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Abstract

Recent work in networking, storage and multi-threading
has demonstrated improved performance and scalability by
replacing kernel-mode interrupts with high-rate user-space
polling. Typically, such polling is performed by a dedicated
core. Compiler Interrupts (Cls) instead enable efficient, auto-
matic high-rate polling on a shared thread, which performs
other work between polls.

CIs are instrumentation-based and light-weight, allowing
frequent interrupts with little performance impact. For ex-
ample, when targeting a 5,000 cycle interval, the median
overhead of our fastest CI design is 4% vs. 800% for hardware
interrupts, across programs in the SPLASH-2, Phoenix and
Parsec benchmark suites running with 32 threads.

We evaluate CIs on three systems-level applications: (a)
kernel bypass networking with mTCP, (b) joint kernel bypass
networking and CPU scheduling with Shenango, and (c) dele-
gation, a message-passing alternative to locking, with FFWD.
For each application, we find that Cls offer compelling quali-
tative and quantitative improvements over the current state
of the art. For example, CI-based mTCP achieves ~2X stock
mTCP throughput on a sample HTTP application.

CCS Concepts: » General and reference — General con-
ference proceedings; Empirical studies; « Computing metho
ologies — Concurrent programming languages; Parallel pro-
gramming languages.
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1 Introduction

A recent trend in computer systems is the use of high fre-
quency polling to create user-level implementations of a
range of tasks traditionally left to the kernel and its in-
terrupt handlers. These include kernel-bypass networking
[8, 26, 35, 44] and disk I/O [16, 30, 53], message passing
[33, 46, 48], and CPU allocation [28, 41]. A common design
choice is to dedicate one or more cores to polling. This allows
for high frequency continuous polling, but eliminates the
use of these dedicated cores for application purposes, and
incurs high CPU utilization even when no productive work
is being performed.

We propose Compiler Interrupts (Cls), a compile-time in-
strumentation approach, as an alternative to dedicating a
CPU core to polling. With performance in mind, CIs adds
a minimum number of “probes” to the target program, which
measure the elapsed time and periodically call a user-provided
interrupt handler at (or near) the target interval.

The use of instrumentation to periodically perform work
outside the normal flow of a program has been explored
before. In garbage collected languages [20, 24], collection
may be triggered at specific safe points in the program to
ensure useful invariants. Profilers [6, 7, 19, 21, 38, 39, 54]
and Fuzzers [15, 22, 27] instrument programs to collect and
analyze program statistics. In coredet [9], a deterministic
instruction count is maintained using compiler instrumenta-
tion, to periodically trigger synchronization events.

The Compiler Interrupt is a general-purpose system prim-
itive that provides an easy-to-use and highly efficient ap-
proach to fine-grained processor sharing. At runtime, the
program registers an interrupt handler to be called at a regu-
lar interval throughout the execution of the program. While
the instrumentation itself introduces a fixed overhead, the
cost per interrupt is very small, as it is implemented as a
standard function call. As a result, interrupts may be served
as frequently as (approximately) every 1,000 cycles, with
minor performance impact, given a short handler.

It should be noted that CI intervals are approximate: large
deviations can occur as a result of executing uninstrumented
code, including system calls: CIs cannot be raised when the
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Table 1. Sketch of a simple program using Compiler Inter-
rupts. The function handler is called periodically throughout
the execution of the program.

volatile int increments = 0;

void handler(uint64_t insns) {
printf("%1lu insns, %d incs\n",

insns, increments);

}

void main() {
register_ci(100000,&handler);
for(;;) increments++;

}

program is not executing, or when it is executing uninstru-
mented code. That said, when accuracy is important, com-
piling any libraries with Cls, and limiting use of system calls
on the subject thread may be a feasible trade-off.

The main contributions of this paper are as follows.

e The introduction of Compiler Interrupts (Cls) as a gen-
eral purpose primitive in computer systems.

o An efficient CI implementation, based on static analy-
sis and instrumentation of arbitrary programs.

e Evaluation on three recent system use cases, as well
as standard benchmark suites.

The remainder of the paper is structured as follows. In
§2 we describe the high-level design and API of compiler
interrupts. §3 describes the details of our analysis phase,
followed by the instrumentation phase in §4. §5 evaluates Cls,
both in the context of three example use-cases, and in terms
of overhead and interval accuracy on benchmark programs.
We then review the related work (§6), and conclude (§7).

2 Compiler Interrupts - Model and API

Conceptually, a Compiler Interrupt (CI) is a call to an in-
terrupt handler function that, from the perspective of the
compiled executable, is part of the normal program flow.
Based on compile-time instrumentation, the call to the in-
terrupt handler is entirely synchronous. However, from the
programmer’s perspective, the interrupt handler function
may be called at any time, unless CIs have been explicitly
disabled: the call location is not visible to the programmer,
and may vary with program inputs, as well as seemingly
unrelated program changes. Below, we discuss the design of
Compiler Interrupts in more detail, followed by a description
of our analysis and instrumentation phases in §3-§4.

2.1 Usage and Operation

From a user mode programmer’s perspective, compiler inter-
rupts are in some ways similar to signals. Table 1 sketches
simple example program using the Compiler Interrupt API.
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The program will print instruction and increment counts,
approximately every 100,000 cycles.

Table 2 lists key parts of the API used to interface with
CIs. A program may register one or more interrupt handler
functions with a target interval in cycles. Calls to the handler
functions are interleaved with normal program execution
until the handler is de-registered, except where instrumen-
tation is explicitly disabled. The handler function accepts
one integer parameter: an approximation of the number of
LLVM IR instructions since the last interrupt.

To enable Compiler Interrupts, the program is compiled
with our new LLVM CI optimization phase. This instruments
the binary with brief interrupt probes (see an example in
Table 3) at carefully selected locations. Probes increment the
instruction count and, if the count has advanced sufficiently,
invoke interrupt handlers. The count is incremented by an
approximate (but deterministic) amount, based on the code
preceding the probe, computed through static analysis. The
details of where probes are inserted, and how the increment
is calculated, are provided in §3-§4.

