PHYSICAL REVIEW D 100, 055011 (2019)

Dark matter phonon coupling

Peter Cox,"" Tom Melia,"" and Surjeet Rajendran®>

*

'Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo,
Kashiwa, Chiba 277-8583, Japan
2Department of Physics, University of California, Berkeley, California 94720, USA
3Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA

® (Received 19 May 2019; published 9 September 2019)

Generically, the effective coupling between the dark matter and an atom scales with the number of
constituents in the atom, resulting in the effective coupling being proportional to the mass of the atom. In
this limit, when the momentum transfer is also small, we show that the leading term in the scattering of a

particle off the optical phonons of an array of atoms, whether in a crystal or in a molecule, vanishes. Next-
generation dark matter direct detection experiments with sub-electron-volt energy thresholds will operate in
a regime where this effect is important, and the suppression can be up to order 10° over naive expectations.

For dark matter that couples differently to protons and neutrons, the suppression is typically of order
10-100 but can be avoided through a judicious choice of material, utilizing variations in nuclear ratios Z/A
to break the proportionality of the coupling to mass. We provide explicit illustrations of this effect by

calculating structure factors for dimolecules and for the crystals Nal and sapphire.
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I. INTRODUCTION

The experimental endeavor to directly detect dark
matter must confront a possible dark matter mass range
spanning over 50 orders of magnitude (see e.g., Ref. [1]
for a recent review). Within the lowest mass regions,
10722 < mpy/eV < 10%, the dark matter oscillates as a
coherent classical field, which can be leveraged in experi-
ments that search for resonant effects (see e.g., [2]). For
higher masses, such effects are absent, and conventional
weakly interacting massive particle searches rely on
detection of energy deposited in a scattering event.
Detector energy thresholds are being pushed lower, with
current technology demonstrating sensitivity to around a
few electron volts of energy deposit [3.4], probing
mpy 2 MeV. New technologies are needed and are
being developed (see e.g., [5] for an overview) to probe
the currently inaccessible mass region between
10? <mpy/eV <10°. These scattering events have momen-
tum transfer ¢ in the region of ~0.1 eV-1 keV. A number
of proposals exploit a dark matter interaction with
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phonons, as these are the relevant quanta at these low
energy/momentum transfers [6—13]; for crystal-based pro-
posals [9,12,13], optical phonons are important as these
have the correct kinematics to efficiently couple to light
dark matter.

In this paper, we highlight a particular feature of dark
matter—phonon interactions in target crystals or molecules
in the ¢ < keV window of low momentum transfer that, to
the best of our knowledge, has not been pointed out in the
literature. We consider two types of interaction. The first is
scattering of a particle by an array of N atoms via a
potential of the form

V=2 gV(r—r). (1)

where r is the position of the incoming particle, r; are the
positions of the atoms, g; is the coupling to the ith atom,
and V(r —r;) can account for both long and short range
interactions. The second is the interaction of a field A via
the dipole operator

N
D=-) gr; A, (2)
i=1

where A can describe a vector field or the gradient of a
scalar field and is treated as being constant in space and
time, compared with the size of the system. In both cases,
we show that the leading order (proportional to g?)
scattering off optical modes vanishes in the limit where
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the scattering particle couples to the target atoms propor-
tional to their masses. That is, denoting the mass of the ith
atom as m;, the leading term vanishes if g; = gm; for all i
and for some constant g.

The result follows from conservation of momentum.
First, consider the transition matrix element describing
scattering via the potential Eq. (1), with momentum transfer
q as well as where the crystal/molecule target goes from
state |®;) to D),

(@/[V(a))_gie®™|a;), (3)
1

with V(q) = [dre " V(r'). For inelastic scattering in
the ¢ — 0O limit we take the linear term in the expansion of
the exponential. Setting g; = gm;, this becomes

(aiga: (@] (St ) [0) = Via)oa- R0,
1
(@)

where R is the center of mass (COM) coordinate of the
target. Momentum conservation guarantees that the COM
coordinate operator can never induce a transition between
different internal states, and so the matrix element in Eq. (4)
is zero. The same argument clearly holds for transition
elements involving the dipole operator in Eq. (2),
(®f|D|®;). Note that we have assumed nothing about
the internal states of the system, so the effect is general; we
will, however, use the harmonic approximation in the next
section and explicitly show how these arguments work in
that case.

