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Abstract Jet classification is an important ingredient in
measurements and searches for new physics at particle col-
liders, and secondary vertex reconstruction is a key interme-
diate step in building powerful jet classifiers. We use a neu-
ral network to perform vertex finding inside jets in order to
improve the classification performance, with a focus on sep-
aration of bottom vs. charm flavor tagging. We implement a
novel, universal set-to-graph model, which takes into account
information from all tracks in a jet to determine if pairs of
tracks originated from a common vertex. We explore differ-
ent performance metrics and find our method to outperform
traditional approaches in accurate secondary vertex recon-
struction. We also find that improved vertex finding leads to
a significant improvement in jet classification performance.

1 Introduction

Identifying jets containing bottom and charm hadrons and
separating them from jets that originate from lighter quarks,
is a critical task in the LHC physics program, referred to as
“flavor tagging”. Bottom and charm jets are characterized
by the presence of secondary decays “inside” the jet - the
bottom and charm hadrons will decay several millimeters
past the primary interaction point (primary vertex), and only
stable outgoing particles will be measured by the detector.
Figure 1 illustrates a typical bottom jet decay, with two con-
secutive displaced vertices from a bottom decay (blue lines)
and charm decay (yellow lines).

Existing flavor tagging algorithms use a combination of
low-level variables (the charged particle tracks, reconstructed
secondary vertices), and high-level features engineered by
experts as input to neural networks of various architectures
in order to perform jet flavor classification [1].

a e-mail: jonathan.shlomi@weizmann.ac.il (corresponding author)

Fig. 1 Illustration of a jet with secondary decay vertices. In order to
identify the flavor of the jet, vertex reconstruction aims to group together
the tracks measured in the detector based on their point of origin

Vertex reconstruction can be separated into two tasks, ver-
tex finding, and vertex fitting [2]. Vertex finding refers to the
task of partitioning the set of tracks, and vertex fitting refers to
estimating the vertex positions given each sub-set of tracks.
Existing algorithms typically use an iterative procedure of
finding and fitting to perform both tasks together. We focus
on using a neural network for vertex finding only. Vertex
finding is a challenging task because of two factors:

– Secondary vertices can be in close proximity to the pri-
mary vertex, and to each other, within the measurement
resolution of the track trajectories.

– The charged particle multiplicity in each individual ver-
tex is low, typically between 1 and 5 tracks.

Vertex reconstruction is in essence an inverse problem of a
complicated noisy (forward) function:

Particle Decay → Particle Measurement in Detector (1)
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Neural networks can find a model for this inverse prob-
lem without expert intervention by using supervised learn-
ing, i.e., by providing many examples of the forward process,
which can be provided by simulations. They can also be eas-
ily optimized by retraining without expert intervention. Par-
ticle colliders may have different modes of operation during
their lifetime, such as the LHC increasing its collision energy
over the years. Different data taking conditions require re-
optimizing reconstruction algorithms, and neural networks
provide a simple way to perform that re-optimization.

Since the set of tracks to be partitioned has no inherent
order, we use an equivariant1 neural network architecture.
We show in this paper that this constraint on the model results
in better performance.

We first describe the dataset on which we test our pro-
posed algorithm in Sect. 2. The model architecture and the
baseline algorithms are described in Sect. 3. Section 4 dis-
cusses the performance metrics defined for vertex finding.
Section 5 describes how the impact of vertex finding on jet
classification was assessed, and the results are presented in
Sect. 6. Conclusions are given in Sect. 7.

1.1 Background

Standard vertex reconstruction algorithms. Existing vertex
reconstruction techniques are based on the geometry of the
tracks, or a combination of the geometry and constraints that
are configured by hand to match a specific particle decay
pattern [3]. In order to handle finding and fitting multiple
vertices, a standard algorithm is adaptive vertex reconstruc-
tion (AVR) [2,4,5]. The basic concept of AVR is to perform
a least squares fit of the vertex position given all the tracks,
then remove less compatible tracks from the fit, and refit
those tracks again to more vertices. This repeats until no
tracks are left. AVR can be used to first fit the primary ver-
tex with special considerations for its unique properties, and
subsequently fit secondary vertices. In this paper it is used as
a general multi-vertex fitter, applied only to tracks associated
to a single jet.