In order to meet a target interrupt period, probes are in-
serted at a maximum probe interval, smaller than the target
interrupt interval; the probe interval is a compile-time config-
urable parameter whereas interrupt interval is specified at
runtime using the CI API §2. Generally speaking, the shorter
the probe interval, the finer the granularity at which inter-
rupts may be issued. That said, program logic often dictates
that probes be inserted relatively frequently. As a result, a
long probe interval setting does not necessarily result in
greatly reduced overhead. In the probe shown in Table 3,
the function call_handlers()! decides, for each registered
and enabled (see §2.2) CI handler, whether it is time to in-
voke the handler. The function update_nextint() computes
a suitable interval for the next call to call_handlers().

It is worth noting that compiler instrumentation can only
be added to the parts of the program that are compiled with
the CI optimization phase. Thus, when a program is exe-
cuting uninstrumented library functions or system calls, or
while it is not executing at all, the count cannot be incre-
mented and Cls cannot be raised, resulting in interval in-
accuracy. In §4 we describe more advanced probes which
partially address this inaccuracy. We quantify the interval
accuracy of CIs on multiple benchmark programs in §5.

2.2 Disabling / Enabling Interrupts

Individual Compiler Interrupts handlers are disabled/enabled
using the ci_disable, ci_enable functions. To allow nest-
ing of such calls, disable/enable will increment/decrement a
thread-local, per-handler count. If this value is greater than
zero, the interrupt handler function is not called by the probe.
As aresult, “n”enable calls are needed to enable an interrupt

disabled by “n”disable calls.

1A fast-path is provided for the case of a single registered CI handler.
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Table 2. An Application Programming Interface (API) for Compiler Interrupts. In addition to these library functions, compile-
time configurations are needed to instrument the executable with compiler interrupt support.

API Description

typedef void (*ci_handler)(uint64_t) Interrupt handlers receive an approximation of the number of IR
executed as argument.
int register_ci(int interval, ci_handler func) Register Compiler Interrupt handler func, with a target interval
(in cycles). Returns a unique identifier ciid.
void deregister(int ciid) Deregister the interrupt handler identified by the ciid provided.

void ci_disable(int ciid)
void ci_enable(int ciid)

Temporarily disable compiler interrupts by the ciid provided.
Compiler interrupts are enabled by default. ci_enable re-enables

interrupts following calls to ci_disable for the same ciid.
#pragma ci_probe disable Disables probe instrumentation in the following function.

Table 3. Sketch of a basic Compiler Interrupt probe, added
to strategically selected locations throughout the program.
Function call_handlers() determines, for each registered
handler, whether it is time to call it.

__thread uint64_t inscount;

__thread uint64_t nextint;

inline void periodic_probe(uint64_t inc) {
inscount+=inc;
if(inscount>nextint) {
call_handlers(inscount);
update_nextint();
}

}

The main use of this functionality is in disabling inter-
rupt handler H during execution of H, to avoid indefinitely
growing the stack when executing long interrupt handlers.
Another important use for disabling interrupts is in locking.
Similar to interrupt handlers (kernel), and signal handlers
(userland), there is the potential for deadlock between regu-
lar program flow, and any CI handlers which acquire locks.

Depending on the application, it may not be practical to
avoid acquiring locks in CI handlers. An alternative is to
modify the lock implementation to disable all CI handlers
during critical sections. This may be done by passing 0 as the
ciid to ci_disable/ci_enable. Here, the trade-off is instead
that long critical sections may arbitrarily delay interrupt
delivery, which may impact performance or correctness.

The full implications of disabling compiler interrupts, and
its impact on software modularity, may require further study.

2.3 Disabling / Enabling Probes
As opposed to disabling/enabling interrupts, the #pragma

ci_probe disable directive prohibits instrumentation of probes

in the immediately following function. The scope is limited

to the function it is applied to, and does not get carried over
to functions that are called inside the disabled function.

2.4 Compiler Interrupts vs. Signals

In UNIX systems, a process may register signal handlers, to
be invoked in response to specific system events, including
timers. Using the Linux Performance API (PAPI), one can
register a callback function to be called at regular intervals of
a hardware performance counter, such as the retired instruc-
tion counter. Conceptually, these provide a similar service
to Compiler Interrupts. In practice, the differences are stark.
First, Compiler Interrupts rely on instrumentation, which
essentially carries fixed overhead per instruction, and single-
digit cycle overhead per interrupt delivery, since it is a sim-
ple function call. By contrast, performance-counter based
signal delivery carries little or no fixed overhead, but high
per-interrupt overhead as each signal delivery requires at
minimum a hardware interrupt, a return to user space to ex-
ecute the handler, then a signal return system call. Figure 12
illustrates the high cost of frequent signal delivery, increas-
ing program runtime by almost 10X for interrupt intervals
in the 5,000 cycle range. Compiler interrupts, meanwhile,
incur extremely low additional overhead per interrupt.
Second, Compiler Interrupts are platform independent, be-
ing introduced at the LLVM intermediate representation (IR)
level. Thus, they can be portable, and deterministic?. By con-
trast, performance counters are notoriously variable across
architectures, often non-deterministic, or even unavailable.

2.5 Compiler Interrupts vs. Yield points

Yield points, described in [1, 2, 4, 31], are well defined points
in a program, where execution may be interrupted to facil-
itate garbage collection, thread preemption, profiling and
other virtual machine behaviors. Though similar in concept,
yield points were designed with the objective of allowing an
outside party to interrupt execution only at safe points in
the code, while incurring minimal instrumentation overhead.

%In §4, we propose a probe type that uses the cycle counter (CI-cycles). This
type trades performance, portability, and determinism for added accuracy.
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Unlike the microsecond-scale interrupt intervals of CIs, yield
points target much less frequent interruption, at millisecond-
scale intervals. On the implementation side, yield points rely
on external action to “enable” an yield point, informing the
thread that it needs to yield, whether by protecting a page,
setting a flag variable, or patching code. With CI, threads
internally track their progress and decide, without external
input, when to call the interrupt handler.

