2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

ASYNC: A Cloud Engine with Asynchrony and History for Distributed Machine
Learning

Saeed Soori*, Bugra CanT, Mert GurbuzbalabanT, and Maryam Mehri Dehnavi*
*Department of Computer Science, University of Toronto, TDepartment of MSIS, Rutgers University
Email:sasoori@cs.toronto.edu, bugra.can@ rutgers.edu, mert.gurbuzbalaban@rutgers.edu, mmehride @ cs.toronto.edu

Abstract—ASYNC is a framework that supports the imple-
mentation of asynchrony and history for optimization methods
on distributed computing platforms. The popularity of asyn-
chronous optimization methods has increased in distributed
machine learning. However, their applicability and practical
experimentation on distributed systems are limited because
current bulk-processing cloud engines do not provide a ro-
bust support for asynchrony and history. With introducing
three main modules and bookkeeping system-specific and
application parameters, ASYNC provides practitioners with
a framework to implement asynchronous machine learning
methods. To demonstrate ease-of-implementation in ASYNC,
the synchronous and asynchronous variants of two well-known
optimization methods, stochastic gradient descent and SAGA,
are demonstrated in ASYNC.

Keywords-Machine learning, cloud computing

I. INTRODUCTION

Distributed optimization has gained significant traction
and is frequently used to solve modern large-scale ma-
chine learning problems [1]. The challenges of dealing with
huge datasets, has lead to the development of optimizations
methods with asynchrony and history. Asynchronous op-
timization methods reduce worker idle times and mitigate
communication costs. Operations on a history of gradients
augments the noise (stochasticity) to improve convergence
[2]. Distributed optimization methods operate on batches of
data and thus have to be implemented in cluster-computing
engines with a bulk (coarse-grained) computation model.

Several general coarse-grained distributed data processing
systems exist. Hadoop [3] and Spark [4] are based on the
iterative map-reduce model but use a synchronous iterative
communication pattern. Thus, because of not supporting
asynchrony, their execution is vulnerable to the diverse
performance profile caused by slow workers, i.e. stragglers,
and network latency. Also history cannot be efficiently
maintained in these engines as it requires storing bulky
worker-results, and introduces overheads to their lineage-
based [4] or checkpointing fault tolerant implementations.

Recently, a number of coarse-grained machine learning
engines such as Petuum [5] and Litz [6], have adopted the
parameter server [7] architecture to implement asynchronous
communication between nodes with push-pull operations.
Asynchrony in distributed optimization methods is imple-
mented with consistency models, i.e. barriers, expressed via

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00052

429

a dependency graph that maintain a trade-off between sys-
tem efficiency and algorithm convergence. Parameter server
paradigms implement a specific class of consistency models,
i.e. stale synchronous parallel (SSP) paradigms using a fixed
dependency graph, which use a static staleness threshold to
control worker wait times. However, recent advancements
in distributed optimization [8], [9] demand for wider range
of customized consistency models (CCMs), often defined
by the user such as throttled-release [9], that control worker
wait times using parameters such as worker-task-completion
time [8] and require to adaptively adjust the parameters
at runtime. CCMs can not be implemented in available
parameter server frameworks as they need the underlying
dependency graph to adaptively be reconfigured at runtime.
Also, Petuum does not support history and Litz preserves the
history by periodic checkpointing with significant overheads.
parameter servers, Glint [7] which is built on top of Spark
is the closest to our framework. Glint supports history but
does not the implementation CCMs. Also, the consistency
model in Glint is optimized for computing topic models and
is not optimized for distributed optimization methods.

Other distributed parameter-server frameworks such as
DistBelief [10] and TensorFlow [11] are specialized for
deep learning applications and thus do not naturally support
consistency models and history.

Amongst the fine-grained distributed data processing sys-
tems, primarily used for streaming applications, RAY [12]
and Flink [13] support asynchronous function invocations
with dynamic data flow graphs [14]. However, these frame-
works do not support CCMs and are primarily designed
for fine-grained tasks, and thus cannot naturally extend to
a bulk-processing engine. Also, while streaming engines
(because of processing fine tasks) can store local results and
intermediate data on workers to support history with low-
overhead, bulk processing engines cannot efficiently store
the worker-results because of processing coarse tasks.

In principle, with massive system engineering efforts,
machine learning practitioners can implement one-off asyn-
chronous optimization methods with re-engineering systems
and interfaces. However, this comes at the cost of pushing
system challenges such as scheduling, bookkeeping, and
fault tolerance to the application developer. For example,
Spark can support history if previous worker-results are

IEEE
(@ computer
socl

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

ety



stored to disk and checkpointed; this will lead to storage
overheads. To implement CCMs the entire Spark engine
has to change to support asynchronous execution. An expert
MPI programmer can use asynchronous primitives to imple-
ment SSP [15]. However, this leads to increased program
complexity and the complexity will increase if customized
consistency models were to be implemented. Noteworthy,
MPI does not have a robust support for fault tolerance and
thus is typically not used for cloud computing.

This work presents ASYNC, a bulk processing cloud-
computing framework, built on top of Spark, that sup-
ports the implementation of distributed optimization meth-
ods with asynchrony and history. ASYNC implements an
asynchronous execution to Spark’s engine and enables the
workers and/or the master to bookkeep (log) system-specific
and application parameters. The asynchronous execution
paradigm and the bookkeeping structures work together
to construct a dynamic dependence graph for the imple-
mentation of custom consistency models and to recover
history with a partial broadcast of model parameters. Major
contributions of this paper are:

A novel framework for machine learning practition-
ers to implement and dispatch asynchronous machine
learning applications with custom consistency models
on cloud and distributed platforms. ASYNC introduces
three modules to cloud engines, ASYNCcoordinator,
ASYNCbroadcaster, and ASYNCscheduler to enable the
asynchronous gather, broadcast, and schedule of tasks
and results.

