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Generically, the effective coupling between the dark matter and an atom scales with the number of
constituents in the atom, resulting in the effective coupling being proportional to the mass of the atom. In
this limit, when the momentum transfer is also small, we show that the leading term in the scattering of a
particle off the optical phonons of an array of atoms, whether in a crystal or in a molecule, vanishes. Next-
generation dark matter direct detection experiments with sub-electron-volt energy thresholds will operate in
a regime where this effect is important, and the suppression can be up to order 106 over naive expectations.
For dark matter that couples differently to protons and neutrons, the suppression is typically of order
10–100 but can be avoided through a judicious choice of material, utilizing variations in nuclear ratios Z=A
to break the proportionality of the coupling to mass. We provide explicit illustrations of this effect by
calculating structure factors for dimolecules and for the crystals NaI and sapphire.
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I. INTRODUCTION

The experimental endeavor to directly detect dark
matter must confront a possible dark matter mass range
spanning over 50 orders of magnitude (see e.g., Ref. [1]
for a recent review). Within the lowest mass regions,
10−22 ≲mDM=eV≲ 102, the dark matter oscillates as a
coherent classical field, which can be leveraged in experi-
ments that search for resonant effects (see e.g., [2]). For
higher masses, such effects are absent, and conventional
weakly interacting massive particle searches rely on
detection of energy deposited in a scattering event.
Detector energy thresholds are being pushed lower, with
current technology demonstrating sensitivity to around a
few electron volts of energy deposit [3,4], probing
mDM ≳MeV. New technologies are needed and are
being developed (see e.g., [5] for an overview) to probe
the currently inaccessible mass region between
102≲mDM=eV≲106. These scattering events have momen-
tum transfer q in the region of ∼0.1 eV–1 keV. A number
of proposals exploit a dark matter interaction with

phonons, as these are the relevant quanta at these low
energy/momentum transfers [6–13]; for crystal-based pro-
posals [9,12,13], optical phonons are important as these
have the correct kinematics to efficiently couple to light
dark matter.
In this paper, we highlight a particular feature of dark

matter–phonon interactions in target crystals or molecules
in the q≲ keV window of low momentum transfer that, to
the best of our knowledge, has not been pointed out in the
literature. We consider two types of interaction. The first is
scattering of a particle by an array of N atoms via a
potential of the form

V ¼
XN
i¼1

giVðr − riÞ; ð1Þ

where r is the position of the incoming particle, ri are the
positions of the atoms, gi is the coupling to the ith atom,
and Vðr − riÞ can account for both long and short range
interactions. The second is the interaction of a field A via
the dipole operator

D ¼ −
XN
i¼1

giri ·A; ð2Þ

where A can describe a vector field or the gradient of a
scalar field and is treated as being constant in space and
time, compared with the size of the system. In both cases,
we show that the leading order (proportional to q2)
scattering off optical modes vanishes in the limit where
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the scattering particle couples to the target atoms propor-
tional to their masses. That is, denoting the mass of the ith
atom as mi, the leading term vanishes if gi ¼ gmi for all i
and for some constant g.
The result follows from conservation of momentum.

First, consider the transition matrix element describing
scattering via the potential Eq. (1), with momentum transfer
q as well as where the crystal/molecule target goes from
state jΦii to jΦfi,

hΦfjVðqÞ
X
l

gleiq·r̂l jΦii; ð3Þ

with VðqÞ ¼ R
d3r0eiq·r0Vðr0Þ. For inelastic scattering in

the q → 0 limit we take the linear term in the expansion of
the exponential. Setting gl ¼ gml, this becomes

iVðqÞgq ·hΦfj
�X

l

mlr̂l

�
jΦii¼ iVðqÞgq ·hΦfjR̂jΦii;

