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Abstract. An important part of the Large Hadron Collider (LHC) legacy will
be precise limits on indirect effects of new physics, framed for instance in terms
of an effective field theory. These measurements often involve many theory pa-
rameters and observables, which makes them challenging for traditional analy-
sis methods. We discuss the underlying problem of "likelihood-free" inference
and present powerful new analysis techniques that combine physics insights,
statistical methods, and the power of machine learning. We have developed
MadMiner, a new Python package that makes it straightforward to apply these
techniques. In example LHC problems we show that the new approach lets us
put stronger constraints on theory parameters than established methods, demon-
strating its potential to improve the new physics reach of the LHC legacy mea-
surements. While we present techniques optimized for particle physics, the
likelihood-free inference formulation is much more general, and these ideas are
part of a broader movement that is changing scientific inference in fields as
diverse as cosmology, genetics, and epidemiology.

1 The inference challenge

Measurements of particle collisions at the Large Hadron Collider (LHC) provide a wealth of
high-dimensional data x. This data is used to measure phenomena predicted by the Standard
Model of particle physics (SM), and to search for indications of physics from beyond the
SM. With an effective field theory (EFT) approach, possible variations from the SM can be
parameterized and studied systematically [1–3]. This requires the simultaneous measurement
of many parameters θ. In the EFT context, these parameters are known as Wilson coefficients,
but the following discussion applies similarly for other physical properties.

The relation between parameters and the data x is given by the differential cross-section
dσ(x|θ)/dx. Normalized by the total cross-section, the expression becomes

p(x|θ) =
1

σ(θ)
dσ(x|θ)

dx
, (1)

which is also called likelihood L(θ) = p(x|θ). Likelihood ratios

r(x|θ, θ0) =
p(x|θ)
p(x|θ0)

(2)
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are a central ingredient for statistical inference at the LHC [4].
Samples of collision processes at the LHC are generated via a chain of Monte Carlo

simulators. They describe the the hard scattering of partons zp, subsequent parton showering
and hadronization, as well as interactions with the detector and signal propagation up to a set
of measurements of reconstructed quantities x. The likelihood can be factorized into different
contributions,

p(x|θ) =

∫
p(x|zd)p(zd|zs)p(zs|zp)p(zp|θ)︸                               ︷︷                               ︸

p(x,z|θ)

dzpdzsdzd. (3)

The parton-level configuration is summarized as zp, zs represents the state after parton shower
and hadronization, and zd the state after interactions with the detector. Performing the integral
over the huge space of latent variables in equation (3) is impossible, the likelihood p(x|θ) is
intractable. By running the simulation chain, it is possible to generate samples drawn from
p(x|θ) for various settings of θ.

2 Established inference techniques
Several methods are commonly used to perform inference in cases with intractable likeli-
hoods. This section highlights two examples; a discussion of additional methods can be found
in reference [5]. Inference in these settings is called likelihood-free and simulation-based [6].

2.1 Histograms of summary statistics

For certain kinds of parameter measurements, most of the information about a parameter
of interest can be contained in summary statistics v(x). Examples for this are an invariant
mass when measuring a resonance, and the output of a multivariate method that distinguish
between signal and background processes when measuring the cross-section of the signal.
The likelihood p(v(x)|θ) can be obtained with density estimation techniques. Histograms are
often used for this purpose in high energy physics.

This approach has two severe limitations. The number of samples required to fill the
histograms scales exponentially with the dimension of v, and can thus not be used for simul-
taneous measurements of many parameters. It furthermore requires the design of appropriate
summary statistics, a difficult task when measuring many parameters that affect the measure-
ment x in diverse ways.

2.2 Matrix element method

The matrix element method (MEM) [7] provides an approximate expression for the in-
tractable likelihood p(x|θ) given by equation (3). At parton-level, the likelihood p(zp|θ) can
be calculated. The relation between parton-level kinematics and the measured kinematics x is
approximated with simple so-called transfer functions p̂(x|zp). The full likelihood is obtained
by marginalizing over the parton-level kinematics,

p̂(x|θ) =

∫
p̂(x|zp)p(zp|θ)dzp. (4)

Several approximations are made in practice to limit the computational expense of cal-
culating the above integral. The transfer functions cannot capture all shower and detector
effects, and Dirac delta functions are commonly used for several integration dimensions to
limit the time required for integration. The matrix element calculation is usually done at
leading order, and extensions to next-to-leading order come at a considerable computational
cost [8]. There is no amortization of the integration time, an expensive integration is required
for every event that needs to be processed.
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3 New techniques: mining gold