One should still ask, in what regime is the above low ¢
expansion valid? Clearly, it applies whenever 1/¢ is larger
than the size of the entire system, for example, when
scattering off a molecule. On the other hand, for scattering
off the optical modes of a periodic lattice the relevant scale
is in fact the size of the unit cell (¢ < keV). This can be
understood as follows: first, for a periodic system we need
only consider the matrix element in Eq. (3) with the sum
restricted to be over a single unit cell; the matrix elements
for atoms in other unit cells are related by a phase factor due
to Bloch’s theorem. We then apply the same argument as
above: R now becomes the COM coordinate of the unit cell
and as such can never induce transitions involving optical
phonons. Note that it can still induce transitions between
acoustic phonons as these are translations of the unit cell;
for these modes the relevant scale remains the total size of
the system. However, the kinematic mismatch between the
virial velocity of dark matter and the speed of sound in
materials makes it difficult to efficiently excite acoustic
phonons for light dark matter detection.

This “coupling-to-mass” limit is a generic feature of
dark matter interactions with atoms and molecules that are

being searched for in proposed sub-electron-volt
crystal or molecule-based direct detection experiments
(see Refs. [9,12—-14]). In these experiments, the dark matter
is assumed to have some interaction with individual
nucleons and electrons, for example, via couplings to their
electric, baryon, or weak charges. At the low momenta
(S keV) transferred in these collisions, the dark matter
effectively couples coherently to the entire atom, resulting
in an effective coupling that is typically proportional to the
mass of the atom.

We proceed more quantitatively by writing the coupling
of the dark matter to the ith atom, postponing the treatment
for coupling to electrons (which is at any rate strongly
constrained [14]) to Sec. IV, as

9i = 9pZi + g,(Ai = Z;) (5)

—Ai((gp —gn)é+gn>, (6)

A

where g, is the coupling to protons, g, is the coupling to
neutrons, and Z; and A; are the proton number and atomic
mass number, respectively. Considering first the case
9p = g = g, we have coupling proportional to atomic
mass number ¢; = gA;. Since the atomic mass number
and the physical mass, m;, of a nucleus differ due to binding
energies and the proton/neutron mass difference, which are
both mega-electron-volt effects, we expect a deviation from
the coupling-to-mass limit of order € ~ MeV/GeV ~ 1073,
We will see that the ¢ term in the scattering rate is
proportional to €2, such that for this case of coupling to the
baryon number, we expect higher-order g* terms to be
dominant. While the formalism for the scattering of dark
matter with phonons was discussed in detail in [13], this
coupling-to-mass effect was missed in the analytic analysis;
we emphasize that this is a cancellation that exists for an
arbitrary mass difference between atomic species, contrary
to the claim in [13].

Moving to the more general case where g, # g,, we see
from Eq. (6) that deviations from coupling proportional to
the atomic mass number are characterized solely by the
ratio Z;/A;. For instance, for molecules or crystals that
consist of nuclei that all have an equal value of the ratio
Z;/A; (for many light elements Z/A = 1/2), the coupling
is again proportional to the atomic mass number and, as
above, we expect a huge suppression of the leading term in
the scattering rate. For g, # g,, the rate can therefore be
significantly enhanced by a choice of material that consists
of nuclei with differing Z;/A;.

We point out that there exist two important cases which
are in practice far from the coupling-to-mass limit. The first
is where the interaction of the dark matter with the Standard
Model proceeds through a dark photon that is kinetically
mixed with the photon. In this case, due to the nature of the
Standard Model electric charges, the effective coupling of
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the dark photon to the crystal proceeds through an atomic/
molecular electric dipole moment which is not proportional
to the mass of the atom/molecule. The second case is spin
dependent couplings, which are also not typically propor-
tional to the mass of the atom. In these cases, one could
instead choose a material with equal Z;/A; in order to
suppress the neutrino scattering background.

We note that in the case of photons being absorbed or
undergoing Raman scattering in crystals and molecules, it
is known that suppressions of the leading term can also
occur; certain phonon modes can be inactive, or “IR-silent”
(see e.g., [15]). The mechanism by which this phenomena
takes place, however, is based on lattice symmetry selection
rules and differs from the coupling-to-mass mechanism
studied here.

The remainder of the paper proceeds as follows. In Sec. II,
we give a proof of the coupling-to-mass effect in general
harmonic systems, for both scattering via Eq. (1) and
absorption via Eq. (2); we also provide an interpretation
using the Frohlich interaction. In Sec. III we illustrate the
effect via examples: scattering and absorption in diatomic
molecules, and scattering in the crystals Nal and Al,O;
(sapphire). Section IV discusses the relevance of the effect
for dark matter direct detection experiments. Details of the
scattering formalism are included in Appendix.