An efficient history recovery strategy implemented with
the ASYNCbroadcaster and bookkeeping attributes, to
facilitate the implementation of variance reduced opti-
mization methods that operate on historical gradients.

A robust programming model with extensions to the
Spark API that enables the implementation of asyn-
chrony and history while preserving the in-memory and
fault tolerant features of Spark.

A demonstration of ease-of-implementation in ASYNC
with the implementation and performance analysis of
the stochastic gradient descent (SGD) [1] algorithm
and its asynchronous variant using a CCM. Our results
demonstrate that asynchronous SAGA (ASAGA) [16]
and asynchronous SGD (ASGD) outperform their syn-
chronous variants up to 4 times on a distributed system
with stragglers.

II. PRELIMINARIES

Distributed machine learning often results in solving an
optimization problem in which an objective function is
optimized by iteratively updating the model parameters
until convergence. Distributed implementation of optimiza-
tion methods includes workers that are assigned tasks to
process parts of the training data, and one or more servers,
i.e. masters, that store and update the model parameters.

430

Distributed machine learning models often result in the
following structure:

ey

min F(w) =
weR?

Z f(l)
where w is the model parameter to be learned, m is the
number of workers, and f()(w) is the local loss function
computed by worker i based on its assigned training data.
Each worker has access to n; data points, where the local
cost has the form

FOw) =3 70 w)

j=1

@

for some loss functions f]@ : R4 — R. For example, in
supervised learning, given an input-output pair (xij, yl—j), the
loss function can be fj’(w) = L((w, ¢(x;5)), yi;) where ¢ is
a fixed function of choice and (-, -) is a convex loss function
that measures the loss if y;; is predicted from z;; based
on the model parameter w. This setting covers empirical
risk minimization problems in machine learning that include
linear and non-linear regression, and other classification
problems such as logistic regression [2]. In particular, if
¢(x) = x and the £(-,-) function is the square of the
Euclidean distance function, we obtain the familiar least
squares problem

Fi(w) = |lafiw - yy? ®)
where
FOw) =3 P w) = 4w bl @
j=1
with b; = {y;;}j2, is a column vector of length n; and

A; € Rwixd g called the data matrix as its j-th row is
given by the input x”.

In the following we use the gradient descent (GD) al-
gorithm as an example to introduce stochastic optimization
and other terminology used throughout the paper such as
mini-batch size. The introduced terms are used in all op-
timization problems and are widely used in the machine
learning literature. GD iteratively computes the gradient of
the loss function VE(wy,) = L 3" V£ (wy,) to update
the model parameters at iteration k. To implement gradient
descent on a distributed system, each worker ¢ computes its
local gradient V f) (w®); the local gradients are aggregated
by the master when ready. The full pass over the data at
every iteration of the algorithm with synchronous updates
leads to large overheads. Distributed stochastic gradient
descent (SGD) methods and their variants [17] are on the
other hand scalable and popular methods for solving (1).
Distributed SGD replaces the local gradient V f() (wy,) with

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



an unbiased stochastic estimate V f() (wy) of it, computed
from a subset of local data points:

. 1 _
VIO wr) == > VI (wn), 5)
v s€Si K
where S; ; C {1,...,n;} is a random subset that is sampled
with or without replacement at iteration k, and b; := |\S; x|

is the number of elements in S; ;, [1], also called the mini-
batch size. To obtain desirable accuracy and performance,
implementations of stochastic optimization methods require
tuning algorithm parameters such as the step size and the
mini-batch size in SGD [1].

III. MOTIVATION FOR ASYNCHRONY AND HISTORY

Asynchrony is implemented to improve the convergence
rate and time-to-solution of optimization methods on cluster-
computing platforms with slow machines (stragglers). In
distributed optimization, workers compute local gradients of
the objective function and then communicate the computed
gradients to the server. To proceed to the next iteration of the
algorithm, the server updates the shared model parameters
with the received gradients, broadcasts the most recent
model parameter, and schedules new tasks. In asynchronous
optimization, the server can proceed with the update and
broadcast of the model parameters without having to wait
for all worker tasks to complete. This asynchrony allows
the algorithm to make progress in the presence of stragglers
which is known as an increase in hardware efficiency [18].
However, this progress in computation comes at a cost,
the asynchrony inevitably adds staleness to the system
wherein some of the workers compute gradients using model
parameters that may be several gradient steps behind the
most updated set of model parameters which can lead to
poor convergence. This is also referred to as a worsening in
statistical efficiency [17].

Asynchronous optimization methods are formulated and
implemented with properties that balance statistical effi-
ciency and hardware efficiency to maximize the performance
of the optimization methods on distributed systems. Con-
sistency models, i.e. barrier control strategies, are used to
design asynchronous optimization methods that enable this
balance. Barriers in asynchronous algorithms determine if a
worker should proceed to the next iteration or if it should
wait until a specific number of workers have communicated
their results to the server. The most well-known barrier
control strategy is the Stale Synchronous Parallel (SSP) in
which workers synchronize when staleness (determined by
the number of stragglers) exceeds a threshold. ASYNC sup-
ports SSP and also facilitates the implementation of custom
consistency models that apply barriers based on parameters
such as worker-task-completion time and scheduling delays.

History augments the noise from stochastic gradients to
improve the convergence rate of the optimization method.
Distributed optimization methods, used in machine learning

431

applications, are typically stochastic [1]. Stochastic opti-
mization methods use a noisy gradient computed from
random data samples instead of the true gradient which can
lead to poor convergence. Variance reduction techniques,
used in both synchronous and asynchronous optimization,
augment the noisy gradient to reduce this variance. A
class of variance-reduced asynchronous algorithms that have
led to significant improvements over traditional methods
memorize the gradients computed in previous iterations,
i.e. historical gradients [19]. Historical gradients cannot be
implemented in cluster-computing engines such as Spark
primarily because Spark can only broadcast the entire history
of the model parameters which can be very large and can
lead to significant overheads.