A recent set of publications outlines a new approach to likelihood-free inference [9–12].
Core ideas and results are briefly summarized in the following. While the likelihood p(x|θ)
in equation (3) is intractable, the joint likelihood ratio

r(x, z|θ, θ0) =
p(x, z|θ)
p(x, z|θ0)

=
p(zp|θ)
p(zp|θ0)

(5)

is tractable. The required parton-level likelihoods p(zp|θ) are also used in the MEM, they are
obtained as the product of phase space factors, squared matrix elements and parton distribu-
tion functions (PDFs). The joint likelihood ratio is scattered around the likelihood ratio of
interest, r(x|θ, θ0).

3.1 The usefulness of gold

Consider the functional

Lr [r̂(x)] =

∫
p(x, z|θ0) [r(x, z|θ, θ0) − r̂(x)]2 dxdz. (6)

Calculus of variations shows that it is minimized by

r∗(x) = arg min
r̂

Lr [r̂(x)] =
1

p(x|θ0)

∫
p(x, z|θ0)r(x, z|θ, θ0)dz = r(x|θ, θ0). (7)

The minimization of Lr thus yields an expression for the intractable likelihood ratio r(x|θ, θ0).
This requires sampling from p(x, z|θ0), achieved by running the relevant simulators, and cal-
culation of the tractable joint likelihood ratio r(x, z|θ, θ0).

Similarly to the joint likelihood ratio, the joint score

t(x, z|θ0) = ∇θ log p(x, z|θ)

∣∣∣∣∣∣
θ0

=
∇θp(zp|θ)

p(zp|θ)

∣∣∣∣∣∣
θ0

(8)

can also be calculated. It describes how the joint likelihood varies with the parameters θ. The
joint score can be used to define a functional Lt, which can be minimized to approximate the
score,

t(x|θ0) = arg min
t̂

Lt
[
t̂(x)

]
. (9)

One possibility to obtain approximations for the likelihood ratio r(x|θ, θ0) and score t(x|θ0)
is implementing r̂(x) and t̂(x) as neural networks, and minimizing the loss functions Lr and
Lt. The crucial ingredient to the loss functions is the "gold" mined from the simulators; it
consists of the parton-level kinematics zp, as well as the joint likelihood ratio and the joint
score.

3.2 General approach

Figure 1 shows the general workflow of this new approach. Events are simulated for pa-
rameter settings θ, resulting in parton-level kinematics zp and measured observables x. A
neural network learns an approximate expression r̂(x|θ) for the likelihood ratio, using the in-
formation extracted from the simulators. This approximate likelihood ratio can then be used
directly for inference.
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θ1
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Figure 1. The likelihood ratio r(x|θ) can be approximated with a neural network by minimizing a
suitable loss function which makes use of the joint likelihood ratio r(x, z|θ) and the joint score t(x, z|θ)
extracted from the simulators. Inference can then be performed directly with the approximation r̂(x|θ).

3.3 Available algorithms

A range of algorithms is available to provide approximate likelihood ratios. They differ in
their objectives; for some algorithms the loss function includes the joint likelihood ratio,
for others the joint score, or even both. Carl [13] relies on neither of these two quantities.
Rolr [10] and Alice [12] make use of the joint likelihood ratio. Cascal [10] uses the joint
score, while Rascal [10] and Alices [12] use both the joint likelihood ratio and the joint
score. The two methods Sally and Sallino [10] use the joint score to provide locally optimal
observables.

4 The MadMiner package

MadMiner is a software package that implements the ideas and techniques described in
the previous section in a ready-to-use python package. It is available on GitHub [14]
and documented in reference [15]. Interactive tutorials are included in the repository,
and provide a good way for getting started with MadMiner. The package wraps around
MadGraph5_aMC@NLO [16], Pythia 8 [17] and Delphes [18]. Its modular nature allows
to extend this to additional simulators.