Deep learning on sets and graphs. Following the success-
ful application of deep learning to images [6,7], there is an
ongoing research effort aimed at applying deep learning to
other data structures such as unordered sets [8–10] and graphs
[11–14]. Typical learning tasks for such domains are point-
cloud classification for sets, or molecule property predic-
tion, for graphs. A challenge in both scenarios stems from

1 If x is ann×d tensor, andσ is a permutation onn elements, then a layer
L is called equivariant if L(σ x) = σ L(x) and invariant if L(σ x) =
L(x).

the arbitrary order of the elements in the set or the nodes
in the graph. Fully connected, convolutional and recurrent
networks do not have the correct inductive bias for learning
tasks on unordered sets [15]. They assume a fixed size or an
ordering in the data. A popular design principle for networks
that process such unordered data is constraining layers to be
equivariant or invariant to the reordering operation. By using
only equivariant layers the neural networks is constrained to
represent only equivariant functions.

Recently, the Set2Graph (S2G) model [16] was proposed
as a simple, equivariant model for learning tasks in which the
input is an arbitrarily ordered set of n elements and the output
is an n × n matrix that represents their pairwise relations.
The S2G model was proved to be universal, meaning it can
approximate any equivariant function from a set to a graph.
We use this model in this paper.

Deep learning for particle physics. Neural networks that
operate on sets have been used recently in a number of
particle physics applications [17]. The data structure of an
unordered set is a natural description for most particle physics
reconstruction tasks, and recent progress in the field of graph
neural networks [15] has prompted many new applications.
For the problem of track reconstruction, a graph neural net-
work was used to classify the paths between adjacent detector
“hits” [18,19]. This is a similar application to vertex finding
since the end result must be a partition of the set of hits to dif-
ferent tracks. Other applications of graph neural networks to
partitioning sets of objects include particle reconstruction in
calorimeters and liquid argon time projection chambers [20–
23]. Direct jet classification has also been proposed with a
few different variants of message passing networks [24–31].

2 Data

We test the proposed algorithm on a simulated dataset.2 The
dataset consists of jets sampled from pp → t t̄ events at

√
s =

14 TeV. The events are generated with pythia8 [32] and a
basic detector simulation is performed with delphes [33],
emulating a detector similar to ATLAS [34]. charged particle
tracks are represented by 6 perigee parameters (d0, z0, φ,
cotθ , pT ,q) and their covariance matrix. Noise is added to the
track perigee parameters with Gaussian smearing. The track
parameters resolution depends on the transverse momentum
pT and pseudorapidity η of the track in a qualitatively similar
way to the measurements reported in [34]. The covariance
matrix is diagonal in this simplified track smearing model –

2 The dataset and code used in this paper are available at https://zenodo.
org/record/4044628 and https://github.com/jshlomi/SetToGraphPaper.
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the smearing is done independently for each parameter with
no correlated effects.

Jets are constructed from calorimeter energy deposits with
the anti-kT algorithm [35] with a distance parameter of R =
0.4. Charged tracks are cone associated to jets with a ΔR <

0.4 cone around the jet axis. The flavor labeling of jets (as
bottom, charm or light) is done by matching weakly decaying
bottom and charm hadrons to the jet with a ΔR cone of size
0.3.

A basic jet selection is applied, requiring jets have pT >

20 GeV and |η| < 2.5 The input to the vertex finding algo-
rithms is the set of tracks associated to each jet, the jet pT ,
η, φ and jet mass.

Dataset composition. The properties of secondary vertices,
such as their distance from the primary vertex, depend on the
jet flavor but also on pT , η, and number of tracks (ntracks).
However, the distribution of those parameters is different for
the different flavors, depending on the process used to gen-
erate the sample. The dataset is therefore built by sampling
equal numbers of jets from each flavor in each (pT , η, ntracks)

bin, as illustrated in Fig. 2a. For each bin, the flavor with the
least amount of jets (usually c jets) in that bin determines
the number of jets from the other flavors that are sampled.
Figure 2b shows the resulting distribution of the number of
vertices in each jet flavor, and Fig. 2c shows the distribu-
tion of pT , η, and ntracks for all the flavors. The dataset is
split into training (500k jets), validation, and testing datasets
(100k jets each).

3 Vertex finding algorithms

We compare four different algorithms.

– Adaptive vertex reconstruction (AVR).
– Set2Graph neural network.
– Track pair (TP) classifier.
– Recurrent neural network (RNN) model.

AVR serves as the baseline, and represents the existing
vertex reconstruction algorithms. The S2G model is our uni-
versal equivariant model. The TP and RNN algorithms are
baseline neural networks that are similar to S2G but remove
one of its important properties: The TP algorithm is not uni-
versal, while the RNN is not equivariant. The architectures
of all models are described below.

