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Abstract. Boost.Histogram, a header-only C++14 library that provides multi-
dimensional histograms and profiles, became available in Boost 1.70. It
is extensible, fast, and uses modern C++ features. Using template meta-
programming, the most efficient code path for any given configuration is au-
tomatically selected. The library includes key features designed for the particle
physics community, such as optional under- and overflow bins, weighted in-
crements, reductions, growing axes, thread-safe filling, and memory-efficient
counters with high-dynamic range.
Python bindings for Boost.Histogram are being developed in the Scikit-HEP
project to provide a fast, easy-to-install package as a backend for other Python
libraries and for advanced users to manipulate histograms. Versatile and ef-
ficient histogram filling, effective manipulation, multithreading support, and
other features make this a powerful tool. This library has also driven pack-
age distribution efforts in Scikit-HEP, allowing binary packages hosted on PyPI
to be available for a very wide variety of platforms.
Two other libraries fill out the remainder of the Scikit-HEP Python histogram-
ming effort. Aghast is a library designed to provide conversions between differ-
ent forms of histograms, enabling interaction between histogram libraries, often
without an extra copy in memory. This enables a user to make a histogram in
one library and then save it in another form, such as saving a Boost.Histogram
in ROOT. And Hist is a library providing friendly, analyst-targeted syntax and
shortcuts for quick manipulations and fast plotting using these two libraries.

1 Introduction

There is no shortage of histogramming libraries for Python (see Table 1). However,
many/most of these are abandoned, have a narrow focus, and most importantly, have little
or no interaction with other histogramming libraries. For the Scikit-HEP family of Python
libraries [1], histogramming was identified as a weak point in the scientific Python stack that
could be addressed directly in Scikit-HEP. At this time, a new histogramming library for C++

was being developed and was about to be proposed for inclusion in the Boost Libraries. Work-
ing together with the author of what would become Boost.Histogram via a thorough review
and unanimous approval, a plan was devised to build a Python system for histogramming
on top of Boost.Histogram. Together, these two closely related projects have been providing
some of the most exciting developments in histogramming for HEP in recent years.
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Table 1. Histogram libraries for Python. For the PyPI column, “Pure” means the library is pure
Python, “Wheels” means it is compiled but binary wheels are available, “Source” means the code is
there, but must be compiled and may require other dependencies, and “No” means it is not hosted on
PyPI. Old projects that predate universal (pure python) wheels may be incorrectly listed as “Source”.

Ordered by last update time, compiled near the end of 2019.

Library Updated PyPI Notes
NumPy 2019 Wheels Very simple histogramming functions
coffea 2019 Pure Family of tools for HEP Columnar analysis
Histogrammar 2019 Pure Multilanguage, limited support
pygram11 2019 Wheels Unix only, Python 3 only
PyROOT 2019 No CERN’s ROOT, UNIX binaries on conda-forge
YODA 2019 No HEP tool for MCnet
physt 2019 Pure Non-HEP specific tool
fast-histogram 2019 Yes Fast but limited
Vaex 2019 Source Large system for data analysis
hdrhistogram 2019 Source Multilanguage, large range
multihist 2019 Pure NumPy wrapper for syntax
HistBook 2018 Pure Archived, Replaced by boost-histogram / hist
qhist 2018 Source ROOT required, Python 2.7 only
theodoregoetz 2018 No Tried to combine many of the below packages
rootplotlib 2016 No ROOT backend
matplotlib-hep 2016 Source Focused on plotting
SVGFig 2016 No Plotting framework
Plothon 2015 No Predecessor to SVGFig
pyhistogram 2014 Pure Inspired by rootpy
pypeaks 2014 Pure Peak detection
Cassius 2013 No Statistical Modeling Package
histogramy 2013 Pure 1D with some fitting tools
histogram 2011 Source For Distributed Data Analysis for Neutron Scattering
SimpleHist 2011 Pure NumPy based
paida 2007 Source Analysis and plotting

2 Boost.Histogram for C++

Boost.Histogram is a header-only C++14 library which implements feature-rich multi-
dimensional generalized histograms. It is part of the Boost C++ Libraries and only depends
on a few other header-only libraries from the Boost project and the C++ standard library.
The feature set of Boost.Histogram was designed with the needs of the (astro)particle physics
community and the wider data analysis community in mind. In particular, feature parity
with the histogram implementations from the ROOT framework [2] and the GNU Scientific
Library [3] was a central goal.

