
ASYNC: A Cloud Engine with Asynchrony and History for Distributed Machine
Learning

Saeed Soori∗, Bugra Can†, Mert Gurbuzbalaban†, and Maryam Mehri Dehnavi∗
∗Department of Computer Science, University of Toronto, †Department of MSIS, Rutgers University

Email:sasoori@cs.toronto.edu, bugra.can@rutgers.edu, mert.gurbuzbalaban@rutgers.edu, mmehride@cs.toronto.edu

Abstract—ASYNC is a framework that supports the imple-
mentation of asynchrony and history for optimization methods
on distributed computing platforms. The popularity of asyn-
chronous optimization methods has increased in distributed
machine learning. However, their applicability and practical
experimentation on distributed systems are limited because
current bulk-processing cloud engines do not provide a ro-
bust support for asynchrony and history. With introducing
three main modules and bookkeeping system-specific and
application parameters, ASYNC provides practitioners with
a framework to implement asynchronous machine learning
methods. To demonstrate ease-of-implementation in ASYNC,
the synchronous and asynchronous variants of two well-known
optimization methods, stochastic gradient descent and SAGA,
are demonstrated in ASYNC.

Keywords-Machine learning, cloud computing

I. INTRODUCTION

Distributed optimization has gained significant traction

and is frequently used to solve modern large-scale ma-

chine learning problems [1]. The challenges of dealing with

huge datasets, has lead to the development of optimizations

methods with asynchrony and history. Asynchronous op-

timization methods reduce worker idle times and mitigate

communication costs. Operations on a history of gradients

augments the noise (stochasticity) to improve convergence

[2]. Distributed optimization methods operate on batches of

data and thus have to be implemented in cluster-computing

engines with a bulk (coarse-grained) computation model.

Several general coarse-grained distributed data processing

systems exist. Hadoop [3] and Spark [4] are based on the

iterative map-reduce model but use a synchronous iterative

communication pattern. Thus, because of not supporting

asynchrony, their execution is vulnerable to the diverse

performance profile caused by slow workers, i.e. stragglers,

and network latency. Also history cannot be efficiently

maintained in these engines as it requires storing bulky
worker-results, and introduces overheads to their lineage-

based [4] or checkpointing fault tolerant implementations.

Recently, a number of coarse-grained machine learning

engines such as Petuum [5] and Litz [6], have adopted the

parameter server [7] architecture to implement asynchronous

communication between nodes with push-pull operations.

Asynchrony in distributed optimization methods is imple-

mented with consistency models, i.e. barriers, expressed via

a dependency graph that maintain a trade-off between sys-

tem efficiency and algorithm convergence. Parameter server

paradigms implement a specific class of consistency models,

i.e. stale synchronous parallel (SSP) paradigms using a fixed

dependency graph, which use a static staleness threshold to

control worker wait times. However, recent advancements

in distributed optimization [8], [9] demand for wider range

of customized consistency models (CCMs), often defined

by the user such as throttled-release [9], that control worker

wait times using parameters such as worker-task-completion

time [8] and require to adaptively adjust the parameters

at runtime. CCMs can not be implemented in available

parameter server frameworks as they need the underlying

dependency graph to adaptively be reconfigured at runtime.

Also, Petuum does not support history and Litz preserves the

history by periodic checkpointing with significant overheads.

parameter servers, Glint [7] which is built on top of Spark

is the closest to our framework. Glint supports history but

does not the implementation CCMs. Also, the consistency

model in Glint is optimized for computing topic models and

is not optimized for distributed optimization methods.

Other distributed parameter-server frameworks such as

DistBelief [10] and TensorFlow [11] are specialized for

deep learning applications and thus do not naturally support

consistency models and history.

Amongst the fine-grained distributed data processing sys-

tems, primarily used for streaming applications, RAY [12]

and Flink [13] support asynchronous function invocations

with dynamic data flow graphs [14]. However, these frame-

works do not support CCMs and are primarily designed

for fine-grained tasks, and thus cannot naturally extend to

a bulk-processing engine. Also, while streaming engines

(because of processing fine tasks) can store local results and

intermediate data on workers to support history with low-

overhead, bulk processing engines cannot efficiently store

the worker-results because of processing coarse tasks.

In principle, with massive system engineering efforts,

machine learning practitioners can implement one-off asyn-

chronous optimization methods with re-engineering systems

and interfaces. However, this comes at the cost of pushing

system challenges such as scheduling, bookkeeping, and

fault tolerance to the application developer. For example,

Spark can support history if previous worker-results are

429

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00052

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

stored to disk and checkpointed; this will lead to storage

overheads. To implement CCMs the entire Spark engine

has to change to support asynchronous execution. An expert

MPI programmer can use asynchronous primitives to imple-

ment SSP [15]. However, this leads to increased program

complexity and the complexity will increase if customized

consistency models were to be implemented. Noteworthy,

MPI does not have a robust support for fault tolerance and

thus is typically not used for cloud computing.

This work presents ASYNC, a bulk processing cloud-

computing framework, built on top of Spark, that sup-

ports the implementation of distributed optimization meth-

ods with asynchrony and history. ASYNC implements an

asynchronous execution to Spark’s engine and enables the

workers and/or the master to bookkeep (log) system-specific

and application parameters. The asynchronous execution

paradigm and the bookkeeping structures work together

to construct a dynamic dependence graph for the imple-

mentation of custom consistency models and to recover

history with a partial broadcast of model parameters. Major

contributions of this paper are:

• A novel framework for machine learning practition-

ers to implement and dispatch asynchronous machine

learning applications with custom consistency models

on cloud and distributed platforms. ASYNC introduces

three modules to cloud engines, ASYNCcoordinator,

ASYNCbroadcaster, and ASYNCscheduler to enable the

asynchronous gather, broadcast, and schedule of tasks

and results.