II. THE COUPLING TO MASS EFFECT IN
HARMONIC SYSTEMS

A. Inelastic scattering

Here we prove that the one-phonon inelastic structure
factor that describes scattering via the potential Eq. (1)
exhibits the coupling-to-mass effect for any harmonic
system. We start with the Hamiltonian describing the
interaction of the atoms in a crystal at harmonic order,

1 3.

H=23 Y pAdp; +xFgx). (1)
ap=1ij=1

where the sum on a, f runs over spatial dimensions, and

i,j=1---N are site indices which run over all N atoms in

the crystal; x¢ denotes the displacement of the ith atom

from its equilibrium position, X¢. The mass matrix

AZ[} = 5% diag(1/my, ..., 1/my);;, where m; is the mass

of the ith atom. The force constants matrix, F;’f , 1s the

second-order expansion of the crystal potential
U()C], ...,XN),
0*U
F?f — , (8)
0x¢0x | =

which is symmetric in a, f and i, j; further, momentum
conservation [H,) ,;p?] =0 implies the following

property:

N
Y Fl=o. (9)
j=1

To diagonalize the system, we first rescale the
Hamiltonian, Eq. (7), sending p¢ = ,/m;p¢ and x¢ =
%% /\/m;. This gives

1 ~axl sa a P~
H=2> > (Bipjovs, + %F]%).  (10)
af ij

where

1

m[mj

pap _ pob
FiP = Fj;

(11)

Note that the property of F' that followed from momentum
conservation, Eq. (9), implies that

N
> FY ;=0 (12)
j=1

The next step is to finally diagonalize the system, i.e.,
find the eigenvectors and eigenvalues of F. It is easiest to
visualize by combining the a and i indices into one single
3N-dimensional index (and similarly for g, j) in the
following way:

We denote the 3N eigenvectors of this matrix by v,, with
corresponding eigenvalues w2. As a result of Eq. (12), we
see that the three-dimensional subspace of eigenvectors
with zero eigenvalue—the acoustic vibrational modes—is
spanned by the eigenvectors

A~1/2 0y
vi=N|[ oy |, v, =N| A71/2 |,
0y Oy
Oy
vi=N| 0Oy , (14)
A—l/2

- _1
where A™V2 = (/my, ..., /my)T and N = (3N m;)™.
Switching back to a and i notation these acoustic eigen-
vectors are
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(0)f = N&™(AT2)0 (0)f = N&W(AT12),,
(v3)f = N&(A7172),. (15)

Now, consider an incoming particle that scatters off the
atoms in the crystal via a potential of the form in Eq. (1).
The rate for inelastic scattering that (de)excites the mode
with eigenvector v, is proportional to the form factor (see
Appendix)

3 N
g o _
:ZZ\/_YIW v,)te 4 Xie=Wil@) - (16)

a=1 =1 l

where W;(q) is the Debye-Waller factor. The leading term
in the small-g expansion of this expression is

=YY At (1)
a 1

One can see that if the couplings are proportional to the
masses, g; = gm; for some ¢, only scattering into the
acoustic modes is nonzero, by orthogonality of the eigen-
vectors. Explicitly, we can write the term appearing in
Eq. (17) as

Zzg—n,:jq“(ﬂa)f‘
=922 la

+4q (A‘”z)zfsw)(va)?

A 1/2 5xa+qy(A 1/2) 5

9 &
IN(q Vi + @V + GV;) -V, (18)

Thus, unless a = 1, 2, or 3 this vanishes by orthogonality.

Parametrizing a deviation from the coupling-to-mass
case by g; = gm;(1 + ec;) (where ¢, are order one numbers
to encode different deviations for different atoms), we see
that the cross section for scattering into optical modes
(6 & |F|?) is proportional to €? at small q.

B. Absorption via a dipole interaction

With the above formalism, we can now see the mechan-
ics of the coupling-to-mass effect in dipole transitions, the
rate of which is proportional to

(@D 0i(X+ %)) - Al . (19)

Absorption into the mode with eigenvector
tional to the form factor, |F,(A)|*, where

= Z\;’—%Aa(%)y. (20)
a [

v, is propor-

It is clear that we can perform the same manipulations as in
Eq. (18) to show this vanishes in the g; o m; limit.