3.1 Adaptive vertex reconstruction

We use adaptive vertex reconstruction as implemented in the
RAVE software package [4]. This algorithm is a represen-

(a) (b)

(c)

Fig. 2 a The dataset is composed by selecting equal numbers of jets
from each flavor in each bin of pT , η, and ntracks. b Distribution of the
number of secondary vertices for the different jet flavors. cThe resulting
distribution of pT , η, and ntracks in the dataset

tative of existing (non neural network based) methods. The
input to the algorithm is the set of tracks associated to the
jet and their covariance matrix. The output is a set of ver-
tices, and a set of track-to-vertex association weights. The
algorithm can associate a track to more than one vertex. To
convert this output into an unambiguous partition, each track
is assigned to the vertex to which it has the highest weight.
There are hyperparameters that control the iterative fitting or
finding procedure such as cuts on the track-to-vertex weight
for removing outliers, and these were scanned to find the
set of cuts resulting in the highest Rand index (defined in
Sect. 4.1). Additional details about the hyper-parameter opti-
mization are given in Appendix A.

3.2 Set2Graph neural network

For the neural network training, the vertex finding task is cast
as an edge classification task, as illustrated in Fig. 3. The
input consists of the tracks associated to a jet, represented as
an array of ntracks × din matrix, with the din = 10 features
composed of the 6 track perigee parameters and the jet fea-
ture vector (the jet features are duplicated for each track).
The output is a binary label attached to each pair of tracks
indicating whether they originated from the same position in
space.
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Fig. 3 The input and training target for the neural network algorithms.
For a jet with ntracks, the input is an array of ntracks × din track and
jet features (jet features are represented by the light blue boxes, track
features by the colored boxes), and the target output is a binary classifi-
cation label for each of the ntracks × (ntracks − 1) ordered pairs of tracks
in the jet

The S2G network is built as a composition of 3 modules,
ψ ◦ β ◦ φ: a set-to-set component, φ, a broadcasting layer β

and a final edge classifier ψ . Here we give only a high level
description of what each module does and its purpose, the
specific model details are given in Appendix B. The model
architecture is illustrated in Fig. 4.

The set-to-set component φ takes as input the matrix of
size ntracks × din. The output of φ is a hidden representation
vector for each track, with size ntracks × dhidden. φ is where
information is exchanged between tracks and it is imple-
mented as a deep sets [8] network.

The broadcasting layer β constructs a representation for
each ordered pair of tracks (directed edge) using the output

of φ. The edge representation is simply a concatenation of
the representations of the two tracks, with the sum of all track
representations, resulting in an output of size (ntrack(ntrack −
1)) × 3dhidden.

The edge classifier ψ is an MLP that operates on the edges
to produce an edge score. This edge score is trained according
to the target defined in Fig. 3. During inference (after the
training is complete) the edge scores are symmetrized, so for
an unordered track pair the edge score si j is:

si j = σ

(
1

2

(
ψ(tracki , track j ) + ψ(track j , tracki )

))
(2)

where σ is the sigmoid function.

3.3 Neural network baselines

The neural network baselines are meant to check the impor-
tance of the properties of the S2G model. The models have
a similar number of trainable parameters: 0.46M for S2G,
0.42M and 0.53M for TP and RNN respectively. They share
the same architecture of ψ ◦ β ◦ φ as the S2G model, with
some components replaced as described below. Their prop-
erties are summarized in Table 1.

The TP classifier is not a universal model. It will allow
us to quantify the contribution of the information exchange
between tracks to the overall vertex finding performance. As
illustrated in Fig. 5, the hidden representation created for

Fig. 4 Partitioning a set of jet tracks using a neural network. A set-to-
set component, φ, creates a hidden representation of each track, with
size dhidden. A broadcasting layer β, then creates a representation for
each directed edge (ordered pair of tracks in the jet) by combining the
representation of the two tracks and the sum of all representations. An

edge classifier ψ then operates on the directed edges. This output is
used for training the model (see the target definition in Fig. 3). During
inference the output of the edge classifier is symmetrized to produce
an edge score. The edge scores are used to define the set partition by
optimizing the partition score, as described in Sect. 3.4
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Table 1 Comparison of the neural network models. The inference time and FLOPS are measured per single jet with 14 tracks. FLOPS were
estimated with [36]

Model Equivariant/universal MFLOPS Parameters Inference time (ms)

Set2Graph � � 7.7 4.6M 5.5

Track Pair � X 6.9 4.5M 2.9

RNN X � 9.1 5.3M 23.4

each track by the deep set module is conditional on the other
tracks in the jet. We expect that for the task of vertex finding,
being aware of all tracks is important, as the probability of a
track pair being connected is conditional on the presence or
lack of additional tracks nearby.