IV. ASYNC: A CLoUD COMPUTING FRAMEWORK WITH

ASYNCHRONY AND HISTORY

ASYNC is a framework, built on top of Spark [4],
for the implementation and execution of asynchrony and
history in optimization algorithms while retaining the map-
reduce model, scalability, and fault tolerance of state-of-
the-art cluster-computing engines. Figure 1 demonstrates an
overview of the ASYNC engine. The three main modules
in ASYNC are the ASYNCcoordinator, ASYNCbroadcaster,
ASYNCscheduler. ASYNC also collects and stores book-
keeping structures. These structures are communicated be-
tween the workers and the master and are either system-
specific, i.e. status, or are related to the application, i.e.
attributes. This section elaborates how the internal elements
of ASYNC work together to facilitate the implementation of
asynchrony and history.

Bookkeeping structures in ASYNC. Bookkeeping struc-
tures are used by the main modules of ASYNC to enable the
implementation of asynchrony and history. These structures
are collected by ASYNC at runtime and are stored on
the master. With the help of the ASYNCcoordinator, each
worker communicates to the master, application-specific
attributes such as task results and the mini-batch size.
Workers’ recent status such as worker staleness, average-
task-completion time, and availability' are also logged and
stored in a table called STAT with the help of the ASYNC-
coordinator.

Implementing asynchrony with the ASYNCcoordinator,
ASYNCscheduler, and the status structures. To implement
asynchrony, ASYNC implements a dynamic task graph
computation model which uses the consistency model to
dynamically determine executing tasks and their assigned
workers. The execution of tasks on workers is automatically
triggered by the system using a computation graph. Task
and data objects are the nodes in this graph and the edges
are the dependency amongst nodes/tasks. The computation
graph in classic consistency models such as SSP does not

'A worker is available if it is not executing a task and unavailable
otherwise.

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



ASYNCscheduler
2 Barrier Strategy
=
5 %) +
©
2 2 : .
s - i)
gl e 2
O : ] I
z : 3
2 1 3
2 o : z ASYNChroadcaster
. s
Server
[ Model Parameter ‘—‘
Task Result Worker Worker
Worker

Figure 1: An overview of the ASYNC framework.

Table I: Transformations, actions, and methods in ASYNC.

AC is ASYNCcontext and Seq[T] is a sequence of elements.

ASYNCreduce(f:(T,T) = T, AC) Reduces the elements of the RDD using the specified associative

Actions binary operator.

’ ASYNCaggregate(zeroValue: U) Aggregates the elements of the partition using the combine functions and a

(seqOp: (U, T) = U, combOp: (U, U) = U), AC) | neutral "zero” value.

Transformations | ASYNCbarrier(f:T = Bool, Seq[T]) Returns a RDD containing elements that satisfy a predicate f.
ASYNCcollect() Returns a task result.
ASYNCcollectAll() Returns a task result and its attributes.

Methods ASYNCbroadcast(T) Creates a dynamic broadcast variable.
AC.STAT Returns the current status of all workers.
AC.hasNext() Returns true if a task result exists.

change at runtime because the models do not rely on runtime
information such as the system state. However, many CCMs
take information from the current state of the system as input
and couple this information with the barrier control strategy
to dynamically build the computation graph. To implement
CCMs, the ASYNCcoordinator periodically communicates
with the workers to update system-specific parameters in
the STAT table. The ASYNCscheduler uses the parameters
in STAT and a user-defined barrier control strategy to update
the computation graph. The computation graph is then
executed to apply the desired consistency model.

Implementing history with the ASYNCbroadcaster and the
attributes. In each iteration of an optimization method with
history, the computed gradients from previous iterations are
used together with the current model parameters to update
the model parameters. Implementing history in a coarse-
grained computation engine via explicitly storing bulky
worker-results, i.e. previous gradients, leads to significant
storage overheads. A fault tolerant execution will also have
overheads as large gradients have to be periodically check-
pointed or recomputed explicitly using a lineage.

ASYNC does not explicitly store, communicate, or com-
pute past gradients. Instead we use the approach from [2]
in which the history of past gradients is recovered, when
needed, using previous model parameters. Recovering his-

432

tory has low storage and computation overheads in coarse-
grained computation models. By recovering history, workers
in ASYNC do not need to store any previously computed
gradients and only the previous model parameters are stored
on the master. The cost of storing the model parameters has
an inverse relation to the batch size [1] and thus reduces
as the granularity of tasks increase, e.g. larger batch sizes.
Also, to recover a past gradient, a worker only needs to
subtract its recent model parameter from the previous model
parameter that is broadcasted to it from the master; the
approach in [2] is then used to update the master-side model
parameters based on the history. The ASYNCbroadcaster
in ASYNC is responsible for the asynchronous broadcast
of model parameters between the master and individual
workers. Attributes such as the mini-batch size, required by
the master to apply history to its model parameters, are also
broadcast using the ASYNCbroadcaster.

V. PROGRAMMING WITH ASYNC

To use ASYNC, developers are provided an additional
set of ASYNC-specific functions, on top of what Spark
provides, to access the bookkeeping structures and to im-
plement asynchrony and history. The programming model
in ASYNC is close to that of Spark [4]. It operates on
resilient distributed datasets (RDD) to preserve the fault

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



tolerant and in-memory execution of Spark. The ASYNC-
specific functions also either transform the RDDs, known
as transformations in Spark, or conduct lazy actions. In
this section, ASYNC’s programming model and API is first
discussed. We then show the implementation of SGD and
its asynchronous variant which uses a CCM. A well-known
history-based optimization method called SAGA [19] and its
asynchronous variant with a CCM is also implemented.

A. The ASYNC programming model

Asynchronous Context (AC) is the entry to ASYNC and
should be created only once in the beginning. The ASYNC-
scheduler, the ASYNCbroadcaster, and the ASYNCcoordi-
nator communicate via the AC and with this communication
create barrier controls, broadcast variables, and store work-
ers’ task results and status. AC maintains the bookkeeping
structures and ASYNC-specific functions, including actions
and transformations that operate on RDDs. Workers use
ASYNC functions to interact with AC and to store their re-
sults and attributes in the bookkeeping structures. The server
queries AC to update the model parameters or to access
workers’ status. Table I lists the main functions available
in ASYNC. We show the signature of each operation by
demonstrating the type parameters in square brackets.