C. The Frohlich interaction

The Frohlich interaction provides another way of
describing low momentum transfer scattering of a particle
by phonons in a periodic crystal; it is particularly useful to
succinctly capture electromagnetic screening effects in the
case of scattering via a photon. Because it describes the
same physics as the structure factor approach at low ¢, it
should also exhibit the coupling-to-mass effect. The matrix
element for electromagnetic scattering by the eigenmode v,,
at low momentum transfer, q — 0, is [16—18]

L e gz,

Mg x
4 ap=1 I= 1\/_(2 Clyey(s 5)

(21)

where N, is the number of atoms in the unit cell, e is the
electron electromagnetic charge, and eﬁf is the dielectric

permittivity tensor. The quantities Z; are the Born effec-
tive charges. For electromagnetism, they satisfy the sum rule

N,
> 77 =0, (22)
=1

which guarantees charge neutrality within the unit cell. Note
how this follows from requiring that this matrix element is
zero for scattering into the nondipole (i.e., acoustic) modes

with eigenvectors (va)f ,a=1,2,or3; the 1/,/m; cancels

the /m; in the v,, such that the only / dependence is

contained in the Z*“ﬂ

The matrix element Eq. (21) reduces to the form obtained
in the structure function approach to low ¢ scattering via a
light mediator (which provides a factor of 1/¢%) upon setting

eZ!P =5, €ld=5", and where 3",g; # 0 in general,

The coupling-to-mass effect is indeed apparent in the
form of Eq. (21): if Z[ = g*m, (where now ¢ is a
constant “couplings tensor”), it again follows by the mecha-
nism of Eq. (18) that scattering into optical modes vanishes.

However, for the case of electromagnetism, the addi-
tional physical requirement of charge neutrality and the
resulting sum rule, Eq. (22), ensures deviation from the
coupling-to-mass limit. That is, dark photons that kineti-
cally mix with the Standard Model photon give rise to
interactions [scatterings, or absorption, via an equivalently
screened version of Eq. (20)] that are away from the
coupling-to-mass limit.

III. EXAMPLES

A. Scattering and absorption in a diatomic molecule

The simplest system that exhibits the coupling-to-mass
effect is a diatomic molecule, composed of two atoms of
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mass m; and m,. We model it as a one-dimensional
harmonic system, the Hamiltonian of which takes the form
in Eq. (7). We will discuss rotational modes and anhar-
monic corrections to the potential shortly.

In this case it is trivial to diagonalize the system, and the
form factor for scattering into the optical mode via a
potential of the type in Eq. (1) is simply

2 2 2

q (gimy  gym

Fl@P =4 (0724 2 2ggscosga). @3
1 2

where a = |X, — X, is the equilibrium interatomic dis-
tance and M = m; 4+ m,. We have neglected the Debye-
Waller factor since for low momentum transfer W; =~ 1 with
corrections suppressed by ¢/ (uw), where y = m;m,/M is
the reduced mass of the system. Similarly, the form factor
for absorption in the presence of field A via Eq. (2) is

A2
AP =
FAP =

(g1my = gamy)*. (24)
The analysis in this case is a trivialization of the one for
scattering, and we do not explicitly present it.

We parametrize the couplings as g; = gm; (1 + ¢/2) and
g = gmy(1 —€/2), where ¢ provides the deviation from
the coupling-to-mass limit. Expanding the form factor
Eq. (23) in the limit of small ¢ and small ga, we find

IF (@) = ¢*gu(e? + (qa)’ + ), (25)

where we drop higher order terms in (ga) or €. As expected
from the general arguments laid out in the Introduction, we
see that the leading ¢> term is suppressed by a factor of €.

The €? term dominates the rate for g < €/a. In the other
regime where the ¢* term in Eq. (25) dominates, one should
also calculate other contributions to the rate coming from
the two-mode transitions, which may be important since
q*/uw can be of order (ga)>.

We finally turn to a discussion of rotational modes and
anharmonic corrections. An inclusion of these renders the
effectively one-dimensional example above a more realistic
description of dark matter scattering off a dimolecule.
Rotational modes essentially factor from the vibrational
ones described above (see e.g., Ref. [11]) and represent a
hyperfine splitting to the above analysis, such that they can
be safely neglected at this level of discussion of the
scattering rate. Anharmonic corrections, on the other hand,
are more important; they can be analyzed to a good
approximation using the Morse interatomic potential [19]
and provide contributions at relative order ~1072 to
scattering rates (again, see e.g., Ref. [11]). However, note
that even in an analysis that includes the full potential, the
leading term in ¢ is still suppressed by e following the
general arguments from the Introduction.

B. Scattering in crystals

Next, we provide two examples which illustrate the
coupling-to-mass effect in crystals. Specifically, we con-
sider Nal and Al,O; (sapphire); the former has been used as
the target in several past and ongoing dark matter direct
detection experiments, e.g., [20-22] (albeit with higher
energy thresholds than considered here), while the latter has
been proposed as a potential material for the direct
detection of sub-mega-electron-volt dark matter [13].