The library was designed to be easy to use for the casual user, while offering a
high amount of flexibility and extensibility for the power user. In a classic C++ design
based on run-time polymorphism, flexibility and extensibility comes at the cost of perfor-
mance. Boost.Histogram avoids the run-time trade-off and achieves higher performance
than other libraries with static polymorphism based on templates and modern template meta-
programming.

Compatibility with other Boost libraries and the C++ standard library was another central
design goal. By adhering to standard interfaces, the library avoids duplicating functionality
provided by other libraries, especially the standard library. For example, these are one-liners:

• Sum all counts with std::accumulate.
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• Find the cell with the highest count with std::max_element.

• Compute the cumulative distribution with std::partial_sum.
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(

Static
Dynamic

)
Regular axis

Regular axis with
log transformaxes

Optional overflowOptional underflow

Accumulator
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Figure 1. Components of a histogram. Zero or more axes (two shown) are combined with a storage.
Each item stores an accumulator.

2.1 Generalized histograms

A histogram in the common sense (see Figure 1) is a collection of counts ni, where each is
associated to an interval out of a sequence of non-overlapping consecutive intervals, called
bins. When a value x is passed to a histogram, the bin i is found which contains x and
the associated count ni is incremented. A multi-dimensional histogram accepts value tuples
(x, y, z, . . . ). For each value in the tuple an independent sequence of bins exists, which we call
an axis. The count is now looked up based on a multi-dimensional index (i, j, k, . . . ) obtained
from the mappings (x→ i, y→ j, z→ k, . . . ).

Boost.Histogram generalizes the classic histogram concept in three ways.

Custom axis objects. The mapping from input value to index provided by an axis x → i
can be completely user-defined. Values are not restricted to numbers; arbitrary C++ objects
can be used as values when an appropriate mapping is provided, for example, strings can be
used. Bins do not have to be consecutive, they can have gaps and arbitrary hyperdimensional
shapes. Hexagonal binning is possible, or bins that are HEALPix1 pixels [4] (although neither
are currently implemented in the core library).

Custom accumulators. The counts in a generalized histogram can be replaced by user-
defined accumulators. Accumulators can take any number of samples which, like values,
can be arbitrary C++ objects. Values and samples are passed to the generalized histogram
together; values are converted to indices which address the accumulator, and samples are
passed to the accumulator. The library provides a few standard accumulators, such as accu-
mulators to compute mean and variance of samples in each bin. This is called a profile in the
ROOT framework and is a separate class, while it is just a choice of accumulator in a normal
histogram in Boost.Histogram.

1Hierarchical Equal Area isoLatitude Pixelation of a sphere.
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Custom storages. It is possible to completely customize how counts (or accumulators) are
allocated and addressed in memory. The sub-component responsible for this is called a stor-
age. The histogram class converts the multi-dimensional index (i, j, k, . . . ) into a single linear
index, which is passed to the storage. The standard storage allocates memory upfront for all
cells and places the counts sequentially in memory, using the linear index as a memory offset.
This gives the best look-up performance and is space-efficient for densely filled histograms,
since it is not necessary to store the linear index explicitly for each cell. The downside of
dense storage is that all cells take up space, even if they contain zero counts. The library
also supports sparse storage based on an STL-compliant hash map. Only cells with non-zero
counts use space in such a sparse storage, but each cell has to store its linear index in addition
to the payload and incurs some overhead for hash-based addressing.

The memory allocation strategy of a storage can be customized as well. The standard stor-
age allocates memory dynamically from the heap, but the library has builtin support for a
storage based on a fixed-size stack-based memory buffer. The latter allows one to efficiently
create and destroy many small histograms, for example. The builtin unlimited_storage
dynamically allocates memory to grow the counter capacity as needed, starting with a single
byte per cell up to arbitrarily many bytes (limited by available memory only). This storage
offers a unique no-overflow-guarantee and is memory-efficient in high dimensions, where the
number of cells is large and the small memory footprint per cell pays off.