4.1 Exemplary workflow

An exemplary MadMiner workflow starts with the generation of events on parton-level, us-
ing MadGraph5_aMC@NLO. The dependence on parameters θ is expressed by event weights,
which can be used to reweight the generated set of events to describe distributions at vari-
ous benchmark settings of θ [19]. A morphing procedure [10, 20] allows to interpolate the
weights between benchmark points and to extrapolate to any point in parameter space. The
event simulation concludes with Pythia 8 and Delphes. Observables x are then defined and
calculated for every event. They serve as the input to the neural network that will approximate
the likelihood ratio. A set of unweighted datasets is produced to have representative measure-
ments of the observables for various settings of θ. The originally produced dataset, alongside
the reweighting and morphing procedure, forms the input to these new datasets. With these
unweighted datasets available, the machine learning step can proceed. Various architectures
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and loss functions are available to make use of the different methods summarized in section 3.
The neural networks are implemented in PyTorch [21]. When approximating the likelihood
ratio r(x|θ, θ0), the output of the neural network can then be used for statistical inference.
The network output can also be treated as an observable for a traditional histogram-based
approach.

5 Applications: constraining effective field theories

Significant sensitivity increases for multi-parameter measurements are possible when using
the new techniques outlined in section 3 instead of the established methods described in
section 2. This section briefly describes examples of this.

5.1 Achieving optimal performance

The vector boson fusion process, with Higgs boson decays to a final state of four charged
leptons, is sensitive to the two Wilson coefficients fW and fWW . The sensitivity to these two
parameters is studied in references [9, 10].

Figure 2 (left) shows a comparison of the sensitivity of multiple approaches to these
coefficients. The exclusion contours obtained with an approach based on Sally significantly
improve the sensitivity compared to a measurement based on a two-dimensional histogram.
Additional improvements are obtained with Rascal. It produces results indistinguishable
from those obtained by using the true likelihood ratio r(x|θ), which can be calculated in this
example at parton-level. In order to obtain the same exclusion limits with the histogram-based
approach as with Rascal, around twice the amount of integrated luminosity is needed [9].

5.2 Inclusion of systematic uncertainties

The Wilson coefficients cuG, cu, cG affect the top quark and Higgs boson couplings in tt̄H
production. Reference [15] studies the sensitivity of various approaches to these parameters,
using the tt̄H process with Higgs boson decays to diphoton final states. The analysis includes
systematic uncertainties in the form of PDF and scale variations. These uncertainties can be
parameterized, such that the neural networks used in this study can learn the dependence of
the likelihood ratio r(x|θ) on both the parameters of interest and nuisance parameters [22].

Figure 2 shows 68% confidence level limits as a function of two of the Wilson coefficients
when setting cu = 0. An approach based on a histogram of the diphoton transverse momen-
tum, shown in green, improves the sensitivity over just using rate information, shown in gray.
The multivariate approach with Sally results in a significant increase in sensitivity over the
histogram-based measurement. When including systematic uncertainties into the measure-
ment, the sensitivity slightly decreases. The solid lines show the confidence level limits with
profiled systematic uncertainties; these limits are decreased compared to the measurement
without systematic uncertainties, visualized with dashed lines.

5.3 High energy physics and beyond

A study of the performance of a MadMiner-based approach for the measurement of EFT
operators via the WH process is provided in reference [23]. Reference [24] demonstrates
an application outside the field of high energy physics. It describes the use of the same
techniques to infer dark matter substructure via gravitational lensing and demonstrates how
the ideas behind MadMiner are broadly applicable.
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Figure 2. Left: Expected 68%, 95%, and 99.7% confidence level limits as a function of the two Wilson
coefficients fW and fWW , rescaled with the Higgs vacuum expectation value v and scale of new physics
Λ. The measurement is performed with events from Higgs boson production via vector boson fusion.
The exclusion limits with Sally improve the performance over a histogram-based approach. The limits
with Rascal are indistinguishable from those obtained by using the true likelihood ratio. Additional
details are provided in references [9, 10]. Right: Expected 68% confidence level limits as a function of
two Wilson coefficients, cG and cuG, from an analysis of the ttH process with Higgs boson decays to a
diphoton final state. The results shown in green are based on using a histogram binned in the transverse
momentum of the diphoton system, the results in blue use Sally. The gray line corresponds to the limits
when only making use of rate information. More details are provided in reference [15].

6 Conclusions

Traditional methods for likelihood-free inference do not scale well to simultaneous measure-
ments of many parameters. A new family of methods has been developed recently to address
this challenge. By combining matrix element information and machine learning techniques,
likelihood ratios can be approximated efficiently and used directly for inference. Studies of
this new approach for multi-parameter measurements show promising performance.
MadMiner is a new python package that automates the relevant workflow. It implements

the full analysis chain for phenomenological studies, and is planned to be integrated into
the software frameworks for use by the LHC experiments. The ideas behind MadMiner are
applicable in many fields, and not constrained to use in high energy physics.
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