In a crystal, the periodicity of the system allows one to
reduce summations over lattice sites to summations over
the unit cell. The momentum conservation condition in
Eq. (12) is then expressed in Fourier space as a sum rule on
the dynamical matrix at the Brillouin zone center (q = 0):

S E @)y =0 (26)
J

where here the indices i, j run over atoms within the

unit cell.

We use the phonon calculation package PHONOPY [23] to
compute the phonon band structure and dynamic structure
factor. The crystal structures and force constants for Nal
and Al,Oj are taken from [24]. We also include the effect of
long-range electromagnetic dipole-dipole interactions in
the material, which give an additional, nonanalytic con-
tribution to the dynamical matrix [25] and lead to a splitting
of the longitudinal and transverse optical modes near
q = 0. In the limit q — 0, this nonanalytic correction is
given by

1 4 (a2, a7z

RV mimj QO Z/U/q,uelc;)/QD

where €, is the volume of the unit cell and € is,
again, the dielectric permittivity tensor. Note that the
sum rule satisfied by the Born effective charges Z;aﬂ ,
Eq. (22), ensures that the full dynamical matrix still
satisfies Eq. (26).

We stress the importance of ensuring that the sum rules
in Egs. (26) and (22) are satisfied to a very high accuracy in
numerical calculations. Violating these sum rules can
change the structure factor by many orders of magnitude
and/or exhibit an anomalous ¢ scaling at low momentum
transfer when considering couplings that are close to the
proportional-to-mass limit.

The inelastic structure factors for excitation of a single
optical phonon in Nal or Al,O; are shown in Fig. 1; we
have summed all optical bands and integrated over scatter-
ing angles. For concreteness we assumed a delta function
scattering potential V = 3,9,6®) (r — (X, 4+ x,)), appli-
cable to scattering via a massive mediator; in this case
g o< 1/m? We reiterate, however, that the suppres-

mediator*
sion of scattering rates when coupling proportional to mass

Fap _
SFY = . (27)
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FIG. 1.
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Inelastic one-phonon structure factors for Nal (left) and Al,O5 (right), summed over optical bands and integrated over

scattering angles: S = ", [ dQS,(q. »,(q)). Grey dotted curves show the structure factor for various values of ¢, which parametrizes
the deviation from coupling-to-mass: g; = gm, (1 + €/2), g» = gm,(1 — ¢/2), where atom 1 (resp. 2) is Na (Al) resp. I (O) for Nal
(sapphire). The curves labeled Qp, Oy, and Q,, show the structure factor for various possible dark matter couplings given in Egs. (28)—

(30). The overall normalization is arbitrary (we set g = 1).

occurs for more general potentials of the form Eq. (1). The
figures are shown for zero temperature, but the coupling-to-
mass effect is independent of temperature provided that the
Debye-Waller factor remains negligible; at room temper-
ature the situation is unchanged from Fig. 1. The dotted
grey curves show the effect of deviations from the cou-
pling-to-mass limit, where the couplings are taken as g; =
gm; (1 +¢) and g, = gm,(1 — €). In the exact coupling-to-
mass limit (¢ = 0), one can clearly see that the leading
O(q*) term in the structure factor vanishes. For Nal,
the subleading term also vanishes in this limit and the
structure factor scales as ¢® at low ¢; this additional
cancellation occurs due to the particular lattice symmetry
in this case. Moving away from the coupling-to-mass limit,
the O(g?) term is nonzero but suppressed by €2, consistent
with Eq. (17).

Figure 1 also shows the structure factor for several well-
motivated choices of g, and g, in Eq. (6) that set the
effective charge to which dark matter might couple (we set
any coupling to electrons g, = 0),

O 9p = Gu = 9 (28)

Ow: g, = g(1 —4sin*6y), g, =-g. (29

0,0 9p=0. =0, (30)
where 6y, is the weak mixing angle. The coupling to weak
charge, Qyy, also serves to describe neutrino scattering. We
neglect effects due to nuclear form factors which are
negligible at such low momentum transfer. For the cases
of Qw,, we plot the result for twice the effective charge;
this allows for a meaningful comparison with the dotted
curves to estimate the level at which Qg /), deviates from

the coupling-to-mass limit. The overall normalization in
Fig. 1 is arbitrary (we set g = 1).