• An efficient history recovery strategy implemented with

the ASYNCbroadcaster and bookkeeping attributes, to

facilitate the implementation of variance reduced opti-

mization methods that operate on historical gradients.

• A robust programming model with extensions to the

Spark API that enables the implementation of asyn-

chrony and history while preserving the in-memory and

fault tolerant features of Spark.

• A demonstration of ease-of-implementation in ASYNC

with the implementation and performance analysis of

the stochastic gradient descent (SGD) [1] algorithm

and its asynchronous variant using a CCM. Our results

demonstrate that asynchronous SAGA (ASAGA) [16]

and asynchronous SGD (ASGD) outperform their syn-

chronous variants up to 4 times on a distributed system

with stragglers.

II. PRELIMINARIES

Distributed machine learning often results in solving an

optimization problem in which an objective function is

optimized by iteratively updating the model parameters
until convergence. Distributed implementation of optimiza-

tion methods includes workers that are assigned tasks to

process parts of the training data, and one or more servers,

i.e. masters, that store and update the model parameters.

Distributed machine learning models often result in the

following structure:

min
w∈Rd

F (w) =
1

m

m∑

i=1

f (i)(w) (1)

where w is the model parameter to be learned, m is the

number of workers, and f (i)(w) is the local loss function

computed by worker i based on its assigned training data.

Each worker has access to ni data points, where the local

cost has the form

f (i)(w) :=

ni∑

j=1

f̄
(i)
j (w) (2)

for some loss functions f̄
(i)
j : Rd → R. For example, in

supervised learning, given an input-output pair
(
xij , yij

)
, the

loss function can be f̄ i
j(w) = �(〈w, φ(xij)〉, yij) where φ is

a fixed function of choice and �(·, ·) is a convex loss function

that measures the loss if yij is predicted from xij based

on the model parameter w. This setting covers empirical

risk minimization problems in machine learning that include

linear and non-linear regression, and other classification

problems such as logistic regression [2]. In particular, if

φ(x) = x and the �(·, ·) function is the square of the

Euclidean distance function, we obtain the familiar least

squares problem

f̄ i
j(w) = ‖xT

ijw − yij‖2 (3)

where

f (i)(w) :=

ni∑

j=1

f̄
(i)
j (w) = ‖Aiw − bi‖2 (4)

with bi = {yij}ni
j=1 is a column vector of length ni and

Ai ∈ R
ni×d is called the data matrix as its j-th row is

given by the input xT
ij .

In the following we use the gradient descent (GD) al-

gorithm as an example to introduce stochastic optimization

and other terminology used throughout the paper such as

mini-batch size. The introduced terms are used in all op-

timization problems and are widely used in the machine

learning literature. GD iteratively computes the gradient of

the loss function ∇F (wk) =
1
m

∑m
i=1∇f (i)(wk) to update

the model parameters at iteration k. To implement gradient

descent on a distributed system, each worker i computes its

local gradient ∇f (i)(wk); the local gradients are aggregated

by the master when ready. The full pass over the data at

every iteration of the algorithm with synchronous updates

leads to large overheads. Distributed stochastic gradient

descent (SGD) methods and their variants [17] are on the

other hand scalable and popular methods for solving (1).

Distributed SGD replaces the local gradient ∇f (i)(wk) with

430

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

an unbiased stochastic estimate ∇̃f (i)(wk) of it, computed

from a subset of local data points:

∇f̃ (i)(wk) :=
1

bi

∑

s∈Si,k

∇f̄ (i)
s (wk), (5)

where Si,k ⊂ {1, . . . , ni} is a random subset that is sampled

with or without replacement at iteration k, and bi := |Si,k|
is the number of elements in Si,k [1], also called the mini-

batch size. To obtain desirable accuracy and performance,

implementations of stochastic optimization methods require

tuning algorithm parameters such as the step size and the

mini-batch size in SGD [1].

III. MOTIVATION FOR ASYNCHRONY AND HISTORY

Asynchrony is implemented to improve the convergence

rate and time-to-solution of optimization methods on cluster-

computing platforms with slow machines (stragglers). In

distributed optimization, workers compute local gradients of

the objective function and then communicate the computed

gradients to the server. To proceed to the next iteration of the

algorithm, the server updates the shared model parameters

with the received gradients, broadcasts the most recent

model parameter, and schedules new tasks. In asynchronous

optimization, the server can proceed with the update and

broadcast of the model parameters without having to wait

for all worker tasks to complete. This asynchrony allows

the algorithm to make progress in the presence of stragglers

which is known as an increase in hardware efficiency [18].

However, this progress in computation comes at a cost,

the asynchrony inevitably adds staleness to the system

wherein some of the workers compute gradients using model

parameters that may be several gradient steps behind the

most updated set of model parameters which can lead to

poor convergence. This is also referred to as a worsening in

statistical efficiency [17].

Asynchronous optimization methods are formulated and

implemented with properties that balance statistical effi-

ciency and hardware efficiency to maximize the performance

of the optimization methods on distributed systems. Con-

sistency models, i.e. barrier control strategies, are used to

design asynchronous optimization methods that enable this

balance. Barriers in asynchronous algorithms determine if a

worker should proceed to the next iteration or if it should

wait until a specific number of workers have communicated

their results to the server. The most well-known barrier

control strategy is the Stale Synchronous Parallel (SSP) in

which workers synchronize when staleness (determined by

the number of stragglers) exceeds a threshold. ASYNC sup-

ports SSP and also facilitates the implementation of custom

consistency models that apply barriers based on parameters

such as worker-task-completion time and scheduling delays.

History augments the noise from stochastic gradients to

improve the convergence rate of the optimization method.