In terms of usage, yield points are very light-weight by
design, and liberally added at function preambles, postambles
and back-edges. According to [31], only 1 in 20,000 yield
points are typically “taken”. By comparison, CI probes are
somewhat heavy-weight, thus care must be taken to keep
the number of probes encountered, low. In our experiments,
1 in 100 CI probes would typically result in an interrupt.

2.6 Modularity

To support modular compilation and Cl-instrumented li-
braries, the CI pass exports required metadata from each
build unit to a file, which is read while building any de-
pendent units. For the best accuracy and performance, all
builds units should be instrumented using the same probe
interval, though this is not necessary for correctness. Code
compiled for compiler interrupts must link with the libci
support library, which provides the CI APL

Below, we describe how our static analysis phase deter-
mines the placement and increment of each probe (§3), fol-
lowed by alternative probe designs (§4) and evaluation (§5).

3 Analysis Phase

The analysis phase takes the pre-optimized intermediate rep-
resentation (IR) of the program, applies code transformations,
and identifies the locations where instrumentation must be
added in order to achieve a periodic compiler interrupt in-
terval. This is followed by the instrumentation phase (§4),
where probe code is added.

A naive version of Cls may simply instrument a probe on
every basic block. Assuming sufficiently short basic blocks,
this would be effective, but not efficient due to the large num-
ber of probes invoked at runtime. Therefore, the purpose of
our static analysis phase is to minimize the number of probes
executed while striving to meet a target interrupt interval.
Discussed in greater detail in (§3.3), the placement of probes
is dictated by the compile-time configurable parameter of
probe interval (see §2.1) that specifies the approximate dis-
tance between probes in terms of instruction counts. Probes
are also placed after uninstrumented external library calls
due to their unforeseen instruction count.

During analysis, IR is first pre-processed to canonicalize
the control flow graph (CFG), making analysis easier (§3.1).
The CFG is then abstracted into a hierarchical graph of self-
contained subgraphs (§3.2). The cost (in IR) of each subgraph
is then computed (§3.3), and each subgraph is marked for
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CFG for 'Init_Opacity' function

Figure 1. Hierarchical containers created from control flow
graph of the Init_Opacity() function of Volrend, from the
SPLASH-2 benchmark suite

dom1

new block

postdom

v

Figure 2. Transforming a CFG into a canonical form.

instrumentation as needed given a probe interval accuracy.
For long loops, or loops of unknown length, that had been
identified in the earlier steps, loop cloning (§3.5) and loop
transformation (§3.4) are then applied to reduce the neces-
sary number of probes at runtime. Finally, a post-processing
step (§3.6) further reduces the number of instrumentations.

3.1 Pre-processing - CFG Transform

In order to facilitate the pattern matching rules used in our
CFG analysis, we first transform the CFG to a canonical,
equivalent form. For example, the CFG on the left of Figure 2
shows a branch pattern in its original form, and the canonical
form is shown in the right hand side CFG in Figure 2. This
type of transformation is done at a preprocessing stage using
well known concepts of graph dominator & post-dominator
to find patterns that need transformation.
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Figure 3. CFG patterns for reduction (C’ denotes container,
’b’ denotes backedge count of a loop)

3.2 Abstracting the Control Flow Graph

We use a basic forward-chaining production rule system
[47] to detect subgraphs in the CFG of the program, that are
amenable to cost estimation. In essence, the system consists
of a set of graph matching patterns and associated actions,
which are applied to the CFG until progress halts.

Figure 1 represents the control flow graph of Init_Opacity
function from the volrend program of the SPLASH-2 bench-
mark suite [49, 52]. The CFG corresponds to the -O3 opti-
mized C code, which originally contained several assignment
statements and five unnested loops. Below, we walk through
the different phases using this CFG as an example.

We start by finding simple subgraphs in the CFG of indi-
vidual functions in a module, which we process in call-graph
order. Figure 3 lists the graph matching patterns used for
this purpose. When a matching subgraph is found, we cre-
ate an in-memory abstract container C out of the subgraph,
thereby reducing the original graph into a interconnection
graph of containers and basic blocks. We repeatedly apply
the matching rules, until the graph can be reduced no further.

The patterns in Figure 3 all have singular entry and exit
points. Such subgraphs have the advantage that their cost
can be estimated by a simple mathematical expression. If the
accuracy of such an estimate is within the allowable error
bound, instrumenting the subgraph may not be necessary.
Instead, it may be abstracted as a container C with a known
cost f(C), which can simply be added to the total cost of
its enclosing container. rule 1 in Figure 3 can match any
number of sequential containers, rules 2a, b match branch
structures, and rules 3a, b, ¢ match different kinds of loops.

For example, in Figure 1, both the loops for.body12 and
for.body29 match rule 3c (Figure 3), and are abstracted out
into containers c1 and c2. These new containers will now
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Table 4. A loop running an unknown number of times

void run_loop_ntimes(int n) {
for( int i = 0; i < n; i++ ) {
/* code */

Table 5. Transformed form of loop in Table 4 with
periodic_probe inserted

void run_loop_ntimes(int n) {
for( int i = 0; i <n; ) {
int k = i;
int j = min(n, i + computed_iterations);
for( ; i < j; i++ ) { // inner loop
/* code */
}

periodic_probe( (i-k) * inner_loop_cost )

be treated as nodes of the transformed (in-memory) graph,
along with basic blocks entry, for.end16 and for.end33. The
transformed graph matches the chain rule 1 with 5 container
nodes, and is made into a new hierarchical container encap-
sulating the whole function CFG.

While rules 1 & 2 have unidirectional control flow,
rules 3a,b,c have backedges to form a loop. Though it is
not always true, in the case of Init_Opacity(), backedge
counts were known, even after optimization. If the loop body
cost is fixed, and the aggregate loop cost is below the allow-
able error threshold, instrumentation is not necessary. For
heavily used functions, eliminating such instrumentations
can significantly reduce runtime overhead. When the aggre-
gate loop cost is large, or unknown, a different approach is
required, explained in §3.4.