Collective operations in ASYNC. ASYNCreduce is an
action that aggregates the elements of the RDD on the
worker and returns the result to the server. ASYNCreduce
differs from Spark’s reduce in two ways. First, Spark ag-
gregates data across each partition and then combines the
partial results together to produce a final value. However,
ASYNCreduce executes only on the worker and for each
partition. Secondly, reduce returns only when all partial re-
sults are combined on the server, but ASYNCreduce returns
immediately. Task results on the server are accessed using
the ASYNCcollect and ASYNCcollectAll methods. ASYNC-
collect returns task results in FIFO (first-in-first-out) order
and also returns the worker attributes. The workers’ status
can also be accessed with ASYNC.STAT.

Algorithm 1: The SGD Algorithm

Input : points, numlterations, learning rate «;, sampling
rate b
Output: model parameter w
1 for i = I to numliterations do
2 w_br = sc.broadcast(w)
3 gradient = points.sample(b).map(p =
V fp(w_br.value)). reduce(_+_)
w -= «; * gradient

4
5 end

6 return w

Barrier and broadcast in ASYNC. ASYNCbarrier is a
transformation, i.e. a deterministic operation which creates a
new RDD based on the workers’ status. ASYNCDbarrier takes

433

Algorithm 2: The ASGD Algorithm

Input : points, numlterations, learning rate «;, sampling
rate b
Output: model parameter w
AC = new ASYNCcontext
for i = 1 to numlterations do
w_br = sc.broadcast(w)
points. ASYNCbarrier(f, AC.STAT).sample(b).map(p
= V fp(w_br.value)) .ASYNCreduce(_+_, AC)
while AC.hasNext() do
gradient= AC.ASYNCcollect()
w -= o; * gradient
end
end

B W N =

o g n

return w

the recent status of workers, STAT, and decides which work-
ers to assign new tasks to, based on a user-defined function.
For example, for a fully asynchronous barrier model the fol-
lowing function is declared: f : STAT.foreach(true). In
Spark, broadcast parameters are “broadcast variable” objects
that wrap around the to-be-broadcast value. ASYNCBroad-
cast also uses broadcast variables and similar to Spark,
the method value can be used to access the broadcast
value. However, ASYNCbroadcast differs from the broadcast
implementation in Spark since it has access to an index. The
index is used internally by ASYNCbroadcast to get the ID
of the previously broadcast variables for the specified index.
ASYNCbroadcast eliminates the need to broadcast values
when accessing the history of broadcast values.

Algorithm 3: The SAGA Algorithm

Input : points, numlterations, learning rate «, sampling
rate b, number of points n
Output: model parameter w
averageHistory = 0
store w in table
for i = 1 to numlterations do
w_br =sc.broadcast(w)
(gradient, history)= points.sample(b).map((index,p) =
V fp(w_br.value), V fp(table[index])).reduce(_+_)

L R R

6 averageHistory += (gradient - history)* bxn

7 w -= « * (gradient - history + averageHistory )
8 update table

9 end

10 return w

B. Case studies

The robust programming model in ASYNC provides
control of low-level features in both the algorithm and
the execution platform to facilitate the implementation
of asynchrony and history in optimization methods. The
following demonstrates the implementation of well-known
asynchronous optimization methods ASGD and ASAGA in
ASYNC as examples.

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



Algorithm 4: The ASAGA Algorithm

Input : points, numlterations, learning rate «, sampling
rate b, #points n, #partitions P
Output: model parameter w
1 AC = new ASYNCcontext
2 averageHistory = 0
3 for i = I to numlterations do

4 w_br = AC.ASYNCbroadcast(w)
5 points.ASYNCbarrier(f, AC.STAT)
.sample(b).map((index,p) = V fp(w_br.value),
V fp(w_br.value(index))).ASYNCreduce(_+_, AC)
6 while AC.hasNext() do
7 (gradient,history)= AC.ASYNCcollect()
8 averageHistory += (gradient - history)* bxn/P
9 w -= « * (gradient - history + averageHistory)
10 end
11 end
12 return w

ASGD with ASYNC. An implementation of mini-batch
stochastic gradient descent (SGD) using the map-reduce
model in Spark is shown in Algorithm 1. The map phase
applies the gradient function on the input data independently
on workers. The reduce phase has to wait for all the
map tasks to complete. Afterwards, the server aggregates
the task results and updates the model parameter w. The
asynchronous implementation of SGD in ASYNC is shown
in Algorithm 2. With only a few extra lines from the ASYNC
API, colored in blue, the synchronous implementation of
SGD in Spark is transformed to ASGD. An ASYNCcontext
is created in line 1 and is used in line 4 to create a barrier
using the user-defined CCM indicated by f and based on the
current workers’ status, AC.STAT. The partial results from
each partition are then obtained and stored in AC in line 4.
Finally, these partial results are accessed in line 6 and are
used to update the model parameter in line 7.

ASAGA with ASYNC. The SAGA implementation in Spark
is shown in Algorithm 3. This implementation is inefficient
and not practical for large datasets as it needs to syn-
chronously broadcast a table of all stored model parameters
to each worker, colored in red in Algorithm 3 line 5.
The size of this increases after each iteration and thus
broadcasting it leads to large communication overheads. As
a result of the overhead, machine learning libraries that are
build on top of Spark such as MIllib [20] do not provide
implementations of optimization methods such as SAGA
that requires the history of gradients. ASYNC resolves the
overhead with ASYNCbroadcast. The implementation of
ASAGA is shown in Algorithm 4. ASYNCbroadcast is used
to define a dynamic broadcast in line 4. Then, the broadcast
variable is used to compute the historical gradients in line
5. In order to access the last model parameters for sample
index, the method value is called in line 5. As shown
in Algorithm 4, there is no need to broadcast a table of

434

parameters which allows for efficient implementation of both
SAGA and ASAGA in ASYNC.