Distributed optimization methods, used in machine learning

applications, are typically stochastic [1]. Stochastic opti-

mization methods use a noisy gradient computed from

random data samples instead of the true gradient which can

lead to poor convergence. Variance reduction techniques,

used in both synchronous and asynchronous optimization,

augment the noisy gradient to reduce this variance. A

class of variance-reduced asynchronous algorithms that have

led to significant improvements over traditional methods

memorize the gradients computed in previous iterations,

i.e. historical gradients [19]. Historical gradients cannot be

implemented in cluster-computing engines such as Spark

primarily because Spark can only broadcast the entire history

of the model parameters which can be very large and can

lead to significant overheads.

IV. ASYNC: A CLOUD COMPUTING FRAMEWORK WITH

ASYNCHRONY AND HISTORY

ASYNC is a framework, built on top of Spark [4],

for the implementation and execution of asynchrony and

history in optimization algorithms while retaining the map-

reduce model, scalability, and fault tolerance of state-of-

the-art cluster-computing engines. Figure 1 demonstrates an

overview of the ASYNC engine. The three main modules

in ASYNC are the ASYNCcoordinator, ASYNCbroadcaster,

ASYNCscheduler. ASYNC also collects and stores book-
keeping structures. These structures are communicated be-

tween the workers and the master and are either system-

specific, i.e. status, or are related to the application, i.e.

attributes. This section elaborates how the internal elements

of ASYNC work together to facilitate the implementation of

asynchrony and history.

Bookkeeping structures in ASYNC. Bookkeeping struc-

tures are used by the main modules of ASYNC to enable the

implementation of asynchrony and history. These structures

are collected by ASYNC at runtime and are stored on

the master. With the help of the ASYNCcoordinator, each

worker communicates to the master, application-specific

attributes such as task results and the mini-batch size.

Workers’ recent status such as worker staleness, average-

task-completion time, and availability1 are also logged and

stored in a table called STAT with the help of the ASYNC-

coordinator.

Implementing asynchrony with the ASYNCcoordinator,
ASYNCscheduler, and the status structures. To implement

asynchrony, ASYNC implements a dynamic task graph

computation model which uses the consistency model to

dynamically determine executing tasks and their assigned

workers. The execution of tasks on workers is automatically

triggered by the system using a computation graph. Task

and data objects are the nodes in this graph and the edges

are the dependency amongst nodes/tasks. The computation

graph in classic consistency models such as SSP does not

1A worker is available if it is not executing a task and unavailable
otherwise.

431

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

Figure 1: An overview of the ASYNC framework.

Table I: Transformations, actions, and methods in ASYNC. AC is ASYNCcontext and Seq[T] is a sequence of elements.

Actions

ASYNCreduce(f:(T,T) ⇒ T, AC)

ASYNCaggregate(zeroValue: U)
(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U), AC)

Reduces the elements of the RDD using the specified associative
binary operator.
Aggregates the elements of the partition using the combine functions and a
neutral ”zero” value.

Transformations ASYNCbarrier(f:T ⇒ Bool, Seq[T]) Returns a RDD containing elements that satisfy a predicate f.

Methods

ASYNCcollect()
ASYNCcollectAll()
ASYNCbroadcast(T)
AC.STAT
AC.hasNext()

Returns a task result.
Returns a task result and its attributes.
Creates a dynamic broadcast variable.
Returns the current status of all workers.
Returns true if a task result exists.

change at runtime because the models do not rely on runtime

information such as the system state. However, many CCMs

take information from the current state of the system as input

and couple this information with the barrier control strategy

to dynamically build the computation graph. To implement

CCMs, the ASYNCcoordinator periodically communicates

with the workers to update system-specific parameters in

the STAT table. The ASYNCscheduler uses the parameters

in STAT and a user-defined barrier control strategy to update

the computation graph. The computation graph is then

executed to apply the desired consistency model.

Implementing history with the ASYNCbroadcaster and the
attributes. In each iteration of an optimization method with

history, the computed gradients from previous iterations are

used together with the current model parameters to update

the model parameters. Implementing history in a coarse-

grained computation engine via explicitly storing bulky

worker-results, i.e. previous gradients, leads to significant

storage overheads. A fault tolerant execution will also have

overheads as large gradients have to be periodically check-

pointed or recomputed explicitly using a lineage.

ASYNC does not explicitly store, communicate, or com-

pute past gradients. Instead we use the approach from [2]

in which the history of past gradients is recovered, when

needed, using previous model parameters. Recovering his-

tory has low storage and computation overheads in coarse-

grained computation models. By recovering history, workers

in ASYNC do not need to store any previously computed

gradients and only the previous model parameters are stored

on the master. The cost of storing the model parameters has

an inverse relation to the batch size [1] and thus reduces

as the granularity of tasks increase, e.g. larger batch sizes.

Also, to recover a past gradient, a worker only needs to

subtract its recent model parameter from the previous model

parameter that is broadcasted to it from the master; the

approach in [2] is then used to update the master-side model

parameters based on the history. The ASYNCbroadcaster

in ASYNC is responsible for the asynchronous broadcast

of model parameters between the master and individual

workers. Attributes such as the mini-batch size, required by

the master to apply history to its model parameters, are also

broadcast using the ASYNCbroadcaster.

V. PROGRAMMING WITH ASYNC

To use ASYNC, developers are provided an additional

set of ASYNC-specific functions, on top of what Spark

provides, to access the bookkeeping structures and to im-

plement asynchrony and history. The programming model

in ASYNC is close to that of Spark [4]. It operates on

resilient distributed datasets (RDD) to preserve the fault

432

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

tolerant and in-memory execution of Spark. The ASYNC-

specific functions also either transform the RDDs, known

as transformations in Spark, or conduct lazy actions. In

this section, ASYNC’s programming model and API is first

discussed. We then show the implementation of SGD and

its asynchronous variant which uses a CCM. A well-known

history-based optimization method called SAGA [19] and its

asynchronous variant with a CCM is also implemented.