3.3 Cost Evaluation

Once the hierarchical container graph is generated, a cost
evaluation pass is applied to compute the cost (in terms of
instruction count) of each container. In the cost-evaluation
phase, we recursively consider each container of the final
reduced graph, starting from the outermost container. Using
the cost estimation functions listed in Table 6, we attempt to
compute the outermost container’s cost, that is the total num-
ber of instructions that will be executed by this container,
as a function of the cost of its sub-containers. Intuitively,
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Table 6. Cost functions for the matching rules in Figure 3

Rule 1: f(C) = f(C1) + f(C2) + f(C3)

Rule 2a : f(C) = f(C1) + ¢g(C2,C3) + f(C4)
Rule 2b : f(C) = f(C1) + ¢g(C2,0) + f(C3)
Rule 3a: f(C) = (f(C1) + f(C2)) = (b+1)
Rule 3b : f(C) = (f(C1) + f(C2)) = b + f(C1)
Rule 3c: f(C) = f(C1) = (b+1)

the cost functions combine the cost of similarly expensive
child nodes of a branch structure, or find the cost of a loop
construct by multiplying the cost of the body of the loop by
the number of iterations. Function g in Table 6 computes the
combined cost for similarly expensive child nodes: for the
purpose of this paper, g computes the mean of its inputs.

The cost of a container may be constant, parametric, or
not computable. Depending on the type and extent of this
cost, we choose to store its cost in the container’s meta-data
or mark it for instrumentation in the next phase. If the cost
is constant, the probe interval is used to determine whether
to use the cost of this container for cost evaluation of a
parent container in the hierarchy, or whether to mark this
container for instrumentation. In the case of rule 2, an
allowable error is used to check if the two branches of the
CFG are similar enough to be summarized as one cost, that
is less than the probe interval. Otherwise, each of the branch
containers will be marked for instrumentation in the next
phase. Logically, the performance overhead is expected to
improve and interval accuracy is expected to degrade, with
increasing allowable error. However, a thorough evaluation
showed that the impact of allowable error on the interval
accuracy and performance overhead is negligible beyond 500
IR instructions, and therefore, for minimizing configurable
parameters at an acceptable accuracy error and performance
overhead, we have heuristically chosen allowable error that
is same as the probe interval for all of our evaluation.

Function Cost Optimization. When the entire function
body can be represented by a single container (for example,
Init_Opacity() in Fig 1), a function’s cost is computed as
the cost of this container. Otherwise, the cost of the entry
block container is saved as the function cost and the rest is
instrumented. For computing the cost of a call instruction,
the computed cost for the called function is added to the
call-site instruction cost. Function costs are evaluated in call
graph order, and function cost optimization is not applied for
recursive functions. For libraries compiled with CIs, function
costs are communicated through exported cost files. We use
LLVM'’s scalar-evolution pass [32] for parametric function
cost computation, where the cost may depend on runtime
input parameters to the function.
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3.4 Loop Transform

Loops with large or unknown aggregate cost often contribute
a large share of the performance overhead. Of special con-
cern are loops with a small loop body and large number of
iterations that is unknown at compile time. To mitigate the
overhead of instrumenting every iteration, we decompose
such loops into an outer loop and an inner loop.

Table 4 shows an example loop’s pseudo-code, and Table
5 shows how it will be transformed. In the transformed ver-
sion, the outer loop has an unknown number of iterations at
compile time, while the inner has an upper-bounded number
of iterations, based on the probe interval. This is controlled
by the compile-time variable computed_iterations, that rep-
resents the number of times a loop with a fixed cost can run
without exceeding the probe interval. This design allows us
to instrument the outer loop with the known cost of the inner
loop, while keeping the inner loop uninstrumented. The cost
added to the local counter in periodic_probe is dynamically
computed based on the loop induction variable value. We
use LLVM’s loop-simplify pass to canonicalize natural loops
[32], so as to find the induction variable required for this
transformation, where possible.

For containers of loops that do not have an induction vari-
able, do not have a known body cost, or for those whose body
cost exceeds an allowable error threshold, we conservatively
instrument every container in it.

3.5 Cloning Single Block Loops

Empirically, adding instrumentation to deeply nested, tight
loops (comprising a single basic block), can incur significant
overhead. The transform above addresses this in long loops,
but actually increases overhead for very short loops where
the number of iterations is only known at runtime. To address
this, we clone any simple loop into two versions, and select
between these based on the runtime iteration count. If the
iteration count leads to a loop cost smaller than the probe
interval, we use an uninstrumented version of the loop and
apply the cost increment outside of the loop. If not, we use
the transformed loop as described above (see §3.4).

3.6 Post-processing - Unmatched Patterns

Even with the preprocessing steps, there may remain sections
of CFGs that cannot be abstracted into single-entry single-
exit regions, and remain unmatched by any of the rules.
To reduce the cost of instrumenting these remaining basic
blocks, we use a technique inspired from CoreDet [9]. Here,
each unprocessed single basic block container is processed
greedily and individually. If the cost of containers behind
incoming edges are known, differ within the allowable error
threshold, and do not contain back-edges, we approximate
the cost of all these containers as their mean, and add it to
the current container. This avoids the need to instrument
the containers behind these incoming edges. For any given
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block, if none of the children have multiple incoming edges,
the block’s cost is disseminated to its children, avoiding the
need to instrument the block itself.

4 Instrumentation Phase and Probe Types

The instrumentation phase recurses through the container
structure, adding probes to containers marked for instrumen-
tation. Probes add the cost of the container to the instruction
counter, and conditionally call the interrupt handler, based
on the target interrupt interval specified at runtime.

The analysis phase, however, provides container cost in
terms of IR instruction count, while users specify a target
interval in cycles. Unfortunately, the translation from IR in-
struction count to cycles varies between applications and
architectures, and even over time as applications perform
different tasks, and CPUs dynamically adjust their clock fre-
quency. Moreover, most programs include calls to external
library functions and system calls, which may not be prac-
tical to instrument with compiler interrupts, or may even
suspend the execution of the program.

