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Abstract

We present measurements of cosmic shear two-point correlation functions (TPCFs) from
Hyper Suprime-Cam Subaru Strategic Program (HSC) first-year data, and derive cosmo-
logical constraints based on a blind analysis. The HSC first-year shape catalog is divided
into four tomographic redshift bins ranging from z = 0.3 to 1.5 with equal widths of �z =
0.3. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3,
and 2.4 arcmin−2 from the lowest to highest redshifts, respectively.We adopt the standard
TPCF estimators, ξ±, for our cosmological analysis, given that we find no evidence of sig-
nificant B-mode shear. The TPCFs are detected at high significance for all 10 combinations
of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-
noise ratio of 19 in the angular ranges adopted in the cosmological analysis, 7′ < θ < 56′

for ξ+ and 28′ < θ < 178′ for ξ−. We perform the standard Bayesian likelihood analysis
for cosmological inference from the measured cosmic shear TPCFs, including contribu-
tions from intrinsic alignment of galaxies as well as systematic effects from PSF model
errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a
covariance matrix derived from realistic mock catalogs constructed from full-sky grav-
itational lensing simulations that fully account for survey geometry and measurement
noise. For a flat � cold dark matter model, we find S8 ≡ σ8

√
�m/0.3 = 0.804+0.032

−0.029, and
�m = 0.346+0.052

−0.100. We carefully check the robustness of the cosmological results against
astrophysical modeling uncertainties and systematic uncertainties inmeasurements, and
find that none of them has a significant impact on the cosmological constraints.

Key words: cosmological parameters—cosmology: observations—dark matter— large-scale structure of
universe

1 Introduction

The � cold dark matter (�CDM) model is now considered
to be the standard theoretical framework for the expansion
history of the Universe and for cosmic structure forma-
tion. The standard �CDM model is described by only a
handful of cosmological parameters. Measuring values of
the cosmological parameters, as well as checking their con-
sistency between different cosmological observations, is one
of the most important goals of modern cosmology. Mul-
tiple probes, such as the cosmic microwave background
(CMB; e.g., Hinshaw et al. 2013; Planck Collaboration
2016, 2018), high redshift type-Ia supernovae (e.g., Suzuki
et al. 2012; Betoule et al. 2014, and Weinberg et al. 2013
for a review), baryon acoustic oscillations (BAOs; e.g.,
Anderson et al. 2014; Alam et al. 2017), and weak lensing
as described in detail below, have been utilized for this
purpose. Different methods probe different cosmic epochs
through a measurement of the growth of cosmic structure
formation and/or the distance–redshift relation of the Uni-
verse. In addition, the methods have different parameter
degeneracies and are affected by different systematic effects.
For these reasons, it is common practice to combine mul-
tiple probes to infer tighter and more reliable cosmological
constraints. More importantly, if a discordance between
cosmological constraints from different probes is found, it

may indicate physics beyond the �CDM model. Therefore
it is of fundamental importance to infer improved cosmo-
logical constraints from each probe. This is exactly the pur-
pose of this study, which uses weak lensing observations
from the Hyper Suprime-Cam Subaru Strategic Program.

Weak lensing is one of the most powerful tools for
cosmology, as it provides a unique means to study the
matter distribution in the Universe. The cosmic shear is
the coherent distortion of the shapes of distant galaxies
caused by the gravitational lensing of intervening large-scale
structures, including the dark matter component. Statistical
measures of cosmic shear, such as the two-point correlation
function (TPCF) or the power spectrum, depend on both
the time evolution of the cosmic structures and the cosmic
expansion history, and thus serve as a unique cosmological
probe. They probe the large-scale, linear to weakly non-
linear, matter power spectrum at relatively recent epochs
(z < 1), and thus are most sensitive to the normalization
of matter fluctuation (σ8) and the mean matter density
parameter (�m) (Jain & Seljak 1997). Because of the degen-
eracy between these two parameters, the combination S8 =
σ8(�m/0.3)α with a degeneracy direction of α ∼ 0.5 is com-
monly used to quantify the constraints from cosmic shear.

Cosmological constraints from cosmic shear are
improved primarily by increasing the survey volume as
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well as the number density of source galaxies, along with a
proper control of systematic effects. Currently, three wide-
field imaging surveys that will each eventually cover over
1000 square degrees are underway; the Dark Energy Survey
(DES, Dark Energy Survey Collaboration 2016), the Kilo-
Degree survey (KiDS, de Jong et al. 2013), and the Hyper
Suprime-Cam Subaru Strategic Program (hereafter the HSC
survey; Aihara et al. 2018a). All three projects have pub-
lished initial cosmic shear analyses with early data, yielding
4%–8% constraints on S8 (Troxel et al. 2018; Hildebrandt
et al. 2017, 2020; Köhlinger et al. 2017; Hikage et al.
2019). They also demonstrated that none of the systematic
effects examined in the papers seriously affected the
resulting constraints.

Among the three surveys, the unique advantage of
the HSC survey is its higher galaxy number density of
16.5 arcmin−2 compared to that of DES (5.14 arcmin−2)
and KiDS (6.85 arcmin−2), due to the combination of its
depth (5σ point-source depth of the Wide layer of i ∼ 26
AB mag) and excellent image quality (typical i-band seeing
of 0.′′58, Aihara et al. 2018b; Mandelbaum et al. 2018b).1

Hikage et al. (2019) measured the tomographic cosmic
shear power spectra using the HSC survey first-year data
over 137 deg2. They selected galaxies from the HSC first-
year weak lensing shear catalog (Mandelbaum et al. 2018b)
with photometric redshifts (Tanaka et al. 2018) ranging
from 0.3 to 1.5, and divided them into four tomographic
redshift bins with equal widths of �z = 0.3. Even the
highest redshift tomographic bin contains 2.0 galaxies per
arcmin2. They detected cosmic shear power spectra with
high signal-to-noise ratios (SN) of SN = 4.9, 9.2, 12.3, and
11.5 for auto-power spectra of each tomographic bin (from
the lowest to highest redshift) and SN = 15.6 for combined
auto- and cross-power spectra.

In this paper, we present the cosmic shear TPCFs mea-
sured from the HSC survey first-year data, and derive cos-
mological constraints with them. We use the same data set
as that used inHikage et al. (2019), but use a completely dif-
ferent analysis scheme, namely the real-space TPCFs instead
of Fourier-space power spectra, using an independent cos-
mological inference pipeline. In principle, those two esti-
mates provide almost the same information, but different
treatments of actual observational effects, such as discrete
galaxy sampling and the correction of the irregular survey
geometry, which can affect the measured signal and the
cosmological inference in different ways. Also, the two
approaches have different noise properties and different
sensitivities to systematic effects, and are sensitive to dif-
ferent scales. Therefore this study provides an important

1 The number densities given in this paragraph are the effective number density of
galaxies used for cosmic shear analyses defined in Chang et al. (2013) and are
taken from tables 1 and 2 of Hikage et al. (2019).

cross-check of the robustness of the Fourier-space analysis
by Hikage et al. (2019). Furthermore, our analysis indi-
cates that our TPCF analysis probes a slightly different
range of multipole from that used in Hikage et al. (2019),
and therefore contains some complementary cosmological
information.

The structure of this paper is as follows. In section 2, we
briefly summarize the HSC survey first-year shear catalog
and the photometric redshift data used in this study.We also
describe our blind analysis scheme. In section 3, we describe
the method to measure the TPCFs of the cosmic shear,
and present our measurements. We also present TPCFs of
the measured shapes of stars and residuals between those
shapes and the point spread function (PSF) model, which
allow us to estimate the residual systematics in the cosmic
shear TPCFs. In section 4, we summarize model ingredients
for the cosmic shear TPCFs and covariance. Our method
for cosmological inference is described in section 5 along
with our methods to take into account various system-
atics in our cosmological analysis. Our cosmological con-
straints and tests for systematics are presented in section 6.
Finally, we summarize and discuss our results in section 7.
In appendix 2, we describe the impact of the PSF leakage
and the residual PSF model error on the measurement of
shear TPCFs. In appendix 3, we present E/B-mode TPCFs
measured from the HSC survey data. In appendix 4, we
describe mock simulation data that are used to derive the
covariance matrix and to test our cosmological inference
pipeline. In appendix 5, the difference of the information
content in the measured cosmic shear statistics between this
study and Hikage et al. (2019) is examined. In appendix 6,
we discuss a possible impact of an error in the outlier
fraction of galaxy redshift distributions on cosmological
constraints.

Throughout this paper we quote 68% credible intervals
for parameter uncertainties unless otherwise stated.

2 HSC survey data

In this section, we briefly summarize the HSC survey prod-
ucts used in this study. Hikage et al. (2019) describe the
dataset we use in detail; here we focus on those aspects that
are directly relevant to this study. We refer the readers to
Aihara et al. (2018a) for an overview of the HSC survey and
survey design, Aihara et al. (2018b) for the first public data
release, Miyazaki et al. (2018), Komiyama et al. (2018),
Kawanomoto et al. (2018), and Furusawa et al. (2018)
for the performance of the HSC instrument itself, Bosch
et al. (2018) for the optical imaging data processing pipeline
used for the first-year data, Mandelbaum et al. (2018b) for
the first-year shape catalog, Mandelbaum et al. (2018a) for
the calibration of galaxy shape measurements with image
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simulations, and Tanaka et al. (2018) for photometric
redshifts derived for the first data.

2.1 HSC first-year shape catalog

We use theHSC first-year shape catalog (Mandelbaum et al.
2018b), in which the shapes of galaxies are estimated on
the i-band coadded image using the re-Gaussianization PSF
correction method (Hirata & Seljak 2003). Only galaxies
that pass our selection criteria are contained in the catalog.
Among others, the four major criteria for galaxies to be
selected are

(1) Full-color and full-depth cut: the object should be
located in regions reaching approximately full survey
depth in all five (grizy) broad bands,

(2) Magnitude cut: i-band cmodel magnitude (corrected
for extinction) should be brighter than 24.5 AB mag,

(3) Resolution cut: the galaxy size normalized by
the PSF size defined by the re-Gaussianization
method should be larger than a given threshold of
ishape_hsm_regauss_resolution ≥ 0.3,

(4) Bright object mask cut: the object should not be located
within the bright object masks.

See table 4 of Mandelbaum et al. (2018b) for the full
description of the selection criteria. As a result, the final
weak lensing shear catalog covers 136.9 deg2, consisting
of six disjointed regions (named XMM, GAMA09H,
WIDE12H, GAMA15H, VVDS, and HECTOMAP) and
contains ∼12.1million galaxies.

2.2 Photometric redshifts

Since spectroscopic redshifts have been obtained for only
a small fraction of galaxies in the HSC shape catalog, we
utilize photometric redshift (hereafter photo-z) information
to divide galaxies into tomographic redshift bins.

Utilizing the HSC five-band photometry, photo-z values
were estimated with six independent codes, described in
detail in Tanaka et al. (2018). Three of the six photo-z
values used the PSF-matched aperture photometry (called
the afterburner photometry; see Aihara et al. 2018b),
which we adopt in this study; they are (1) an empirical
polynomial fitting method (DEmP) (Hsieh & Yee 2014),
(2) a neural network code (Ephor AB), and (3) a hybrid
code combining machine learning with template fitting
(FRANKEN-Z).

The accuracy of HSC photo-zs were examined in detail
in Tanaka et al. (2018), who concluded that HSC photo-zs
(zp) are most accurate at 0.2 � zp � 1.5. Given the smaller
lensing signals for lower redshift galaxies, we set the red-
shift range of our cosmic shear analysis from 0.3 to 1.5.

We adopt the best estimate of Ephor AB for the point esti-
mator of photo-zs to define tomographic bins. Specifically,
we select galaxies with the point estimator being within that
redshift range, and divide them into four tomographic red-
shift bins with an equal redshift width of �z = 0.3, again
based on the point estimator. After the redshift cut, the
final number of galaxies used in this study is ∼ 9.0 mil-
lion, which are split into four tomographic bins, containing
2.8M, 2.8M, 2.1M, and 1.2M galaxies respectively from
the lowest to highest redshift bins.

2.2.1 Redshift distribution of galaxies in each
tomographic bin

Since the photo-z point estimator is a noisy estimator of
the true redshifts of galaxies, the true redshift distribution
of galaxies in individual tomographic bins must be sepa-
rately and reliably estimated. We follow the methodology
described in Hikage et al. (2019) to infer the true redshift
distribution as well as to test the robustness of derived cos-
mological results against uncertainty in the adopted redshift
distributions. They adopted the reweighting method based
on the HSC’s five-band photometry and COSMOS 30-band
photo-z catalog (Ilbert et al. 2009; Laigle et al. 2016). We
refer the readers to subsection 5.2 of Hikage et al. (2019)
and references therein for a full detail of the method. Here
we only present the derived redshift distributions as the
red histograms in figure 1, which are the same as those
used in Hikage et al. (2019). The distributions computed
to z = 6. We use them as our fiducial redshift distributions
in our cosmological analysis. In our model description in
section 4, these redshift distributions are denoted as pa(z),
where a = 1–4 runs over the four tomographic bins. We
note that for the lowest tomographic bin the mean redshift
shown by the red triangle appears not to match up with
the histograms. This is due to outliers located at higher
redshifts. The 3σ clipped mean redshifts are summarized
in table 4 of Hikage et al. (2019). For the lowest bin, the
clipped mean is z = 0.44, which is very close to the median
redshift of z = 0.43.

We also infer the stacked photo-z probability distribu-
tion functions (PDFs), which are obtained by stacking the
full PDFs of photo-zs for individual galaxies [Pj (z)] with
their shear weight (w j ), pa(z) = ∑

j w j Pj (z)/
∑

j w j , where
the summation runs over all galaxies in individual tomo-
graphic bins. The stacked photo-z PDFs for the three photo-
zmethods are shown in the three bottom panels of figure 1.
Since stacking Pj (z) is not a mathematically sound way to
infer the true redshift distribution (see subsection 5.2 of
Hikage et al. 2019), we do not adopt the stacked p(z) as a
fiducial choice, but use it merely for testing the impact of
redshift distribution uncertainties in sub-subsection 6.3.4.
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Fig. 1. Histograms show galaxy redshift distributions for the four
tomographic redshift bins; 0.3 < z < 0.6, 0.6 < z < 0.9, 0.9 < z < 1.2, and
1.2 < z < 1.5, from the top to bottom panels, respectively. The triangles
show the mean redshift of each redshift distribution. The vertical dotted
lines show the boundaries of the four tomographic bins. The redshift
distributions are computed up to z = 6. Different colors indicate dif-
ferent methods: The COSMOS reweighted method (red) is our principal
method. In order to test the robustness of our results against uncer-
tainties in the redshift distributions, we will use stacked-P(z) with three
photo-z methods, Ephor AB (black), DEmP (blue), and FRANKEN-Z (green).
Different binning for different methods originates from their different
redshift resolutions, except for the COSMOS reweighted method for
which a three-times under-sampled binning is shown for clarity (the
original resolution is �z = 0.02). (Color online)

2.3 Weak lensing shear estimation

The HSC shape catalog described in subsection 2.1 con-
tains all the basic parameters needed to estimate the weak
lensing shear with the re-Gaussianizationmethod, including
corrections for biases. The following five sets of param-
eters for each galaxy are directly relevant to this study:
(1) the two-component distortion, e = (e1, e2), which rep-
resents the shape of each galaxy image, (2) shape weight, w,
(3) intrinsic shape dispersion per component, erms, (4) mul-
tiplicative bias, m, and (5) additive bias, (c1, c2). Following
appendix A ofMandelbaum et al. (2018b), an estimator for
the shear is obtained for each galaxy as

γ̂i = 1
1 + m̄

[ ei
2R − ci

]
, (1)

with the weighted-average multiplicative bias factor

m̄ =
∑

i wimi∑
i wi

, (2)

and the shear responsivity R representing the response of
the distortion to a small shear (Kaiser et al. 1995; Bernstein
& Jarvis 2002) given by

R = 1 −
∑

i wi e2rms∑
i wi

. (3)

In the above expressions, the subscript i denotes each
galaxy, and the summation is taken over all galaxies in
each tomographic redshift bin.