ð4Þ

where R̂ is the center of mass (COM) coordinate of the
target. Momentum conservation guarantees that the COM
coordinate operator can never induce a transition between
different internal states, and so the matrix element in Eq. (4)
is zero. The same argument clearly holds for transition
elements involving the dipole operator in Eq. (2),
hΦfjDjΦii. Note that we have assumed nothing about
the internal states of the system, so the effect is general; we
will, however, use the harmonic approximation in the next
section and explicitly show how these arguments work in
that case.
One should still ask, in what regime is the above low q

expansion valid? Clearly, it applies whenever 1=q is larger
than the size of the entire system, for example, when
scattering off a molecule. On the other hand, for scattering
off the optical modes of a periodic lattice the relevant scale
is in fact the size of the unit cell (q ≲ keV). This can be
understood as follows: first, for a periodic system we need
only consider the matrix element in Eq. (3) with the sum
restricted to be over a single unit cell; the matrix elements
for atoms in other unit cells are related by a phase factor due
to Bloch’s theorem. We then apply the same argument as
above: R̂ now becomes the COM coordinate of the unit cell
and as such can never induce transitions involving optical
phonons. Note that it can still induce transitions between
acoustic phonons as these are translations of the unit cell;
for these modes the relevant scale remains the total size of
the system. However, the kinematic mismatch between the
virial velocity of dark matter and the speed of sound in
materials makes it difficult to efficiently excite acoustic
phonons for light dark matter detection.
This “coupling-to-mass” limit is a generic feature of

dark matter interactions with atoms and molecules that are

being searched for in proposed sub-electron-volt
crystal or molecule-based direct detection experiments
(see Refs. [9,12–14]). In these experiments, the darkmatter
is assumed to have some interaction with individual
nucleons and electrons, for example, via couplings to their
electric, baryon, or weak charges. At the low momenta
(⪅ keV) transferred in these collisions, the dark matter
effectively couples coherently to the entire atom, resulting
in an effective coupling that is typically proportional to the
mass of the atom.
We proceed more quantitatively by writing the coupling

of the dark matter to the ith atom, postponing the treatment
for coupling to electrons (which is at any rate strongly
constrained [14]) to Sec. IV, as

gi ¼ gpZi þ gnðAi − ZiÞ ð5Þ

¼ Ai

�
ðgp − gnÞ

Zi

Ai
þ gn

�
; ð6Þ

where gp is the coupling to protons, gn is the coupling to
neutrons, and Zi and Ai are the proton number and atomic
mass number, respectively. Considering first the case
gp ¼ gn ¼ g, we have coupling proportional to atomic
mass number gi ¼ gAi. Since the atomic mass number
and the physical mass,mi, of a nucleus differ due to binding
energies and the proton/neutron mass difference, which are
both mega-electron-volt effects, we expect a deviation from
the coupling-to-mass limit of order ϵ ∼MeV=GeV ∼ 10−3.
We will see that the q2 term in the scattering rate is
proportional to ϵ2, such that for this case of coupling to the
baryon number, we expect higher-order q4 terms to be
dominant. While the formalism for the scattering of dark
matter with phonons was discussed in detail in [13], this
coupling-to-mass effect was missed in the analytic analysis;
we emphasize that this is a cancellation that exists for an
arbitrary mass difference between atomic species, contrary
to the claim in [13].
Moving to the more general case where gp ≠ gn, we see

from Eq. (6) that deviations from coupling proportional to
the atomic mass number are characterized solely by the
ratio Zi=Ai. For instance, for molecules or crystals that
consist of nuclei that all have an equal value of the ratio
Zi=Ai (for many light elements Z=A ¼ 1=2), the coupling
is again proportional to the atomic mass number and, as
above, we expect a huge suppression of the leading term in
the scattering rate. For gp ≠ gn, the rate can therefore be
significantly enhanced by a choice of material that consists
of nuclei with differing Zi=Ai.
We point out that there exist two important cases which

are in practice far from the coupling-to-mass limit. The first
is where the interaction of the dark matter with the Standard
Model proceeds through a dark photon that is kinetically
mixed with the photon. In this case, due to the nature of the
Standard Model electric charges, the effective coupling of
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the dark photon to the crystal proceeds through an atomic/
molecular electric dipole moment which is not proportional
to the mass of the atom/molecule. The second case is spin
dependent couplings, which are also not typically propor-
tional to the mass of the atom. In these cases, one could
instead choose a material with equal Zi=Ai in order to
suppress the neutrino scattering background.
We note that in the case of photons being absorbed or

undergoing Raman scattering in crystals and molecules, it
is known that suppressions of the leading term can also
occur; certain phonon modes can be inactive, or “IR-silent”
(see e.g., [15]). The mechanism by which this phenomena
takes place, however, is based on lattice symmetry selection
rules and differs from the coupling-to-mass mechanism
studied here.
The remainder of the paper proceeds as follows. In Sec. II,

we give a proof of the coupling-to-mass effect in general
harmonic systems, for both scattering via Eq. (1) and
absorption via Eq. (2); we also provide an interpretation
using the Fröhlich interaction. In Sec. III we illustrate the
effect via examples: scattering and absorption in diatomic
molecules, and scattering in the crystals NaI and Al2O3

(sapphire). Section IV discusses the relevance of the effect
for dark matter direct detection experiments. Details of the
scattering formalism are included in Appendix.