There are a couple of features of Fig. 1 that we wish to
emphasize. First, consider the case of dark matter that
couples to baryon number Qp, i.e., the atomic mass
number. This is a realistic scenario that closely approaches
the coupling-to-mass limit; deviations are at the level of
O(1073) due to the nuclear binding energy and proton-
neutron mass difference. This can be clearly seen in Fig. 1,
where the baryon number curve is comparable to a detuning
of €~1073-107%. At g ~eV, the leading term is sup-
pressed by 6 orders of magnitude, compared to naive
expectations (e ~ 1).

Next, consider the case where dark matter couples to the
effective weak charge (= neutron number) or proton number.
In these cases there is a deviation from the coupling-to-mass
limit of order e ~ 10! for Nal, and slightly smaller e ~
10~2 — 107! for sapphire; both numbers are of the expected
order by comparing the Z/A ratios of the atoms in the
crystal: enyg~O(]11/23-53/127|)=0.07 and €40, ~
O(|13/27 = 8/16|) ~ 0.02. The deviation from coupling-
to-mass is the same for both Q , and Q,, since, as discussed in
the Introduction, it is determined entirely by the ratios Z;/A;
and is not affected by the values of g, and g, (neglecting
binding energy effects that are subdominant here).

IV. DISCUSSION

The coupling-to-mass effect is the vanishing of the
leading order particle scattering/absorption by optical
phonons in a crystal or molecule at low momentum
transfer, in the case where the scattering particle couples
to each atom i proportional to the mass of the atom:
g; = gm;. We now turn to discussing some of its implica-
tions for next-generation dark matter direct detection
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experiments, which aim to probe the sub-mega-electron-
volt dark matter mass scale, i.e., be sensitive to events with
momentum transfer ¢ < keV.

Let us return to analyze Eq. (6) (again not considering
any couplings to electrons for the moment). For the special
case g, = g, (coupling to the baryon number), the ratio
Z;/A; drops out, and the only deviations from coupling-to-
mass come from the order € ~ 10~ differences in atomic
mass number and atomic mass; the resulting ~107°
suppression of the leading ¢*> term means the rate will
instead be dominated by higher-order ¢* terms for ¢ > eV.
One should thus also consider two phonon rates when
calculating sensitivities of proposed experiments in this
region. On this point, if one assumes aggressive thresholds
of ~1-10 meV in crystals, acoustic phonons can become
important but, due to the crystal speed of sound ¢, ~ 107,
only at large g ~ 0.1-1 keV [13]; it would be interesting to
further study the two-acoustic phonon process, with back-
to-back phonons to mitigate the dark matter—phonon
velocity mismatch, thus potentially reaching lower gq.
See also Ref. [8] which utilizes multiphonon data for dark
matter absorption. We mention in passing that two phonon
processes involving one acoustic and one optical phonon
will also be subject to coupling-to-mass suppression.

Turning now to the case g, # g,, an interesting feature of
Eq. (6) is that regardless of the values of g, and g,, the
deviation from the coupling-to-mass limit is controlled
simply by the variation in the ratios Z;/A; of the constituent
atoms. In a generic material one expects € ~ 1072-107".
Larger values of ¢ 2 0.1 can be achieved by choosing, for
example, materials composed of a combination of light
(Z<20 and Z/A~0.5) and heavy (Z>20 and
Z/A ~0.4) elements, and/or that include hydrogen atoms
(Z/A =1). A judicious choice of materials can therefore
enhance the scattering rate by order 10-100 (for
q < 100-10 eV), when g, # g,; note that the absolute
scattering rate per unit mass also depends on the atomic
masses; see e.g., Eq. (25) where the relevant quantity is
ue*/M. Materials composed of organic structures that
contain hydrogen atoms, such as those proposed for
“magnetic bubble chambers” in [9] (which also contain
heavy atoms), are good candidates. Note also that the
enhancement can potentially be much larger, up to O(10%)
at g ~ eV, over molecules or crystals composed of a single
atom (or atoms that have equal Z/A), for which e ~ 1073.

Finally, what if the dark matter additionally couples to
electrons (although this scenario is subject to severe
constraints [14])? This induces a coupling to lattice
phonons at ¢ <keV in the following way: we can add
to Eq. (5) a coupling ¢.N¢, where N¢ is the effective
number of electrons which follow the movement of the ith
atom. This provides an additional ratio, N¢/A;, that
characterizes the coupling to atoms in a material. Note
that with g, = 0 and hence only a single ratio in Eq. (6), the
level at which the coupling-to-mass limit is broken is

determined completely by the target material—it is not
possible to tune the “theory” parameters g, and g,, so as to
move away from the limit. With two ratios, Z;/A; and
N¢/A;, such a tuning now becomes possible. An important
case is when the dark matter couples via mixing with the
photon, whence g, = 0 and g, = —g,, and the interaction
is via a dipole, which we discussed previously.