CCMs in ASYNC. To enable the implementation of custom
consistency models, ASYNC provides the interface to im-
plement user-defined functions that selectively choose from
available workers based on their status. Listing 1 demon-
strates the implementation of two CCMs in ASYNC, CCM1
and CCM2, as well as the SSP model. CCM1 is the throttled-
release [9] barrier strategy which submits tasks to available
workers only when the number of available workers is at
least k. CCM2 implements a fully asynchronous barrier that
allows workers to progress as soon as their current task
finishes.

f: STAT.foreach (Avaialble_Workers >= k) %
CcCcM1

f: STAT.foreach(true) % CCM2

f: STAT.foreach (MAX_Staleness < s) % The SSP
barrier control with a staleness
threshold ’s’

points.ASYNCbarrier (f, AC.STAT) % Apply the
barrier

Listing 1: Pseudo-code for implementing CCMs in ASYNC.

VI. RESULTS

We evaluate the performance of ASYNC by imple-
menting two asynchronous optimization methods, namely
ASGD and ASAGA, and their synchronous variants to solve
least squares problems. We implement the throttled-release
CCM for the both asynchronous methods and use history
in ASAGA and SAGA. The performance of ASGD and
ASAGA are compared to their synchronous implementations
in Spark. To the best of our knowledge, no library or imple-
mentation of asynchronous optimization methods exists on
Spark. However, Glint that is built on top of Spark supports
asynchrony for computing topic models. Therefore we im-
plement the distributed optimization method ASGD using
Glint and compared it with the implementation of ASGD
in ASYNC. Glint requires more communication among
its parameter servers and workers compared to ASYNC
since it requires multiple push-pull operation for batches
of data. This extra communication overhead results in poor
performance for ASGD in Glint. Our experiments show
that Glint converges approximately 10x slower compared to
ASYNC. Furthermore, to demonstrate that the synchronous
implementations of the algorithms using ASYNC are well-
optimized, we first compare the performance of the syn-
chronous variants of the tested optimization methods in
ASYNC with the state-of-the-art machine learning library,
Mllib [20]. Mllib is a library that provides implementations
of a number of synchronous optimization methods.

In subsection VI-C we evaluate the performance of ASGD
and ASAGA in ASYNC in the presence of stragglers.

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



Dataset Row numbers Column numbers Size
revl_full.binary | 697,641 47,236 851.2MB
mnist8m 8,100,000 784 19GB
epsilon 400,000 2000 12.16GB

Table II: Datasets for the experimental study.

—mnist8m-MLlIib
=——mnist8m-ASYNC
epsilon-MLlib
1 — epsilon-ASYNC

—rcv1-MLlib
—rcv1-ASYNC

error

10
x10°

Figure 2: SGD implemented in ASYNC versus Mllib.

time(ms)

A. Experimental setup

We consider the distributed least squares problem defined
in (4). Our experiments use the datasets listed in Table II
from the LIBSVM library [21], all of which vary in size
and sparsity. For the experiments, we use ASYNC, Scala
2.11, Mllib [20], and Spark 2.3.2. Breeze 0.13.2 and netlib
1.1.2 are used for the (sparse/dense) BLAS operations in
ASYNC. XSEDE Comet CPUs [22] are used to assem-
ble the cluster. ASYNC is available at https://github.com/
ASYNCframework/ASYNCframework.

To demonstrate the performance of asynchronous algo-
rithms and their robustness to the heterogeneity in cloud
environments, we evaluate the implemented methods in the
presence of stragglers. Two different straggler behaviours are
used: (i) Controlled Delay Straggler (CDS) experiments in
which a single worker is delayed with different intensities;
(ii) the Production Cluster Stragglers (PCS) experiments in
which straggler patterns from real production clusters are
used. The CDS experiments are ran with all three datasets
on a cluster composed of a server and 8 workers. The PCS
experiments require a larger cluster and thus are conducted
on a cluster of 32 workers with one server using the two
larger datasets (mnist8m and epsilon). In all configurations
a worker runs an executor with 2 cores. The number of
data partitions is 32 for all datasets and in the implemented
algorithms. The experiments are repeated three times; the
average reported.

Parameter tuning: A sampling rate of b = 10% is selected
for the mini-batching SGD for mnist8m and epsilon and b
= 5% is used for rcvi_full.binary. SAGA and ASAGA use

435

b = 10% for epsilon, b = 2% for rcvi_full. binary, and use
b =1% for mnist8m. For the PCS experiment, we use b =
1% for mnist8m and epsilon. We use the same step size
as MIlib and tune it for SGD to converge faster. A fixed
step size is used in SAGA which is also tuned for faster
convergence. The step size is not tuned for the asynchronous
algorithms. Instead, we use the following heuristic, the step
size of ASGD and ASAGA is computed by dividing the
initial step size of their synchronous variants by the number
of workers [23]. We run the SGD algorithm in Mllib for
15000 iterations with sampling rate of 10% and use its final
objective value as the baseline for the least squares problem.

B. Comparison with Mllib

We use ASYNC for implementations of both the syn-
chronous and the asynchronous variants of the algorithms
because (i) ASYNC’s performance for synchronous methods
is similar to that of MIlib’s; (ii) asynchronous methods
are not supported in Mllib; (iii) synchronous methods that
require history of gradients can not be implemented in Mllib
because of discussed overheads. To demonstrate that our
implementations in ASYNC are optimized, we compare the
performance of SGD in ASYNC and MIlib for solving the
least squares problem [24]. Both implementations use the
same initial step size. The error is defined as objective
function value minus the baseline. Figure 2 shows the error
for three different datasets. The figure demonstrates that
SGD in ASYNC has a similar performance to that of Mllib’s
on 8 workers, the same pattern is observed on 32 workers.
Therefore, for the rest of the experiments, we compare the
asynchronous and synchronous implementations in ASYNC.