II. THE COUPLING TO MASS EFFECT IN
HARMONIC SYSTEMS

A. Inelastic scattering

Here we prove that the one-phonon inelastic structure
factor that describes scattering via the potential Eq. (1)
exhibits the coupling-to-mass effect for any harmonic
system. We start with the Hamiltonian describing the
interaction of the atoms in a crystal at harmonic order,

H ¼ 1

2

X3
α;β¼1

XN
i;j¼1

ðpα
i A

αβ
ij p

β
j þ xαi F

αβ
ij x

β
j Þ; ð7Þ

where the sum on α, β runs over spatial dimensions, and
i; j ¼ 1 � � �N are site indices which run over all N atoms in
the crystal; xαi denotes the displacement of the ith atom
from its equilibrium position, Xα

i . The mass matrix
Aαβ
ij ¼ δαβdiagð1=m1;…; 1=mNÞij, where mi is the mass

of the ith atom. The force constants matrix, Fαβ
ij , is the

second-order expansion of the crystal potential
Uðx1;…; xNÞ,

Fαβ
ij ¼ ∂2U

∂xαi ∂xβj

����
x¼0

; ð8Þ

which is symmetric in α, β and i, j; further, momentum
conservation ½H;

P
ip

α
i � ¼ 0 implies the following

property:

XN
j¼1

Fαβ
ij ¼ 0: ð9Þ

To diagonalize the system, we first rescale the
Hamiltonian, Eq. (7), sending pα

i ¼
ffiffiffiffiffiffi
mi

p
p̃α
i and xαi ¼

x̃αi =
ffiffiffiffiffiffi
mi

p
. This gives

H ¼ 1

2

X
α;β

X
i;j

ðp̃α
i p̃

β
jδ

αβδij þ x̃αi F̃
αβ
ij x̃

β
j Þ; ð10Þ

where

F̃αβ
ij ¼ Fαβ

ij
1ffiffiffiffiffiffiffiffiffiffiffimimj

p : ð11Þ

Note that the property of F that followed from momentum
conservation, Eq. (9), implies that

XN
j¼1

F̃αβ
ij

ffiffiffiffiffiffi
mj

p ¼ 0: ð12Þ

The next step is to finally diagonalize the system, i.e.,
find the eigenvectors and eigenvalues of F̃. It is easiest to
visualize by combining the α and i indices into one single
3N-dimensional index (and similarly for β, j) in the
following way:

ðF̃Þ ¼

0
BB@

ðF̃xxÞ ðF̃xyÞ ðF̃xzÞ
ðF̃yxÞ ðF̃yyÞ ðF̃yzÞ
ðF̃zxÞ ðF̃zyÞ ðF̃zzÞ

1
CCA: ð13Þ

We denote the 3N eigenvectors of this matrix by va, with
corresponding eigenvalues ω2

a. As a result of Eq. (12), we
see that the three-dimensional subspace of eigenvectors
with zero eigenvalue—the acoustic vibrational modes—is
spanned by the eigenvectors

v1 ¼ N

0
BB@

A−1=2

0N
0N

1
CCA; v2 ¼ N

0
BB@

0N
A−1=2

0N

1
CCA;

v3 ¼ N

0
BB@

0N
0N

A−1=2

1
CCA; ð14Þ

where A−1=2 ¼ ð ffiffiffiffiffiffi
m1

p
;…;

ffiffiffiffiffiffiffi
mN

p ÞT and N ¼ ðPN
i¼1miÞ−1

2.
Switching back to α and i notation these acoustic eigen-
vectors are
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ðv1Þαi ¼ N δαxðA−1=2Þi; ðv2Þαi ¼ N δαyðA−1=2Þi;
ðv3Þαi ¼ N δαzðA−1=2Þi: ð15Þ

Now, consider an incoming particle that scatters off the
atoms in the crystal via a potential of the form in Eq. (1).
The rate for inelastic scattering that (de)excites the mode
with eigenvector va is proportional to the form factor (see
Appendix)