A. The ASYNC programming model

Asynchronous Context (AC) is the entry to ASYNC and

should be created only once in the beginning. The ASYNC-

scheduler, the ASYNCbroadcaster, and the ASYNCcoordi-

nator communicate via the AC and with this communication

create barrier controls, broadcast variables, and store work-

ers’ task results and status. AC maintains the bookkeeping

structures and ASYNC-specific functions, including actions

and transformations that operate on RDDs. Workers use

ASYNC functions to interact with AC and to store their re-

sults and attributes in the bookkeeping structures. The server

queries AC to update the model parameters or to access

workers’ status. Table I lists the main functions available

in ASYNC. We show the signature of each operation by

demonstrating the type parameters in square brackets.

Collective operations in ASYNC. ASYNCreduce is an

action that aggregates the elements of the RDD on the

worker and returns the result to the server. ASYNCreduce

differs from Spark’s reduce in two ways. First, Spark ag-

gregates data across each partition and then combines the

partial results together to produce a final value. However,

ASYNCreduce executes only on the worker and for each

partition. Secondly, reduce returns only when all partial re-

sults are combined on the server, but ASYNCreduce returns

immediately. Task results on the server are accessed using

the ASYNCcollect and ASYNCcollectAll methods. ASYNC-

collect returns task results in FIFO (first-in-first-out) order

and also returns the worker attributes. The workers’ status

can also be accessed with ASYNC.STAT.

Algorithm 1: The SGD Algorithm

Input : points, numIterations, learning rate αi, sampling
rate b

Output: model parameter w
1 for i = 1 to numIterations do
2 w br = sc.broadcast(w)
3 gradient = points.sample(b).map(p ⇒

∇fp(w br.value)). reduce(+)
4 w -= αi ∗ gradient
5 end
6 return w

Barrier and broadcast in ASYNC. ASYNCbarrier is a

transformation, i.e. a deterministic operation which creates a

new RDD based on the workers’ status. ASYNCbarrier takes

Algorithm 2: The ASGD Algorithm

Input : points, numIterations, learning rate αi, sampling
rate b

Output: model parameter w
1 AC = new ASYNCcontext
2 for i = 1 to numIterations do
3 w br = sc.broadcast(w)
4 points.ASYNCbarrier(f, AC.STAT).sample(b).map(p

⇒ ∇fp(w br.value)) .ASYNCreduce(+ , AC)
5 while AC.hasNext() do
6 gradient= AC.ASYNCcollect()
7 w -= αi ∗ gradient
8 end
9 end

10 return w

the recent status of workers, STAT, and decides which work-

ers to assign new tasks to, based on a user-defined function.

For example, for a fully asynchronous barrier model the fol-

lowing function is declared: f : STAT.foreach(true). In

Spark, broadcast parameters are “broadcast variable” objects

that wrap around the to-be-broadcast value. ASYNCBroad-
cast also uses broadcast variables and similar to Spark,

the method value can be used to access the broadcast

value. However, ASYNCbroadcast differs from the broadcast

implementation in Spark since it has access to an index. The

index is used internally by ASYNCbroadcast to get the ID

of the previously broadcast variables for the specified index.

ASYNCbroadcast eliminates the need to broadcast values

when accessing the history of broadcast values.

Algorithm 3: The SAGA Algorithm

Input : points, numIterations, learning rate α, sampling
rate b, number of points n

Output: model parameter w
1 averageHistory = 0
2 store w in table
3 for i = 1 to numIterations do
4 w br =sc.broadcast(w)
5 (gradient, history)= points.sample(b).map((index,p) ⇒

∇fp(w br.value), ∇fp(table[index])).reduce(+)
6 averageHistory += (gradient - history)∗ b∗n
7 w -= α ∗ (gradient - history + averageHistory)
8 update table
9 end

10 return w

B. Case studies

The robust programming model in ASYNC provides

control of low-level features in both the algorithm and

the execution platform to facilitate the implementation

of asynchrony and history in optimization methods. The

following demonstrates the implementation of well-known

asynchronous optimization methods ASGD and ASAGA in

ASYNC as examples.

433

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: The ASAGA Algorithm

Input : points, numIterations, learning rate α, sampling
rate b, #points n, #partitions P

Output: model parameter w
1 AC = new ASYNCcontext
2 averageHistory = 0
3 for i = 1 to numIterations do
4 w br = AC.ASYNCbroadcast(w)
5 points.ASYNCbarrier(f, AC.STAT)

.sample(b).map((index,p) ⇒ ∇fp(w br.value),
∇fp(w br.value(index))).ASYNCreduce(+ , AC)

6 while AC.hasNext() do
7 (gradient,history)= AC.ASYNCcollect()
8 averageHistory += (gradient - history)∗ b∗n/P
9 w -= α ∗ (gradient - history + averageHistory)

10 end
11 end
12 return w

ASGD with ASYNC. An implementation of mini-batch

stochastic gradient descent (SGD) using the map-reduce

model in Spark is shown in Algorithm 1. The map phase

applies the gradient function on the input data independently

on workers. The reduce phase has to wait for all the

map tasks to complete. Afterwards, the server aggregates

the task results and updates the model parameter w. The

asynchronous implementation of SGD in ASYNC is shown

in Algorithm 2. With only a few extra lines from the ASYNC

API, colored in blue, the synchronous implementation of

SGD in Spark is transformed to ASGD. An ASYNCcontext

is created in line 1 and is used in line 4 to create a barrier

using the user-defined CCM indicated by f and based on the

current workers’ status, AC.STAT. The partial results from

each partition are then obtained and stored in AC in line 4.

Finally, these partial results are accessed in line 6 and are

used to update the model parameter in line 7.

ASAGA with ASYNC. The SAGA implementation in Spark

is shown in Algorithm 3. This implementation is inefficient

and not practical for large datasets as it needs to syn-

chronously broadcast a table of all stored model parameters

to each worker, colored in red in Algorithm 3 line 5.