C. Robustness to stragglers

Controlled Delay Straggler: We demonstrate the effect
of different delay intensities in a single worker on SGD,
ASGD, SAGA, and ASAGA by simulating a straggler with
controlled delay [18], [25]. From the 8 workers in the cluster,
a delay between 0% to 100% of the time of an iteration is
added to one of the workers. The delay intensity, which
we show with delay-value %, is the percentage by which a
worker is delayed, e.g. a 100% delay means the worker is
executing jobs at half speed. The controlled delay is imple-
mented with the sleep command. The first 100 iterations of
both the synchronous and asynchronous algorithms are used
to measure the average iteration execution time.

SAGA ASAGA SGD ASGD
mnist8m | 42.8367 ms | 9.8125 ms | 6.4433 ms | 3.5745 ms
epsilon 6.9926 ms 1.1721 ms | 53112 ms | 1.4165 ms

Table III: Average wait time per iteration on 32 workers.

The performance of SGD and ASGD for different delay
intensities are shown in Figure 3 where for the same delay
intensity the asynchronous implementation always converges

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



==-Sync

—ASYNC

’ ---Sync-0.3

— ASYNC-0.3
Sync-0.6
ASYNC-0.6

==-Sync-1.0

[=—ASYNC-1.0|

—--Sync
—ASYNC
—--Sync-0.3
—ASYNC-0.3
Sync-0.6
ASYNC-0.6|
==-Sync-1.0
[=—ASYNC-1.0|

—--Sync
—ASYNC
==-Sync-0.3
—ASYNC-0.3
Sync-0.6
ASYNC-0.6
—--Sync-1.0
—ASYNC-1.0

time(ms)

(a) mnist8m

time(ms)

(b) epsilon

time(ms)

(c) revl_full.binary

Figure 3: The performance of ASGD and SGD in ASYNC with 8 workers for delay intensities of 0%, 30%, 60% and 100%
which are shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6 and ASYNC/SYNC-1.0 respectively.

——ASGD-mnist8m
--o- SGD-mnist8m
—e—ASGD-epsilon
r-e- SGD-epsilon
——ASGD-rcv1
e+ SGD-rev1

average wait time per iteration (ms)

100%
delay

Figure 4: Average wait time per iteration with 8 workers for
ASGD and SGD in ASYNC for different delay intensities.

faster to the optimal solution compared to the synchronous
variant of the algorithm. As the delay intensity increases, the
straggler has a more negative effect on the runtime of SGD.
However, ASGD converges to the optimal point with almost
the same rate for different delay intensities. This is because
the ASYNCscheduler continues to assign tasks to workers
without having to wait for the straggler. When the task
result from the straggling worker is ready, it independently
updates the model parameter. Thus, while ASGD in ASYNC
requires more iterations to converge, its overall runtime is
considerably faster than the synchronous method. With a
delay intensity of 100%, a speedup of up to 2x is achieved
with ASGD vs. SGD.

Figure 4 shows the average wait time for each worker
over all iterations for SGD and ASGD. The wait time is
defined as the time from when a worker submits its task

436

result to the server until it receives a new task. In the
asynchronous algorithm, workers proceed without waiting
for stragglers. Thus the average wait time does not change
with changes in delay intensity. However, in the synchronous
implementation worker wait times increase with a slower
straggler. For example, for the mnist8m dataset in Figure 4,
the average wait time for SGD increases significantly when
the straggler is two times slower (delay = 100%). Comparing
Figure 3 with Figure 4 shows that the overall runtime of
ASGD and SGD is directly related to their average wait
time where an increase in the wait time negatively affects
the algorithms convergence rate.

The slow worker pattern used for the ASGD experiments
is also used for ASAGA. Figure 5 shows experiment results
for SAGA and ASAGA. The communication pattern in
ASAGA is different from ASGD because of the broadcast
required to compute historical gradients. In ASAGA, the
straggler and its delay intensity only affects the computation
time of a worker and does not change the communication
cost. Therefore, the delay intensity does not have a linear
effect on the overall runtime. However, Figure 5 shows
that increasing the delay intensity negatively affects the
convergence rate of SAGA while ASAGA maintains the
same convergence rate for different delay intensities.

The workers’ average wait time for ASAGA is shown in
Figure 6. With an increase in delay intensity, workers in
SAGA wait more for new tasks. The difference between the
average wait time of SAGA and ASAGA is more noticeable
when the delay increases to 100%. In this case, the compu-
tation time is significant enough to affect the performance of
the synchronous algorithm, however, ASAGA has the same
wait time for all delay intensities.

Production Cluster Stragglers: Our PCS experiments are
conducted on 32 workers with straggler patterns in real pro-
duction clusters [26], [27]; these clusters are used frequently
by machine learning practitioners. We use the straggler

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



10
==-Sync ==-Sync —--Sync
—ASYNC —ASYNC —ASYNC
10" ---Sync-0.3 —--Sync-0.3 —--Sync-0.3
— ASYNC-0.3| 107! — ASYNC-0.3| —ASYNC-0.3
Sync-0.6 Sync-0.6 104 Sync-0.6
ASYNC-0.6| ASYNC-0.6 ASYNC-0.6
10° ---Sync-1.0 =--Sync-1.0 ---Sync-1.0
—ASYNC-1.0 —ASYNC-1.0 —ASYNC-1.0
S, 5107 5, ol
£10 =4 £10
o o o}
102 e e %
e 3
10° Y 10°
LR
10 1y \
[ \
14 \
i i
-4 L -4 L L -4 L
10 1 2 3 4 5 6 7 8 10 0 2 4 6 8 10 12 10 0 8
time(ms) %10° time(ms) %10° time(ms) «10°

(a) mnist8m

(b) epsilon

(c) revl_full.binary

Figure 5: The performance of ASAGA and SAGA in ASYNC for delay intensities of 0%, 30%, 60% and 100% which are
shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6 and ASYNC/SYNC-1.0 respectively.