F aðqÞ ¼
X3
α¼1

XN
l¼1

glffiffiffiffiffiffi
ml

p qαðvaÞαl eiq·Xle−WlðqÞ; ð16Þ

where WlðqÞ is the Debye-Waller factor. The leading term
in the small-q expansion of this expression is

F aðqÞ ¼
X
α

X
l

glffiffiffiffiffiffi
ml

p qαðvaÞαl þ � � � : ð17Þ

One can see that if the couplings are proportional to the
masses, gl ¼ gml for some g, only scattering into the
acoustic modes is nonzero, by orthogonality of the eigen-
vectors. Explicitly, we can write the term appearing in
Eq. (17) as

X
α

X
l

gmlffiffiffiffiffiffi
ml

p qαðvaÞαl

¼ g
X
α

X
l

ðqxðA−1=2Þlδxα þ qyðA−1=2Þlδyα

þ qzðA−1=2ÞlδzαÞðvaÞαl
¼ g

N
ðqxv1 þ qyv2 þ qzv3Þ · va: ð18Þ

Thus, unless a ¼ 1, 2, or 3 this vanishes by orthogonality.
Parametrizing a deviation from the coupling-to-mass

case by gl ¼ gmlð1þ ϵclÞ (where cl are order one numbers
to encode different deviations for different atoms), we see
that the cross section for scattering into optical modes
(σ ∝ jF j2) is proportional to ϵ2 at small q.

B. Absorption via a dipole interaction

With the above formalism, we can now see the mechan-
ics of the coupling-to-mass effect in dipole transitions, the
rate of which is proportional to

jhΦfj
X

l
glðXl þ xlÞ ·AjΦiij2: ð19Þ

Absorption into the mode with eigenvector va is propor-
tional to the form factor, jF aðAÞj2, where

F aðAÞ ¼
X
α

X
l

glffiffiffiffiffiffi
ml

p AαðvaÞαl : ð20Þ

It is clear that we can perform the same manipulations as in
Eq. (18) to show this vanishes in the gl ∝ ml limit.

C. The Fröhlich interaction

The Fröhlich interaction provides another way of
describing low momentum transfer scattering of a particle
by phonons in a periodic crystal; it is particularly useful to
succinctly capture electromagnetic screening effects in the
case of scattering via a photon. Because it describes the
same physics as the structure factor approach at low q, it
should also exhibit the coupling-to-mass effect. The matrix
element for electromagnetic scattering by the eigenmode va
at low momentum transfer, q → 0, is [16–18]

Ma;q ∝
X3
α;β¼1

XNb

l¼1

effiffiffiffiffiffi
ml

p qαZ�αβ
l ðvaÞβl

ðPγ;δq
γϵγδ∞qδÞ

; ð21Þ

where Nb is the number of atoms in the unit cell, e is the
electron electromagnetic charge, and ϵγδ∞ is the dielectric
permittivity tensor. The quantities Z�αβ

i are the Born effec-
tive charges. For electromagnetism, they satisfy the sum rule

XNb

l¼1

Z�αβ
l ¼ 0; ð22Þ

which guarantees charge neutrality within the unit cell. Note
how this follows from requiring that this matrix element is
zero for scattering into the nondipole (i.e., acoustic) modes
with eigenvectors ðvaÞβl , a ¼ 1, 2, or 3; the 1=

ffiffiffiffiffiffi
ml

p
cancels

the
ffiffiffiffiffiffi
ml

p
in the va, such that the only l dependence is

contained in the Z�αβ
l .

The matrix element Eq. (21) reduces to the form obtained
in the structure function approach to low q scattering via a
lightmediator (which provides a factor of 1=q2) upon setting
eZ�αβ

l ¼δαβgl, ϵ
γδ
∞¼δγδ, and where

P
lgl ≠ 0 in general.

The coupling-to-mass effect is indeed apparent in the
form of Eq. (21): if Z�αβ

l ¼ gαβml (where now gαβ is a
constant “couplings tensor”), it again follows by the mecha-
nism of Eq. (18) that scattering into optical modes vanishes.
However, for the case of electromagnetism, the addi-

tional physical requirement of charge neutrality and the
resulting sum rule, Eq. (22), ensures deviation from the
coupling-to-mass limit. That is, dark photons that kineti-
cally mix with the Standard Model photon give rise to
interactions [scatterings, or absorption, via an equivalently
screened version of Eq. (20)] that are away from the
coupling-to-mass limit.