2.3.1 Selection bias
In addition to the shear calibration mentioned above, which
is based on the full galaxy sample in the shape catalog,
we take account of the additional multiplicative biases
arising from the tomographic redshift galaxy selection. To
do so, we follow Hikage et al. (2019) and we refer the
readers to the paper and references therein for details. In
short, there are two sources of biases: one is the selec-
tion bias that is due to the difference in galaxy size dis-
tributions for different tomographic samples. The other is
the correction to the shear responsivity due to the depen-
dence of the intrinsic ellipticity variation on redshift [see
subsection 5.3 of Mandelbaum et al. (2018a) for details].
Both biases vary with the tomographic bins. The former
is denoted by ma

sel and the latter is denoted by ma
R, where

the superscript a labels the tomographic bin. As we use
exactly the same data set as that used in Hikage et al.
(2019) with the same tomographic binning, we adopt the
same values of those biases given in table 3 of Hikage
et al. (2019). We apply these corrections to the theoret-
ical prediction of cosmic shear TPCFs (see subsection 4.3)
as ξ ab

± (θ ) → (1 + ma
sel + ma

R)(1 + mb
sel + mb

R)ξ
ab
± (θ ).

2.4 Blinding

In order to avoid confirmation bias, we perform our cos-
mological analysis in a blind fashion. The HSC weak
lensing team defined blinding and unblinding procedures,
and agreed that they must be followed in cosmological
analysis of the weak lensing data [see subsection 3.2 of
Hikage et al. (2019) for the overall description]. Here we
give a brief overview of the blinding scheme we adopt for
our analysis.

We use a two-level blinding scheme similar to Hikage
et al. (2019). The first is a catalog-level blinding, while the
second is the analysis-level blindingwhich is adopted during
the cosmological analysis. At the catalog level, we blind the
real shear values by modifying the multiplicative bias as

mi
cat = mtrue + dmi

1 + dmi
2, (4)
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where mtrue denotes the array of true multiplicative bias
values in the HSC shape catalog for each galaxy, and the
index i runs from 0 to 2 and denotes the three different shear
catalog versions. There are multiple cosmological analyses
that are being conducted by the HSC team, each with dif-
ferent analysis leads. Each analysis lead receives a sepa-
rate set of three catalogs. The analysis team carried out the
same analysis for all the three catalogs. The values of dmi

1

are different for each of the three catalogs as well as for
each analysis team, and are encrypted. Only the PI of each
analysis team can decrypt them, and this term is removed
before performing the analysis. This prevents an accidental
comparison of blinded catalogs by another analysis team.
The values of dmi

2 are different for the three catalogs and
are encrypted by a public key from a person designated
“blinder-in-chief”. Only one of the dmi

2 values is zero. These
values can be decrypted only by the blinder-in-chief once all
the conditions for unblinding have been met (see below).

The analysis-level blinding procedure involves blinding
of the best-fitting values of the inferred cosmological con-
straints. All cosmological constraint plots were plotted with
shifted values of cosmological parameters (p) such that
pblind = p− pbest, before inspecting the derived constraints
for systematics tests.

We laid down two conditions for unblinding: (1) the
passing of sanity checks of the analysis software and the
treatment of systematic effects, and (2) validation of anal-
ysis choices for cosmic shear TPCFs and studies of their
impact on the cosmological constraints, which we describe
in the following sections. After the final unblinding, we did
not change the analysis setup in any way, and we report
the cosmological constraints as at the time of unblinding.
We unblind in stages; the first analysis-level unblinding was
removed about a month and a half before the catalog-level
unblinding. Three versions of the paper, corresponding to
the analysis from each of the three blinded catalogs, were
written up prior to the catalog-level unblinding. (Note that
this step differs from the unblinding process of Hikage
et al. 2019; they did the catalog-level unblinding soon after
the first analysis-level unblinding, then wrote up the paper
based on the true catalog.) Then, after the catalog-level
unblinding and before submission to the journal, the paper
based on the true catalog underwent internal review from
the HSC collaboration. No change in the results was made
at the internal reviewing stage.

It should be noted that although we analyzed the three
blind catalogs, we used the same covariance matrix derived
from realistic mock catalogs whichwere generated using the
true shape catalog (see sub-subsection 4.4 for details). As a
result, derived best-fitting χ2 values for three blind catalogs
were different, reflecting the added dmi

1 to each catalog. To
be specific, for our fiducial analysis setup (see section 5), the

derived best-fitting χ2 values for the true catalog was found
to be 162.3 for the effective degree-of-freedom of 167 (see
sub-subsection 5.2.4), whereas χ2 for the two false cata-
logs were 114.0 and 116.0 for dmi

1 values of 0.08491 and
0.08004, respectively (note that those numbers were gener-
ated based on a random number generator and were very
close to each other by an accidental chance). It is true that
the χ2 values were a possible indication of which was the
true catalog, though the true catalog does not necessarily
give the most reasonable χ2 value. It is important to note
that before unblinding the analysis-level blinding we had
no idea about inferred cosmological parameter values as
the best-fitting values were blinded, and after unblinding
the analysis-level blinding, we did not change any anal-
ysis setup. The catalog-level blinding might not work as
designed because of our use of the same covariance matrix.
Even so, the analysis-level blinding worked to avoid the
confirmation bias.

3 Measurements from the HSC survey data

In this section, we present our measurements of tomo-
graphic cosmic shear TPCFs from the HSC first-year data.
In addition, we present measurements of the auto- and
cross-TPCFs of the shapes of PSFs and the difference
between the shapes of the PSF model and of stars, which
we use to quantify residual systematics in our cosmic shear
TPCF measurements.

3.1 Cosmic shear TPCFs

We adopt the standard estimates of cosmic shear TPCFs,
ξ± = 〈γtγt〉 ± 〈γ×γ×〉, where the tangential (t) and cross
(×) components of shear are defined with respect to the
direction connecting a pair of galaxies under consideration.
They can be estimated for two tomographic redshift bins a
and b as

ξ̂ ab
± (θ ) =

∑
i j wiw j

[
γ̂ a
i,t(θ i )γ̂ b

j,t(θ j ) ± γ̂ a
i,×(θ i )γ̂ b

j,×(θ j )
]

∑
i j wiw j

, (5)

where the summation runs over pairs of galaxies with
their angular separation θ = |θ i − θ j | within an interval �θ

around θ .
For the measurement of the TPCFs themselves, we used

the public software Athena (Schneider et al. 2002).2 A total
of 31 bins with equal logarithmic bin-widths of � log10 θ =
0.1 are chosen with central θ ranging from 10−0.5 � 0.′316
to 102.5 � 316′, although only a subset of these angular
bins are used in our cosmological analyses as described
in subsection 5.1. As described in subsection 2.1, the HSC

2 〈http://www.cosmostat.org/software/athena〉.
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first-year shape catalog consists of six disjointed fields. Since
gaps between fields are more than 20◦, we first compute the
denominator and numerator of equation (5) for each field
and then sum up each term separately for the final results.
Overall, we have non-zero detections in most angular bins
between θ ∼ 1′ and ∼ 100′.

3.2 TPCFs of shapes of PSF and residuals

The PSF anisotropy induces additional deformation in
galaxy shapes, which the shear estimation algorithm must
correct for (see Mandelbaum 2018, for a review). How-
ever, in the case of the re-Gaussianization PSF correc-
tion method, a small residual in the correction for PSF
anisotropy is unavoidable for two reasons: imperfect mea-
surements and/ormodeling of PSFs, and the correction error
for PSF from galaxy images, an effect referred to as PSF
leakage. In fact, systematic tests of the HSC first-year shape
catalog showed small residual correlations between galaxy
shears and PSF shapes (Mandelbaum et al. 2018b), which
may bias the cosmic shear TPCFs and our cosmological
analysis.

Here we outline our scheme to correct for these system-
atics. We follow the simple model used by Hikage et al.
(2019) (see also Troxel et al. 2018), in which PSF residuals
are assumed to be added to the shear linearly

γ sys = αpsfγ
p + βpsfγ

q, (6)

where γ P is the shear of the shape of the model PSF, and
γ q is the difference in shears between the PSF model and
the true PSF, as estimated from the shapes of individual
stars, γ ∗, i.e., γ q = γ p − γ ∗.3 The first and second terms of
the right-hand side of equation (6) represent the residual
PSF effects from the deconvolution error and the imperfect
PSF model mentioned above, respectively. With these terms
added to themeasured shear γ̂ , the contributions from these
terms to observed TPCFs are written as

ξ̂psf,±(θ ) = α2
psfξ

pp
± (θ ) + 2αpsfβpsfξ

pq
± (θ ) + β2

psfξ
qq
± (θ ), (7)

where ξ
pp
± and ξ

qq
± represent the auto-TPCFs of γ p and γ q,

respectively, and ξ
pq
± are the cross-TPCFs of γ p and γ q.

Those TPCFs are computed using stars that were reserved
from the PSF estimation (see Bosch et al. 2018, for details).
In the HSC data reduction pipeline, stars used for PSF
measurement/modeling are selected based on the distribu-
tion of high-S/N objects with stellar sizes. About 80% of
selected stars are used for the PSF measurement and its
modeling (those are flagged as icalib_psf_used=True in

3 “Shears” of stars and PSFs are converted from the measured distortion using the
relation between them for intrinsically round objects (γ = e/2). See Mandelbaum
et al. (2018b) for the definition of distortion of star images.

the HSC first-year shape catalog), while the remaining stars
are reserved for cross-validation of the PSFmodeling, which
we use to compute the TPCFs. The measured TPCFs are
presented in appendix 2. An estimation of the proportion-
ality factors αpsf and βpsf is given in appendix 2, in which
we find αpsf ∼ 0.03 and βpsf ∼ −1.4. Therefore, given the
amplitude of the measured TPCFs, ξ̂psf,+ can be as large
as ∼ 10−6 at θ ∼ 10′. We correct this effect by adding the
term, equation (7), to the theoretical model of the cosmic
shear TPCFs (see subsection 4.3). Our treatment of this
systematic effect in the cosmological analysis is described
in sub-subsection 5.2.3. This residual PSF effect on ξ− is
much smaller than that on ξ+ (see appendix 2), so we do
not apply that correction to ξ−.

4 Models of the cosmic shear TPCFs

and covariance matrix

In this section, we summarize models for the measured
cosmic shear TPCFs, consisting of two major components:
the cosmic shear arising from the gravitational lensing effect
by large-scale structures (see Kilbinger 2015, for a review),
and the intrinsic alignment of galaxy shape (see Troxel &
Ishak 2015; Kirk et al. 2015, for reviews). In practice, the
measured cosmic shear TPCFs are also affected by system-
atics, such as the shear calibration error and residual PSF
error and/or modeling, which we also summarize in this
section. In addition, we describe our model of covariance
matrix used for the cosmological analysis.

4.1 Cosmic shear TPCFs

The cosmic shear TPCFs induced by the gravitational
lensing effect are related to the cosmic shear power spectra
as (see, e.g., Kilbinger 2015, and references therein)

ξ ab
GG,±(θ ) = 1

2π

∫
dJ0,4(θ )Pab

κ (), (8)

where a and b refer to tomographic redshift bins and J0,4(x)
is the zeroth-order (for ξ+) or fourth-order (for ξ−) Bessel
function of the first kind. We note that in the above expres-
sion and in what follows we assume no B-mode shear
because we find that the B-mode component of cosmic shear
TPCFs is consistent with zero as shown in appendix 3 [see
also Hikage et al. (2019) from the power spectrum analysis
of the B-mode shear]. Using the flat-sky and the Limber
approximations, the convergence power spectrum, Pκ (),
is computed from the nonlinear matter power spectrum,
PNL
m (k), as

Pab
κ () =

∫ χH

0
dχ

qa(χ )qb(χ )
f 2K (χ )

PNL
m

[


fK (χ )
, χ

]
, (9)
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where χ is the comoving radial distance, χH is the comoving
horizon distance, and fK (χ ) is the comoving angular dis-
tance. For the computation of the linear matter power spec-
trum, we use CAMB (Challinor & Lewis 2011). In order to
model the nonlinear matter power spectrum, we employ
the fitting function by Bird, Viel, and Haehnelt (2012),
which is based on the halofit model (Smith et al. 2003;
Takahashi et al. 2012) but is modified so as to include the
effect of non-zero neutrino mass. Finally, the lensing effi-
ciency function, q(χ ), is defined as

qa(χ ) = 3
2

�m

(
H0

c

)2 ∫ χH

χ

dχ ′ pa(χ ′)(1 + z)
fK (χ ) fK (χ, χ ′)

fK (χ ′)
,

(10)

where pa(χ ) denotes the redshift distribution of source
galaxies in the ath tomographic bin and is normalized so
that

∫
dχ pa(χ ) = 1.

The dependence of cosmological parameters enters the
cosmic shear TPCFs through the nonlinear matter power
spectrum, the distance–redshift relation, and the normal-
ization of the lensing efficiency function, equation (10).
Since our cosmological analysis is limited to the flat �CDM
model with non-zero neutrino mass, the relevant cosmolog-
ical parameters are the density parameter of CDM (�c), the
density parameter of baryons (�b), the Hubble parameter
(h), the scalar amplitude of the linear matter power spec-
trum on k = 0.05Mpc−1 (AS), the scalar spectrum index
(ns), and the sum of neutrino masses (

∑
mν). The cosmo-

logical constant parameter is determined under the assump-
tion of a flat Universe, �� = 1 − �c − �b − �ν , where �ν

is the density parameter corresponding to neutrinos.