We summarize our main conclusions as follows:

(i) Dark matter models in which the dark matter couples
to the baryon number are deep in the coupling-to-
mass limit, and the scattering rate will be dominated
by higher-order g* terms for g = eV; calculations of
such terms are needed for projected sensitivities.

(i) For models where dark matter couples unequally to
protons and neutrons, its scattering/absorption rate
can generically be raised by choosing materials with
larger variation in the ratio Z;/A; between atoms.
Materials with a mixture of light and heavy ele-
ments, or that include hydrogen atoms, provide
variations of 0.1-1 and typical sensitivity gains of
order 10-100.

(iii) Dark matter that interacts via a dark photon kineti-
cally mixing with the Standard Model photon is far
from the coupling-to-mass limit. Dark matter that
couples to the baryon number is in the coupling-to-
mass limit regardless of material. In both these cases,
neutrino scattering backgrounds can be reduced by
choosing a material with equal Z;/A; for all con-
stituent atoms. A homogeneous material with only
one type of atom trivially satisfies this condition, but
many light elements exhibit Z/A = 1/2.
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APPENDIX: SCATTERING FORMALISM

In this appendix we provide some details of the scatter-
ing formalism and the definition of the dynamic structure
factor. Further details of this formalism can be found in
standard textbooks (see e.g., [26]).

Consider an incoming particle of mass m that scatters off
the atoms in a crystal via a potential of the form in Eq. (1).
The differential scattering cross section is
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do K m?
0dF — % gy Sk~ K. E ~E).

(A1)

where E (E') and k (k') are the initial (final) energy
and momentum of the scattering particle. In the Born
approximation, S(g, AE) is the dynamic structure factor
defined by

S(q. AE) = 2x8(w; — ; + AE)’
7

x> g V(@)en ¥ (@ lex o)’ (A2)
!
= Zglgzl (q)e o (XX)
Ll
></dtei’AE<<Di|e‘iq"‘/’eiq""(’)|(I),»>, (A3)

where the crystal is taken to initially be in an energy
eigenstate |®;) with eigenvalue w;, and there is a sum over
final states; V(q) is the Fourier transform of the potential,
V(q) = [d*Fe T V(r'). In a harmonic system, and after
thermally averaging over initial states, this can be sim-
plified further to obtain

S(gq. AE) Zglgl’ YVH( q)elq (Xi=X) o= (Wi(@)+ Wy (q))
LY
" / dieE l(ax)(axi(0) (A4)
where (- - -) denotes a thermal average and W, is the Debye-

Waller factor,

2W, = ((q-x,) _ZZ|2m,w 2n, +1).  (A5)

Here, the sum on a is over the eigenmodes of the system
and (n,) is the occupation number of the mode with
eigenvector v,,.

For the case of inelastic scattering that (de)excites a
single phonon, we expand the last exponential in Eq. (A4)
at linear order,

(g, AE) = Z—W(q)zi ADF o 5(aE + o)

x (n, + 1) + 278(AE — w,){n,)), (A6)
where we have defined the form factor
ZZ 91 a 1) a qu,e W,(q) (A7)

[1] T. Lin, Proc. Sci., 333 (2019) 009.

[2] P. W. Graham, I. G. Irastorza, S. K. Lamorecaux, A. Lindner,
and K. A. van Bibber, Annu. Rev. Nucl. Part. Sci. 65, 485
(2015).

[3] R. Agnese et al. (SuperCDMS Collaboration), Phys. Rev.
Lett. 121, 051301 (2018); 122, 069901(E) (2019).

[4] M. Crisler, R. Essig, J. Estrada, G. Fernandez, J. Tiffenberg,
M. Sofo haro, T. Volansky, and T.-T. Yu (SENSEI
Collaboration), Phys. Rev. Lett. 121, 061803 (2018).

[5] M. Battaglieri et al., in U.S. Cosmic Visions: New Ideas in
Dark Matter College Park, MD, USA, 2017 (2017), http://
Iss.fnal.gov/archive/2017/conf/fermilab-conf-17-282-ae-ppd-t
.pdf.

[6] Y. Hochberg, Y. Zhao, and K. M. Zurek, Phys. Rev. Lett.
116, 011301 (2016).

[7] K. Schutz and K. M. Zurek, Phys. Rev. Lett. 117, 121302
(2016).

[8] Y. Hochberg, T. Lin, and K. M. Zurek, Phys. Rev. D 95,
023013 (2017).