III. EXAMPLES

A. Scattering and absorption in a diatomic molecule

The simplest system that exhibits the coupling-to-mass
effect is a diatomic molecule, composed of two atoms of
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mass m1 and m2. We model it as a one-dimensional
harmonic system, the Hamiltonian of which takes the form
in Eq. (7). We will discuss rotational modes and anhar-
monic corrections to the potential shortly.
In this case it is trivial to diagonalize the system, and the

form factor for scattering into the optical mode via a
potential of the type in Eq. (1) is simply

jF ðqÞj2 ¼ q2

M

�
g21m2

m1

þ g22m1

m2

− 2g1g2 cos qa

�
; ð23Þ

where a ¼ jX2 − X1j is the equilibrium interatomic dis-
tance and M ¼ m1 þm2. We have neglected the Debye-
Waller factor since for low momentum transferWl ≈ 1 with
corrections suppressed by q2=ðμωÞ, where μ ¼ m1m2=M is
the reduced mass of the system. Similarly, the form factor
for absorption in the presence of field A via Eq. (2) is

jF ðAÞj2 ¼ A2

Mm1m2

ðg1m2 − g2m1Þ2: ð24Þ

The analysis in this case is a trivialization of the one for
scattering, and we do not explicitly present it.
We parametrize the couplings as g1 ¼ gm1ð1þ ϵ=2Þ and

g2 ¼ gm2ð1 − ϵ=2Þ, where ϵ provides the deviation from
the coupling-to-mass limit. Expanding the form factor
Eq. (23) in the limit of small ϵ and small qa, we find

jF ðqÞj2 ¼ q2g2μðϵ2 þ ðqaÞ2 þ � � �Þ; ð25Þ

where we drop higher order terms in ðqaÞ or ϵ. As expected
from the general arguments laid out in the Introduction, we
see that the leading q2 term is suppressed by a factor of ϵ2.
The ϵ2 term dominates the rate for q≲ ϵ=a. In the other

regime where the q4 term in Eq. (25) dominates, one should
also calculate other contributions to the rate coming from
the two-mode transitions, which may be important since
q2=μw can be of order ðqaÞ2.
We finally turn to a discussion of rotational modes and

anharmonic corrections. An inclusion of these renders the
effectively one-dimensional example above a more realistic
description of dark matter scattering off a dimolecule.
Rotational modes essentially factor from the vibrational
ones described above (see e.g., Ref. [11]) and represent a
hyperfine splitting to the above analysis, such that they can
be safely neglected at this level of discussion of the
scattering rate. Anharmonic corrections, on the other hand,
are more important; they can be analyzed to a good
approximation using the Morse interatomic potential [19]
and provide contributions at relative order ∼10−2 to
scattering rates (again, see e.g., Ref. [11]). However, note
that even in an analysis that includes the full potential, the
leading term in q2 is still suppressed by ϵ2 following the
general arguments from the Introduction.

B. Scattering in crystals

Next, we provide two examples which illustrate the
coupling-to-mass effect in crystals. Specifically, we con-
sider NaI and Al2O3 (sapphire); the former has been used as
the target in several past and ongoing dark matter direct
detection experiments, e.g., [20–22] (albeit with higher
energy thresholds than considered here), while the latter has
been proposed as a potential material for the direct
detection of sub-mega-electron-volt dark matter [13].
In a crystal, the periodicity of the system allows one to

reduce summations over lattice sites to summations over
the unit cell. The momentum conservation condition in
Eq. (12) is then expressed in Fourier space as a sum rule on
the dynamical matrix at the Brillouin zone center (q ¼ 0):

X
j

F̃αβ
ij ðqÞ ffiffiffiffiffiffi

mj
p ���

q¼0
¼ 0; ð26Þ

where here the indices i, j run over atoms within the
unit cell.
We use the phonon calculation package PHONOPY [23] to

compute the phonon band structure and dynamic structure
factor. The crystal structures and force constants for NaI
and Al2O3 are taken from [24]. We also include the effect of
long-range electromagnetic dipole-dipole interactions in
the material, which give an additional, nonanalytic con-
tribution to the dynamical matrix [25] and lead to a splitting
of the longitudinal and transverse optical modes near
q ¼ 0. In the limit q → 0, this nonanalytic correction is
given by