4.1.1 Effects of baryonic physics on the nonlinear matter
power spectrum

It is well known that the evolution of the nonlinear matter
power spectrum, especially on small scales, is affected by
baryon physics such as gas cooling, star formation, and
supernova and active galactic nuclei (AGN) feedbacks
(Schaye et al. 2010; van Daalen et al. 2011; Mead et al.
2015; Hellwing et al. 2016; McCarthy et al. 2017; Springel
et al. 2018; Chisari et al. 2018). Quantitative estimates of
those effects have not yet converged, due to uncertainties
in the implementation of sub-grid baryon physics in cos-
mological hydrodynamical simulations (White 2004; Zhan
& Knox 2004; Jing et al. 2006; Semboloni et al. 2011;
Osato et al. 2015).

We mitigate these effects of baryon physics in our cos-
mological analysis by not including the measurements of
the TPCFs on small scales where the effects are signifi-
cant (see subsection 5.1). As a further check, we test their
impact using an extreme model, the AGN feedback model

by Harnois-Déraps et al. (2015) that is based on the cosmo-
logical hydrodynamical simulations of Schaye et al. (2010)
and van Daalen et al. (2011) (OverWhelming Large Simu-
lations: OWLS). We note that all other predictions of the
baryonic effects based on other state-of-the-art simulations
(including the EAGLE simulation (Hellwing et al. 2016),
the IllustrisTNG simulations (Springel et al. 2018), and
the Horizon set of simulations (Chisari et al. 2018)) have
a smaller effect on the matter power spectrum than the
OWLS AGN feedback model we adopt in this study. How-
ever, it should be noted that current baryonic simulation
results do not necessarily span all potential real feedback
models. We thus allow the strength of feedback to vary
by introducing a parameter. We follow the methodology
of Köhlinger et al. (2017), in which a modification of the
dark matter power spectrum due to the AGN feedback is
modeled by the fitting function derived by Harnois-Déraps
et al. (2015), but an additional parameter (AB) that con-
trols the strength of the feedback is introduced [see sub-
subsection 5.1.2 of Köhlinger et al. (2017), for the explicit
expression]. We note that Hikage et al. (2019) employed
the same methodology. The case with AB = 1 corresponds
to the original AGN feedback model by Harnois-Déraps
et al. (2015), whereas AB = 0 corresponds to the case where
the baryon physics has no effect. Our treatment of baryon
feedback effects in our cosmological analyses is described
in sub-subsection 5.2.2.

4.2 Intrinsic alignment model

The so-called intrinsic alignment (IA) of galaxy shapes is
another major astrophysical systematic in the measurement
of the cosmic shear TPCFs (see Kirk et al. 2015; Troxel &
Ishak 2015, for recent reviews). The IA comes both from
the correlation between intrinsic shapes of two physically
associated galaxies in the same local field (referred to as
the II-term) and from the cross-correlation between lensing
shear of background galaxies and the intrinsic shape of
foreground galaxies (referred to as the GI-term).We employ
the standard theoretical model for these terms, namely, the
nonlinear modification of the tidal alignment model (Hirata
& Seljak 2004; Bridle & King 2007; Joachimi et al. 2011).
In this formalism, TPCFs are given in a similar manner as
the cosmic shear TPCFs, equations (8), (9), and (10), but
with modified power spectra

ξ ab
II/GI,±(θ ) = 1

2π

∫
dJ0,4(θ )Pab

II/GI(), (11)

with

Pab
II () =

∫ χH

0
dχ F 2(χ )

pa(χ )pb(χ )
f 2K (χ )

PNL
m

[


fK (χ )
, χ

]
, (12)
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Pab
GI () =

∫ χH

0
dχ F (χ )

qa(χ )pb(χ ) + pa(χ )qb(χ )
f 2K (χ )

×PNL
m

[


fK (χ )
, χ

]
. (13)

In the above expressions, F (χ ) represents the correlation
strength between the tidal field and the galaxy shapes, for
which we adopt the same redshift-dependent model as used
in Hikage et al. (2019)

F [χ (z)] = −AIAC1ρcrit
�m

D+(z)

(
1 + z
1 + z0

)ηeff

, (14)

where AIA is the amplitude parameter, C1 is the fixed nor-
malization constant (C1 = 5 × 10−14 h−2 M−1

 Mpc3), ρcrit is
the critical density at z = 0, and D+(z) is the linear growth
factor normalized to unity at z = 0. We adopt the pivot
redshift of z0 = 0.62, and treat AIA and the redshift depen-
dence index ηeff as nuisance parameters in our cosmological
analysis (see sub-subsection 5.2.2).

4.3 Corrections for the redshift-dependent
selection bias, PSF related errors,
and the constant shear

The theoretical model for the observed cosmic shear TPCFs
is the sum of three components:

ξ ab
± (θ ) = ξ ab

GG,±(θ ) + ξ ab
GI,±(θ ) + ξ ab

II,±(θ ). (15)

In reality, the measured TPCFs are affected by the redshift-
dependent shear calibration bias (sub-subsection 2.3.1) and
the residual PSF and PSF modeling error [subsection 3.2,
equation (7)]. In addition, ξ+ components may be biased
by the constant shear over a field arising from systematics
(appendix 1). We note that the constant shear arising from
the gravitational lensing effect on scales larger than a survey
field is taken into account properly in our analysis, as our
model for the covariance matrix includes the super-survey
mode. We apply these corrections to ξ+ as

ξ ab
+ (θ ) → (1 + ma

sel + ma
R)(1 + mb

sel + mb
R)ξ

ab
+ (θ )

+ α2
psfξ

pp
+ (θ ) + 2αpsfβpsfξ

pq
+ (θ ) + β2

psfξ
qq
+ (θ ) + γ̄ 2,

(16)

where γ̄ is the redshift-independent constant shear term that
we treat as a nuisance parameter (see sub-subsection 5.2.3).
Since the PSF-related corrections to ξ− are found to be very
small (see appendix 2), we do not apply these corrections
to ξ−. As a result, the corrected expression for ξ− is

ξ ab
− (θ ) → (1 + ma

sel + ma
R)(1 + mb

sel + mb
R)ξ

ab
− (θ ). (17)

The values of (ma
sel + ma

R) are taken from table 3 of Hikage
et al. (2019); from the lowest to highest redshift bins, they
are 0.0086, 0.0099, 0.0241, and 0.0391.4 In our cosmolog-
ical analysis, we treat αpsf and βpsf as nuisance parameters
(see sub-subsection 5.2.3 for our choice of prior ranges).

4.4 Covariance

We derive a covariance matrix of the TPCF measurement
using 2268 realizations of mock HSC shape catalogs. See
appendix 4 for a brief description of the mock catalogs,
which are described in detail in Shirasaki et al. (2019). We
measure the cosmic shear TPCFs for all 2268 mock cat-
alogs in exactly the same manner as the real cosmic shear
measurement. Since the HSCmock catalogs are constructed
based on full-sky lensing simulation data with galaxy posi-
tions, intrinsic shape noise, and measurement noise taken
from the real HSC shape catalog, the mock data naturally
have the same survey geometry and the same noise proper-
ties as the real catalog, and include super-survey cosmic
shear signals from these full-sky lensing simulations. In
addition, the effects of nonlinear structure formation on the
lensing shear field are included in the mock data. Therefore
the covariance matrix computed from the mock catalogs
automatically includes all the contributions; namely, Gaus-
sian, non-Gaussian, super-survey covariance and the survey
geometry are naturally taken into account. Shirasaki et al.
(2019) found that in the case of the HSC first-year data we
adopt in this study, the shape noise covariance dominates
the covariance at the smallest angular bin, while the cos-
mological Gaussian covariance is prominent at the largest
angular bin.

The accuracy of the covariance matrix from the mocks
was studied in detail by Shirasaki et al. (2019). They inves-
tigated the impact of photo-z errors and field-to-field vari-
ation among the six separate HSC fields on the covariance
estimation. They found that the change in the variance due
to the different photo-z methods can yield a 5%–10% dif-
ference in signal-to-noise ratio of the cosmic shear TPCFs,
whereas the field variation can change the covariance esti-
mation by 3%–5%. Shirasaki et al. (2019) also addressed
the effect of the multiplicative bias on the covariance esti-
mation. They found that multiplicative bias of 10% can
change shape noise covariance at the ∼ 20% level. We
already included the effect by assuming the fiducial value
of multiplicative bias. A 1% level uncertainty in the multi-
plicative bias was confirmed in Mandelbaum et al. (2018a),
leading to less than 2% uncertainty in our estimation of
shape noise covariance.

4 While deriving the covariance, we also account for mR in the mocks, although
not the selection bias. This can cause an at most 2% difference in the covariance
matrix.
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Overall, we expect the covariance matrix estimated from
mocks to be calibrated with < 10% accuracy against var-
ious systematic effects in the cosmic shear analysis, if the
cosmological model in the mock catalogs is correct.

One drawback of this approach is that we are not able
to include the cosmology dependence of the covariance,
because the HSC mock catalogs are based on a set of full-
sky gravitational lensing ray-tracing simulations that adopt
a specific flat �CDM cosmology (see appendix 4). This
is in contrast to Hikage et al. (2019), who used a halo-
model-based analytic model of covariance matrix (which
was tested against the HSC mock catalogs) in their cosmo-
logical analysis. In the case of the TPCF, the halo-model-
based analytic covariance matrix was formulated (Cooray
& Hu 2001; Takada & Jain 2009; Takada & Hu 2013).
However, it is found in Shirasaki et al. (2019) that in order
to derive an accurate covariance, the survey geometry must
be properly taken into account, which requires N2

g opera-
tions (Ng is the total number of galaxies) and is computa-
tionally very expensive. Hikage et al. (2019) also studied the
effect of the cosmology dependence of the covariance on the
cosmological analysis in their cosmic shear power spectrum
study, by comparing cosmological constraints derived using
the cosmology-dependent covariance (which is their fiducial
model) with those derived using a cosmology-independent
one (fixed to the best-fitting cosmological model). They
found that the best-fitting �m and S8[= σ8(�m/0.3)α with
α = 0.45 or 0.5] values agree with each other within 20%
of the statistical uncertainty. It is therefore reasonable to
assume that the cosmology dependence of the covariance
matrix does not significantly impact our cosmological anal-
ysis. We refer the readers to Eifler, Schnieder, and Hartlap
(2009), Harnois-Deraps, Giblin, and Joachimi (2019),
and Kodwani, Alonso, and Ferreira (2019) for depen-
dence of the covariance on cosmology and its impact on
cosmological parameter constraints.

5 Cosmological analyses

We employ the standard Bayesian likelihood analysis for the
cosmological inference of measured cosmic shear TPCFs.
The log-likelihood is given by

− 2 lnL(p) =
∑
i, j

[di − mi (p)] Cov
−1
i j

[
dj − mj (p)

]
, (18)

where di is the data vector that is detailed in subsection 5.1,
mi (p) is the theoretical model with p the set of param-
eters detailed in subsection 5.2, and Covi j is the covari-
ance matrix that is described in sub-subsection 4.4. Since
our covariance matrix is constructed from 2268 mock
realizations, its inverse covariance is known to be biased
high (see Anderson 2003; Hartlap et al. 2007, and

references therein). When calculating the inverse covari-
ance, we therefore include the so-called Anderson–
Hartlap correction factor α = (Nmock − Nd − 2)/(Nmock −
1), where Nmock = 2268 is the number of mock realizations
(see appendix 4) and Nd = 170 (for our fiducial choice, see
subsection 5.1) is the length of our data vector.

In order to sample the likelihood efficiently, we employ
the multimodal nested sampling algorithm (Feroz &
Hobson 2008; Feroz et al. 2009, 2013), as implemented
in the public software MultiNest (version 3.11).

5.1 Data vector

The data vector, di , is constructed from 10 tomographic
combinations of cosmic shear TPCFs ξ̂ ab

+ and ξ̂ ab
− presented

in figure 2. Although TPCFs are detectedwith a good signal-
to-noise ratio over a wide angular range as shown in the
figure, we limit angular ranges for our cosmological analysis
for the following reasons.

First, we remove the angular range where the uncer-
tainty in the theoretical model of cosmic shear TPCFs due
to baryon physics is not negligible. We employ the AGN
feedback model considered in Harnois-Déraps et al. (2015)
as an extreme case, and deduce from figure 5 of their paper
that scales where the AGN feedback effect becomes less
than 5% for ξ+ and ξ− are θ > 4′ and θ > 20′, respectively.
Since their results were obtained assuming the galaxy red-
shift distribution with the mean redshift of 〈z〉 ∼ 0.75, the
feedback effect may have a larger impact on larger scale sig-
nals for the lower source redshift sample. Considering the
lower mean redshift of our lowest-z tomographic sample,
we conservatively adopt about 50% larger scales than the
scales mentioned above as our threshold scales.

Secondly, we remove the angular range where the extra
shape correlations due to PSF leakage and PSF model error
are not negligible. The effects of these errors on cosmic shear
TPCFs are examined in appendix 2. It is found that their
total contribution to ξ+ is about 10−6 on scales 5′ < θ < 60′.
Since this estimate is based on a simple model for PSF
errors and the associated errors are large, (0.4–1) × 10−6,
the above value should be considered as a rough estimate.
Comparing this estimate with the measured signals and
errors, we set an upper limit of θ � 60′ for ξ+. Since the
contribution of this systematic to ξ− is found to be very
small, about 10−8 even at around 1◦ scale, no upper limit is
set to ξ− from this condition.

Thirdly, we remove the angular range where the signal-
to-noise ratio including the cosmic variance for individual
angular bins becomes � 1. This condition sets the upper
limit θ � 200′ for ξ−.

Taking these three points into consideration, we adopt
angular bins θi = 100.1×i arcmin with 9 ≤ i ≤ 17 for ξ+, and
15 ≤ i ≤ 22 for ξ−. The corresponding angular ranges of
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Fig. 2. Comparison of the HSC tomographic cosmic shear TPCFs with the best-fitting theoretical model for the fiducial flat �CDM model. Upper and
lower triangular-tiled panels show ξ+ and ξ−, respectively. The measured ξ+ are corrected for the PSF leakage and PSF modeling errors. Error bars
represent the square-root of the diagonal elements of the covariance matrix. The solid line corresponds to the best-fitting (maximum likelihood)
fiducial model including the residual multiplicative bias correction shown in equation (21). Vertical dotted lines show the angular ranges used for
the likelihood analysis. (Color online)

galaxy-pair separation are 7.′08 < θ < 56.′2 and 28.′2 < θ <

178′ for ξ+ and ξ−, respectively. The total length of the data
vector for our fiducial choice is Nd = (9 + 8) × 10 = 170.

