding is the system

bottleneck. Future work, however should investigate how to opti-

mize saliency-based compression for video analytics. For instance,

Vignette Compression could provide functionality to support mul-

tiple perceptual prediction algorithms, including models tuned for

analytics.

7.3 Compute Overhead

Vignette Compression bears the additional processing overhead of

executing a neural network to generate or update saliency maps. Vi-

gnette Storage can switch between the exhaustive or heuristic-based

tile configuration search to uncover optimal tile configurations for

a video. We benchmarked the latency of the combined saliency

and transcoding pipeline in two modes: exhaustive, which gener-

ates saliency maps per frame and exhaustively evaluates tiling, and

heuristic, which uses the heuristic search algorithm to select a tile

configuration within 0.25 dB of the best-PSNR choice (§5.4).

Table 4 shows generating saliency maps with MLNet dominates

computation time. This step, however, needs only to be performed

once per video, and is off the critical path for video streaming

workloads. Moreover, improving the performance of the saliency

prediction (MLNet) would significantly reduce these overheads. The

neural network used runs as unoptimized Theano code that could

be improved by using an optimizing machine learning framework.

7.4 Analytical Model of Data Center and
Mobile Costs

We use our evaluation results to model Vignette’s system costs at

scale for data center storage and end-user mobile power consump-

tion. While these results are a first-order analysis, they suggest the

potential benefit of deploying Vignette in the cloud.

7.4.1 Data center compute, storage, and network costs. Given the

high compute cost of Vignette, we evaluate the break-even point for

systems that store and deliver video content. We used AmazonWeb

Services (AWS) prices from July 2018 in the Northern California

region to characterize costs.

We use a c5.xlarge instance’s costs for compute, S3 for storage,

and vary the number of videos transferred to the Internet as a

proxy for video views. We assume a video library of 1 million

videos that are 10 MB each, encoded at 100 different resolution-

bitrate settings (as in [28, 35]) to produce ∼500 TB of video data.

We measured baseline compute cost to be a two-pass encoding for

each video at $0.212 / sec and Vignette’s transcode computation

to be 5× a baseline transcode, averaged from transcode costs for

videos across the datasets. Larger companies likely use Reserved

or Spot Instance offerings, which provide better value for years-

long reservation slots or non-immediate jobs; they are 36% and 73%

cheaper, respectively. For storage, we measured costs to be $0.023 /

GB on S3 and estimate Vignette-compressed videos would be 10%

of the original videos (§7.1). Transferring data out from S3 costs

Table 4: Mean processing time per video, evaluated over all

videos in our datasets.

Exhaustive Heuristic

Task Time (s) % Time (s) %

Generate saliency map 1633 49% 1633 95%

Compute tile configuration 1696 50 59 4

Saliency-based transcode 21 1 21 1

Total 3350 1713

$0.05 / GB; this cost is where Vignette achieves the majority of its

savings.

Figure 9 shows how different compute pricing models produce

lower savings at small numbers of video library views, but that

Vignette becomes cost-effective at large video viewing rates. For all

pricing tiers, a system would need to service ∼2 billion views across

a million-video library before Vignette’s compute overhead would

be amortized across transmission and storage savings. This number

is plausible for large video services; Facebook reported 8 billion

daily views in 2016 [48]. Even with Vignette’s substantial overhead,

streaming services need just 2,000 views per video to break even:

this could be 2 billion views across a million video library or 2,000

views of a single video.

7.4.2 Mobile Power Consumption. We explicitly designed Vignette

to work with the hevc standard so off-the-shelf software and hard-

ware codecs could decompress Vignette videos. Vignette Compres-

sion’s tiling strategy, however, makes video bitstream density highly

non-uniform across the visual plane. This results in inefficiency for

hardware architectures that decode variably-sized tiles in parallel.

On the other hand, even such designs could achieve a higher overall

power efficiency because of the reduced file sizes to decode and

display. To investigate whether Vignette videos reduce or increase

mobile power consumption, we profiled power consumption on a

Google Pixel 2 phone during video playback of Vignette videos and

standard hevc-encoded videos.

We measured battery capacity on a Google Pixel 2 while play-

ing our video library in a loop. The phone ran Android version

8.1.0 and kernel version 4.4.88-g3acf2d53921d, and MX Player 1.9.24

with ARMv7 NEON instructions enabled. Whenever possible, MX

Player used hardware acceleration to render videos.2 We disabled

nonessential display and button backlights, as well as any config-

urable sensors or location monitors, to minimize extraneous power

consumption. We logged battery statistics each minute using 3C

Battery Monitor Widget v3.21.8. We conducted three trials, playing

the 93-file video library in a loop until battery charge dissipated

from 100% to 30%, for our hevc baseline and Vignette videos.