The size of this increases after each iteration and thus

broadcasting it leads to large communication overheads. As

a result of the overhead, machine learning libraries that are

build on top of Spark such as Mllib [20] do not provide

implementations of optimization methods such as SAGA

that requires the history of gradients. ASYNC resolves the

overhead with ASYNCbroadcast. The implementation of

ASAGA is shown in Algorithm 4. ASYNCbroadcast is used

to define a dynamic broadcast in line 4. Then, the broadcast

variable is used to compute the historical gradients in line

5. In order to access the last model parameters for sample

index, the method value is called in line 5. As shown

in Algorithm 4, there is no need to broadcast a table of

parameters which allows for efficient implementation of both

SAGA and ASAGA in ASYNC.

CCMs in ASYNC. To enable the implementation of custom

consistency models, ASYNC provides the interface to im-

plement user-defined functions that selectively choose from

available workers based on their status. Listing 1 demon-

strates the implementation of two CCMs in ASYNC, CCM1

and CCM2, as well as the SSP model. CCM1 is the throttled-

release [9] barrier strategy which submits tasks to available

workers only when the number of available workers is at

least k. CCM2 implements a fully asynchronous barrier that

allows workers to progress as soon as their current task

finishes.

f: STAT.foreach(Avaialble_Workers >= k) %
CCM1

f: STAT.foreach(true) % CCM2
f: STAT.foreach(MAX_Staleness < s) % The SSP

barrier control with a staleness
threshold ’s’

points.ASYNCbarrier(f, AC.STAT) % Apply the
barrier

Listing 1: Pseudo-code for implementing CCMs in ASYNC.

VI. RESULTS

We evaluate the performance of ASYNC by imple-

menting two asynchronous optimization methods, namely

ASGD and ASAGA, and their synchronous variants to solve

least squares problems. We implement the throttled-release

CCM for the both asynchronous methods and use history

in ASAGA and SAGA. The performance of ASGD and

ASAGA are compared to their synchronous implementations

in Spark. To the best of our knowledge, no library or imple-

mentation of asynchronous optimization methods exists on

Spark. However, Glint that is built on top of Spark supports

asynchrony for computing topic models. Therefore we im-

plement the distributed optimization method ASGD using

Glint and compared it with the implementation of ASGD

in ASYNC. Glint requires more communication among

its parameter servers and workers compared to ASYNC

since it requires multiple push-pull operation for batches

of data. This extra communication overhead results in poor

performance for ASGD in Glint. Our experiments show

that Glint converges approximately 10× slower compared to

ASYNC. Furthermore, to demonstrate that the synchronous

implementations of the algorithms using ASYNC are well-

optimized, we first compare the performance of the syn-

chronous variants of the tested optimization methods in

ASYNC with the state-of-the-art machine learning library,

Mllib [20]. Mllib is a library that provides implementations

of a number of synchronous optimization methods.

In subsection VI-C we evaluate the performance of ASGD

and ASAGA in ASYNC in the presence of stragglers.

434

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

Dataset Row numbers Column numbers Size
rcv1 full.binary 697,641 47,236 851.2MB
mnist8m 8,100,000 784 19GB
epsilon 400,000 2000 12.16GB

Table II: Datasets for the experimental study.

0 2 4 6 8 10
time(ms) 105

10-3

10-2

10-1

100

101

102

er
ro

r

mnist8m-MLlib
mnist8m-ASYNC
epsilon-MLlib
epsilon-ASYNC
rcv1-MLlib
rcv1-ASYNC

Figure 2: SGD implemented in ASYNC versus Mllib.

A. Experimental setup

We consider the distributed least squares problem defined

in (4). Our experiments use the datasets listed in Table II

from the LIBSVM library [21], all of which vary in size

and sparsity. For the experiments, we use ASYNC, Scala

2.11, Mllib [20], and Spark 2.3.2. Breeze 0.13.2 and netlib

1.1.2 are used for the (sparse/dense) BLAS operations in

ASYNC. XSEDE Comet CPUs [22] are used to assem-

ble the cluster. ASYNC is available at https://github.com/

ASYNCframework/ASYNCframework.

To demonstrate the performance of asynchronous algo-

rithms and their robustness to the heterogeneity in cloud

environments, we evaluate the implemented methods in the

presence of stragglers. Two different straggler behaviours are

used: (i) Controlled Delay Straggler (CDS) experiments in

which a single worker is delayed with different intensities;

(ii) the Production Cluster Stragglers (PCS) experiments in

which straggler patterns from real production clusters are

used. The CDS experiments are ran with all three datasets

on a cluster composed of a server and 8 workers. The PCS

experiments require a larger cluster and thus are conducted

on a cluster of 32 workers with one server using the two

larger datasets (mnist8m and epsilon). In all configurations

a worker runs an executor with 2 cores. The number of

data partitions is 32 for all datasets and in the implemented

algorithms. The experiments are repeated three times; the

average reported.

Parameter tuning: A sampling rate of b = 10% is selected

for the mini-batching SGD for mnist8m and epsilon and b
= 5% is used for rcv1 full.binary. SAGA and ASAGA use

b = 10% for epsilon, b = 2% for rcv1 full.binary, and use

b =1% for mnist8m. For the PCS experiment, we use b =
1% for mnist8m and epsilon. We use the same step size

as Mllib and tune it for SGD to converge faster. A fixed

step size is used in SAGA which is also tuned for faster

convergence. The step size is not tuned for the asynchronous

algorithms. Instead, we use the following heuristic, the step

size of ASGD and ASAGA is computed by dividing the

initial step size of their synchronous variants by the number

of workers [23]. We run the SGD algorithm in Mllib for

15000 iterations with sampling rate of 10% and use its final

objective value as the baseline for the least squares problem.