The TP classifier checks this assumption about the data.
If the probability of each track pair is conditional only on
the properties of the track pair, this algorithm will perform
as well as the S2G model. It is still expected to perform
reasonably well, as it can still learn to join together tracks
based on their geometry alone.

The deep set based φ layer is replaced by an MLP applied
to each track in the jet (independently from the other tracks)
to produce some hidden vector representation of that track.
While a deep set has been proven to be universal (can approx-
imate any function from sets to sets) [37] applying element-
wise MLP is not universal for permutation equivariant func-
tions.

Additionally, the broadcasting layer β does not use the
sum of the track hidden representations. The ψ network oper-
ates only on the pair of track hidden representations. There-
fore in the TP classifier there is no information exchange
between the track pairs – each track pair is classified inde-
pendently.

In the RNN model the φ deep set component is replaced
by a stack of bi-directional GRU layers [38]. Each GRU layer
processes the sequence of track representations, sorted by the
track transverse momentum. The layer output is a concate-
nation of the sequence of hidden representations from both
directional passes of the GRU, therefore each track hidden
representation still contains information from all other tracks
in the jet. This model can theoretically learn any function that
the S2G model can, but its architecture is not equivariant. This
model will show if the equivariance is a useful inductive bias
for this task. Additionally, the sequential nature of the RNN
leads to a slower inference time compared to the S2G and TP
models (see Table 1).

3.4 Inference

The network output needs to be converted into a cluster
assignment for the tracks. If an edge tracks i → j is con-
nected, and track j is connected to track k, then the edge
between i → k must also be connected, regardless of its

Fig. 5 The deep set module φ in the S2G model (top) creates the
track hidden representation based on information exchange between the
tracks in the jet. The TP classifier (center) however, creates the hidden
representation with an MLP, which operates on each track individually.
The RNN model (bottom) creates the hidden representation with a bi-
directional GRU, which means the output depends on the order in which
the tracks are sorted

edges score. This could lead to a situation where many edges
with low edge scores are artificially connected. Therefore we
utilize the partition score optimization algorithm proposed by
the authors of [21]. Track pairs whose score (Eq. 2) is above
a threshold of 0.5 are considered in sequence of decreasing
score, and are “connected” only if their addition decreases
the partition score:

Partition score =
∑

δi j ln(si j ) + (1 − δi j ) ln(1 − si j ) (3)

where δi j is 1 if tracki and track j are assigned to the same
cluster. In other words, if the connection of two tracks leads to
an indirect connection between tracks with low edge scores,
the connection is rejected.

3.5 Training procedure and loss function

We train the network f to perform edge predictions, i.e.,
predicting the probability of each pair of input tracks to orig-
inate from the same vertex. For a jet with ntracks we therefore
predict ntracks(ntracks − 1) edge scores. We train the network
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f with the edge predictions before the symmetrization step,
which results in ntracks(ntracks − 1)/2 edge scores.

In terms of edge classification, it is import to balance the
false positive and negative rates. We initially trained the net-
work with a standard binary cross entropy (BCE) loss func-
tion:

BCE =
∑
edges

−yedge ln(ŷedge)− (1− yedge) ln(1− ŷedge) (4)

where ŷedge is the edge predicted value, between 0 and 1, and
yedge is the truth edge label (0 or 1). The sum is over all edges
in a single jet.

Training with BCE loss function resulted in a high number
of false negatives. We therefore introduced a loss function
based on the Fβ score, defined as:

Fβ = (1 + β2) · TP

(1 + β2) · TP + FP + β2 · FN
(5)

with TP, FP, FN the true positives, false positives and false
negatives respectively. The Fβ score is not differentiable.
Quantities such as true positives are defined by functions
that contain non differentiable conditions, for example:

true positives ≡
∑
edges

(ŷedge > threshold)yedge (6)

To compute a differentiable Fβ loss, denoted as F∗
β these

quantities are approximated as differentiable functions:

true positives∗ ≡
∑
edges

ŷedge · yedge

false positives∗ ≡
∑
edges

ŷedge · (1 − yedge)

false negatives∗ ≡
∑
edges

(1 − ŷedge) · yedge.