Figure 10 shows our results. We found that Vignette video en-

abled 1.6× longer video playback time with the same power con-

sumption. While hardware decoder implementations are typically

proprietary, these results indicate that perceptual compression ben-

efits mobile viewers, as well as cloud infrastructure. For video decod-

ing ASICs where the hardware design is known [46, 64], Vignette’s

2MX Player only supported decoding stereoscopic videos with the software decoder.
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Figure 9: Estimated AWS costs for deploying Vignette ver-

sus traditional video transcoding. Vignette’s additional com-

pute cost is amortized after ∼2 billion video views over a 1-

million video library.

heuristic search algorithm could include power consumption of

tiles as an optimization target to produce perceptually compressed

videos for a “power-save” mode. We leave further optimization

of Vignette on mobile devices, including network download and

decoder optimization, to future work.

8 LIMITATIONS AND FUTUREWORK

This section considers limitations in our approach and evaluation.

8.1 Vignette Design Limitations

8.1.1 High compute overhead. Vignette’s high one-time compres-

sion cost is its biggest drawback, but we consider our algorithm

to be a reference implementation which will be improved upon in

future work. The compression performance is hindered by the use

of a highly accurate but slow neural network for saliency predic-

tion, which does not yet use a GPU or any modern deep learning

optimizations. Further, this expensive compression is run only once

and is easily amortized across many views (§7.4). Future work could

characterize the compute overhead of other saliency prediction tech-

niques [36] or tailor existing deep prediction networks to existing

cloud infrastructure [46] for improved performance.

8.1.2 Dependency on tiles. We argue Vignette’s use of tiling fea-

tures in video codecs is more flexible and forward-compatible than

rewriting a codec for each new type of perceptual information.

If, however, conventional codecs choose to integrate saliency or

other perceptual information, the impact of a cloud storage system

designed to support tile-based perceptual encoding will be smaller.

8.1.3 Integration with networking and other video system optimiza-

tions. We could further improve Vignette by building on other op-

timizations that work with off-the-shelf video standards. Notably,

Vignette does not yet support video streaming using adaptive bitrate

(ABR) algorithms. Future work could pair Vignette’s saliency-based

tiling with Fouladi et al.’s codesigned video transcode and network

transport protocol could achieve better streaming quality [19, 20],

or with VideoCoreCluster [41]’s energy-efficient cloud transcoding

using low-cost transcoding ASICs. Vignette’s heuristic search al-

gorithm could include power and performance information from

open-source video transcoding ASICs [46, 64] to target more power-

efficient tiling configurations. At the physical storage layer, Jevdjic
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Figure 10: Time to dissipate a Google Pixel 2 phone battery

from 100% to 30% when viewing hevc and Vignette videos

continuously. Vignette videos provide 1.67× longer video

playback on mobile phones.

et al.’s approximate video storage framework, which maps video

streams to different layers of error correction, could be coupled with

Vignette’s saliency mapping for more aggressive approximation of

non-salient video regions [30]. Integrating Vignette with these sys-

tems optimizations could further improve power efficiency during

playback, transcoding latency, or archival video storage durability.

8.1.4 Using Vignette in other storage systems. While we only evalu-

ated Vignette using LightDB, but we crafted the policies, metadata

extensions, and compression scheme to enable compatibility with

pre-existing video storage or transcoding systems. For instance, an

Amazon MediaConvert instance with a storage layer in Amazon

EBS and Glacier can easily use the policies and metadata in §5 to

implement Vignette, and Vignette can easily be used with other

codecs, like the upcoming av1.

8.1.5 Integration with other perceptual techniques. This paper de-

scribed using predicted saliency to perform perceptual video com-

pression. As mentioned in §2, other kinds of perceptual indicators

could be leveraged to improve video compression. As new technolo-

gies to capture other perceptual cues become available, Vignette’s

techniques can be extended to encode multiple cues.

8.2 Evaluation Limitations

8.2.1 Comparison with ground truth. To compute EWPSNR, we use

saliency maps generated by MLNet as ground truth. This evaluates

Vignette quality compared to the saliency map, but not quality

for real users. Evaluating on more precise ground truth, such as

eye tracker positions from users, however, requires resolving some

open questions. For instance, how should a perceptual compression-

based video storage system manage saliency for multiple users?