This raises the question of how to translate the user’s
desired cycle interval into a concrete condition in our instru-
mentation. We present two options that have worked well
in our experiments: a Pure IR solution (labeled CI), and an
IR-gated cycle counter solution (CI-Cycles). Both make use
of a heuristic estimate of the IR-to-cycle count ratio®, but
use it in different ways.

CI: our pure IR option carries no additional cost. For this
option, we empirically use a cost of 100 IR instructions to
represent the time spent in any uninstrumented function.
While inaccurate in modeling uninstrumented functions,
and vulnerable to variability in IR execution time, pure IR
instrumentation is deterministic, portable and fast.

CI-Cycles: Our IR-gated cycle counter instrumentation
uses the IR count to read the cycle counter (CC) periodically.
If the cycle counter indicates that enough cycles have passed
since the last interval, we call the interrupt handler. If not,
check the cycle counter again after a number of IR instruc-
tions proportional to the remaining time. CI-Cycles assumes
the availability of a hardware cycle counter (CC), through
the 11vm.readcyclecounter intrinsic.

Below, we first demonstrate the power and utility of CI
through three example applications, then evaluate the over-
head and accuracy of our instrumentation approach vs. prior
work in §5.4.

5 Evaluation

All evaluation experiments below were performed on Ubuntu
Linux 18.04, with Linux Kernel version 4.15.0-74-generic. All
programs were compiled with LLVM version 9, and with

3This can be either our default value of 4 LLVM IR per cycle, or tuned for
the specific application based on an example execution.
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Figure 4. Throughput (download) and response latency of
epserver/epwget running original mTCP, and our CI-based
mTCP over a 10 Gbps link.

our compiler interrupts optimization pass, when applica-
ble. We used the glibc malloc(), after evaluations showed it
generally matching or outperforming other mallocs, such as
Hoard [10] and jemalloc [25] on these programs. The CPU
scaling governor was set to “performance”. Except where
noted otherwise, these results are from 2 socket machines
with the Intel Skylake architecture, a total of 56 hardware
threads, with Hyper-threading enabled, and 128 GB of RAM.
However, we confirmed that similar results are achievable
on the older Broadwell and Sandy Bridge x86 architectures.
Reported results are from at least 10 runs, except where
otherwise noted.

5.1 App: mTCP: Kernel Bypass Networking

Kernel bypass, or user level networking, has the user space
application talk directly to the NIC, without kernel involve-
ment in typical communication. This is desirable when the
overhead of a general kernel network stack is deemed too
high. The Data Plane Development Kit (DPDK) [23] offers a
low-level API to support this type of operation. Built on top
of DPDK, mTCP [26] implements TCP in user space.

One of the bigger challenges in designing a user space
TCP implementation is the need to seamlessly and rapidly
retransmit packets and acknowledge receipt of packets, even
when the application thread is busy doing other work. At the
kernel level, this is managed with NIC interrupts and timer
interrupts. The mTCP approach is to pair each application
thread with a helper thread, pinned to the same hardware
thread, which runs the network stack. The use of a helper
thread gives mTCP the ability to, when necessary, interrupt
a CPU-heavy application thread to poll the NIC for incoming
packets, send acknowledgments, make retransmissions etc.
The authors of mTCP demonstrated large gains over Linux
networking performance and prior research systems.

Using CIs, mTCP can be implemented without the helper
thread. We compile the target program with Cls, and use this
to run (in this case, roughly every 2500 cycles) the body of
the mTCP network stack loop that the mTCP helper thread
would usually run. We also made a small handful of other
changes to mTCP to accommodate the new single-threaded
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Figure 5. Throughput (download) and response latency of
epserver/epwget modified to perform computational work
before responding to a request, running original mTCP, and
our CI-based mTCP over a 10 Gbps link.

model, notably replacing application/helper thread coordina-
tion with function calls. All in all, approximately 25 lines of
code were changed. Figure 4 shows the performance of kernel
networking, mTCP and CI-mTCP on the epserver/epwget
basic HTTP server/client software included with the mTCP
package. The application performs HTTP requests, repeat-
edly fetching a 1kB file. Server and client each run with 16
application threads, and multiple concurrent sessions per
thread. We run server and client on two machines connected
by 10Gbps Ethernet. We vary the total number of concurrent
connections per client thread on the x axis, and plot down-
load throughput (left, red) and latency (right, blue): the time
from request to receiving a complete 1kB response.

We show results for CI-mTCP (CI), original mTCP (orig),
as well as standard Linux sockets (kernel) for reference. As
expected, mTCP substantially outperforms Linux sockets:
Linux performance is dominated by processing incoming
packet interrupts. On this NIC, 8 different IRQs can be con-
figured with affinity to a single core each. At high load, con-
tention between these 8 IRQ-processing cores and the cores
that eventually receive the packets, is resulting in a con-
gestion collapse that kernel bypass networking with mTCP
avoids. That said, kernel socket performance can likely be
improved by tuning the kernel’s interrupt handling settings
for this application.

Notably, the CI version consistently offers higher through-
put and lower latency than the original mTCP. We discovered
two reasons for this improvement. First, CIs avoid the need
for context switching, as well as locking, condition vari-
ables and their associated futex system calls to coordinate
between the application and helper thread. Second, packet
processing is more efficient in larger batches. When the ap-
plication is waiting for the network, the original mTCP polls
the NIC in a tight loop, returning the moment packets have
been received. The CI version polls the NIC periodically,
based on the configured 2500 cycle CI interval, resulting in
larger batches of packets arriving to the application together.
Longer CI intervals further improves efficiency.
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Figure 5 offers a different perspective on the advantage of
CI over threads for mTCP. Here, we modified epserver so
that for each request the server performs a fixed amount of
work before responding, as a web-based application server
might. In this case, however, the “work” is a 1M iteration
loop without a body. Under these conditions, CI based mTCP
offers 3-4x higher throughput, and 30% lower latency than
thread-based mTCP.