The three sub-components of a generalized histogram, axis types, storages, and accu-
mulators, are orthogonal. This means that any sub-component can be replaced or modified
independently of the others. Orthogonal design is very powerful since it offers a huge cus-
tomization potential from all possible combinations.

2.2 Notable features

We briefly list some of the other notable features here.

Arithmetic operators. Histograms support the standard math operators +, -, *, and /.

Growing axes. A standard axis has a fixed value range and number of bins, defined at the
time of construction. The library also supports growing axes; such an axis has an initial range
and bin number but grows with the input. If a value is encountered that would fall outside
of the axis range, the axis range is extended to contain the value and the number of bins is
increased.

Optional underflow and overflow bins. Each axis of the histogram can have optional un-
derflow and overflow bins. These are extra bins beyond the defined range of the axis that
count all values which fall below the smallest value on the axis or above the largest value,
respectively. The existence or absence of these bins is mostly transparent for the user. They
are very useful to detect outliers and to offer lossless reductions (explained below).

Reductions. The library offers tools to reduce the memory footprint of a histogram by reduc-
ing the number of bins of an axis or by completely removing an axis. The number of bins in
an axis can be reduced by shrinking its value range and/or by merging any number of adja-
cent bins into one larger bin. Likewise, an axis can be removed completely by summing over
its bins (a so called projection). In both cases, the presence of underflow and overflow bins
guarantees that the reduced histogram is identical to one obtained by filling with the original
values. This is not generally possible when underflow and overflow bins are missing.
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Thread-safe filling of histograms. Filling histograms with values is not thread-safe in gen-
eral, but the library offers a builtin thread-safe counter based on a std::atomic integer type
and a thread-safe locking infrastructure for storages; the latter is needed when growing axes
are present, which can trigger a resizing of the storage.

Static and dynamic axis configuration. The library supports both histograms with static
and dynamic axis containers. A histogram with a static axis container is fixed at compile-time
in the number and types of axes. The number and axis types can vary at run-time for a dy-
namic axis holder. The static axis container produces histograms which are more performant,
as the compiler can find more opportunities to optimize the code. When Boost.Histogram is
used as a backend in a run-time environment like Python, however, axes must be configurable
at run-time. The performance difference vanishes when the histogram is filled with chunks
of values at once, see next item.

Filling individual values and chunks of values. Histograms can be filled with one value at
once or by passing a contiguous chunk of values at once. Both cases are handled by separate
code segments, which were highly optimized for performance. Passing contiguous chunks of
values is up to five times faster for chunks of moderate size (32768 values) than filling one
value at a time, and therefore preferred when chunks are available. Using the chunk code for
single values would be slow, however, and therefore the other optimized code path exists.

3 boost-histogram for Python

Boost.Histogram was developed with Python in mind. Original prototype bindings using
Boost.Python were included in the draft first submitted to Boost; however, to keep the li-
brary focused they were removed before the library was accepted. New bindings based on
PyBind11 were developed as part of the Scikit-HEP family of Python packages.

The new bindings were designed around four key ideas based on a study of the libraries
in Table 1: Design, Flexibility, Speed, and Distribution. No single existing library provided
a strong entry in all four of these areas.

3.1 Design

The design of boost-histogram follows Boost.Histogram closely, with appropriate changes to
adapt to Python and interactive usage. The description of a Histogram matches that described
in Section 2.1.

The features listed in Section 2.2 are mostly available to Python users. Python histograms
support arithmetic operators. Most axis types support growing axes and optional under-
flow and overflow bins. The special storage that enables thread-safe filling of histograms
is provided. And, since Python is a dynamic language, the bindings take advantage of dy-
namic axis configuration to set up all histograms. The other features adapted or specific to
Python are listed below.