(7)

However, training with the F∗
β loss only was unstable.

Given the random weight initialization of the network, the
training would sometimes fail to converge. A combined loss
of BCE and F1 was finally used:

Loss = BCE − λ
∑
jets

F∗
β (8)

λ and β are hyperparameters that control the balance between
false negatives and false positives.

Fig. 6 Definition of internal, interpair and external edges for a pair of
vertices

4 Performance metrics for vertex finding

We quantify the vertex finding performance from 3 differ-
ent perspectives: The entire jet, individual vertices and pairs
of vertices. The motivation for defining multiple metrics is
that vertex finding is an intermediate step which is used for a
number of other tasks related to event reconstruction. There-
fore it is important to quantify the performance for a wide
variety of jets with different kind of decay topologies.

4.1 Overall jet performance

For jets as a whole, we consider the adjusted Rand index
(ARI) [39]. ARI is a measure of the similarity between two
set partitions. For vertex finding where the ground truth is
well defined, we can treat the ARI of a jet as a “score” that
tells us how well our vertex finding algorithm reproduced the
ground truth partition. ARI is a normalized form of the Rand
index, defined as:

RI = number of correct edges

number of edges in the set
. (9)

Correct edges are edges whose label matches the label they
have in the ground truth (true positives and true negatives).
The adjustment of the RI is done by normalizing relative to
the expectation value or the RI:

ARI = RI − E[RI]
1 − E[RI] . (10)

The expectation value of the RI is defined by a choice of
a random clustering model. There are several models one
can adopt, described in Ref. [40]. In our case a suitable
choice is the “one-sided” comparison, where the true vertex
assignment is considered fixed, and the expectation value is
computed assuming one draws a completely random vertex
assignment for the algorithm prediction. The expression for
the expectation value is therefore:

E[RI] = BN−1

BN

∑
i

(gi
2

)
(N

2

) +
(

1 − BN−1

BN

) (
1 −

∑
i

(gi
2

)
(N

2

)
)

(11)
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where N ≡ ntracks, BN is the bell number (the number of
possible partitions of a set with N elements), the sum is over
the i vertices in the jet and gi is the number of tracks in the
i-th vertex.

An ARI score of 1 means the algorithm found the correct
cluster assignment, while 0 represents a cluster assignment
that is as good as random guessing. We consider the ARI
score in 3 categories: perfect (ARI of 1), intermediate (ARI
between 0.5 and 1), and poor (ARI lower than 0.5).

4.2 Vertices and vertex-pairs performance

Instead of looking at an entire jet, we can consider sub-
sets of the jet – individual vertices and all possible vertex
pairs. We distinguish between internal, external, and inter-
pair edges. Figure 6 illustrates the definition. Internal edges
connect tracks inside a vertex, Interpair edges connect tracks
in one vertex to tracks in the other vertex (this definition is
only relevant for vertex pairs), and external edges connect
tracks from the vertex/vertex pair to other tracks in the jet.
Note that “external edges” refers to edges that are connected
only at one end to one of the tracks in the subset under con-
sideration (vertex or vertex pair) – not to all edges that are
external to the subset. Considering a specific vertex, or a pair
of vertices, we can compute separately the accuracy for each
type of edge:

Accuracyedge type = correct edges

number of edges of that type
(12)

where for internal edges, correct edges are those predicted
to be connected by the algorithm, and for the other types,
correct edges are those predicted to be disconnected.

We can also multiply the different kinds of accuracies
to compute an overall accuracy for the vertex/vertex-pair in
question.3

For individual vertices, we can evaluate the accuracy as
a function of any vertex property we deem important, for
example the number of tracks in the vertex. For vertex pairs,
an important metric is the performance as a function of the
distance between the two vertices. It is expected that as the
distance between vertices decreases, accurate vertex finding
becomes more difficult, and nearby vertices will be merged.
The vertex pair performance metrics allow us to quantify that.

3 For vertices without one kind of edge (e.g. vertex with 1 track and no
internal edges) the accuracy for that type is set to 1.