5.1.1 Signal-to-noise ratio
Using the fiducial data vector described in subsection 5.1
and the covariance matrix described in sub-subsection 4.4,
the total signal-to-noise ratio is found to be 18.7. The
value of the signal-to-noise ratio depends on the assumed
cosmological model through the covariance matrix. Our
covariance matrix is based on the mock catalogs assuming
WMAP9 (Wilkinson Microwave Anisotropy Probe 9 years
results; Hinshaw et al. 2013) cosmology. Hikage et al.
(2019) evaluated the total signal-to-noise of HSC tomo-
graphic cosmic shear power spectra using a covariance
matrix based on the Planck cosmology, and found SN =
15.6 for their fiducial multipole range 300 <  < 1900.
The difference between these signal-to-noise ratio values
is mostly accounted for by the different angular ranges
adopted in these two studies (see also appendix 5), and by
the different cosmological models assumed for the covari-
ance matrices.

5.1.2 Effective angular scale of angular bins
and bin-averaged TPCFs

We determine the pair-weighted effective mean center of
each angular bin as follows. In our TPCF measurements,
we adopt a regular log-interval binning with the bin width
of � log θ = 0.1. For the ith bin, the minimum and max-
imum angular scales are given by θmin = 100.1(i−0.5) and

θmax = 100.1(i+0.5), respectively, with a simple bin center of
θc = 100.1i . Assuming the number of galaxy pairs scales with
separation as np(θ ) ∝ θ2 (here we ignore the irregular survey
geometry), the pair-number weighted mean separation for
each bin is given by

θ̄ =
∫ θmax

θmin
dθ θnp(θ )∫ θmax

θmin
dθ np(θ )

. (19)

For our bin width of � log θ = 0.1, we find θ̄ = 1.015 ×
θc. We take this weighted mean separation as the effective
angular scale of bins.

The same bin-averaged effect should be taken into
account in the computation of the theoretical model of
the cosmic shear TPCFs. The exact integration over the
bin-width would be computationally expensive. Instead,
we adopt an approximate estimate based on the following
consideration [for other approximate estimates, see Asgari
et al. (2019) and references therein]. Assuming a power-law
form for the cosmic shear TPCF within a bin-width, that
is, ξ (θ ) ∝ θμ (−1 � μ � −0.5 for the cosmic shear TPCFs
on scales of our interest) and ignoring the irregular survey
geometry, the bin-averaged TPCF is given by

ξ̄ =
∫ θmax

θmin
dθ ξ (θ )np(θ )∫ θmax

θmin
dθ np(θ )

. (20)

In the case of μ = −1(−0.5), we find ξ̄ = 0.989(0.994) ×
ξ (θc), which is very close to the value evaluated at the
effective angular scale of bins (θ̄ ). Specifically, ξ (θ̄ ) =
ξ (θc) × (θ̄/θc)μ = 0.985(0.993) × ξ (θc), for μ = −1(−0.5).
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Table 1. Summary of cosmological, astrophysical, and systematics parameters used in our cosmological analysis.∗

Parameter Prior range

Fiducial �CDM wCDM Systematics tests Section

Cosmological 5.2.1
�c Flat[0.01, 0.9]
log(AS × 109) Flat[−1.5, 2.0]
�b Flat[0.038, 0.053]
ns Flat[0.87, 1.07]
h Flat[0.64, 0.82]∑

mν [eV] Fixed to 0.06 Flat[0, 0.5] for “
∑

mν varied”
w Fixed to −1 Flat[−2, −1/3]

Astrophysical 5.2.2
AIA Flat[−5, 5] Fixed to 0 for “w/o IA”
ηIA Flat[−5, 5] Fixed to 3 for “IA ηIA = 3”
AB Fixed to 0 Fixed to 1 for “AB = 1” or Flat[−5, 5] for “AB varied”

Systematics 5.2.3
αpsf Gauss(0.029, 0.010) Fixed to 0 for “w/o PSF error”
βpsf Gauss(−1.42, 1.11) Fixed to 0 for “w/o PSF error”
�m Gauss(0, 0.01) Fixed to 0 for “w/o �m”
�z1 Gauss(0, 0.0374) Fixed to 0 for “w/o p(z) error”
�z2 Gauss(0, 0.0124) Fixed to 0 for “w/o p(z) error”
�z3 Gauss(0, 0.0326) Fixed to 0 for “w/o p(z) error”
�z4 Gauss(0, 0.0343) Fixed to 0 for “w/o p(z) error”
γ̄ Fixed to 0 Flat[0, 5 × 10−3] for “w/ const-γ”

∗“Flat[x1, x2]” means a flat prior between x1 and x2, whereas “Gauss(x̄, σ )” means a Gaussian prior with the mean x̄ and the standard deviation σ . For
detail descriptions of parameters, see sub-subsection 5.2.1 for the cosmological parameters, sub-subsection 5.2.2 for the astrophysical nuisance parameters, and
sub-subsection 5.2.3 for the systematics nuisance parameters.

On these grounds, we decide to adopt the TPCFs at θ̄ as
our estimate of the bin-averaged cosmic shear TPCFs.

5.2 Model parameters and prior ranges

In this subsection, we summarize model parameters and
their prior ranges used in our cosmological analysis. Prior
ranges and choice of parameter set for systematic tests are
summarized in table 1.

5.2.1 Cosmological parameters
We focus on the flat �CDM cosmological model charac-
terized by six parameters (�c, AS, �b, ns, h, and

∑
mν , see

subsection 4.1). Among these parameters, the cosmic shear
TPCFs are most sensitive to �c, and AS, or the derived
parameter σ8. Thus we adopt prior ranges that are suffi-
ciently wide for these parameters (see table 1). For (�b,
ns, and h), which are only weakly constrained with cosmic
shear TPCFs, we set prior ranges which largely bracket
allowed values from external experiments (see table 1). For
the sum of neutrino mass, we take

∑
mν = 0.06 eV from

the lower bound indicated by the neutrino oscillation exper-
iments (e.g., Lesgourgues et al. 2013, for a review) for our

fiducial choice. As a systematics test, we check the impact
of neutrino mass on our conclusions by varying

∑
mν .

In addition to the fiducial �CDM model, we con-
sider an extended model by including the time-independent
equation-of-state parameter for the dark energy (w),
referred to as the wCDM model. We take a flat prior
with −2 < w < −1/3, which excludes the non-accelerating
expansion of the present day Universe, and brackets
allowed values from external experiments.

5.2.2 Astrophysical nuisance parameters
Our fiducial model for the TPCFs includes the contribution
of the intrinsic alignment of galaxy shapes as described
in subsection 4.2. The nonlinear alignment model we
employed has two parameters: the amplitude parameter AIA

and the redshift dependence parameter ηIA which represents
the effective redshift evolution of the IA amplitude beyond
the redshift evolution of the matter distribution due to a
possible intrinsic redshift evolution and/or the change of
the galaxy population as a function of redshift. Following
recent cosmic shear studies, e.g., Hildebrandt et al. (2017),
Troxel et al. (2018), and Hikage et al. (2019), we adopt
very wide prior ranges for these parameters.
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The effect of baryon physics on the nonlinear matter
power spectrum (see sub-subsection 4.1.1) is another pos-
sible astrophysical systematic effect on the cosmological
analysis. Nevertheless, since we restrict the angular ranges
of cosmic shear TPCFs conservatively so that the baryon
effects do not have a significant impact on our analysis (see
subsection 5.1), we do not include the baryon effect in our
fiducial model, but check its impact in our systematics tests,
employing the AGN feedback model by Harnois-Déraps
et al. (2015) by adding a parameter AB which controls the
amplitude of the baryon effect. We carry out two tests; one
fixing AB = 1, which corresponds to the original AGN feed-
back model, and the other in which AB is a free parameter.

5.2.3 Systematics nuisance parameters
To summarize, in our fiducial model we account for system-
atic effects from PSF leakage and PSF modeling errors, the
uncertainty in the shear multiplicative bias correction, and
uncertainties in the source galaxy redshift distributions. In
our cosmological analysis, we include these effects by mod-
eling them with nuisance parameters which are marginal-
ized over in the final cosmological inference. In addition, in
systematics tests we check the impact of the uncertainty
of the constant shear over fields. Below we summarize
our choices for prior ranges on nuisance parameters in
these models.

Our models for the PSF leakage and PSF modeling
errors are described in subsection 3.2. We apply the correc-
tion for these systematics using equation (16). The model
parameters are estimated in appendix 2, in which we find
αpsf = 0.029 ± 0.010 and βpsf = −1.42 ± 1.11. We adopt
Gaussian priors for these parameters and include them in
our fiducial model.

Regarding the uncertainty in the shearmultiplicative bias
correction, we follow Hikage et al. (2019) to introduce
the nuisance parameter �m, which represents the residual
multiplicative bias, and modifies the theoretical prediction
for the cosmic shear TPCFs to

ξ ab
± (θ ) → (1 + �m)2ξ ab

± (θ ). (21)

The prior range of �m is taken to be Gaussian with zero
mean and a standard deviation of 0.01. This is based on the
calibration of the HSC first-year shear catalog done with
image simulations (Mandelbaum et al. 2018a), in which it
is confirmed that the multiplicative bias is controlled at the
1% level, leaving a 1% uncertainly on the residual bias.

Regarding uncertainties in the redshift distributions of
source galaxies, we again follow themethodology ofHikage
et al. (2019) (see also Troxel et al. 2018), in which uncer-
tainties for each tomographic bin are assumed to be rep-
resented by a single parameter, �za . The source redshift

distribution, which is derived by the COSMOS reweighted
method (see sub-subsection 2.2.1), is then shifted by

pa(z) → pa(z + �za). (22)

The prior ranges for the shift parameters are estimated
by comparing the COSMOS reweighted pa(z) with ones
derived from stacked-PDFs following the method described
in subsection 5.8 of Hikage et al. (2019). The derived prior
ranges, which are summarized in table 1, are in reasonable
agreement with those found in Hikage et al. (2019), with
the largest difference being 24%.

Finally, as discussed in appendix 1, we introduce
the single parameter γ̄ , which represents the redshift-
independent constant shear arising from systematics, when
checking the impact of the uncertainty in the constant shear
over fields. The constant shear is added to the theoretical
model of ξ+ as shown in equation (16). Given that we have
not found a strong evidence of the existence of the residual
constant shear (see appendix 1), we do not include it in our
fiducial model, but check its impact as a systematics test, in
which we treat γ̂ as a nuisance parameter with a flat prior
for a wide range 0 < γ̂ < 5 × 10−3. We constrain γ̂ to be
positive, because only the square of γ̂ enters ξ+.

5.2.4 Effective number of free parameters
It should be noted that not all the model parameters should
be considered to be free, as more than half of them are
tightly constrained by priors. In other words, posteriors
of those parameters are not driven by data but are domi-
nated by priors, and fixing those parameters does not sig-
nificantly change the cosmological constraints. In fact, as
will be found in the following sections, although the total
number of model parameters is 14 for our fiducial case
(five cosmological, two astrophysical, and seven systematics
parameters; see table 1), only three of them (�c, AS, and AIA)
are constrained by the data with much narrower posterior
distributions than with priors. Therefore, the standard defi-
nition of the degree of freedom (d.o.f.) Nd − Np (= 170–14
for our fiducial case) is likely to be an underestimation. A
conservative choice of the effective number of free parame-
ters (Neff

p ) should account for only these three parameters.5

6 Results

In this section we first present cosmological constraints
from our cosmic shear analysis. We then discuss the robust-
ness of the results against various systematics, and finally
we perform internal consistency checks among different
choices of angular ranges and of tomographic redshift bins.

5 See Raveri and Hu (2019) and subsection 6.1 of Hikage et al. (2019) for a more
mathematically robust way to define the effective number of free parameters.
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Fig. 3. Marginalized posterior contours (68% and 95% confidence levels) in the �m–σ 8 plane (top panel) and in the �m–S8 plane (bottom panel),
where S8 = σ 8

√
�m/0.3 in the fiducial flat �CDM model.

6.1 Cosmological constraints in the fiducial flat
�CDM model

First we compare the HSC tomographic cosmic shear
TPCFs with the theoretical model with best-fitting param-
eter values for the fiducial flat �CDM model in figure 2, in
which themeasured ξ+ are corrected for the PSF leakage and
PSF modeling errors with equation (7). In these plots, error
bars represent the square-root of the diagonal elements of
the covariancematrix.We find that ourmodel with the fidu-
cial parameter setup reproduces the observed tomographic
cosmic shear TPCFs quite well. The χ2 value for the best-
fitting parameter set is χ2 = 162.3 for the effective d.o.f. of
170 − 3 = 167, resulting in a p-value of 0.588.

We marginalize over a total of 14 model parameters
(five cosmological, two astrophysical, and seven systematics
parameters; see table 1) in our fiducial flat �CDM model
to derive marginalized posterior contours in the �m–σ8 and
�m–S8 planes, which are presented in figure 3. We also
show marginalized one-dimensional posterior distributions
of cosmological parameters in figure 4. We find marginal-
ized 68% confidence intervals of 0.247 < �m < 0.398,
0.668 < σ8 < 0.875, and 0.775 < S8 < 0.837. From the
posterior distributions shown in figure 4, it can be seen that
the current HSC cosmic shear TPCFs alone cannot place
useful constraints on the Hubble constant (H0), the baryon
density parameter (�b), or the spectral index (ns). We have
confirmed that the constraint on S8 is not strongly affected
by uncertainties in these parameters as long as they are
restricted within the prior ranges considered in this paper.

6.1.1 Neutrino mass
Since the non-zero neutrino mass leads to a redshift-
dependent suppression of the matter power spectrum
at small scales, it has, in principle, an impact on the

cosmological inference. In our fiducial setup, the neutrino
mass is fixed at

∑
mν = 0.06 eV; the current measurement

precision of the cosmic shear TPCFs is expected to be
insufficient to place a useful constraint on the neutrino
mass, especially given the fact that we exclude small scales
from our analysis. We check this expectation with a setup
in which the neutrino mass is allowed to vary with a flat
prior in the range 0 <

∑
mν < 0.5 eV. Figure 5 shows

the one-dimensional posterior distribution of
∑

mν , from
which it is indeed found that the current HSC cosmic shear
TPCFs do not place a useful constraint on the neutrino
mass. The derived marginalized posterior contours in
the �m–σ 8 plane are compared with the fiducial case in
panel (e) of figure 6.6 Confidence intervals on S 8, �m, and
σ 8 are compared with the fiducial case in figures 7, 8,
and 9, respectively. These comparisons indicate that the
non-zero neutrino mass indeed has little impact on our
cosmological constraints. It is also found that the neutrino
mass constraint does not correlate with any of �m, σ 8, or
S 8. These findings confirm the validity of our treatment of
the neutrino mass in our fiducial cosmological inference.