When sharing its core with a compute-heavy applica-
tion thread, the mTCP helper thread will be scheduled in-
frequently. As a result, acknowledging or retransmitting a
packet may be delayed by an entire CPU quantum, severely
impacting TCP performance. By contrast, CIs are scheduled
at regular intervals independent of application behavior,
avoiding this problem. Naturally, interrupt-driven kernel
networking performs well under these conditions, closely
tracking CI-mTCP, as neither system call overhead nor con-
tention between threads is a concern when the application
is spending most of its time doing local “work”. To conclude,
we find that CI-mTCP offers both the improved scalability of
kernel-bypass networking with mTCP, and the robustness
of kernel networking.

5.2 App: Shenango, Kernel-bypass Networking with
Fine-grained Processor Allocation

In contrast with mTCP, our second application, Shenango
[41], uses a more conventional approach to kernel bypass
networking, dedicating one core to communicating with the
NIC, the IOKernel. Application cores rely on the IOKernel
for network I/O and CPU scheduling, exchanging messages
via LRPC [11] queues in shared memory. The TCP/IP stack
is implemented in the Shenango runtime, which controls the
application threads. Aiming to improve CPU efficiency over
pure kernel-bypass networking, Shenango actively manages
the allocation of application cores between latency-sensitive
primary applications, and batch processing applications.

While Shenango improves CPU efficiency on application
cores, one significant weakness remains: it dedicates an en-
tire core to IOKernel duties, even when there is little or
no network traffic, resulting in a 0% CPU efficiency on the
IOKernel core. To address this, we modified the Shenango
IOKernel to run as a CI handler instead of busy-polling on a
dedicated core: this was primarily a question of moving the
body of the IOKernel poll loop to the interrupt handler.

In principle, the CI version of the Shenango IOKernel can
be added to any (trusted) CPU-bound application which does
not make heavy use of system calls. For evaluation purposes,
we use a Bitcoin miner (CPUminer [18]) as an example work-
load, to characterize both the CPU efficiency on the IOKernel
core, as well as any effect on overall Shenango performance.
To prepare CPUminer to host the CI IOKernel, we compiled
CPUminer with CIs, and modified the main() function to
add IOKernel initialization and to install the IOKernel signal
handler. Beyond that, both Shenango and CPUminer install
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handlers for the same Unix signals, which required some
minimal integration. In all, changes were made to a small
handful of lines of code.

Other than running the Shenango IOKernel as a CI han-
dler within CPUminer, our setup mirrors that of the original
Shenango paper [41], wherein Shenango manages core al-
location and I/O for two applications: memcached (latency-
sensitive) and swaptions (batch). In these experiments, a mem-
cached server runs on a four socket Intel E5-4620, with an
Intel X540-AT2 10 GBps NIC. Memcached is limited to one
socket as in the original paper. We were limited to 2 client
machines rather than the 6 used in the original paper, ex-
plaining the lower maximum offered load. Clients are based
on unmodified Shenango. *

Figure 6 illustrates the performance of standard kernel
networking with PThreads, stock Shenango, and Shenango
with a CI-based IOKernel, for a single long-duration run.
Overall, replacing the dedicated core with high-frequency
CIs does not significantly impact memcached latency un-
der Shenango.’ Naturally, the greater the interrupt period,
the greater the latency increase. However, for larger loads,
this effect is less significant: as more time is spent process-
ing packets, the interval between interrupts becomes a less
important performance factor.

CPUminer, sharing a thread with the Shenango IOKer-
nel, is able to make effective use of the CPU when IOKernel
workload is low: at 200k memcached requests/s, with a 8,000
cycle Cl interval, we achieve a CPUminer hash rate of over
55% of that of an unmodified CPUminer on a dedicated core,
while incurring a memcached median and 99.9th percentile
latency increase of approximately 10% over stock Shenango.
At close to zero load, and with a large, 64,000 cycle interval,
CPUminer achieved approximately 90% of its standalone
performance on the shared thread, representing 90% CPU
efficiency, albeit at the cost of more than doubling mem-
cached latency at this extremely low load. For high loads,
memcached performance is essentially unaffected by sharing
the CPU, except with very large intervals: here, CPUminer is
able to recover very little CPU, as time spent in the interrupt
handler dominates the execution.

Finally, in terms of batch (swaptions) throughput on ap-
plication cores managed by Shenango, CI IOKernel achieved
the same throughput as the dedicated core IOKernel; we omit
the plot of those results due to space constraints.

4We observed an intermittent problem with Shenango, where occasional
runs showed many dropped requests and extremely high latencies. We
tracked this down to a fixed 300 ms TCP retransmission timeout and lack of
congestion control in Shenango, together with very frequent retransmissions
on problem runs, but did not investigate further; instead, we discarded any
results with dropped requests, and re-ran those experiments. This problem
occurred with both stock and CI-based Shenango on the server side.

SWe report latencies from one of our two clients. The other client machine
consistently reported 20us higher 99.9% latencies, with or without CIs, likely
due to hardware differences. The two clients achieved similar throughput.
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Figure 6. 99.9th percentile and median memcached latency
with varying load, showing unmodified Shenango, Pthreads
on a dedicated core, Pthreads sharing cores with a swaptions
batch job, and Shenango+CI with varying polling intervals.
Bottom plot shows achieved CPUminer hash rate on the
IOKernel core: higher load, and shorter polling intervals
leave less spare capacity for batch work.

5.3 App: “Designated” Server Delegation

For our third application, we consider delegation in the style
of FFWD [46]. Delegation is an efficient message-passing
based alternative to synchronized shared memory access.
Here, only one core (a delegation server) may access a given
object or data structure directly, while others access it in-
directly by delegating function calls to the server. Delega-
tion has been shown to have a substantial performance and
scalability advantage over locking in highly contended data
structures. However, a significant drawback of delegation
is the need to dedicate at least one hardware thread as a
delegation server.