[9] P.C. Bunting, G. Gratta, T. Melia, and S. Rajendran, Phys.
Rev. D 95, 095001 (2017).

[10] Y. Hochberg, Y. Kahn, M. Lisanti, K. M. Zurek, A.G.
Grushin, R. Ilan, S. M. Griffin, Z.-F. Liu, S. F. Weber, and
J. B. Neaton, Phys. Rev. D 97, 015004 (2018).

[11] A. Arvanitaki, S. Dimopoulos, and K. Van Tilburg, Phys.
Rev. X 8, 041001 (2018).

[12] S. Knapen, T. Lin, M. Pyle, and K. M. Zurek, Phys. Lett. B
785, 386 (2018).

[13] S. Griffin, S. Knapen, T. Lin, and K. M. Zurek, Phys. Rev. D
98, 115034 (2018).

[14] D. Green and S. Rajendran, J. High Energy Phys. 10 (2017)
013.

[15] J.R. Ferraro, K. Nakamoto, and C. W. Brown, in Introduc-
tory Raman Spectroscopy, edited by J.R. Ferraro, K.
Nakamoto, and C. W. Brown (Academic Press, San Diego,
2003), 2nd ed., pp. 1-94.

[16] H. Frohlich, Adv. Phys. 3, 325 (1954).

[17] P. Vogl, Phys. Rev. B 13, 694 (1976).

[18] C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401
(2015).

[19] P. M. Morse, Phys. Rev. 34, 57 (1929).

[20] R. Bernabei et al. (DAMA Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 592, 297 (2008).

[21] M. Antonello et al. (SABRE Collaboration), Eur. Phys. J. C
79, 363 (2019).

[22] G. Adhikari et al., Nature (London) 564, 83 (2018); 566, E2
(E) (2019).

[23] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

[24] A. Togo, http://phonondb.mtl.kyoto-u.ac.jp.

[25] R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. B 1,
910 (1970).

[26] H. Schober, J. Neutron Res. 17, 109 (2014).

055011-8


https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1103/PhysRevLett.121.051301
https://doi.org/10.1103/PhysRevLett.121.051301
https://doi.org/10.1103/PhysRevLett.122.069901
https://doi.org/10.1103/PhysRevLett.121.061803
http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-282-ae-ppd-t.pdf
http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-282-ae-ppd-t.pdf
http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-282-ae-ppd-t.pdf
http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-282-ae-ppd-t.pdf
http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-282-ae-ppd-t.pdf
https://doi.org/10.1103/PhysRevLett.116.011301
https://doi.org/10.1103/PhysRevLett.116.011301
https://doi.org/10.1103/PhysRevLett.117.121302
https://doi.org/10.1103/PhysRevLett.117.121302
https://doi.org/10.1103/PhysRevD.95.023013
https://doi.org/10.1103/PhysRevD.95.023013
https://doi.org/10.1103/PhysRevD.95.095001
https://doi.org/10.1103/PhysRevD.95.095001
https://doi.org/10.1103/PhysRevD.97.015004
https://doi.org/10.1103/PhysRevX.8.041001
https://doi.org/10.1103/PhysRevX.8.041001
https://doi.org/10.1016/j.physletb.2018.08.064
https://doi.org/10.1016/j.physletb.2018.08.064
https://doi.org/10.1103/PhysRevD.98.115034
https://doi.org/10.1103/PhysRevD.98.115034
https://doi.org/10.1007/JHEP10(2017)013
https://doi.org/10.1007/JHEP10(2017)013
https://doi.org/10.1080/00018735400101213
https://doi.org/10.1103/PhysRevB.13.694
https://doi.org/10.1103/PhysRevLett.115.176401
https://doi.org/10.1103/PhysRevLett.115.176401
https://doi.org/10.1103/PhysRev.34.57
https://doi.org/10.1016/j.nima.2008.04.082
https://doi.org/10.1016/j.nima.2008.04.082
https://doi.org/10.1140/epjc/s10052-019-6860-y
https://doi.org/10.1140/epjc/s10052-019-6860-y
https://doi.org/10.1038/s41586-018-0739-1
https://doi.org/10.1016/j.scriptamat.2015.07.021
http://phonondb.mtl.kyoto-u.ac.jp
http://phonondb.mtl.kyoto-u.ac.jp
http://phonondb.mtl.kyoto-u.ac.jp
http://phonondb.mtl.kyoto-u.ac.jp
http://phonondb.mtl.kyoto-u.ac.jp
https://doi.org/10.1103/PhysRevB.1.910
https://doi.org/10.1103/PhysRevB.1.910