6.1.2 Posteriors of nuisance parameters
The marginalized one-dimensional posterior distributions
of astrophysical and systematics parameters in the fiducial
flat �CDM model are shown in figure 10. It is found that,
except for AIA, the posteriors are dominated by priors.
Below, we discuss effects of these nuisance parameters
on the cosmological inference by changing the parameter
setup. Comparisons of the one-dimensional constraints on

6 At first look it may seem strange that the 68% confidence contours corresponding
to the posterior distribution marginalized over neutrino masses is smaller than the
case where we assume a fixed mass for neutrinos equal to 0.06 eV. This happens
because the probability distribution is peaked at a value for

∑
mν > 0.06 eVwhere

the posterior volume in �m–σ 8 plane is smaller.
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Fig. 4. Marginalized one-dimensional posterior distributions of different cosmological parameters in the fiducial flat �CDM model. The upper five
panels show the posterior distributions for the model parameters, whereas the bottom three panels are for derived parameters. For the top five
panels, the plotted range of the horizontal axis indicates its flat prior range. Dotted vertical lines represent the approximate 68% confidence intervals,
which are not shown for poorly constrained parameters.

Fig. 5. Marginalized one-dimensional posterior distributions of nuisance parameters derived from non-fiducial models. From left to right, we show
the baryon feedback model parameter from the “AB varied” setup, the neutrino mass from the “

∑
mν varied” setup, and the residual constant shear

γ̄ from the “w/const-γ” setup.

S 8, �m, and σ 8 between the fiducial case and cases with
different setups are summarized in figures 7, 8, and 9,
respectively.

6.2 Impact of astrophysical uncertainties

6.2.1 Intrinsic galaxy alignment
We find that the marginalized one-dimensional constraint
on AIA is AIA = 0.91+0.27

−0.32, which is consistent with the result
from the HSC cosmic shear power spectrum analysis by

Hikage et al. (2019). They found AIA = 0.38 ± 0.70 for
their fiducial setup. The 1σ error on AIA from our analysis
is smaller than one from the power spectrum analysis. The
reason for this is currently not known. A possible reason
would be different angular ranges adopted in the two anal-
yses (see appendix 5). On the other hand, our constraint on
ηIA is −2.5 ± 2, which is consistent with the shear power
spectrum analysis. As discussed in subsection 5.4 of Hikage
et al. (2019), a plausible value of ηIA from available obser-
vations is ηIA = 3 ± 0.75, which would be about 2σ higher
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Fig. 6. Comparison of constraints in the �m–σ 8 plane between the fidu-
cial setup (gray contours) and different assumptions, as described in
the text (red contours showing 68% and 95% confidence levels). (Color
online)

Fig. 7. Means and 68% confidence intervals of marginalized one-
dimensional constraints on S8 = σ 8

√
�m/0.3. The fiducial case (top)

is compared with different setups to check the robustness of our result.
Vertical dotted lines show the 68% confidence interval of the fiducial
case. The numbers in the bracket after the setup name indicate [χ2

min

(Nd − N eff
p )].

than our derived value. Given this, we will examine the
impact of the IA modeling on our cosmological inference
below.

In order to test the robustness of the cosmological
constraints against the uncertainty of the intrinsic galaxy
alignment, we perform two cosmological inferences with
different IA modeling. In one case, the IA contribution is

Fig. 8. Same as figure 7, but for marginalized one-dimensional con-
straints on �m. Open circles and open triangles show the means and
medians of the marginalized posterior distributions, respectively. We
note that the means of the marginalized posterior distributions are pref-
erentially located on the right-hand side of the 68% confidence intervals,
because their posterior distributions are skewed toward high �m values
(as shown in figure 4).

Fig. 9. Same as figure 7, but for marginalized one-dimensional con-
straints on σ 8.

completely ignored, i.e., AIA is fixed to 0, and in the other
case ηIA is fixed to 3 (see subsection 5.4 of Hikage et al.
2019) while AIA is treated as a free parameter. The results
from these settings are compared with the fiducial ones in
figure 6 [panels (a) and (b)] and figure 7. We find that the
corresponding changes in cosmological constraints are not
significant. For instance, the shift of the mean S 8 value is
found to be 0.16σ for the “IA ηIA = 3” case.

Finally, we examine how the IA contribution affects
the constraints in the �m–σ 8 plane. As shown in panel
(a) of figure 6, the inclusion of the IA contribution moves
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Fig. 10. Marginalized one-dimensional posterior distributions of astrophysical and systematic parameters in the fiducial flat �CDM model. For the
cases of AIA and ηIA, the horizontal axis range corresponds to the flat prior range (−5 < x < 5), whereas for the other cases Gaussian priors are
shown by the dashed curves. In the top left-hand panel, vertical lines represent the approximate 68% confidence interval of A IA.

the posterior contour toward higher �m and lower σ 8,
and as we have seen, slightly reduces S 8. This behavior
may appear somewhat counter-intuitive, because the IA
contribution, mostly given a negative GI term, suppresses
TPCFs, leading to a larger S 8 to compensate. A plausible
explanation for this is as follows. Since the negative
redshift dependence of IA contribution, which is preferred
as seen in figure 10, suppresses TPCFs at lower redshifts
more strongly than at higher redshifts, larger matter
fluctuations at lower redshifts are required to compensate
the redshift-dependent suppression. This requires more
rapid growth of matter fluctuations at lower redshifts,
leading to the higher �m along with the lower σ 8 to adjust
the overall amplitude of tomographic TPCFs.

6.2.2 Baryonic feedback
In our fiducial setup, we do not include the effect of the
baryonic feedback, but instead remove the angular scales
where its impact is not negligible (see subsection 5.1). It is
therefore expected that the baryonic feedback effect does
not strongly affect our cosmological constraints. We check
this expectation explicitly by employing an empirical “AGN

feedback model” from Harnois-Déraps et al. (2015) (as
described in sub-subsection 4.1.1). Specifically we consider
two cases; the original AGN feedback model by Harnois-
Déraps et al. (2015), which corresponds to fixing the baryon
feedback parameter AB = 1, and a more flexible model in
which AB is allowed to vary with a flat prior in the range
−5 < AB < 5.

Since the baryonic feedback suppresses the amplitude
of the matter power spectrum on scales we are probing, it
leads to higher values of S 8 to compensate. This is indeed
seen in the “AB = 1” case, as shown in figure 7. However,
the shift of the mean S 8 value is not significant, 0.1σ , as
expected.

In the “AB varied” case, figure 5 shows that the con-
straint on AB is very weak with the marginalized poste-
rior of (its mean and σ ) AB = −1.8 ± 1.8. The expected
correlation between AB and S 8 is confirmed. Again, it is
found from panel (c) of figure 6 and figure 7 that its impact
on cosmological constraints is not significant. We conclude
that the effect of baryonic feedback on our fiducial cos-
mological constraints is insignificant, given the size of our
statistical errors.
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6.3 Impact of systematics

6.3.1 Residual constant shear
In the fiducial model, we do not include the correction
for the residual constant shear, because the statistical sig-
nificance of its existence is found to be marginal (see
appendix 1). In order to check the robustness of our fidu-
cial cosmological constraints against the residual constant
shear, we test the same setup as the fiducial case but include
a single parameter γ̄ that models the residual constant
shear as equation (16). We adopt a flat prior in the range
0 < γ̄ < 5 × 10−3. The derived constraints are compared
with the fiducial case in panel (f) of figure 6 and figure 7.
We find that the resulting changes in the cosmological con-
straints are very small. The marginalized one-dimensional
posterior distribution of γ̄ is shown in figure 5. The derived
1σ upper limit is found to 4.4 × 10−4, which is smaller than
the constant shear expected from the cosmic shear that is
coherent over the field (see appendix 4.1).

6.3.2 PSF leakage and PSF modeling errors
In this paper we employ a simple model for the PSF
leakage and PSF modeling errors given by equation (6),
and apply the correction to the cosmic shear TPCFs as
described in equation (16). The priors for the model param-
eters αpsf and βpsf are derived in appendix 2. Marginalized
one-dimensional posterior distributions of these parameters
from our fiducial analysis are shown in figure 10. We found
that the posteriors are largely determined by the priors. We
also find that the marginalized constraints on these param-
eters are not strongly correlated with either �m, σ 8, or S 8.

In order to check the robustness of our cosmological
constraints against these systematics, we test the same setup
as the fiducial case but ignoring these parameters, i.e., set-
ting αpsf = βpsf = 0. The results are shown in panel (a) of
figure 11 and figure 7. We find that the changes in the cos-
mological constraints are very small. This is expected, as
the corrections due to PSF leakage and PSF modeling errors
are small compared with the current size of errors on the
HSC cosmic shear TPCFs.

6.3.3 Shear calibration error
In our fiducial analysis we also take account of the uncer-
tainty in the shear multiplicative bias correction using a
simple model, equation (21), with a Gaussian prior cor-
responding to a 1% uncertainty (see sub-subsection 5.2.3).
The marginalized one-dimensional posterior distribution of
themodel parameter�m from our fiducial analysis is shown
in figure 10, which indicates that the posterior is dominated
by the prior.

In order to check the effect of this residual calibration
bias on our cosmological constraints, we test the same setup

Fig. 11. Same as figure 6, but for other setups for systematics tests.
(Color online)

as the fiducial case but ignoring the nuisance parameter,
i.e., setting �m = 0. The results are shown in panel (b)
of figure 11 and figure 7. We find that the changes in the
cosmological constraints are very small.

6.3.4 Source redshift distribution errors
We take account of uncertainties in the redshift distribu-
tions of source galaxies by introducing parameters �za ,
which represent a shift of the source redshift distribu-
tions as defined in equation (22). We consider indepen-
dent shifts for the four tomographic bins, leading to four
nuisance parameters. Priors on these parameters are deter-
mined based on differences of source redshift distributions
from different approaches (see sub-subsection 5.2.3), and
we marginalize over these nuisance parameters in our fidu-
cial setup. Marginalized one-dimensional posterior distri-
butions of these parameters from our fiducial analysis are
shown in figure 10. Although peak positions of these pos-
teriors show shifts from the peak the prior distributions,
the sizes of the shifts are reasonably within the the Gaus-
sian priors. In the case of the lowest redshift bin which
shows the largest shift, the peak shift is 1.1σ of the Gaus-
sian priors, and thus is not statistically significant. However,
notice that it may indicate an unknown bias in estimation
of the source redshift distribution that is not captured in
the prior knowledge.

In order to check the robustness of our cosmological con-
straints against these uncertainties, we test the same setup
as the fiducial analysis but ignoring these parameters. The
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results are shown in panel (c) of figure 11 and figure 7. We
find that the changes in the cosmological constraints are
small, with the shift of the mean S 8 value being −0.05σ .

In addition, we also check for possible systematic effects
coming from the uncertainty of the redshift distributions
due to photo-z methodology. We explore this by replacing
the default COSMOS reweighted pa(z) with ones derived
from stacked PDFs. For this purpose we adopt three dif-
ferent photo-z methods, DEmP, Ephor AB, and FRANKEN-
Z (see sub-subsection 2.2.1), for which stacked PDFs are
shown in figure 1. This is a rather empirical test, as each
photo-z method has its own bias and errors (Tanaka et al.
2018), thus this test should be considered as a sensitivity
check. The results are shown in figure 11 [panels (d), (e),
and (f)] and figure 7. Again, we find that the changes in
the cosmological constraints are not significant. Thus we
conclude that no additional systematics are identified from
this test.

6.4 Internal consistency

Here we present results of internal consistency checks in
which we derive cosmological constraints from subsets of
the data vector and compare the results with ones from
a reference setup. In doing so, we do not use the fidu-
cial results as the reference, but instead we adopt the
results from the “cosmology alone” setup, in which we
include neither systematics nor astrophysical parameters
but only five cosmological parameters are included as a
baseline for comparison. The reason for this choice is to
avoid undesirable changes in nuisance parameters, espe-
cially redshift-dependent parameters such as the redshift
dependence parameter of the IA ηIA and photo-z error
parameters �zi , which may add or cancel out shifts in
parameter constraints. Of course, this has the side effect
that the reference setup does not provide the best cosmo-
logical constraints, although the difference from the fidu-
cial case is not significant. In fact, the differences in the
marginalized cosmological constraints between the fiducial
setup and the “cosmology alone” setup is about the level of
those between the fiducial setup and the “w/o IA” setup, as
ignoring IA contribution has the largest effect. To summa-
rize, considering the facts that our aim here is to carry out
an internal consistency check and that the side effect is not
significant, we adopt the “cosmology alone” setup as the
reference.

6.4.1 Tomographic redshift bins
First, we exclude one of the four redshift bins and per-
form the cosmological inference with three tomographic
bins. The resulting cosmological constraints are shown in
figure 12 [panels (a)–(d)], and the derived 68% confidence

Fig. 12. Comparison of constraints in the �m–σ 8 plane from the cos-
mology alone setup (gray contours) with different setups for internal
consistency checks (red contours showing 68% and 95% confidence
levels). (Color online)

Fig. 13. Means and 68% confidence intervals of marginalized one-
dimensional constraints on S8. The “cosmology alone” case (top) is
compared with different setups for internal consistency checks. Vertical
dotted lines show the 68% confidence interval of the cosmology alone
case.

intervals of S 8 are compared in figure 13. We find that con-
straints on S 8 from these setups are consistent within 1σ

of the reference result. Figure 13 may look odd in the sense
that all the setups have a lower mean value of S 8 than
that of the reference setup. This is a result of changes of
the posterior distributions in the �m–σ 8 plane in different
directions, leading to a smaller S 8 by chance. Also, figure 12
shows that 68% confidence contours in the �m–σ 8 plane
in these cases largely overlap with the reference contour.
Thus we conclude that no significant internal inconsistency
is found from this test.
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Fig. 14. Marginalized posterior contours (68% and 95% confidence
levels) in the �m–σ 8 plane (top), the �m–w plane (bottom left) and
the S8–w plane (bottom right) in the wCDM model are shown by red
contours. Constraints from the fiducial �CDM model are shown by the
gray contours, and Planck 2018 results for the wCDMmodel (Planck Col-
laboration 2018, TT+TE+EE+ lowE) are also shown by blue contours.
(Color online)

It may be worth noting that excluding one redshift bin
leads to relatively large shifts in �m constraints, as shown
in figure 12. This is due to the fact that the constraint on �m

is mainly driven by the relative amplitudes of cosmic shear
TPCFs in different tomographic bins, as was discussed in
Hikage et al. (2019).