5 Impact on jet classification

In order to asses the impact of improved vertex finding on
jet classification, we trained a classifier that took the edge
classification prediction of the different algorithms as input,
along with the tracks and jet features. The classifier predicts
if the jet is a bottom, charm or light jet. The architecture
for jet classification is illustrated in Fig. 7. A vertex finding
module (either AVR, or one of the neural network models)
is used to produce an edge prediction for the input set of
tracks, which is added to a hidden representation created by
a deep set. The resulting graph is processed by a graph net-
work [15] and the resulting graph representation is classified
by an MLP. Details about the architecture and training are
given in Appendix C. In this scenario, the edge predictions
can be considered as a form of supervised attention for the
jet classifier. The weights of the vertex finding module are
frozen during training.

The baseline classification performance is given by train-
ing the same model with an untrained S2G vertex finding
module. This baseline model has the ability to reach the same
performance as the model with the pre-trained S2G network,
as it is an identical network. However it is trained only with
the classification objective, where both vertex finding module
and the rest of the network are trained together. This base-
line therefore shows if an unsupervised attention mechanism
can reach similar classification performance, which would
require it to identify the relevant features in the data without
guidance.

6 Results

The vertex finding results are summarized in Table 2. The
S2G model outperforms AVR in all jet performance metrics.
The improvement is significant (about 20% increase in ARI)
for b and c jets, while for light jets the same high perfor-
mance is maintained. The ARI distribution for the different
flavors is shown in Fig. 8 – while there is still a substantial
amount of poorly reconstructed jets (with ARI < 0.5) there
are more than twice as many perfectly reconstructed b and c
jets compared to AVR. In Fig. 9 the mean ARI is shown as
a function of both the number of tracks, and the number of
vertices in the jet. For b jets, there is a very large improve-
ment in jets with a small number of tracks, but the advantage
over AVR is maintained across the entire range. The AVR
algorithm outperforms S2G only in b and c jets which have
only one vertex, which are very rare in the dataset.

When considering vertex and vertex-pair metrics, for bot-
tom and charm jets the mean internal accuracy for S2G is
within 1% of the baseline, and a large increase (between 10
to 20%) is achieved for external and inter-pair accuracy. Fig-
ure 10 shows the performance for vertices, as a function of
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Fig. 7 Jet classification model.
The vertex finding module
contains either one of the neural
network models described in
Sect. 3, or the predictions
produced by the baseline AVR
algorithms, pre-computed on the
training dataset. If a pre-trained
network in used in the vertex
finding module, its weights are
frozen during the training of the
jet classifier

Table 2 Comparing vertex finding performance from three perspec-
tives: jet, vertex and vertex-pair. See Sect. 4 for the definitions of the
various metrics. The mean for each metric, split by jet flavor, is shown

for the S2G, AVR and TP algorithms. The S2G model outperforms or
equals the other algorithms, maintaining the baseline AVR high accu-
racy for light jets with significant improvements for b and c jets

Algorithm Jet Vertex Vertex-pair

F1 RI ARI Internal External Combined Internal1 Internal2 Interpair External Combined

b jets AVR 0.56 0.61 −0.01 0.91 0.51 0.46 0.59 0.90 0.54 0.58 0.18

Track pair 0.62 0.74 0.32 0.86 0.71 0.60 0.55 0.87 0.72 0.74 0.29

RNN 0.59 0.75 0.37 0.79 0.77 0.60 0.48 0.84 0.78 0.80 0.27

Set2Graph 0.66 0.78 0.43 0.86 0.76 0.65 0.54 0.88 0.78 0.79 0.33

c jets AVR 0.70 0.65 0.22 0.95 0.41 0.39 0.49 0.91 0.49 0.66 0.14

Track Pair 0.74 0.73 0.40 0.92 0.58 0.52 0.47 0.88 0.65 0.76 0.24

RNN 0.71 0.72 0.40 0.86 0.60 0.50 0.39 0.85 0.65 0.77 0.19

Set2Graph 0.75 0.75 0.45 0.94 0.60 0.56 0.47 0.91 0.67 0.78 0.26

light jets AVR 0.97 0.96 0.93 0.99 0.89 0.88 0.33 0.98 0.73 0.89 0.14

Track Pair 0.96 0.96 0.93 0.97 0.93 0.90 0.32 0.97 0.87 0.95 0.26

RNN 0.93 0.92 0.87 0.93 0.90 0.84 0.25 0.94 0.82 0.93 0.18

Set2Graph 0.97 0.96 0.94 0.98 0.93 0.91 0.32 0.98 0.88 0.95 0.26

The result of the highest performing algorithm in each category is marked in bold

Fig. 8 ARI scores for the different flavors of jets. We consider 3 cate-
gories: Perfect – jets with an ARI score of exactly 1, Intermediate – a
score between 0.5 and 1 and Poor – scores below 0.5

vertex size (i.e., number of tracks in the vertex). The S2G
algorithm maintains an advantage over the full range of ver-
tex sizes. The S2G model has a similar internal accuracy
to the baseline, but a 10% increase in external accuracy for
smaller vertices.