<
—o— ASAGA-mnist8m
--o- SAGA-mnist8m
—e—ASAGA-epsilon
--e- SAGA-epsilon
—e—ASAGA-rcv1
e SAGA-rcvi1

average wait time per iteration (ms)
[e ]

100%
delay

Figure 6: Average wait time per iteration with 8 workers for
ASAGA and SAGA for different delay intensities.

behaviors reported in previous research [28], [29] all of
which are based on empirical analysis of production clusters
from Microsoft Bing [27] and Google [26]. Empirical anal-
ysis from production clusters concluded that approximately
25% of machines in cloud clusters are stragglers. From
those, 80% have a uniform probability of being delayed
between 150% to 250% of average-task-completion time.
The remaining 20% of the stragglers have abnormal delays
and are known as long tail workers. Long tail workers have
a random delay between 250% to 10x. From the 32 workers
in our experiment, 6 are assigned a random delay between
150%-250% and two are long tail workers with a random
delay over 250% up to 10x. The randomized delay seed is
fixed across three executions of the same experiment.

The performance of SGD and ASGD on 32 workers with
PCS is shown in Figure 7. As shown, ASGD converges

437

10 —epsilon-ASYNC
===+ epsilon-Sync
=—mnist8m-ASYNC
===* mnist8m-Sync

10"

10°

error

35
%108

1.5 2 25 3

time(ms)
Figure 7: The performance of ASGD and SGD in ASYNC
on 32 workers shown with ASYNC and SYNC respectively.

to the solution considerably faster than SGD and leads to
a speedup of 3x for mnist8m and 4x for epsilon. From
Figure 8, ASAGA compared to SAGA obtains a speedup
of 3.5x and 4x for mnistSm and epsilon respectively. The
average wait time for both algorithms on 32 workers is
shown in Table III. The wait time increases considerably
for all synchronous implementations which results in slower
convergence of the synchronous methods.

VII. RELATED WORK

To mitigate the negative effects of stale gradients on
convergence, numerous optimization methods support asyn-
chrony. The most widely used optimization algorithms with
asynchrony are stochastic gradient methods [10], [23] and
coordinate descent algorithms [30]. Other work implement
asynchrony by altering the execution bound staleness [18],

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



——epsilon-ASYNC
===+ epsilon-Sync
=—mnist8m-ASYNC
=== mnist8m-Sync

10°

error

107"

10

107 :
10
x10°

0 2

time(ms)
Figure 8: ASAGA and SAGA in ASYNC on 32 workers
shown with ASYNC and SYNC respectively.

[31], by theoretically adapting the method to the stale gra-
dients [32], and by using barrier control strategies [8], [33].
Variance reduction approaches use the history of gradients to
reduce the variance incurred by stochastic gradients and to
improve convergence [2], [24], [34]. Numerous algorithms
implement variance reduction techniques in asynchronous
methods, some of which include ASAGA and DisSVRG [34]
which supports asynchrony.

The demand for large-scale machine learning has led to
the development of numerous cloud and distributed comput-
ing frameworks. Commodity distributed dataflow systems
such as Hadoop [3] and Spark [4], as well as libraries
implemented on top of them such as MIllib [20], are op-
timized for coarse-grained, often bulk synchronous, parallel
data transformations and thus do not provide asynchrony in
their execution models [3], [4], [35], [36]. Recent work has
modified frameworks such as Spark to support asynchronous
optimization methods. ASIP [37] introduces a communica-
tion layer to Spark to support asynchrony, however, it only
implements the asynchronous parallel consistency model
[5] and does not support history. Glint [7] integrates the
parameter server model on Spark. However, it is designed
for topic models with a specialized consistency model.

Parameter server architectures such as [5], [6] are widely
used in distributed machine leaning since they support asyn-
chrony in their execution models using a static dependency
graph. Petuum [5] implements the SSP execution model.
Other parameter server frameworks include MLNET [38]
and Litz [6]. MLNET deploys a communication layer that
uses tree-based overlays to implement distributed aggrega-
tion to only communicate the aggregated updates without
the support for individual communication of worker-results.
These implementations do not support custom consistency
models required by asynchronous optimization methods nor

438

the history of gradients. Finally, numerous distributed com-
puting frameworks have been developed to support specific
applications. For example DistBelief [10] and TensorFlow
[11] support deep learning applications while fine-grained
data processing systems such as RAY [12] and Flink [13]
are designed for streaming problems. The frameworks can
not be naturally extended to support mini-batch optimization
methods that require coarse-grained computation models.

VIII. CONCLUSION

This work introduces the ASYNC framework that fa-
cilitates the implementation of asynchrony and history in
machine learning methods on cloud and distributed plat-
forms. Along with bookkeeping structures, the modules in
ASYNC facilitate the implementation of numerous consis-
tency models and history. ASYNC is built on top of Spark
to benefit from Spark’s in-memory computation model and
fault tolerant execution. We present the programming model
and interface that comes with ASYNC and implement the
synchronous and asynchronous variants of two well-known
optimization methods as examples. These examples only
scratch the surface of the types of algorithms that can
be implemented in ASYNC. We hope that ASYNC helps
machine learning practitioners with the implementation and
investigation to the promise of asynchronous optimization
methods.

ACKNOWLEDGMENTS

This work was supported in part by NSERC Discovery
Grants (RGPIN-06516, DGECR-00303), the Canada Re-
search Chairs program, the the U.S. NSF awards NSF DMS-
1723085, NSF CCF-1814888 and NSF CCF-1657175. This
work used the Extreme Science and Engineering Discovery
Environment (XSEDE) [22], which is supported by National
Science Foundation grant number ACI-1548562.