How does Vignette’s overhead and compression benefit change

when tuning compression for multiple users or kinds of devices

(mobile, desktop, television)?

8.2.2 Saliency for screencasts and 2D graphics. We eliminated one

outlier video, a screencast of a slideshow, because the saliency

model performed poorly and provided little compression benefit.

While our work targets reductions of storage size and network

bandwidth for the large corpora of videos stored for social media,
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entertainment, and video processing services, optimizing transmis-

sion of screencasts and other 2D graphics videos requires includ-

ing information from different saliency models. Incorporating re-

cent saliency models specifically designed for 2D visualizations [8]

would likely resolve the issue.

9 RELATEDWORK

9.1 Video Streaming and Storage Systems

The rise of video applications has driven renewed interest in pro-

cessing and storage systems for video content, with recent work

specializing for subdomains like social media, entertainment, and

video streaming. Social media services distribute user-uploaded

content from many types of video capture devices to many types

of viewing devices, typically serving a small number of popular or

livestreamed videos at high quality and low latency, as well as a

long tail of less popular videos [16, 59]. These workloads motivated

custom media storage infrastructure and fault-tolerant frameworks

for video uploads at scale [3, 4, 28, 43, 50]. Entertainment video

platforms like Netflix have smaller amounts of video data than so-

cial media services, but incur significantly more network traffic to

distribute videos broadly. These services maintain user experience

by transcoding videos for a range of heterogeneous devices and

bitrate requirements, tailoring encode settings by title, streaming

device, and video scene [1, 35, 47, 51].

Aside from entertainment, recent work in systems proposes

tailoring machine learning pipelines for video analytics applica-

tions [27, 31–33, 63]. Specifically, they combine multiple classifica-

tion algorithms to intelligently distribute computing effort to video

frames that are determined to have interesting content, similar to

semantic-based processing. BlazeIt [32], for instance, couples of sim-

ple, efficient classifiers with complex, precise ones using “scrubbing

queries”. Focus [27] uses the technique to build up an “approximate

index” of relevant videos. For these domains, Vignette is a com-

plementary design integrating perceptual information with video

storage and can likely compound performance improvements.

9.2 Saliency-based Compression

Vignette builds on a large body of work in saliency-based com-

pression. Early work improved the accuracy of saliency predic-

tion [36, 40], the speed of computing saliency [22, 23, 65], or coding

efficiency [22, 24, 45, 57, 65]. These existing solutions require cus-

tom versions of outdated codecs or solving costly optimization

problems during each transcoding run. Vignette fundamentally

differs from other contributions in perceptual compression by intro-

ducing a system design that can flexibly use any saliency prediction

algorithm or video codec, rather than focusing only on accuracy,

speed, or efficiency of saliency prediction. The limitations of prior

work specifically influenced Vignette’s design as a storage manager

compatible with existing codecs, uses low-overhead metadata, and

exposes a simple API for integration.

More recently, multimedia and networking research optimized

streaming bandwidth requirements for 360° and VR video by de-

creasing quality outside the VR field-of-view [15, 26, 42, 55]; while

similar in spirit to perceptual compression, this only compresses

non-visible regions of a video. Semantic-based compression, an-

other variant of perceptual compression, optimizes compression

for regions with objects of interest. Recent work [37, 38] targets

streaming applications, demonstrating the potential for energy effi-

ciency and reduced network cost for end-devices, but not storage.

Examining concerns for future VR pipelines, Sitzmann et al. [57]

observe the impact of leveraging saliency for VR video storage

and identified key perceptual requirements, but do not address the

production or distribution of saliency-compressed videos.

10 CONCLUSION

Video data continues to grow with increased video capture and

consumption trends, but leveraging perceptual cues can help man-

age this data. This paper proposes integrating perceptual compres-

sion techniques with cloud video storage infrastructure to improve

storage capacity and video bitrates while maintaining perceptual

quality. Vignette combines automatic generation of perceptual in-

formation with a video transcoding pipeline to enable large-scale

perceptual compression with minimal data overhead. Our offline

compression techniques deliver storage savings of up to 95%, and

user trials confirm little perceptual quality loss for Vignette videos

50-75% smaller in size.

Vignette’s design complements the contributions of existing

large-scale cloud video storage and processing systems. Video sys-

tems can use Vignette to further improve storage capacity or in

anticipation of video workloads using perceptual cues. As VR video

consumption and new perceptual markers — such as eye trackers

in VR headsets — grow in popularity, Vignette’s techniques will

be critical in integrating perceptual compression at large scale for

higher quality, lower bitrate video storage.
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