B. Comparison with Mllib

We use ASYNC for implementations of both the syn-

chronous and the asynchronous variants of the algorithms

because (i) ASYNC’s performance for synchronous methods

is similar to that of Mllib’s; (ii) asynchronous methods

are not supported in Mllib; (iii) synchronous methods that

require history of gradients can not be implemented in Mllib

because of discussed overheads. To demonstrate that our

implementations in ASYNC are optimized, we compare the

performance of SGD in ASYNC and Mllib for solving the

least squares problem [24]. Both implementations use the

same initial step size. The error is defined as objective
function value minus the baseline. Figure 2 shows the error

for three different datasets. The figure demonstrates that

SGD in ASYNC has a similar performance to that of Mllib’s

on 8 workers, the same pattern is observed on 32 workers.

Therefore, for the rest of the experiments, we compare the

asynchronous and synchronous implementations in ASYNC.

C. Robustness to stragglers

Controlled Delay Straggler: We demonstrate the effect

of different delay intensities in a single worker on SGD,

ASGD, SAGA, and ASAGA by simulating a straggler with

controlled delay [18], [25]. From the 8 workers in the cluster,

a delay between 0% to 100% of the time of an iteration is

added to one of the workers. The delay intensity, which

we show with delay-value %, is the percentage by which a

worker is delayed, e.g. a 100% delay means the worker is

executing jobs at half speed. The controlled delay is imple-

mented with the sleep command. The first 100 iterations of

both the synchronous and asynchronous algorithms are used

to measure the average iteration execution time.

SAGA ASAGA SGD ASGD
mnist8m 42.8367 ms 9.8125 ms 6.4433 ms 3.5745 ms
epsilon 6.9926 ms 1.1721 ms 5.3112 ms 1.4165 ms

Table III: Average wait time per iteration on 32 workers.

The performance of SGD and ASGD for different delay

intensities are shown in Figure 3 where for the same delay

intensity the asynchronous implementation always converges

435

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10 12 14
time(ms) 105

10-4

10-3

10-2

10-1

100

101

102

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(a) mnist8m

0 1 2 3 4 5 6
time(ms) 105

10-4

10-3

10-2

10-1

100

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(b) epsilon

0 2 4 6 8 10 12 14
time(ms) 105

10-4

10-3

10-2

10-1

100

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(c) rcv1 full.binary

Figure 3: The performance of ASGD and SGD in ASYNC with 8 workers for delay intensities of 0%, 30%, 60% and 100%

which are shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6 and ASYNC/SYNC-1.0 respectively.

0% 30% 60% 100%
delay

0

1

2

3

4

5

6

av
er

ag
e

w
ai

t t
im

e
pe

r i
te

ra
tio

n
(m

s)

ASGD-mnist8m
SGD-mnist8m
ASGD-epsilon
SGD-epsilon
ASGD-rcv1
SGD-rcv1

Figure 4: Average wait time per iteration with 8 workers for

ASGD and SGD in ASYNC for different delay intensities.

faster to the optimal solution compared to the synchronous

variant of the algorithm. As the delay intensity increases, the

straggler has a more negative effect on the runtime of SGD.

However, ASGD converges to the optimal point with almost

the same rate for different delay intensities. This is because

the ASYNCscheduler continues to assign tasks to workers

without having to wait for the straggler. When the task

result from the straggling worker is ready, it independently

updates the model parameter. Thus, while ASGD in ASYNC

requires more iterations to converge, its overall runtime is

considerably faster than the synchronous method. With a

delay intensity of 100%, a speedup of up to 2× is achieved

with ASGD vs. SGD.

Figure 4 shows the average wait time for each worker

over all iterations for SGD and ASGD. The wait time is

defined as the time from when a worker submits its task

result to the server until it receives a new task. In the

asynchronous algorithm, workers proceed without waiting

for stragglers. Thus the average wait time does not change

with changes in delay intensity. However, in the synchronous

implementation worker wait times increase with a slower

straggler. For example, for the mnist8m dataset in Figure 4,

the average wait time for SGD increases significantly when

the straggler is two times slower (delay = 100%). Comparing

Figure 3 with Figure 4 shows that the overall runtime of

ASGD and SGD is directly related to their average wait

time where an increase in the wait time negatively affects

the algorithms convergence rate.

The slow worker pattern used for the ASGD experiments

is also used for ASAGA. Figure 5 shows experiment results

for SAGA and ASAGA. The communication pattern in

ASAGA is different from ASGD because of the broadcast

required to compute historical gradients. In ASAGA, the

straggler and its delay intensity only affects the computation

time of a worker and does not change the communication

cost. Therefore, the delay intensity does not have a linear

effect on the overall runtime. However, Figure 5 shows

that increasing the delay intensity negatively affects the

convergence rate of SAGA while ASAGA maintains the

same convergence rate for different delay intensities.

The workers’ average wait time for ASAGA is shown in

Figure 6. With an increase in delay intensity, workers in

SAGA wait more for new tasks. The difference between the

average wait time of SAGA and ASAGA is more noticeable

when the delay increases to 100%. In this case, the compu-

tation time is significant enough to affect the performance of

the synchronous algorithm, however, ASAGA has the same

wait time for all delay intensities.

Production Cluster Stragglers: Our PCS experiments are

conducted on 32 workers with straggler patterns in real pro-

duction clusters [26], [27]; these clusters are used frequently

by machine learning practitioners. We use the straggler

436

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8
time(ms) 105

10-4

10-3

10-2

10-1

100

101

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(a) mnist8m

0 2 4 6 8 10 12
time(ms) 105

10-4

10-3

10-2

10-1

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(b) epsilon

0 2 4 6 8
time(ms) 105

10-4

10-3

10-2

10-1

100

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(c) rcv1 full.binary

Figure 5: The performance of ASAGA and SAGA in ASYNC for delay intensities of 0%, 30%, 60% and 100% which are

shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6 and ASYNC/SYNC-1.0 respectively.