δF̃αβ
ij ¼ 1ffiffiffiffiffiffiffiffiffiffiffimimj

p 4π

Ω0

ðPγq
γZ�γα

i ÞðPγ0q
γ0Z�γ0β

j ÞP
μνqμϵ

∞
μνqν

; ð27Þ

where Ω0 is the volume of the unit cell and ϵ∞μν is,
again, the dielectric permittivity tensor. Note that the
sum rule satisfied by the Born effective charges Z�αβ

j ,
Eq. (22), ensures that the full dynamical matrix still
satisfies Eq. (26).
We stress the importance of ensuring that the sum rules

in Eqs. (26) and (22) are satisfied to a very high accuracy in
numerical calculations. Violating these sum rules can
change the structure factor by many orders of magnitude
and/or exhibit an anomalous q2 scaling at low momentum
transfer when considering couplings that are close to the
proportional-to-mass limit.
The inelastic structure factors for excitation of a single

optical phonon in NaI or Al2O3 are shown in Fig. 1; we
have summed all optical bands and integrated over scatter-
ing angles. For concreteness we assumed a delta function
scattering potential V ¼ P

lglδ
ð3Þðr − ðXl þ xlÞÞ, appli-

cable to scattering via a massive mediator; in this case
gl ∝ 1=m2

mediator. We reiterate, however, that the suppres-
sion of scattering rates when coupling proportional to mass
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occurs for more general potentials of the form Eq. (1). The
figures are shown for zero temperature, but the coupling-to-
mass effect is independent of temperature provided that the
Debye-Waller factor remains negligible; at room temper-
ature the situation is unchanged from Fig. 1. The dotted
grey curves show the effect of deviations from the cou-
pling-to-mass limit, where the couplings are taken as g1 ¼
gm1ð1þ ϵÞ and g2 ¼ gm2ð1 − ϵÞ. In the exact coupling-to-
mass limit (ϵ ¼ 0), one can clearly see that the leading
Oðq2Þ term in the structure factor vanishes. For NaI,
the subleading term also vanishes in this limit and the
structure factor scales as q6 at low q; this additional
cancellation occurs due to the particular lattice symmetry
in this case. Moving away from the coupling-to-mass limit,
the Oðq2Þ term is nonzero but suppressed by ϵ2, consistent
with Eq. (17).
Figure 1 also shows the structure factor for several well-

motivated choices of gp and gn in Eq. (6) that set the
effective charge to which dark matter might couple (we set
any coupling to electrons ge ¼ 0),

QB∶ gp ¼ gn ¼ g; ð28Þ

QW∶ gp ¼ gð1 − 4sin2θWÞ; gn ¼ −g; ð29Þ

Qp∶ gp ¼ g; gn ¼ 0; ð30Þ

where θW is the weak mixing angle. The coupling to weak
charge, QW , also serves to describe neutrino scattering. We
neglect effects due to nuclear form factors which are
negligible at such low momentum transfer. For the cases
of QW=p we plot the result for twice the effective charge;
this allows for a meaningful comparison with the dotted
curves to estimate the level at which QB=W=p deviates from

the coupling-to-mass limit. The overall normalization in
Fig. 1 is arbitrary (we set g ¼ 1).

There are a couple of features of Fig. 1 that we wish to
emphasize. First, consider the case of dark matter that
couples to baryon number QB, i.e., the atomic mass
number. This is a realistic scenario that closely approaches
the coupling-to-mass limit; deviations are at the level of
Oð10−3Þ due to the nuclear binding energy and proton-
neutron mass difference. This can be clearly seen in Fig. 1,
where the baryon number curve is comparable to a detuning
of ϵ ∼ 10−3–10−4. At q ∼ eV, the leading term is sup-
pressed by 6 orders of magnitude, compared to naive
expectations (ϵ ∼ 1).
Next, consider the case where dark matter couples to the

effectiveweak charge (≈ neutron number) or proton number.
In these cases there is a deviation from the coupling-to-mass
limit of order ϵ ∼ 10−1 for NaI, and slightly smaller ϵ ∼
10−2 − 10−1 for sapphire; both numbers are of the expected
order by comparing the Z=A ratios of the atoms in the
crystal: ϵNaI∼Oðj11=23−53=127jÞ¼0.07 and ϵAl2O3

∼
Oðj13=27 − 8=16jÞ ∼ 0.02. The deviation from coupling-
to-mass is the same for bothQp andQw since, as discussed in
the Introduction, it is determined entirely by the ratiosZi=Ai
and is not affected by the values of gp and gn (neglecting
binding energy effects that are subdominant here).