Fig. 9 Mean ARI scores for the different flavors of jets as a function
of the jet properties
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Fig. 10 Vertex performance as a function of the vertex size. Internal,
external and combined accuracy are defined in Sect. 4.2

Figure 11 show the performance for vertex pairs, as a
function of the distance between the vertices. Again the S2G
shows a promising ability to separate vertices even when
the distance between them approaches 0. The performance
increase of about 10% in combined accuracy comes from
the improvement in interpair and external accuracy, i.e., less
merging of vertices.

Comparison to neural network baselines Both the TP and
RNN algorithms have a lower ARI by about 5–10% com-
pared to the S2G model for b and c jets. S2G also outperforms
both baselines in vertex and vertex-pair combined accuracy.
From Fig. 8 we can see that S2G has the highest percentage
of perfectly reconstructed jets, and Figs. 9, 10 and 11 show
that this advantage is maintained across the entire dataset.

Impact on jet classification The results for jet classification
are shown in Table 3. The pre-trained S2G classifier out-
performs the AVR based classifier by over 10% in terms of
overall accuracy with the most significant gain coming from
the increased rejection of light jets (an increase in light jet
F1 from 40% to 69%). The neural network baseline with an
S2G based vertexing module that is trained only towards the
classification objective shows better performance than the

Fig. 11 Vertex pair accuracy as a function of distance between the
vertices. The internal accuracy is shown for both smaller vertex (the
vertex with fewer tracks, vertex #1) and the larger vertex (vertex #2)

AVR and track pair based algorithms. This indicates that the
network is able to learn some important features of the data
by itself. The RNN and S2G based models have similar per-
formance, with the S2G model outperforming the RNN in
particular in c jet identification.

7 Conclusions

We proposed training a neural network to perform vertex
finding, using supervised learning. We found that it outper-
forms standard techniques for multiple performance metrics
of vertex reconstruction, and shows promising increase in
performance for nearby vertices.

We utilized the Set2Graph model, a simple equivariant
and universal model of functions from sets to graphs. We
showed that the model’s universality and equivariance were
both important. The universality was needed to properly learn
the vertex finding task, by taking into account information
from all tracks in the jet. Equivariance was a useful induc-
tive bias, resulting in better performance compared to recur-
rent neural network which could in theory learn the same
function as the S2G model. We evaluated the impact of the
improved accuracy in vertex reconstruction on jet classifica-
tion by training a classifier that used the vertex finding predic-

Table 3 Jet flavor classification
performance metrics. The model
with pre-trained S2G vertex
finding module outperforms the
other algorithms in overall

Vertex finding module Accuracy F1 b jets F1 c jets F1 Light jets F1

AVR 0.50 0.49 0.62 0.44 0.40

Baseline 0.57 0.56 0.67 0.40 0.60

Track pair 0.56 0.57 0.65 0.48 0.57

RNN 0.62 0.60 0.74 0.37 0.69

Set2Graph 0.63 0.62 0.72 0.44 0.69

The result of the highest performing algorithm in each category is marked in bold
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tions as input, as a sort of supervised attention mechanism.
We found that improved vertex finding leads to improved
classification. The supervised attention mechanism lead to
better results compared to an identical model with unsuper-
vised attention. The universal models (S2G and RNN) had
the best performance, however the equivariance of S2G gave
it a slight advantage over the RNN.

Future work may explore the application of this technique
to more complicated decays such as boosted Higgs to (bb/cc),
and apply it to more realistic datasets that include full detector
simulation and pileup interactions.
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Appendix A: Hyperparameter optimization for AVR

The AVR algorithm in RAVE [4] has three main parameters
that can be adjusted by the user -

– Primary vertex significance cut
– Secondary vertex significance cut
– minimum weight for a track to stay in a fitted vertex

The values for there parameters were scanned in a grid
between 0.1 to 10 for the significance cuts (33 equally spaced
values) and between 0.1 to 0.8 for the minimum weight (10
values). For each possible value of the parameters, the mean

Fig. 12 AVR parameter scan

Fig. 13 A single deep set layer in the φ module

RI was computed for each of the 3 flavors in the training
dataset. The values of the b, c and light jet RI are shown in
Fig. 12. The working point that was chosen had the highest
b jet RI with a mean light jet RI above 0.95:

– Primary cut: 2.5
– Secondary cut: 2.5
– minimum weight: 0.2.