REFERENCES

[1] L. Bottou, “Stochastic gradient descent tricks,” in Neural
networks: Tricks of the trade. Springer, 2012, pp. 421-436.
S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola,
“On variance reduction in stochastic gradient descent and its
asynchronous variants,” in Advances in Neural Information
Processing Systems, 2015, pp. 2647-2655.

A. Hadoop, “Apache hadoop,” URL http://hadoop. apache.
org, 2011.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2-2.

E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu, “Petuum: A new
platform for distributed machine learning on big data,” IEEE
Transactions on Big Data, vol. 1, no. 2, pp. 49-67, 2015.

(2]

(4]

(5]

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



[6]

(7]

(8]

[91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

(19]

[20]

[21]

A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson,
and E. P. Xing, “Litz: Elastic framework for high-performance
distributed machine learning,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 631-
644.

R. Jagerman and C. Eickhoff, “Web-scale topic models in
spark: An asynchronous parameter server,” arXiv preprint
arXiv:1605.07422, 2016.

J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, and J. Wang,
“An adaptive synchronous parallel strategy for distributed
machine learning,” IEEE Access, vol. 6, pp. 19222-19 230,
2018.

J. R. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat,
“Loose synchronization for large-scale networked systems.”
in USENIX Annual Technical Conference, General Track,
2006, pp. 301-314.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al, “Large
scale distributed deep networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1223-1231.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Ten-
sorflow: A system for large-scale machine learning,” in 12th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 265-283.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. 1. Jordan et al.,
“Ray: A distributed framework for emerging {Al} applica-
tions,” in 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), 2018, pp. 561-577.
P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas, “Apache flink: Stream and batch processing
in a single engine,” Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, vol. 36, no. 4,
2015.

S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra,
A. Tumanov, and I. Stoica, “Lineage stash: Fault tolerance off
the critical path,” in Proceedings of Symposium on Operating
Systems Principles, SOSP, vol. 19, 2019.

R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open
mpi: A flexible high performance mpi,” in International
Conference on Parallel Processing and Applied Mathematics.
Springer, 2005, pp. 228-239.

R. Leblond, F. Pedregosa,
“Asaga: asynchronous parallel
arXiv:1606.04809, 2016.

J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefow-
icz, “Revisiting distributed synchronous sgd,” arXiv preprint
arXiv:1604.00981, 2016.

J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing, “Solving the straggler problem with
bounded staleness,” in Presented as part of the 14th Workshop
on Hot Topics in Operating Systems, 2013.

A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast
incremental gradient method with support for non-strongly
convex composite objectives,” in Advances in Neural Infor-
mation Processing Systems, 2014, pp. 1646—1654.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib:
Machine learning in apache spark,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 1235-1241, 2016.
C.-C. Chang and C.-J. Lin, “Libsvm: a library for support
vector machines,” ACM transactions on intelligent systems
and technology (TIST), vol. 2, no. 3, p. 27, 2011.

and S.
saga,’

Lacoste-Julien,
arXiv  preprint

439

[22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

[38]

J. Towns, T. Cockerill, M. Dahan, 1. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson er al., “Xsede: accelerating scientific discovery,”
Computing in Science & Engineering, vol. 16, no. 5, pp. 62—
74, 2014.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-
free approach to parallelizing stochastic gradient descent,” in
Advances in Neural Information Processing Systems, 2011,
pp- 693-701.

R. Johnson and T. Zhang, “Accelerating stochastic gradient
descent using predictive variance reduction,” in Advances in
Neural Information Processing Systems, 2013, pp. 315-323.
C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler
mitigation in distributed optimization through data encoding,”
in Advances in Neural Information Processing Systems, 2017,
pp. 5434-5442.

I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis,
modeling and simulation of workload patterns in a large-scale
utility cloud,” IEEE Transactions on Cloud Computing, vol. 2,
no. 2, pp. 208-221, 2014.

G. Ananthanarayanan, S. Kandula, A. G. Greenberg, 1. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in map-
reduce clusters using mantri.” in Osdi, vol. 10, no. 1, 2010,
p. 24.

P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu,
“Straggler root-cause and impact analysis for massive-scale
virtualized cloud datacenters,” IEEE Transactions on Services
Computing, 2016.

X. Ouyang, P. Garraghan, D. McKee, P. Townend, and J. Xu,
“Straggler detection in parallel computing systems through
dynamic threshold calculation,” in 2016 IEEE 30th Interna-
tional Conference on Advanced Information Networking and
Applications (AINA). 1EEE, 2016, pp. 414-421.

X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel
stochastic gradient for nonconvex optimization,” in Advances
in Neural Information Processing Systems, 2015, pp. 2737—
2745.

A. Agarwal and J. C. Duchi, “Distributed delayed stochastic
optimization,” in Advances in Neural Information Processing
Systems, 2011, pp. 873-881.

W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-
aware async-sgd for distributed deep learning,” arXiv preprint
arXiv:1511.05950, 2015.

L. Wang, B. Catterall, and R. Mortier, “Probabilistic syn-
chronous parallel,” arXiv preprint arXiv:1709.07772, 2017.
Y. Ming, Y. Zhao, C. Wu, K. Li, and J. Yin, “Distributed
and asynchronous stochastic gradient descent with variance
reduction,” Neurocomputing, vol. 281, pp. 27-36, 2018.

A. Mabhout, “Scalable machine-learning and data-mining li-
brary,” available at mahout. apache. org, 2008.

A. G. B. Saadon and H. M. Mokhtar, “iihadoop: an asyn-
chronous distributed framework for incremental iterative com-
putations,” Journal of Big Data, vol. 4, no. 1, p. 24, 2017.
J. E. Gonzalez, P. Bailis, M. 1. Jordan, M. J. Franklin, J. M.
Hellerstein, A. Ghodsi, and I. Stoica, “Asynchronous complex
analytics in a distributed dataflow architecture,” arXiv preprint
arXiv:1510.07092, 2015.

L. Mai, C. Hong, and P. Costa, “Optimizing network per-
formance in distributed machine learning,” in 7th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 15),
2015.

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.