0% 30% 60% 100%
delay

2

4

6

8

10

12

14

16

av
er

ag
e

w
ai

t t
im

e
pe

r i
te

ra
tio

n
(m

s)

ASAGA-mnist8m
SAGA-mnist8m
ASAGA-epsilon
SAGA-epsilon
ASAGA-rcv1
SAGA-rcv1

Figure 6: Average wait time per iteration with 8 workers for

ASAGA and SAGA for different delay intensities.

behaviors reported in previous research [28], [29] all of

which are based on empirical analysis of production clusters

from Microsoft Bing [27] and Google [26]. Empirical anal-

ysis from production clusters concluded that approximately

25% of machines in cloud clusters are stragglers. From

those, 80% have a uniform probability of being delayed

between 150% to 250% of average-task-completion time.

The remaining 20% of the stragglers have abnormal delays

and are known as long tail workers. Long tail workers have

a random delay between 250% to 10×. From the 32 workers

in our experiment, 6 are assigned a random delay between

150%-250% and two are long tail workers with a random

delay over 250% up to 10×. The randomized delay seed is

fixed across three executions of the same experiment.

The performance of SGD and ASGD on 32 workers with

PCS is shown in Figure 7. As shown, ASGD converges

0 0.5 1 1.5 2 2.5 3 3.5
time(ms) 106

10-3

10-2

10-1

100

101

102

er
ro

r

epsilon-ASYNC
epsilon-Sync
mnist8m-ASYNC
mnist8m-Sync

Figure 7: The performance of ASGD and SGD in ASYNC

on 32 workers shown with ASYNC and SYNC respectively.

to the solution considerably faster than SGD and leads to

a speedup of 3× for mnist8m and 4× for epsilon. From

Figure 8, ASAGA compared to SAGA obtains a speedup

of 3.5× and 4× for mnist8m and epsilon respectively. The

average wait time for both algorithms on 32 workers is

shown in Table III. The wait time increases considerably

for all synchronous implementations which results in slower

convergence of the synchronous methods.

VII. RELATED WORK

To mitigate the negative effects of stale gradients on

convergence, numerous optimization methods support asyn-

chrony. The most widely used optimization algorithms with

asynchrony are stochastic gradient methods [10], [23] and

coordinate descent algorithms [30]. Other work implement

asynchrony by altering the execution bound staleness [18],

437

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10
time(ms) 105

10-3

10-2

10-1

100

101

er
ro

r

epsilon-ASYNC
epsilon-Sync
mnist8m-ASYNC
mnist8m-Sync

Figure 8: ASAGA and SAGA in ASYNC on 32 workers

shown with ASYNC and SYNC respectively.

[31], by theoretically adapting the method to the stale gra-

dients [32], and by using barrier control strategies [8], [33].

Variance reduction approaches use the history of gradients to

reduce the variance incurred by stochastic gradients and to

improve convergence [2], [24], [34]. Numerous algorithms

implement variance reduction techniques in asynchronous

methods, some of which include ASAGA and DisSVRG [34]

which supports asynchrony.

The demand for large-scale machine learning has led to

the development of numerous cloud and distributed comput-

ing frameworks. Commodity distributed dataflow systems

such as Hadoop [3] and Spark [4], as well as libraries

implemented on top of them such as Mllib [20], are op-

timized for coarse-grained, often bulk synchronous, parallel

data transformations and thus do not provide asynchrony in

their execution models [3], [4], [35], [36]. Recent work has

modified frameworks such as Spark to support asynchronous

optimization methods. ASIP [37] introduces a communica-

tion layer to Spark to support asynchrony, however, it only

implements the asynchronous parallel consistency model

[5] and does not support history. Glint [7] integrates the

parameter server model on Spark. However, it is designed

for topic models with a specialized consistency model.

Parameter server architectures such as [5], [6] are widely

used in distributed machine leaning since they support asyn-

chrony in their execution models using a static dependency

graph. Petuum [5] implements the SSP execution model.

Other parameter server frameworks include MLNET [38]

and Litz [6]. MLNET deploys a communication layer that

uses tree-based overlays to implement distributed aggrega-

tion to only communicate the aggregated updates without

the support for individual communication of worker-results.

These implementations do not support custom consistency

models required by asynchronous optimization methods nor

the history of gradients. Finally, numerous distributed com-

puting frameworks have been developed to support specific

applications. For example DistBelief [10] and TensorFlow

[11] support deep learning applications while fine-grained

data processing systems such as RAY [12] and Flink [13]

are designed for streaming problems. The frameworks can

not be naturally extended to support mini-batch optimization

methods that require coarse-grained computation models.

VIII. CONCLUSION

This work introduces the ASYNC framework that fa-

cilitates the implementation of asynchrony and history in

machine learning methods on cloud and distributed plat-

forms. Along with bookkeeping structures, the modules in

ASYNC facilitate the implementation of numerous consis-

tency models and history. ASYNC is built on top of Spark

to benefit from Spark’s in-memory computation model and

fault tolerant execution. We present the programming model

and interface that comes with ASYNC and implement the

synchronous and asynchronous variants of two well-known

optimization methods as examples. These examples only

scratch the surface of the types of algorithms that can

be implemented in ASYNC. We hope that ASYNC helps

machine learning practitioners with the implementation and

investigation to the promise of asynchronous optimization

methods.

ACKNOWLEDGMENTS

This work was supported in part by NSERC Discovery

Grants (RGPIN-06516, DGECR-00303), the Canada Re-

search Chairs program, the the U.S. NSF awards NSF DMS-

1723085, NSF CCF-1814888 and NSF CCF-1657175. This

work used the Extreme Science and Engineering Discovery

Environment (XSEDE) [22], which is supported by National

Science Foundation grant number ACI-1548562.

REFERENCES

[1] L. Bottou, “Stochastic gradient descent tricks,” in Neural
networks: Tricks of the trade. Springer, 2012, pp. 421–436.