IV. DISCUSSION

The coupling-to-mass effect is the vanishing of the
leading order particle scattering/absorption by optical
phonons in a crystal or molecule at low momentum
transfer, in the case where the scattering particle couples
to each atom i proportional to the mass of the atom:
gi ¼ gmi. We now turn to discussing some of its implica-
tions for next-generation dark matter direct detection

FIG. 1. Inelastic one-phonon structure factors for NaI (left) and Al2O3 (right), summed over optical bands and integrated over
scattering angles: S ≡P

a

R
dΩSaðq;ωaðqÞÞ. Grey dotted curves show the structure factor for various values of ϵ, which parametrizes

the deviation from coupling-to-mass: g1 ¼ gm1ð1þ ϵ=2Þ, g2 ¼ gm2ð1 − ϵ=2Þ, where atom 1 (resp. 2) is Na (Al) resp. I (O) for NaI
(sapphire). The curves labeled QB, QW , and Qp show the structure factor for various possible dark matter couplings given in Eqs. (28)–
(30). The overall normalization is arbitrary (we set g ¼ 1).
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experiments, which aim to probe the sub-mega-electron-
volt dark matter mass scale, i.e., be sensitive to events with
momentum transfer q ≲ keV.
Let us return to analyze Eq. (6) (again not considering

any couplings to electrons for the moment). For the special
case gp ¼ gn (coupling to the baryon number), the ratio
Zi=Ai drops out, and the only deviations from coupling-to-
mass come from the order ϵ ∼ 10−3 differences in atomic
mass number and atomic mass; the resulting ∼10−6
suppression of the leading q2 term means the rate will
instead be dominated by higher-order q4 terms for q≳ eV.
One should thus also consider two phonon rates when
calculating sensitivities of proposed experiments in this
region. On this point, if one assumes aggressive thresholds
of ∼1–10 meV in crystals, acoustic phonons can become
important but, due to the crystal speed of sound cs ∼ 10−5,
only at large q ∼ 0.1–1 keV [13]; it would be interesting to
further study the two-acoustic phonon process, with back-
to-back phonons to mitigate the dark matter–phonon
velocity mismatch, thus potentially reaching lower q.
See also Ref. [8] which utilizes multiphonon data for dark
matter absorption. We mention in passing that two phonon
processes involving one acoustic and one optical phonon
will also be subject to coupling-to-mass suppression.
Turning now to the case gp ≠ gn, an interesting feature of

Eq. (6) is that regardless of the values of gp and gn, the
deviation from the coupling-to-mass limit is controlled
simply by the variation in the ratios Zi=Ai of the constituent
atoms. In a generic material one expects ϵ ∼ 10−2–10−1.
Larger values of ϵ≳ 0.1 can be achieved by choosing, for
example, materials composed of a combination of light
(Z < 20 and Z=A ∼ 0.5) and heavy (Z > 20 and
Z=A ∼ 0.4) elements, and/or that include hydrogen atoms
(Z=A ¼ 1Þ. A judicious choice of materials can therefore
enhance the scattering rate by order 10–100 (for
q≲ 100–10 eV), when gp ≠ gn; note that the absolute
scattering rate per unit mass also depends on the atomic
masses; see e.g., Eq. (25) where the relevant quantity is
μϵ2=M. Materials composed of organic structures that
contain hydrogen atoms, such as those proposed for
“magnetic bubble chambers” in [9] (which also contain
heavy atoms), are good candidates. Note also that the
enhancement can potentially be much larger, up to Oð104Þ
at q ∼ eV, over molecules or crystals composed of a single
atom (or atoms that have equal Z=A), for which ϵ ∼ 10−3.
Finally, what if the dark matter additionally couples to

electrons (although this scenario is subject to severe
constraints [14])? This induces a coupling to lattice
phonons at q ≲ keV in the following way: we can add
to Eq. (5) a coupling geNe

i , where Ne
i is the effective

number of electrons which follow the movement of the ith
atom. This provides an additional ratio, Ne