Filling with chunks of values. The Python library supports filling contiguous chunks of val-
ues, based on the Boost.Histogram C++ feature. Since this looks like a NumPy array opera-
tion [5], the differences should be noted. The data to be filled must be in the correct format
(doubles or ints), and must be continuous (slices and other operations in NumPy can create
arrays with strides, and Boost.Histogram’s fill feature does not operate on strides). If these
conditions are not met, a copy is made, affecting the performance and memory usage slightly.
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UHI (reductions). Unified Histogram Indexing (UHI) was developed to provide a way for
histograms to be manipulated and reduced in Python in a natural, concise way, and to decou-
ple the “tags” describing actions and the histogram library performing the actions. Custom
actions can be developed by users. See Section 3.1.1 for more details.

Python interaction. Histograms (and the other objects provided) support the standard
Python copy, deepcopy, and pickle protocols, and have docstrings, signatures (enhanced in
Python 3), IPython keyboard completions, and natural textual representation, providing a
native experience for Python.

NumPy interaction. Special care went into making the library interact gracefully with
NumPy. The underlying bin data for even accumulator based storages is available via muta-
ble, no copy access. The Histogram object conforms to the Python buffer protocol. A spe-
cial method is provided to produce NumPy style output tuples. For input, boost-histogram
provides a NumPy module that provides functions identical to the three NumPy histogram
functions, but powered by boost-histogram (and as such, up to 10 times faster than native
NumPy histograms), and with extra keyword only arguments to provide a way to return boost-
histogram objects instead of tuples.

3.1.1 UHI

Unified Histogram Indexing (UHI) was inspired by an early design for Aghast (see Sec-
tion 4.1). The key advancement in UHI was the design of a general API for providing “tag”
types that can be used to perform operations in indexing. These tags can be provided by one
library and used by another, and new tags can be written by users. And indexing is carefully
designed to either behave like a NumPy array index if the syntax is allowed on both arrays
and histograms, or to give an error on one or the other. The goal was to minimize situations
where indexing will silently fail if you interchange histograms and arrays.

UHI allows single bin and array setting and accessing, and even provides optional access
to the flow bins when setting. The third element of the Python slice syntax is used to perform
actions on axes, such as rebinning or summation. While not currently implemented in version
0.6.2, the UHI specification includes arbitrary actions on axes. UHI was originally designed
to provide an action per axis, though later based on user requests, it was expanded to allow a
mapping to be provided, allowing a small number of axes to be operated on without having
to explicitly list every axis.

3.1.2 Axes

Axes are available in a special augmented tuple. This tuple can accept any method a single
axis can, and performs the property access or the method call on each axis, returning a tuple
or ndarray as appropriate. This reduces many traditionally complex procedures into a simple,
concise one or two lines.

3.2 Flexibility

Great care was taken to keep the incredible flexibility of Boost.Histogram intact in a dynamic,
pre-compiled environment. A collection of over 20 axis types is provided, including Regular
binning, Integer binning, and Variable binning, each with variants for underflow/overflow
and growth. Both integer and string category axes are provided, also with optional growth.
And regular binning can have a transform applied; the transform can be created by the user
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with a compiled callback using a language like Numba [6] with a maximum of about 7%
penalty in speed over a precompiled function in C++.

Seven storages are provided as well, including three “complex” storages made from ac-
cumulators. The Weight storage provides high precision weighted sums that track the count
as well. The Mean and WeightedMean storages can be used to produce “profile” histograms
that track the average of a weight in each bin, rather than the total number of entries observed.
In some situations, a N-dimensional profile can replace a N+1-dimensional histogram.

3.3 Speed

Performance of the library was a key design consideration. For a significantly large 1D
dataset, boost-histogram was measured to be 2.4 times faster than NumPy for regular bin
spacing, which NumPy is also optimized for in 1D. For a 2D dataset, NumPy does not have
special optimizations for regular binning, and in that case boost-histogram is 13 times faster.
Both tests were performed with a single thread; with multithreaded filling boost-histogram
was observed to gain another factor of 2-4, depending on the number of physical threads
available on the hardware and the scale of the problem.