6.4.2 Angular ranges
Next, we check the internal consistency among different
angular ranges by splitting the fiducial angular bins in half.
To be specific, the nine (eight) angular bins of ξ+(ξ−) are
split into four (four) smaller θ bins and five (four) larger θ

bins. The resulting cosmological constraints, in comparison
with the “cosmology alone” case, are shown in figure 12
[panels (e) and (f)] and figure 13. It is found that for the
case of the smaller-half bins, the constraint on S 8 shifts to
a smaller value by 0.42σ , with the posterior contours on
�m–σ 8 plane being elongated along the �m–σ 8 degeneracy
direction. On the other hand, the constraint on S 8 in the
case of the larger-half bins shifts by slightly more than 1σ

from the reference result. However, the 68% confidence
interval of this case is about two times larger than that of
the reference case. In addition, the confidence contours in
the �m–σ 8 plane largely overlap with those of reference
cases. Thus no strong evidence of internal inconsistency is
found by this test.

6.5 wCDM model

In addition to the fiducial �CDM model, we test one
extension model by including the time-independent dark

Fig. 15. Marginalized posterior contours (68% and 95% confidence
levels) in the �m–σ 8 plane. Our result from the fiducial �CDM model
(gray contours) is compared with results in the literature (red-line con-
tours): Note that although different studies adopt different priors and
different modeling choices, we do not adjust them to our fiducial setup,
but rather use their original setups. Therefore, part of the difference in
the posteriors may be due to the different choice of priors and mod-
eling. (a) HSC first-year cosmic shear power spectrum result (Hikage
et al. 2019). (b) Dark Energy Survey Year 1 (DES-Y1) cosmic shear TPCF
result (Troxel et al. 2018). (c) KiDS+VIKING-450 cosmic shear TPCF
result (Hildebrandt et al. 2020). (d) Planck 2018 CMB result without CMB
lensing (Planck Collaboration 2018, TT+TE+EE+ lowE) (red lines) and
Planck 2015 CMB result without CMB lensing (Planck Collaboration 2016,
TT+ lowP) (blue lines). (Color online)

energy equation of state parameter w. We allow w to vary
with a flat prior in the range −2 < w < −1/3. The setup
of the other parameters are same as the fiducial �CDM
model.

The marginalized constraints in the �m–σ 8, �m–w, and
S 8–w planes are shown in figure 14, along with constraints
from the fiducial �CDM model and the Planck 2018
results for the wCDM model (Planck Collaboration 2018,
TT+TE+EE+ lowE).Marginalized one-dimensional con-
straint ranges of �m, σ 8, and S 8 are shown in figures 8, 9,
and 7, respectively. It is found that adding w as a model
parameter degrades constraints on cosmological parame-
ters, and that the current HSC cosmic shear TPCFs alone
cannot place a useful constraint on w. This is quantitatively
very similar to the result found in the HSC cosmic shear
power spectrum analysis by Hikage et al. (2019).

6.6 Comparison to other constraints
from the literature

Finally, we compare the cosmological constraints from our
fiducial �CDM model with other results in the literature.
Comparison plots in the �m–σ 8 plane are presented in
figure 15, where constraints from other studies are derived
from publicly available chains. Note that although dif-
ferent studies adopt different priors, we do not adjust them
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Fig. 16. 68% confidence intervals of marginalized posterior distribu-
tions of S8 = σ 8

√
�m/0.3. Our result from the fiducial �CDM model

is compared with other results in the literature, HSC first-year (HSC-
Y1) cosmic shear power spectra (Hikage et al. 2019), DES-Y1 cosmic
shear TPCFs (Troxel et al. 2018), KiDS+VIKING-450 cosmic shear TPCFs
(Hildebrandt et al. 2020), and Planck 2018 CMB (Planck Collaboration
2018, TT+TE+EE+ lowE), and Planck 2015 CMB (Planck Collabora-
tion 2016, TT+ lowP without lensing). Since different studies adopt dif-
ferent definitions of the central values (mean, median, or peak of the
posterior distribution), central values are not shown to avoid possible
misunderstanding.

to our fiducial setup, but rather use their original priors.
Also, different studies adopt different modeling choices, for
example, Dark Energy Survey Year 1 (DES-Y1; Troxel et al.
2018) adopts the uniform sampling of AS, instead of the
logarithmic sampling that adopted in KiDS+VIKING-450
(Hildebrandt et al. 2020) and this study. Therefore, part
of the difference in the posteriors may be due to the dif-
ferent choices of priors and modeling. Figure 16 compares
the 68% confidence intervals of S 8 = σ 8

√
�m/0.3, where

results of other studies are taken from the literature.
DES-Y1 covers a much larger area (1321 deg2) than

the HSC first-year data, yielding slightly tighter constraints
than our fiducial results. The confidence contours of DES-
Y1 in the �m–σ 8 plane largely overlap with our results,
although our confidence regions are roughly 1.3 times
larger than theirs. However, the two constraints are slightly
misaligned in the direction perpendicular to the �m–σ 8

degeneracy direction. This results in about 1σ difference in
best-fitting S 8 values, as seen in figure 16.

KiDS+VIKING-450 covers 341.3 deg2. A large part of
our survey fields are included in their survey fields. Their
total number of galaxies is ∼ 12 million, about 30% larger
than our sample. The redshift range of galaxies they used in
their cosmological analysis is 0.1 < z < 1.2, which is lower
than the redshift range adopted in our analysis, 0.3 < z <

1.5. As is found in figure 15, compared with our posterior
contours, contours from KiDS+VIKING-450 are located
on the lower �m side, and are slightly elongated in the
higher-σ 8 direction. Their best-fitting S 8 value is about 2σ

lower than ours, but our error bars overlap (see figure 16).
It is found from figure 15 that the confidence contours in

the �m–σ 8 plane from the Planck 2018 CMB result (Planck
Collaboration 2018, TT+TE+EE+ lowE without CMB

lensing) as well as the Planck 2015 CMB result (Planck Col-
laboration 2018, TT+ lowP without CMB lensing) overlap
well with our confidence contours from the HSC first-
year TPCF analysis. The 68% confidence intervals of S 8

from Planck 2015 and 2018 are also consistent with our
result, although S 8 from Planck prefers a slightly higher
value than our constraints. We therefore conclude that
there is no tension between Planck 2015 and 2018 con-
straints and our cosmic shear constraints. The concordance
between our HSC cosmic shear TPCF result and the Planck
CMB result in the flat �CDM model will place useful con-
straints on extended models such as the wCDM model,
although a combined cosmological inference with Planck
data is beyond the scope of this study. In fact, a compar-
ison between those constraints shown in figure 14 implies
that a tighter lower limit on w may be obtained by such a
combined analysis.

6.7 Comparison with HSC first-year cosmic shear
power spectrum result

Figure 15 indicates that the 68% confidence contours from
the cosmic shear power spectrum analysis by Hikage et al.
(2019) and from this study overlap onlymildly, even though
they share the same HSC first-year weak lensing shape cat-
alog (Mandelbaum et al. 2018b) and adopt a similar anal-
ysis setup, including the definition of tomographic bins and
the treatment of the IA and systematics parameters. The
68% marginalized one-dimensional confidence intervals of
�m and σ 8 from these two studies also overlap only slightly.
For instance, figure 16 indicates that there is ∼ 1σ differ-
ence in the S 8 constraints between these two studies. The
differences between the median values of S 8 and �m are
−0.024 and −0.17, respectively, where the standard devi-
ations of those parameters found in this study is 0.031 and
0.087, respectively. These differences could be indicative of
unknown systematic errors in either or both of the analyses
and/or originate from different angular scales used in those
two cosmological analyses, and therefore we will examine
this carefully below.

We use realistic HSC mock catalogs to check whether
these differences can be explained simply by a statistical
fluctuation. The mock catalogs used in this analysis are
the ones described in Oguri et al. (2018) and adopted in
Hikage et al. (2019). These differ slightly from the mock
catalogs used in this paper to derive the covariance matrix
in appendix 4, although we note that these two sets of mock
catalogs are generated by almost the samemethodology and
therefore are very similar. We perform the cosmological
inference on the 100 mock catalogs using the same param-
eter setup as the fiducial setup except that we fix the PSF
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Fig. 17. Scatter plot showing median values of marginalized one-
dimensional posterior distributions of S8 derived from cosmological
analyses on 100 mock catalogs. Results from the power spectrum anal-
ysis by Hikage et al. (2019) are compared with ones from the TPCF
analysis in this study. The red cross shows the value of S8 adopted in
generating the mock catalogs. (Color online)

modeling errors αpsf and βpsf to zero because no PSF mod-
eling error is added in the mock data. Hikage et al. (2019)
also performed their power-spectrum based cosmological
inference on the same mock catalogs adopting their fiducial
setup. From these analyses on the mocks, we can deter-
mine the covariance of best-fitting cosmological parame-
ters between the cosmic shear power spectrum analysis in
Hikage et al. (2019) and our cosmic shear TPCF analysis.

We present the scatter plot comparing S 8 values from
these two cosmological analyses on the same mock catalogs
in figure 17. We find that S 8 values from these two analyses
are only weakly correlated. We find that the correlation is
even weaker for �m. We find that, for S 8, 10 out of 100
cases have a difference �S 8 less than the observed value of
−0.024, and for �m, 14 out of 100 cases have a difference
��m less than the observed difference of −0.17. If we take
the two-side estimate, we find that for S 8(�m), 40 (16) out
of 100 cases have an absolute difference of |�S 8| > 0.024
(|��m| > 0.17). These results mean that these differences
can be explained by a statistical fluctuation at the ∼ 1.4σ

level.
To quantify the covariance of best-fitting cosmological

parameters further, we compute the correlation coefficient

r (q) = Cov(q,R,q,F )
Cov(q,R,q,R)1/2Cov(q,F ,q,F )1/2

, (23)

where q is either S 8 or�m, and the subscripts Rand F stand
for the real-space TPCF and Fourier-space power spec-
trum, respectively. We find r (S 8) = 0.50 and r (�m) = 0.16,
which confirms that the correlation between derived cos-
mological constraints from the two analyses is weak, espe-
cially for �m. The main reason for this weak correlation is
the different multipole ranges probed in these two anal-
yses. Hikage et al. (2019) adopted the multipole range
300 <  < 1900, whereas in appendix 5 we examine the
contribution to ξ± from different -ranges to show that a
large part of the contribution to ξ± on scales adopted in this
study comes from  < 300. This indicates that, in deriving
cosmological constraints, these two studies utilize fairly dif-
ferent and complementary information.

7 Summary and conclusions

We have presented a cosmological analysis of the cosmic
shear TPCFs measured from the HSC first-year data,
covering 136.9 deg2 and including 9 million galaxies
to i ∼ 24.5 AB mag. We used the HSC first-year shape
catalog (Mandelbaum et al. 2018b), which is based on
the re-Gaussianization PSF correction method (Hirata
& Seljak 2003) and is calibrated with image simulations
(Mandelbaum et al. 2018a). In order to examine the impact
of residual PSF errors on cosmic shear TPCFs, we utilized
the HSC star catalog which contains information on both
the star shapes and PSF models. Photometric redshifts
derived from the HSC five-band photometry are adopted to
divide galaxies into four tomographic redshift bins ranging
from z = 0.3 to 1.5 with equal widths of �z = 0.3. The
unweighted galaxy number densities for each tomographic
bin are (from the lowest to highest redshift) 5.9, 5.9, 4.3,
and 2.4 arcmin−2.

In addition to the HSC data set, we utilized HSC mock
shape catalogs constructed based on full-sky gravitational
lensing ray-tracing simulations (Takahashi et al. 2017). The
mock catalogs have the same survey geometry and shape
noise properties as the real data (Shirasaki et al. 2019). We
derived the covariance matrix adopted in our cosmological
analysis from 2268 mock realizations. The mock catalogs
are also used to assess the statistical significance of some of
our results.

10 combinations of auto- and cross-tomographic TPCFs
were measured with high signal-to-noise ratio over a wide
angular range. The total signal-to-noise ratio computed
over the angular ranges that we adopted in our cosmo-
logical analysis (7′ < θ < 56′ for ξ+ and 28′ < θ < 178′ for
ξ−) was S/N = 18.7, although a caveat is that this esti-
mate depends on the cosmological model used to derive
the covariance matrix; we adopt the WMAP9 cosmology.
We also examined the E/B-mode decomposition of the
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cosmic shear TPCFs to test our assumption in the cosmo-
logical analysis that the cosmic shear field is B-mode free.
In appendix 3, we evaluated the standard χ2 value for B-
mode TPCFs with the shape noise covariance, and found
χ2 = 86.9 for Nd = 90. We thus conclude that no evidence
of significant B-mode shear is found.

We performed a standard Bayesian likelihood analysis
for the cosmological inference of the measured cosmic shear
TPCFs. Our fiducial �CDM model consists of five cosmo-
logical parameters and includes contributions from intrinsic
alignment of galaxies as well as seven nuisance parameters
(two for PSF errors, one for shear calibration error, and
four for source redshift distribution errors). We found that
our model fits the measured TPCFs very well with a min-
imum χ2 of 162.3 for 167 effective degrees-of-freedom.
Marginalized one-dimensional constraints are (mean and
68% confidence interval) S 8 = σ 8

√
�m/0.3 = 0.804+0.032

−0.029,
�m = 0.346+0.052

−0.100, and σ 8 = 0.766+0.110
−0.098. Although we fixed

the neutrino mass of
∑

mν = 0.06 eV in the fiducial model,
we found that varying the neutrino mass has little effect
on the cosmological constraints. We also tested a wCDM
model to find that allowing the dark energy equation of
state parameter w to vary degrades the S 8 constraint to
S 8 = 0.795+0.043

−0.047. We have found that the current HSC
cosmic shear TPCFs alone cannot place a useful constraint
on w.

We have carefully checked the robustness of our cosmo-
logical results against astrophysical uncertainties in mod-
eling and systematics uncertainties in measurements. The
former includes the intrinsic alignment of galaxies and the
baryonic feedback effect on the nonlinear matter power
spectrum, and the latter includes PSF errors, shear calibra-
tion error, errors in the estimation of source redshift distri-
butions, and a residual constant shear over fields. We have
tested the validity of our treatment of those uncertainties by
changing parameter setups or by adopting extreme models
for them. We have found that none of these uncertainties
has a significant impact on the cosmological constraints.
Specifically, different setups yield shifts in best-fitting S 8

values of ∼ 0.6σ of the statistical error at most. We have
also confirmed the internal consistency of our results among
different redshift and angular bins.

Our constraint contours in the �m–σ 8 plane largely
overlap with those of DES-Y1 (Troxel et al. 2018), although
the two contours are slightly misaligned, resulting in about
a 1σ difference in the best-fitting S 8 value; our best-fitting
S 8 is higher than that fromDES-Y1. A larger difference was
found between KiDS+VIKING-450 (Hildebrandt et al.
2020) and our result. In fact, the best-fitting S 8 value from
KiDS+VIKING-450 is ∼ 2σ lower than our result. We
have found that the S 8 constraint from Planck (Planck Col-
laboration 2018) is consistent with our result within 1σ

level. We found that the 68% confidence contour in the
�m–σ 8 plane from Planck nicely overlaps with our result.