We propose to use CIs to replace the infinite delegation
loop of a dedicated delegation server, with periodic calls
to a delegation server poll function from a thread that is
otherwise running application code. For this experiment,
we modify the FFWD [46] delegation system to use such
a periodic function call instead of a dedicated server. We
then use the CI handler to call the poll function with a small
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period (250-1,000 LLVM IR instructions appears to be a good
range), from one of the application threads, our designated
server. Interestingly, after disabling Compiler Interrupts, it is
perfectly safe for the client code to directly access the shared
data structure, bypassing the server, and increasing overall
throughput. This is implemented as a direct function call in
the FFWD APL

Figure 7 compares the performance of CI-based designated
server delegation both to delegation with a dedicated server,
and to several lock types, on a classic fetch-and-add micro-
benchmark program, as we vary the number of threads. In
this program, threads repeatedly increment a single shared
variable, up to a fixed number of iterations per thread. With
locking, the variable is incremented after entering a critical
section. With delegation, an increment function is delegated
to a single delegation server.

Surprisingly delegation is competitive with locking for
small thread counts (in particular when using CIs), while it
quickly outperforms locking as the thread count increases.
Interestingly, CI-based delegation is outperforming also the
dedicated server, up to 8 threads; after that the server work-
load is too high to be worth sharing the core with a client
thread, in this application. Nevertheless, it adds much needed
flexibility to an otherwise quite rigid delegation design.

By contrast, most locking approaches quickly succumb
to congestion collapse after more than 8 threads. Only the
queue-based MCS lock remains somewhat stable in the high
contention regime, at a total lock throughput of 4-5 Mops.

Figure 8 explores the latency of delegation operations vs.
locking, under both dedicated and Cl-enabled designated
delegation (CI), with 56 threads. While locking shows a
wide range of latencies from less than 10 cycles to well over
100,000 cycles, both delegation approaches exhibit essentially
constant latency. Designated delegation increases latency
modestly, in return for not requiring a dedicated core.
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5.4 Overhead and Interval Accuracy

Below, we analyze the overhead and accuracy of several CI
designs, including related prior work: CnB) Instrumenting
all calls and back-edges (similar to yield points) (§2.5). Naive)
Instrumenting every basic block. CD) Naive plus CoreDet-
style [9] optimizations. CI) Our proposed static analysis pass.
CI-Cycles) Our proposed pass, plus periodic cycle counter
readings. Naive-cycles) Instrumenting every basic block,
plus periodic cycle counter readings. CnB-Cycles) Instru-
menting all calls and back-edges with cycle counter readings.

Here, CI and CI-Cycles are our proposed designs, where
CI-Cycles reads the cycle counter at a set IR period. CnB
counts the number of calls and back-edges, while CnB-
Cycles reads the cycle counter on every back-edge and func-
tion call. Naive-cycles instruments every basic block, and
reads the cycle counter at a set IR period. In order to have fair
comparison, we tune the interrupt interval for each method
to approximate a target interval in cycles. Thus, for CnB, in-
terrupts are raised after a constant number of function calls
and back-edges, while for CD we select an IR-to-cycle ratio
that achieves a median interval close to the target interval.

The instrumentation required to enable CI carries a perfor-
mance penalty, especially for single-threaded applications.
We measured this overhead on programs from the SPLASH-2
[49, 52], Phoenix [43, 45] and Parsec® [12, 13, 42] benchmark
suites. The results below are the average of at least 10 runs.
When possible, we chose input sizes to yield a runtime of at
least 1 sec.

Figure 9 shows the overhead during single-threaded exe-
cution of several variations of CIs, when tuned for producing
interrupts at a 5,000 cycle interval. Figure 11 shows the over-
head using 32 threads instead of one.

® A number of programs were left out in some or all plots, due to difficulties
modifying the build process (bodytrack, facesim, vips, x264), large external
libraries (ferret), or unsupported features (freqmine - LLVM does not offer
OMP). That said, no program was left out due to poor actual or expected
evaluation results.
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Overall, sequential overheads can be large, but diminish
in a multi-threaded setting. CI/CI-cycles have the lowest
overhead (median 11.7%/12.3% for 1 thread, 3.7%/3.9% for 32
threads), with CnB (20.7%, 6.6% respectively) close behind.
CD (38.5%, 8.1%) and Naive (39.7%, 9.4%) are much slower.
These results correspond well with detailed measurements
counting the number of probes executed, for each design.
For example, in the vast majority of applications, CI reduced
probe executions by over 50% vs. Naive.

The variations that read the cycle counter are naturally
slower than those that do not. We omit CnB-cycles and
Naive-cycles to conserve room in the plots, however CnB-
cycles (179%, 75%) stands out as having impractically high
overhead: reading the cycle counter is not a very expen-
sive operation, but this design is very aggressive. Naive-
cycles (46%,12%) is also very expensive, mostly due to the fre-
quent instrumentation. Meanwhile, CI-cycles (12.3%, 3.9%),
strikes a much better balance. For reference, Table 7 shows
CI and Naive (N) runtimes of these benchmarks normalized
to pthreads, for 1 and 32 threads.

Figure 10 shows the interval accuracy of these variations,
for the single-threaded case. Naturally, any successful design
needs to balance performance vs. accuracy. The colored bar
shows the median error, in cycles, from the 5,000 cycle target.
The error bars show the 10-90 percentile spread, and other
percentiles are labeled in tiny font. To view these annotations,
a digital viewer with zoom capability is recommended. On a
printout, the median and 10th/90th percentiles will suffice.

Here, CI achieves accuracy comparable to the much more
expensive CD and Niive. However, all three suffer from
large errors in several benchmark programs, with 10% of
interrupts occurring more than 5,000 cycles late. CnB shows
the greatest variance in error, likely due to its coarser metric.
CI-cycles, trades a small amount of performance to elimi-
nate too-short intervals, but is otherwise similar to CL

Compared to hardware interrupts, compiler interrupts
do suffer from significant interval outliers. This variance
is explained by several independent phenomena. First, one
IR instruction does not necessarily translate into one x86
instruction, which in turn may take somewhere between
0-1,000 cycles to execute due to instruction level parallelism
and cache line contention effects. Moreover, CI cannot raise
interrupts during system calls, or in any uninstrumented
code, but is forced to wait until control returns to the pro-
gram. If both high accuracy and high performance are re-
quired, a hybrid CI/hardware-interrupt solution may offer
the best of both worlds, but we did not explore this in depth.