i =Ai, that
characterizes the coupling to atoms in a material. Note
that with ge ¼ 0 and hence only a single ratio in Eq. (6), the
level at which the coupling-to-mass limit is broken is

determined completely by the target material—it is not
possible to tune the “theory” parameters gn and gp so as to
move away from the limit. With two ratios, Zi=Ai and
Ne

i =Ai, such a tuning now becomes possible. An important
case is when the dark matter couples via mixing with the
photon, whence gn ¼ 0 and gp ¼ −ge, and the interaction
is via a dipole, which we discussed previously.
We summarize our main conclusions as follows:
(i) Dark matter models in which the dark matter couples

to the baryon number are deep in the coupling-to-
mass limit, and the scattering rate will be dominated
by higher-order q4 terms for q≳ eV; calculations of
such terms are needed for projected sensitivities.

(ii) For models where dark matter couples unequally to
protons and neutrons, its scattering/absorption rate
can generically be raised by choosing materials with
larger variation in the ratio Zi=Ai between atoms.
Materials with a mixture of light and heavy ele-
ments, or that include hydrogen atoms, provide
variations of 0.1–1 and typical sensitivity gains of
order 10–100.

(iii) Dark matter that interacts via a dark photon kineti-
cally mixing with the Standard Model photon is far
from the coupling-to-mass limit. Dark matter that
couples to the baryon number is in the coupling-to-
mass limit regardless of material. In both these cases,
neutrino scattering backgrounds can be reduced by
choosing a material with equal Zi=Ai for all con-
stituent atoms. A homogeneous material with only
one type of atom trivially satisfies this condition, but
many light elements exhibit Z=A ¼ 1=2.
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APPENDIX: SCATTERING FORMALISM

In this appendix we provide some details of the scatter-
ing formalism and the definition of the dynamic structure
factor. Further details of this formalism can be found in
standard textbooks (see e.g., [26]).
Consider an incoming particle of massm that scatters off

the atoms in a crystal via a potential of the form in Eq. (1).
The differential scattering cross section is
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dσ
dΩdE0 ¼

k0

k
m2

ð2πÞ3 Sðk − k0; E0 − EÞ; ðA1Þ

where E (E0) and k (k0) are the initial (final) energy
and momentum of the scattering particle. In the Born
approximation, Sðq;ΔEÞ is the dynamic structure factor
defined by

Sðq;ΔEÞ ¼
X
f

2πδðωf − ωi þ ΔEÞ
���

×
X
l

glVðqÞeiq·XlhΦfjeiq·xl jΦii
���2; ðA2Þ

¼
X
l;l0

glg�l0VðqÞV�ðqÞeiq·ðXl−X0
lÞ

×
Z

dteitΔEhΦije−iq·xl0eiq·xlðtÞjΦii; ðA3Þ

where the crystal is taken to initially be in an energy
eigenstate jΦii with eigenvalue ωi, and there is a sum over
final states; VðqÞ is the Fourier transform of the potential,
VðqÞ ¼ R

d3r0eiq·r0Vðr0Þ. In a harmonic system, and after
thermally averaging over initial states, this can be sim-
plified further to obtain

Sðq;ΔEÞ ¼
X
l;l0

glg�l0VðqÞV�ðqÞeiq·ðXl−X0
lÞe−ðWlðqÞþWl0 ðqÞÞ

×
Z

dteitΔEehðq·xl0 Þðq·xlðtÞÞi; ðA4Þ

where h� � �i denotes a thermal average andWl is the Debye-
Waller factor,

2Wl ≡ hðq · xlÞ2i ¼
X
a

X
α

jqαðvaÞαl j2
2mlωa

h2na þ 1i: ðA5Þ

Here, the sum on a is over the eigenmodes of the system
and hnai is the occupation number of the mode with
eigenvector va.
For the case of inelastic scattering that (de)excites a

single phonon, we expand the last exponential in Eq. (A4)
at linear order,

Sð1Þðq;ΔEÞ ¼
X
a

jVðqÞF aðqÞj2
2ωa

ð2πδðΔEþ ωaÞ

× hna þ 1i þ 2πδðΔE − ωaÞhnaiÞ; ðA6Þ
where we have defined the form factor

F aðqÞ ¼
X
α

X
l

glffiffiffiffiffiffi
ml

p qαðvaÞαl eiq·Xle−WlðqÞ: ðA7Þ
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