Hikage et al. (2019) used the same HSC first-year weak
lensing shape catalog but adopted the cosmic shear power
spectra to derive cosmological constraints. We have found
about a 1σ level difference in S 8 constraints between the
cosmic shear power spectrum analysis and our comic shear
TPCF analysis, even though they share the same shape
catalog. We used mock catalogs to examine the statis-
tical significance of the difference. We have found that the
difference can be explained by a statistical fluctuation at
about the 1.4σ level. We also used the mock catalog to
examine the correlation in derived cosmological constraints
between these two studies, and have found the cross-
correlation coefficients of r (S 8) = 0.50 and r (�m) = 0.16.
The reason for these weak correlations, especially for �m,
is the different multipole ranges probed in these two anal-
yses. Hikage et al. (2019) adopted the multipole range
300 <  < 1900, whereas a large part of the contribution
to ξ± over angular ranges adopted in this study comes from
 < 300, indicating that two studies utilize fairly different
and complementary information in deriving cosmological
constraints.

In summary, our S 8 constraint is located on the high
side among recent cosmic shear studies and is fully consis-
tent with the latest Planck CMB result. Among the recent
studies mentioned above, only the KiDS+VIKING-450
result is inconsistent with our result at a ∼ 2σ level. Since
the KiDS survey fields largely overlap with HSC survey
fields, it is worth analyzing their public shape catalog with
our methodology to understand its origin, which we leave
for future work.

This paper presents cosmological results based on the
HSC first-year data. When the HSC survey is completed, we
will have about seven times more area, which will improve
both the statistical error and the cosmic variance. In addi-
tion to this, improvement efforts on several analysis tech-
niques are underway, including PSFmeasurement andmod-
eling (Aihara et al. 2019), photo-z estimations, and shear
measurements. In future, it would be important to explore
other missing redshift-dependent selection biases by using
techniques such as metacalibration (Huff & Mandelbaum
2017; Sheldon & Huff 2017), and it would be also impor-
tant to implement more advanced methods of accounting
for baryonic feedback effects such as that proposed by Eifler
et al. (2015).

Recently, Joudaki et al. (2019) argued that the system-
atic uncertainties in the redshift distribution of galaxies
derived by the reweighted method bases on the COSMOS
30-band photo-z (Ilbert et al. 2009) might be underesti-
mated and could lead to a bias in the cosmological con-
straints due to outliers in the COSMOS 30-band catalog.
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They showed that S 8 constraints from both KiDS-VIKING
450 and DES-Y1 inferred adopting the redshift distribu-
tions based on spectroscopic samples are lower than ones
based on a COSMOS 30-band photo-z sample. A plau-
sible reason for these differences could be the systematic
uncertainties in the COSMOS 30-band photo-z, though fur-
ther close examination of the redshift distribution is needed
to reach a firm conclusion. One might deduce from their
finding that a similar bias may exist in our analysis. Take
the case of DES-Y1; for example, the difference between
S 8 values inferred adopting the two redshift distributions is
|�S 8| = 0.030 (Joudaki et al. 2019), which corresponds to
∼ 1σ of our S 8 constraint. Thus, this is indeed one impor-
tant issue to be explored in a future study (see appendix 6
for a related discussion). However, in our case it is not fea-
sible to use spec-z samples for a reference sample, because
a spec-z sample that reaches the depth of an HSC weak
lensing catalog is not available now. A possible method to
calibrate the photo-zwithout relying on COSMOS 30-band
photo-z is a cross-correlation method (Newman 2008),
which we will adopt in a future work.
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Appendix 1. Mean shear values over fields

The value of the shear averaged over a field is not expected
to be zero due to the presence of the cosmic shear signal
on scales larger than a field. However, it could also be
non-zero due to residual systematics in the shear estimation
and/or data reduction process. The latter, if present, may
bias the cosmological inference. While systematic tests on
theHSC first-year shape catalog (Mandelbaum et al. 2018b)
found no evidence of amean shear above that expected from
large-scale cosmic shear, we closely re-examine this ques-
tion here because the shear correlation function, especially
ξ+, is directly affected by the residual mean shear.

The measured mean shear values over each field are
shown in figure 18 for each tomographic sample, as well
as for the combined sample of the four tomographic bins.
From those plots, we find that mean shear values for each
field are about |γ | ∼ 10−3. In order to estimate the ampli-
tude of the mean shear caused by the cosmic shear signal on
scales larger than a field, we use a set of 2268 mock catalogs
described in appendix 4. For each field and for each tomo-
graphic sample from a mock catalog, we measure mean
shear values. We repeat this measurement for each of the
2268 mock catalogs, and sort the mean shear values to find
a 68.3% enclosing mean shear value below which 1549
mock samples are enclosed. The results for the combined
sample of the four tomographic bins are shown in figure 18

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/72/1/16/5732415 by guest on 30 June 2021

http://dm.lsst.org


16-25 Publications of the Astronomical Society of Japan (2020), Vol. 72, No. 1

Fig. 18. Measured mean shear values over each field are plotted for
each tomographic sample (magenta filled squares, blue triangles, green
open squares, and black crosses from the lowest to highest redshift
tomographic bins, respectively), and for the combined sample of all
four tomographic bins (red open circles). The dashed circle shows the
68.3% enclosing mean cosmic shear value for the combined sample, as
estimated from mock catalogs (see appendix 1). The 68.3% enclosing
mean shear values for each tomographic bin are about 0.77, 1.1, 1.4,
and 1.7 times larger than those for the combined sample for the lowest
to highest redshift tomographic bins, respectively. (Color online)

as the dashed-line circle for each field, with slightly different
circle sizes for mean shear values of individual tomographic
bins (see the caption of figure 18 for more details). We note
that the mean shear value expected from the intrinsic shape
noise is σe/

√
N g ∼ 0.3/

√
106−7 ∼ O(10−4), where σe is the

root-mean-square value of the intrinsic galaxy distortion (in
shear units) and Ng is the number of galaxies. This value is
much smaller than the mean shear from the mock catalogs,
suggesting that the mean shear value is indeed dominated
by cosmic shear that is coherent over the field. We find
from figure 18 that most of the measured values are located
within the 68.3% enclosing circle, which is consistent with
the finding in Mandelbaum et al. (2018b). In fact, only the
highest redshift tomographic bin of GAMA09H field has a
mean shear beyond the 95.5% range (|γ | = 3.0 × 10−3 for
this case).

In addition to the above test, we estimate a statistical
significance of the measured mean shears against the null
hypothesis that they arise solely from the cosmic shear as
follows. Using the data set of mean shears measured from
the tomographic mock catalogs, we derive the covariance
matrix (see appendix 4.1 for details), Cov(di , dj ), where di
is the data vector consisting of mean values of the two shear
components in each of the four tomographic bin, namely
di = (γ̄ 1

1 , γ̄ 2
1 , γ̄ 3

1 , γ̄ 4
1 , γ̄ 1

2 , γ̄ 2
2 , γ̄ 3

2 , γ̄ 4
2 ). Given this covariance

Table 2. Summary of χ2 and p-values of the mean shear over

each field.∗

Field χ2 p-value

XMM 4.6 0.80
GAMA09H 17.2 0.028
WIDE12H 5.2 0.73
GAMA15H 13.7 0.089
VVDS 9.1 0.33
HECTOMAP 14.8 0.063

∗There are 8 degrees of freedom (2 shear components multiplied by 4 tomo-
graphic bins), and the covariance matrix is derived from mock catalogs
(see appendix 4).

matrix for each field, we compute χ2 of the data relative to
the null hypothesis; the results are summarized in table 2
along with the corresponding p-values. The p-values are
reasonable for all fields except the GAMA09H field, in
which the p-value is slightly smaller than the conventional
criterion of 0.05. However, since we measured the mean
shear independently in six fields, the chances of getting one
field with a p value less than 0.028 is 1 − 0.9726 = 0.16.
Thus we conclude that the measured mean shears are
consistent with that expected from large-scale cosmic shear.

Although we have found no clear evidence of additive
shear bias arising from residual systematics, we check the
impact of such a possible residual shear on our cosmo-
logical analysis by modeling it as a redshift-independent
constant shear, which we denote as γ̄ . We expect that the
redshift-independent constant shear is a reasonable assump-
tion for the following reason. The redshift-dependence of
shapemeasurements may arise from the difference of galaxy
properties such as sizes between different redshifts, which
are estimated as the selection biases, ma

sel and ma
R (see sub-

subsection 2.3.1 and subsection 5.7 of Hikage et al. 2019).
We find that the variation in the redshift-dependent selec-
tion biases (to be specific, 1 + ma

sel + ma
R) among four tomo-

graphic bins is ∼ 2% at largest (see table 3 of Hikage et al.
2019). In our systematics tests in sub-subsection 5.2.3, we
add γ̄ to the theoretical model of ξ+, and then marginalize
over γ̄ to see how cosmological constraints change. We
note that ξ− is unaffected by this constant shear due to the
cancellation between 〈γtγt〉 and 〈γ×γ×〉.

Appendix 2. PSF leakage and residual PSF

model errors

In this appendix, we examine the impact of PSF leakage
and residual PSF model error on the measurement of shear
correlation functions, employing the simple linear model
as described in equations (6) and (7). The model parame-
ters, αpsf and βpsf, can be estimated by the cross-correlation
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Fig. 19. Upper (bottom) panel shows the cross-correlation function
between galaxy shears and PSF shapes (difference in shapes between
the PSF and stars) converted into shear. Filled squares and red crosses
are for ξ+ and ξ−, respectively. In the bottom panel, points are horizon-
tally shifted slightly for clarity. Inmeasuring these signals, the combined
catalog of the four tomographic redshift bins is used for the galaxy shear
sample, and reserved stars (as described in subsection 3.2) are used for
the PSF sample. (Color online)

functions between γ p,q and galaxy shears, ξ gp,gq = 〈γ̂ γ p,q〉,
which are related to ξ

pp,pq,qq
± as

ξ
gp
± =αpsfξ

pp
± + βpsfξ

pq
± , (A1)

ξ
gq
± =αpsfξ

pq
± + βpsfξ

qq
± . (A2)

In measuring these quantities, we use reserved stars, which
are described in more detail in subsection 3.2, for the PSF
sample; for the galaxy shear sample, we use the combined
catalog of the four tomographic redshift bins, because the
measurement of ξ

gp,gq
− is very noisy, as shown below. As a

consequence, we do not take into account possible redshift-
dependence of αpsf and βpsf. See subsection 4.2 of Hikage
et al. (2019) for further discussions on this point.

We first consider the ξ+ component. The measured
ξ
gp,gq
± are shown in figure 19, where the error bars rep-
resent the shape noise. As shown in the upper panel, we
obtain high signal-to-noise ratio detections for ξ

gp
+ over a

wide angular range. The signal-to-noise ratios for ξ
gq
− are

marginal, but there is a clear trend toward negative values.
Using these measured values, together with ξ

pp,pq,qq
+ shown

in figure 20, we derive αpsf and βpsf with equations (A1)
and (A2). The results are shown in figure 21, where we
omit error bars which are dominated by errors on ξ

gq
+ (see

the lower panel of figure 19). Taking the simple average
and standard deviation of the nine points in the angular

Fig. 20. Auto- and cross-correlation functions between PSF shapes (γ p)
and the difference between PSF and star shapes (γ q), i.e., ξ

pp
+ (black

crosses), ξqq+ (red squares), and ξ
pq
+ (blue bars for ξ

pq
+ > 0, and magenta

bars for ξ
pq
+ < 0 plotted as −ξ

pq
+ ). (Color online)

Fig. 21. Model parameters in PSF leakage and residual PSF model
derived for ξ+ using equations (A1) and (A2). Error bars, which largely
come from errors on ξ

gq
+ (see the lower panel of figure 19), are not

shown.

range from ∼ 8′ to ∼ 50′, the range used in the cosmo-
logical analysis in this study, we find αpsf = 0.029 ± 0.010
and βpsf = −1.42 ± 1.11, which we adopt as the prior
ranges of these parameters. Hikage et al. (2019) derived
the same quantities with the same data set but in the
power spectrum analysis, and found αpsf = 0.057 ± 0.018
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Fig. 22. ξpsf,+ defined in equation (7) is shown. Here we adopt αpsf =
0.029 ± 0.010 and βpsf = −1.42 ± 1.11. Errors are computed from those
of αpsf and βpsf.

and βpsf = −1.22 ± 0.74. There is a difference in the cen-
tral values of αpsf, although they are marginally consis-
tent with each other. This difference might reflect the
different angular ranges between the two studies (see
appendix 5).

Using the derived parameter values, we compute an esti-
mate of the impact of the PSF errors on ξ+, namely ξpsf,+
defined in equation (7). The result is shown in figure 22,
where error bars are computed from those of αpsf and βpsf.
The derived ξpsf,+ should be considered as a rough esti-
mate because it is based on the simple linear model, equa-
tions (6) and (7). Taking into account the large error bars, it
is reasonable to conclude that ξpsf,+ is about 10−6 on scales
5′ < θ < 60′.

Next we measure the ξ− component. The measured
ξ
pp,qp,qq
− are shown in figure 23 and ξ

gp,gq
− are shown in

figure 19. The SN values are lower compared with the
corresponding ξ+ components; ξ

qq
− and ξ

gq
− are especially

noisy. We thus cannot measure αpsf and βpsf from ξ− alone.
In order to examine the impact of PSF leakage and residual
PSFmodel errors on the cosmic shear ξ−, we employ the esti-
mates from ξ+ instead. Taking αpsf ∼ 0.03 and βpsf ∼ −1.4,
we find the additional PSF term in equation (7) is about
−1 × 10−8 at θ ∼ 1◦, which is more than two orders of
magnitude smaller than the cosmic shear signals. Thus, for
ξ− we do not apply any correction for systematics caused
by the residual PSF and PSF model.

Fig. 23. From top to bottom panels, ξ
pp
− , ξ

pq
− , and ξ

qq
− are shown. See

subsection 3.1 for their definitions and details of measurements. Error
bars represent the shape noise.

Appendix 3. E/B-mode cosmic shear TPCFs

In this appendix, we present E/B-mode (gradient/curl-mode)
decomposition of the cosmic shear TPCFs (Crittenden et al.
2002). The purpose here is to test our assumption that the
cosmic shear field we used for the cosmological analysis is
consistent with being B-mode free as expected from gravita-
tional lensing by a scalar gravitational field (Kaiser 1992).
Note that the B-mode shear component in the HSC first-
year shear catalog was examined by Oguri et al. (2018) and
Hikage et al. (2019); the former looked into the B-mode
aperture mass map, whereas the latter used the cosmic shear
power spectra in the multipole range of 300 <  < 1900,
and both concluded that the B-mode component is consis-
tent with zero. Here we examine the E/B-mode tomographic
shear TPCFs, allowing us to closely examine B-mode sig-
nals both for individual tomographic bins and for individual
θ -bins of ξ+(θ ).