While compiler interrupts impose significant overhead,
it pales in comparison to using conventional interrupts for
short interrupt intervals. Figure 12 shows the slowdown fac-
tor of CI (blue line) and conventional hardware interrupts
(red X) for all the benchmark programs overlaid to provide
an overall picture, as we vary the interrupt interval between
500-500,000 cycles. The interrupt handler we used collects
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Table 7. SPLASH-2, Phoenix, Parsec benchmark applica-
tions’ mean absolute runtime in milliseconds with Pthreads
(PT), and their normalized runtime overhead for CI (CI) and
Naive (N) for 1 & 32 threads.

PT CI N PT CI N

#threads 1 1 1 32 32 32

water-nsquared 55 1.03 169 11 1.09 127
water-spatial 45 1.04 171 9 1.00 1.22
ocean-cp 2345 1.10 1.23 1305 .99 1.01
ocean-ncp 137 1.06 121 909 .99 .99

barnes 3371 1.22  1.65 259 1.16 1.49
volrend 506 113 125 269 110 1.23
fmm 1212 .98 1.10 155 .98 1.09
raytrace 893 1.04 139 104 1.00 1.00
radiosity 1309 1.37 2.07 660 1.01  1.05
radix 17540 1.00 1.01 791 1.00  1.02
fft 2358 1.13  1.29 924 1.03  1.06
lu-c 15174 1.23 2.00 2403 120 1.34
lu-nc 2660 1.29 1.65 423 1.15 1.10
cholesky 130 120 141 70 1.20  1.48
reverse_index 523 1.25 2.04 272 1.05 1.15
histogram 2156 1.03 127 232 1.02  1.06
kmeans 2422 1.25 139 881 1.07 1.09
pca 1121 118 241 267 115 144
matrix_multiply 2246 1.03 1.08 1604 1.00 1.00
string_match 672 136 151 87 117  1.24
linear_regression 309 130 2.01 69 110 1.24
word_count 2615 1.10 122 514 1.01  1.05
blackscholes 443 1.02  1.09 149 1.01  1.02
fluidanimate 1442 124 196 729 103 1.11
swaptions 12294 134 2.09 759 1.34 190
canneal 65575 1.06 1.08 5820 1.05 1.06
streamcluster 4733 1.04 1.16 2164 .97 1.01
dedup 452 1.00 1.04 413 1.00 .99

geo-mean 1.14 145 1.06 1.15

these statistics using the RDTSCP instruction, and nothing
else. We used Linux PAPI, to configure short hardware inter-
rupt intervals.

The results show that each hardware interrupt incurs a
considerably higher cost than a compiler interrupt, resulting
in a performance collapse for short intervals between inter-
rupts. Based on these results, we find that compiler interrupts
as frequent as every 2,000 cycles are certainly feasible for
short interrupt handlers. At this interrupt frequency, the
cost of CI is approximately 10-100X lower than hardware
interrupts. That said, due to the higher fixed cost of instru-
mentation, hardware interrupts retain an advantage at long
interrupt periods, and for programs where instrumentation
is particularly inefficient.

6 Related Work

Profilers [5-7] analyze and instrument code to collect pro-
gram statistics. In comparison to [5, 21] that instrument
every backedge and function entry point for profiling, CIs
show significant improvement in better interval accuracy
and performance by using static analysis and control flow
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graph transformation. Some profilers [6, 7] use static analysis
to instrument counters to find frequency of events, optimally
in code, but their instrumentation is targeted towards find-
ing frequent paths, edges, code regions, many of which can
be avoided for CIs. Worst-case execution time (WCET) uses
similar analysis where the set of control paths in the control
flow graph are analyzed to obtain a WCET estimate of the
program [51]. In contrast, our approach combines the infor-
mation from static analysis to instrument the program, thus,
influencing its dynamic behavior.

CIs incorporate the Heuristic Balance analysis used in Core-
det [9] on top of its own static analysis techniques. While
CoreDet focused more on determinism, CIs improve on Core-
Det performance by exploiting more control flow graph struc-
tures, and by using code transformation. Instruction count-
ing also has a long history, including [36]. Here, instead of
modifying the compiler, this work directly instrumented an
existing binary. By comparison, Compiler Interrupts are de-
signed to be integrated into the program logic from the start.
Other tools like pintool [34], also support instrumentation
of the binary, but does not provide the flexibility of program
analysis and transformation. CIs use LLVM framework’s
[29] intermediate representation (IR)’s immense flexibility
for analyzing and transforming the behavior of a program
in a source language and hardware independent way.

Languages like Java, Golang, use compiler inserted yield
points (see §2.5) for garbage collection, cooperative preemp-
tion and more. Golang instruments function prologues and
system calls for cooperative scheduling, and target a switch-
ing granularity of 10ms [14]. By comparison, we target mi-
crosecond intervals between interrupts.
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Applications like deterministic execution [3, 9, 37], deter-
ministic record and replay [17] use the concept of a deter-
ministic logical clock based ordering of events. The pure IR
based deterministic variant of CI can be used to implement
the logical clock, by using the instruction count parameter
passed in the handler function as the logical clock. Hard-
ware performance counters have also been used for the same
purpose [40] but apart from having high interrupt overhead,
they are not guaranteed to be deterministic [50], making
them unsuitable for enforcing determinism.

7 Conclusion

We have made the case for a new form of interrupt in com-
puter systems: the compiler interrupt. Much like a timer-
induced hardware interrupt, compiler interrupts periodically
halt normal execution to execute a pre-defined interrupt han-
dler. Unlike hardware interrupts, compiler interrupts can be
both light-weight and portable, as they avoid kernel media-
tion. In three applications which require frequent polling, we
have demonstrated the utility of Compiler Interrupts, both
in qualitative and quantitative terms. Moreover, our evalua-
tion on three common benchmark suites shows that we have
substantially improved on prior work in compile-time instru-
mentation for the purpose of executing background tasks.
We anticipate seeing many more applications of Compiler
Interrupts in the future.

8 Availability

The source code for this project will be publicly available
through our github repository https://github.com/bitslab/
CompilerInterrupts.git.
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