Appendix B: Model architecture and training details

Hyperparameter tuning and ablation studies The optimiza-
tion of the model hyperparameters and architecture used in
this paper are described in detail in the supplementary mate-
rial of [16]. Below we describe the architecture for the final
optimized model.
S2Gmodel.The φ component of the S2G model is composed
of a sequence of deep set layers [8], each of which contain a
self-attention mechanism and two linear din → dout layers,
in a structure shown in Fig. 13. A ReLU non-linearity is used
between the layers.

The attention block in the deep set layer is a key/query
attention [41,42]:

Attention(X) = softmax

(
tanh f1(X) · f2(X)T√

dsmall

)
· X (B.1)
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where X is the n × din input, f1, f2 are the key and query
MLPs of width dsmall = din/10.

If we describe the stack of deep set layers by their output
dimension dout , the φ module layer dimensions are:

φ output dimensions = (256, 256, 256, 256, 5). (B.2)

The edge classifier component ψ takes in the n · (n−1)×
(5 · 3) output of the broadcasting layer, and uses a single
hidden layer MLP with output dimensions (256, 1).
Baseline TP Classifier.

The MLP that replaces the deep set layers has the follow-
ing output sizes:

φTP output dimensions = (384, 384, 384, 384, 5). (B.3)

The edge classifier component ψ is identical expect its
input size is now 5 · 2 instead of 5 · 3 due to the absence of
the sum in the broadcasting layer.
Baseline RNN

The GRU layer output sizes are:

φRNN output dimensions = (256, 256, 128, 6). (B.4)

Each GRU layer is bi directional. Each direction results
in a hidden representation of size dout/2, and the results are
concatenated.
Training hyperparameters

We used a batch size of 2048, Adam optimizer [43] with
learning rate of 10−3. Training takes place in less than 2 h
on a single Tesla V100 GPU. The training is stopped when
the validation loss stops does not decrease for 20 epochs.

Appendix C: Jet classification model architecture

The model, illustrated in Fig. 6 is composed of four compo-
nents:

– Deep set network
– Vertex finding module,
– Graph network [15].
– Jet classifier MLP.

Deep set The deep set network is described in Appendix B.
In the classification model it has dimensions of:

Deep set output dimensions = (126, 126, 126, 126). (C.1)

The deep set creates a hidden representation for each track
in the input.
Vertex finding module This is either the AVR pre-computed
vertex assignment, or one of the vertex finding networks. The

output of this module is an edge prediction ei j between any
two tracks in the input set.

The graph network creates a hidden representation for the
tracks based on the output of the deep set and the vertex
finding module, which is treated as edge features for the fully
connected graph of tracks.

The graph network is composed of a sequence of GN
blocks, each with an edge update and node update MLP.

gt =
∑
i

hti (C.2)

mt+1
i =

∑
j∈N (i)

Et (h
t
i , h

t
j , ei j , g

t ) (C.3)

ht+1
i = Ut (h

t
i ,m

t+1
i ) (C.4)

where hti is the i th node hidden representation at step t , gt

is the global representation of the graph (sum of all node
hidden representations), Et and Ut are the edge and node
update MLPs for layer t of the graph network and ei j is the
edge prediction given by the vertex finding module for the
edge between node i and j . N (i) is the node neighborhood.
In this model the graph is always fully connected, so the node
neighborhood contains all the nodes in the graph. The edge
update MLP has linear layers with sizes:

Et dimensions = (126 · 3 + 1, 100, 20). (C.5)

The node update MLP has linear layers with sizes:

Ut dimensions = (126 + 20, 100, 126). (C.6)

The graph network has 3 such GN blocks.
The jet classifier MLP takes as input the sum of track hid-

den representations and the jet features (pT , η, φ, jet mass).
It predicts if the jet is a b,c or light jet.

Jet classifier dimensions = (126 + 4, 100, 50, 3). (C.7)

C.1 Jet classifier training

The model is trained with a batch size of 1000, Adam opti-
mizer and a learning rate of 5×10−4, and cross entropy loss.
Training takes less than 2 h on single Tesla V100 GPU. The
training is stopped when the validation loss stops does not
decrease for 20 epochs.
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