The E/B-mode shear TPCFs are given via ξ± as

ξE(θ ) = ξ+(θ ) + ξ ′(θ )
2

, (A3)

ξB(θ ) = ξ+(θ ) − ξ ′(θ )
2

, (A4)

where

ξ ′(θ ) = ξ−(θ ) + 4
∫ ∞

θ

dφ

φ
ξ−(φ) − 12θ2

∫ ∞

θ

dφ

φ3
ξ−(φ). (A5)
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Fig. 24. Bottom right-hand triangular tiled plots: The measured E-mode
tomographic shear correlation function ξE (red bars with error bars)
compared with ξ+ (black solid line). Combinations of tomographic red-
shift bins are labeled in each plot. Top left-hand panel: E-mode (red
symbols) and B-mode (blue symbols) non-tomographic (the galaxies in
all four tomographic bins 0.3 < z < 1.5 are combined) shear correlation
functions. Error bars represent the shape noise for ξE/B. Vertical dotted
lines show the angular range (for ξ+) used for the cosmological analysis.
(Color online)

In the computation of the two integrals of equation (A5),
we measure ξ−(θ ) in the θ -range 0.′16 ≤ θ ≤ 416′ in equal
log-intervals of � log θ = 0.02. In order to complete the
integrals in equation (A5) beyond θ = 416′, we use the
theoretical model with the WMAP9 �CDM cosmology
(Hinshaw et al. 2013). The result is not sensitive to the
choice of the cosmological model for the angular range we
adopt for ξ+ (7.′1 ≤ θ ≤ 56′).

The measured E/B-mode TPCFs are shown in figures 24
and 25, where the error bars represent the shape noise for
ξE/B. In order to evaluate the significance of the B-mode,
we compute the standard χ2 value for the null signal, for
tomographic B-mode TPCFs with the shape noise covari-
ance estimated from the data.We adopt the angular range of
our fiducial choice for ξ+, which is shown with dotted ver-
tical lines in figure 25, and we combine all 10 tomographic
combinations. We find χ2 = 85.1 for Nd = 90, leading to
a p-value of 0.63. Therefore, we safely conclude that no
evidence for a significant B-mode shear is found.

Appendix 4. Mock simulation data

Here we describe the HSC mock shape catalogs, focusing
on aspects which are directly relevant to this study. See
Shirasaki et al. (2019) for a full description of how the

Fig. 25. Bottom right-hand triangular tiled plots: The measured B-mode
tomographic shear correlation function ξB normalized by the shape
noise σ for ξB. Top left-hand panel: B-mode non-tomographic shear cor-
relation functions normalized by the shape noise. Vertical dotted lines
show the angular range (for ξ+) used for the cosmological analysis,
whereas the horizontal dotted lines represent ±1. (Color online)

mock data were constructed, and a comprehensive study of
the covariance matrix.

Mock catalogs are constructed based on 108 realizations
of the full-sky gravitational lensing ray-tracing simulation
through a large set of cosmological N-body simulations
(Takahashi et al. 2017).7 The simulations adopt a flat
�CDM cosmology which is consistent with the WMAP9
cosmology (Hinshaw et al. 2013) with �c = 0.233, �b =
0.046, the total matter density �m = �c + �b = 0.279,
�� = 1 − �m = 0.721, h = 0.7, σ8 = 0.82, and ns = 0.97.
The lensing data (convergence and shear) are computed
on HEALPix (Górski et al. 2005) format grids with a
grid spacing of 0.′42, and on 38 source planes with a
regular radial interval of comoving 150 h−1Mpc. The most
distant source plane is located at z = 5.3. The degree of
independence in 108 full-sky realizations has been studied
in Shirasaki et al. (2017), who show that the 108 full-sky
maps can be safely regarded as independent realizations.

From each full-sky lensing data, 21 non-overlapping
HSC footprints are taken, yielding a total of
21 × 108 = 2268 independent mock samples. Here we
briefly describe the procedure for constructing HSC mock
shape catalogs, referring interested readers to Shirasaki
et al. (2019), Shirasaki and Yoshida (2014), Shirasaki
et al. (2017), and Oguri et al. (2018) for more details. For
each mock realization, galaxy positions are taken from the

7 The full-sky light-cone simulation data are freely available for download at
〈http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/〉.
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real HSC shape catalog to keep exactly the same survey
geometry including masked regions. The same tomographic
redshift sampling as the real sample is made based on the
same point estimator of photo-zs. The redshift of each
galaxy is drawn randomly according to the photo-z PDF
P(z) for each mock realization. The intrinsic galaxy shape
and shape measurement noise are taken from the two-
component distortion (e1, e2) of the real HSC shape catalog
(an estimate of the measurement noise is also given in the
catalog) but a random rotation is applied to erase the cosmic
shear signal in the real catalog. This allows us to preserve
both the intrinsic shape noise and measurement noise in the
statistical sense. Finally, the lensing shear and convergence
are taken from full-sky simulation data for each galaxy,
and mock distortion data, (e1, e2), were computed using the
relationship between the observed (i.e., lensed) and intrinsic
galaxy shapes under the action of gravitational lensing
(e.g., Miralda-Escude 1991; Bernstein & Jarvis 2002).

A4.1 Covariance of mean shears over fields

A mean shear over a field can naturally arise from the grav-
itational lensing shear effect on scales larger than the field,
and also can arise from residual systematics in shear estima-
tion and/or image processing. The latter, if it exists, can have
an influence on the cosmological inference. In appendix 1,
we utilize the mock catalogs to check if the measured mean
shears over each field in the real HSC shape catalog are
consistent with the cosmic shear origin. Here, we describe
the covariance matrix of mean shears which is used in
this test.

We compute the mean shear of mock catalogs for each
field and for each tomographic sample. It is computed by a
simple mean with the shear weight (w), γ̄ a

i = ∑
wγi/

∑
w,

where the subscript i denotes the two shear components, the
superscript a denotes the tomographic bins, and the sum-
mation runs over all galaxies in each tomographic sample
and field. We then define the data vector consisting of eight
mean shear components,

di = (
γ̄ 1
1 , γ̄ 2

1 , γ̄ 3
1 , γ̄ 4

1 , γ̄ 1
2 , γ̄ 2

2 , γ̄ 3
2 , γ̄ 4

2

)
. (A6)

Finally, for each field we compute the covariance
matrix of the data vector using 2268 mock realiza-
tions, denoted by Cov(di ,dj ). Figure 26 shows the cor-
relation coefficients of the covariance matrix, r (di ,dj ) =
Cov(di ,dj )/

√
Cov(di , di ),Cov(dj ,dj ) for the GAMA09H

field as an example. We find that the mean shears in dif-
ferent tomographic bins are strongly correlated. This is the
natural consequence of galaxies at different redshifts being
affected by the same large-scale structure along the line-
of-sight. We also find that the correlation is tighter for

Fig. 26. Two-dimensional matrix plot showing the correlation
coefficient of the mean shear covariance matrix, r (di ,dj ) =
Cov(di ,dj )/

√
Cov(di ,di ),Cov(dj ,dj ). Here we show the result for the

GAMA09H field, but results in the other fields are almost identical to
this. (Color online)

Fig. 27. Root-mean-square values of two component mean shears
derived from the diagonal components of the covariance matrix, i.e.,
σa

γ̄
= [Cov(γ̄ a

1 , γ̄ a
1 ) + Cov(γ̄ a

1 , γ̄ a
1 )]

1/2. (Color online)

closer tomographic redshift bins. Figure 27 shows the root-
mean-square values of two component mean shears derived
from the diagonal components of the covariance matrix,
i.e., σ a

γ̄ = [Cov(γ̄ a
1 , γ̄ a

1 ) + Cov(γ̄ a
1 , γ̄ a

1 )]
1/2. As expected, the

root-mean-square value is higher for the higher redshift
tomographic bins, as the gravitational lensing effect is
stronger for sources at higher redshifts. The difference in
the root-mean-square values among different fields is due
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Fig. 28. Fractional contributions of ξ± coming from three disjointed -ranges: dashed lines for  < 300, solid lines for 300 <  < 1900, and dotted lines
for 1900 <  < 30000. Only the auto-correlation in the third tomographic bin, ξ33± , are plotted, but the results are similar for a different combination
of tomographic bins. Gray regions show the angular ranges used in this study.

to the different field areas. It is important to note that
the expected value of the mean cosmic shear over a field
depends on the cosmological model, and thus the covari-
ance also does. The root-mean-square values presented
here are for the WMAP9 cosmology adopted in the mock
simulations.

Appendix 5. Connection with the power

spectrum analysis

In this study, we used exactly the same tomographic galaxy
samples as those used in Hikage et al. (2019), but that
study adopted Fourier-space power spectra rather than the
real-space TPCFs used in this paper. Here we compare the
information content in the measured cosmic shear statistics
between two studies.

To do so, we divide the -integration range of the TPCFs
into three parts [see equation (5)];  < 300, 300 <  <

1900, and  > 1900. The second  range corresponds to the
range adopted in Hikage et al. (2019) for their cosmological
analysis. We evaluate these partial contributions assuming
the WMAP9 cosmology and compute the fractions to the
total TPCFs defined by ξ±(θ, min <  < max)/ξ±(θ ). The
results are shown in figure 28, in which we show the result
only for one combination of tomographic bins, as we find
that the results are quite similar for different combina-
tions of tomographic bins. On the angular range used in
this study, the dominant contribution to ξ+ comes from
 < 300, especially on larger θ scales. For ξ+, on scales θ <

60′, the major contribution comes from 300 <  < 1900,
whereas on larger scales the majority of the contribution
comes from  < 300. To summarize, a large part of the con-
tribution to ξ± on scales adopted in this study comes from

 < 300, which was not used in the cosmic shear power
spectrum analysis in Hikage et al. (2019).

We also evaluate the fractional contribution to the total
signal-to-noise ratio from the above three  ranges. We
define the partial signal-to-noise ratio as

S/N-part =
∑
i, j

di (ξ
-part
± )Cov−1

i j dj (ξ±), (A7)

where ξ
-part
± is the TPCFs computed from a limited -range.

Again we assume the WMAP9 cosmology and adopt the
same angular bins for the data vector di and covariance
matrix as those used in the actual cosmological analysis
in this study. We find that the fractional contributions to
the total S/N are 57% ( < 300), 37% (300 <  < 1900),
and 6% ( > 1900). It follows that, although Hikage et al.
(2019) and this study share the same dataset, in deriving
cosmological constraints two studies utilize fairly different
and complementary information. This also explains the
relatively weak correlations of cosmological constraints
derived from power spectrum and TPCF analyses when
analyzing the same mock catalogs (see subsection 6.7).
Note that the mock analysis presented in subsection 6.7
uses the realistic mock catalogs in which the realistic shape
noise and redshift distributions of galaxies are included.
We performed this test, instead of a noiseless test, to exper-
imentally examine the correlations between the two anal-
yses in the presence of such realistic noises. Nevertheless, a
noiseless test would be valuable to examine a more theoret-
ical aspect of the information content in the real/Fourier-
space cosmic shear measurements, which we leave for a
future study.
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Appendix 6. On an error in a constraint on

S8 caused by uncertainties in galaxy

redshift distributions

Here we derive a relationship between an uncertainty in a
galaxy redshift distribution and an error in a constraint
on S 8 induced by it in an approximative but reason-
ably reliable manner. Then we use the derived relation-
ship to discuss a possible impact of an error in the out-
lier fraction of galaxy redshift distributions on a constraint
on S 8.

Since the constraint on S 8 primarily comes from the
amplitude of the cosmic shear correlation function (or
power spectrum) on linear to quasi-nonlinear scales, we
will focus on ξ+(θ ) at θ = 10′. For simplicity, we will
not treat the full galaxy redshift distribution but charac-
terize the distribution with a single parameter, the mean
redshift denoted by z̄s. We consider ξ+(θ = 10′) for a
single source plane model [that is p(z) = δD(z − z̄s), where
δD is the Dirac’s delta function]. The relation between
ξ+(θ = 10′) and z̄s can be approximated by the following
power-law relation with good accuracy, ξ+(θ = 10′) ∝ z̄us
with u � 2.0 (1.8) for 0.1 < z̄s < 0.7 (0.7 < z̄s < 1.5). Also,
we find an accurate power-low relation with S 8 (for a
range of 0.4 < S 8 < 1.2), ξ+(θ = 10′) ∝ S v

8 with v � 2.8,
2.3, 2.0, and 1.8 for z̄s = 0.44, 0.77, 1.05, and 1.33,
respectively. From those two scaling relations, we have the
following relationship,

δS8
S8

= −u
v

δz̄s
z̄s

. (A8)

Note that the scaling factor u/v ranges from 0.7 to
1 for our range of interest, 0.4 � z̄s � 1.4. It is also
noted that the anti-relationship originates from the fact
that an over/under-estimation of the mean redshift leads
to an over/under-estimation of the theoretical predic-
tion, resulting in an under/over-estimation of S 8 to
compensate.

In the re-analysis of DES-Y1 cosmic shear data pre-
sented in Joudaki et al. (2019), it is reported that the
mean redshifts of the galaxy redshift distributions derived
based on the COSMOS 30-band photo-z are systematically
lower than those derived based on spectroscopic samples.
They found �z̄s (defined by z̄s[spec-z] − z̄s[COSMOS-
30]) of +0.014, +0.053, +0.020, and +0.035 for
their four tomographic redshift bins (0.2 < z < 0.43,
0.43 < z < 0.63, 0.63 < z < 0.9, and 0.9 < z < 1.3). They
found the best fit S8 values of 0.763 and 0.793 for galaxy
redshift distributions bases on the COSMOS 30-band
photo-z and the spectroscopic samples, respectively,
resulting in �S8 = S8[spec-z] −S8[COSMOS-30] =
−0.030. The relation between those values are in a good

agreement with one expected from the derived relationship,
equation (A8), supporting its validity.

Finally, we discuss a possible impact of an error in the
outlier fraction of galaxy redshift distributions on a con-
straint on S 8 using simple models. Suppose a galaxy red-
shift distribution has a bi-modal shape, such as one shown
in the top panel of figure 1, consisting of a main population
with 〈zmain〉 = 0.5 and an outlier population with 〈zout〉 = 3.
Assuming an outlier fraction of 5%, the mean redshift
of this distribution is z̄s = 0.95 × 0.5 + 0.05 × 3 = 0.625.
If we suppose a 10% error in the outlier fraction, the
error in the mean redshift is δz̄s = ±0.0125, leading to
δS 8 � ∓0.016 [here we used equation (A8) with u/v =
0.8]. Actual errors in the outlier fraction of our galaxy sam-
ples are not understood well, but this rough estimate gives
us a crude idea of its possible impact on a constraint on S 8.
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