3.4 Distribution

To be used in the modern scientific Python ecosystem, a library must fulfill a variety of pack-
aging criteria. All modern packages should be hosted on PyPI.org and should provide wheels.
Pure Python packages only need to provide a “universal wheel”, but compiled packages like
boost-histogram need to provide a collection of wheels, one for each Python version and each
supported platform. A system was developed for boost-histogram to build these wheels on
the Azure DevOps cloud platform Continuous Integration (CI) system; these are automati-
cally built whenever a new release is made via a manual request in the web API. The system
developed for boost-histogram is now directly in use by at least three other Scikit-HEP pack-
ages.

One of the challenges unique to boost-histogram was the need for C++14 support by
the compiler; the classic “ManyLinux1” wheels were not sufficient for compiling boost-
histogram. The new ManyLinux2010 format was being finalized while this was being de-
veloped, but the older ManyLinux1 specification was still in heavy use (primary due to older
versions of pip, the package installer for Python), so a special docker image was created that
has a newer compiler but mostly conforms to ManyLinux1. This allows boost-histogram to
support both specifications.

The wheel building system (and therefore boost-histogram) supports Python 2.7 and
Python 3.6 through 3.8 on 64-bit architectures. On Linux systems, it also supports Python 3.5,
partially because the infrastructure is already there in the official tooling and Linux tends to
have older Python versions available in official channels. For ManyLinux1 and Windows, 32-
bit architectures are also supported. As an organization, Scikit-HEP has agreed on a slightly
modified version of NumPy Enhancement Proposal (NEP) 29, which outlines a community
Python version support policy. Future versions of boost-histogram retain the right to remove
versions that are no longer supported under that plan; the wheel building tools provide the
ability to select versions and platforms for each project.

If a user is on an unsupported platform, such as specialized Linux distributions like Clear-
Linux or Alpine, the only requirements to build boost-histogram are a C++14 compatible
compiler. Every dependency is header-only and supplied in the source tarball available on
PyPI or via git submodules when building from the source repository.
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Another way to distribute packages that has strong community adoption in the sciences
and is rapidly gaining support in HEP is Conda. Conda is an alternative package manager
designed to supply binary packages to a wide variety of systems. In contrast to pip, Conda
never builds from source on the target machine, is less Python-centric, and provides a com-
plete compiler stack with minimal dependencies on the underlying system. The most pop-
ular community source of packages and build infrastructure, Conda-forge has successfully
been used to provide a complete ROOT build in for HEP [7], and is being used to supply a
growing number of HEP packages, both with and without Python. Conda-forge packages of
boost-histogram cover all supported targets of Conda-forge except for the rapidly disappear-
ing Python 2.7 on Windows target; supported platforms include ARM and PowerPC.

4 The Scikit-HEP family

The boost-histogram project is part of a larger plan for the Scikit-HEP family of tools (see
Figure 2).

Core histogramming libraries boost-histogram ROOT

Universal adaptor aghast

Front ends (plotting, etc) hist mplhep coffea others

Figure 2. Plan for Scikit-HEP projects and relationship between them.

4.1 Aghast

Aghast is a histogramming library that does not fill histograms and does not plot them. It is
a conversion library, designed to make all the other histogramming libraries talk together. It
defines an in-memory format for histograms, using flatbuffers. It understands a superset of
all the functionality and binning methods that the other libraries support, and therefore can
convert between them. It can convert to and from boost-histogram, ROOT (without a ROOT
dependency by using uproot [8]), NumPy, and more.

4.2 Hist

Hist is a project that will provide an analyst-centric interface for histograms. It will use boost-
histogram as the computational backend, but will connect to and depend on packages that are
not allowed by the core boost-histogram package. It will use Aghast to facilitate opening and
saving histograms in different formats. It will also provide ways to directly plot histograms
and will interact nicely with the mplhep package that is being developed. It will also initially
provide extra shortcuts designed for interactive use that might eventually be accepted into the
underlying boost-histogram package as well.

5 Summary

Histograms in Python has been a weak point in the adoption of Python in HEP. The future for
Histograms in Python is now an exciting one, as high performance histograms represented
as objects are now available through boost-histogram. And future packages such as Hist will
provide a simple interface for analysts.
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