[2] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola,
“On variance reduction in stochastic gradient descent and its
asynchronous variants,” in Advances in Neural Information
Processing Systems, 2015, pp. 2647–2655.

[3] A. Hadoop, “Apache hadoop,” URL http://hadoop. apache.
org, 2011.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2–2.

[5] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu, “Petuum: A new
platform for distributed machine learning on big data,” IEEE
Transactions on Big Data, vol. 1, no. 2, pp. 49–67, 2015.

438

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

[6] A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson,
and E. P. Xing, “Litz: Elastic framework for high-performance
distributed machine learning,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 631–
644.

[7] R. Jagerman and C. Eickhoff, “Web-scale topic models in
spark: An asynchronous parameter server,” arXiv preprint
arXiv:1605.07422, 2016.

[8] J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, and J. Wang,
“An adaptive synchronous parallel strategy for distributed
machine learning,” IEEE Access, vol. 6, pp. 19 222–19 230,
2018.

[9] J. R. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat,
“Loose synchronization for large-scale networked systems.”
in USENIX Annual Technical Conference, General Track,
2006, pp. 301–314.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al., “Large
scale distributed deep networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1223–1231.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Ten-
sorflow: A system for large-scale machine learning,” in 12th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 265–283.

[12] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al.,
“Ray: A distributed framework for emerging {AI} applica-
tions,” in 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), 2018, pp. 561–577.

[13] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas, “Apache flink: Stream and batch processing
in a single engine,” Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, vol. 36, no. 4,
2015.

[14] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra,
A. Tumanov, and I. Stoica, “Lineage stash: Fault tolerance off
the critical path,” in Proceedings of Symposium on Operating
Systems Principles, SOSP, vol. 19, 2019.

[15] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open
mpi: A flexible high performance mpi,” in International
Conference on Parallel Processing and Applied Mathematics.
Springer, 2005, pp. 228–239.

[16] R. Leblond, F. Pedregosa, and S. Lacoste-Julien,
“Asaga: asynchronous parallel saga,” arXiv preprint
arXiv:1606.04809, 2016.

[17] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefow-
icz, “Revisiting distributed synchronous sgd,” arXiv preprint
arXiv:1604.00981, 2016.

[18] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing, “Solving the straggler problem with
bounded staleness,” in Presented as part of the 14th Workshop
on Hot Topics in Operating Systems, 2013.

[19] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast
incremental gradient method with support for non-strongly
convex composite objectives,” in Advances in Neural Infor-
mation Processing Systems, 2014, pp. 1646–1654.

[20] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib:
Machine learning in apache spark,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[21] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support
vector machines,” ACM transactions on intelligent systems
and technology (TIST), vol. 2, no. 3, p. 27, 2011.

[22] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson et al., “Xsede: accelerating scientific discovery,”
Computing in Science & Engineering, vol. 16, no. 5, pp. 62–
74, 2014.

[23] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-
free approach to parallelizing stochastic gradient descent,” in
Advances in Neural Information Processing Systems, 2011,
pp. 693–701.

[24] R. Johnson and T. Zhang, “Accelerating stochastic gradient
descent using predictive variance reduction,” in Advances in
Neural Information Processing Systems, 2013, pp. 315–323.

[25] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler
mitigation in distributed optimization through data encoding,”
in Advances in Neural Information Processing Systems, 2017,
pp. 5434–5442.

[26] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis,
modeling and simulation of workload patterns in a large-scale
utility cloud,” IEEE Transactions on Cloud Computing, vol. 2,
no. 2, pp. 208–221, 2014.

[27] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in map-
reduce clusters using mantri.” in Osdi, vol. 10, no. 1, 2010,
p. 24.

[28] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu,
“Straggler root-cause and impact analysis for massive-scale
virtualized cloud datacenters,” IEEE Transactions on Services
Computing, 2016.

[29] X. Ouyang, P. Garraghan, D. McKee, P. Townend, and J. Xu,
“Straggler detection in parallel computing systems through
dynamic threshold calculation,” in 2016 IEEE 30th Interna-
tional Conference on Advanced Information Networking and
Applications (AINA). IEEE, 2016, pp. 414–421.

[30] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel
stochastic gradient for nonconvex optimization,” in Advances
in Neural Information Processing Systems, 2015, pp. 2737–
2745.

[31] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic
optimization,” in Advances in Neural Information Processing
Systems, 2011, pp. 873–881.

[32] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-
aware async-sgd for distributed deep learning,” arXiv preprint
arXiv:1511.05950, 2015.

[33] L. Wang, B. Catterall, and R. Mortier, “Probabilistic syn-
chronous parallel,” arXiv preprint arXiv:1709.07772, 2017.

[34] Y. Ming, Y. Zhao, C. Wu, K. Li, and J. Yin, “Distributed
and asynchronous stochastic gradient descent with variance
reduction,” Neurocomputing, vol. 281, pp. 27–36, 2018.

[35] A. Mahout, “Scalable machine-learning and data-mining li-
brary,” available at mahout. apache. org, 2008.

[36] A. G. B. Saadon and H. M. Mokhtar, “iihadoop: an asyn-
chronous distributed framework for incremental iterative com-
putations,” Journal of Big Data, vol. 4, no. 1, p. 24, 2017.

[37] J. E. Gonzalez, P. Bailis, M. I. Jordan, M. J. Franklin, J. M.
Hellerstein, A. Ghodsi, and I. Stoica, “Asynchronous complex
analytics in a distributed dataflow architecture,” arXiv preprint
arXiv:1510.07092, 2015.

[38] L. Mai, C. Hong, and P. Costa, “Optimizing network per-
formance in distributed machine learning,” in 7th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 15),
2015.

439

Authorized licensed use limited to: Rutgers University. Downloaded on June 30,2021 at 16:15:48 UTC from IEEE Xplore. Restrictions apply.

