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Abstract. In the next decade, the demands for computing in large scientific
experiments are expected to grow tremendously. During the same time period,
CPU performance increases will be limited. At the CERN Large Hadron Collider
(LHC), these two issues will confront one another as the collider is upgraded
for high luminosity running. Alternative processors such as graphics processing
units (GPUs) can resolve this confrontation provided that algorithms can be
sufficiently accelerated. In many cases, algorithmic speedups are found to
be largest through the adoption of deep learning algorithms. We present a
comprehensive exploration of the use of GPU-based hardware acceleration for
deep learning inference within the data reconstruction workflow of high energy
physics. We present several realistic examples and discuss a strategy for the
seamless integration of coprocessors so that the LHC can maintain, if not exceed,
its current performance throughout its running.
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1. Introduction

The detectors at the CERN Large Hadron Collider (LHC) have enormous data rates,
with a current aggregate of 100 Tb/s and plans to exceed over 1 Pb/s. The challenge of
processing this data continues to be one of the most critical elements in the execution
of the LHC physics program. A three-tiered approach is utilized to process LHC
data, where at each tier, the data rate is reduced by roughly two orders of magnitude,
resulting in a manageable final data rate of 10 Gb/s. Due to the high initial rate
and restrictions coming from the high radiation collision environment, the first tier
of computing consists of specialized hardware that utilizes field-programmable gate
arrays (FPGAs) and application-specific integrated circuits (ASICs). The second tier,
the high-level trigger (HLT), consists of a CPU-based computing cluster on-site at
the LHC. The third tier, performing complete “offline” event processing, consists of a
globally distributed CPU-based computing grid.
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The first decade of LHC running has led to an extensive set of scientific results.
These results include the discovery of the Higgs boson [1–3] and, more recently,
strong constraints on the nature of dark matter [4–6]. To contend with these strong
dark matter constraints, physicists have been forced to re-think their approach to
searching for dark matter and, generically, new physics models. This has led to the
development of light dark matter models [7]. These models often predict signatures
that could be produced at the LHC but would be discarded in the early tiers of
data reduction. To enable the search for these particles, it is imperative to improve
the quality of LHC data reconstruction at all tiers of processing. Additionally, over
the next decade, the LHC will progressively increase the beam intensity, resulting in
more data generated by the detectors. As a consequence, the demands for computing
will increase proportionally to sustain the current level of physics output. Figure 1
shows the expected computing needs over the next decade. To contend with the
high-luminosity upgrade of the LHC (HL-LHC), a large increase is needed starting
from 2026. These demands outpace the expected growth of CPU performance. As
a consequence, the LHC needs a computing solution at least to sustain the current
computing performance and, potentially, to exceed it.

With the end of Dennard scaling in the late 2000s, processor technology has
undergone several changes. These changes have included the adoption of multicore
processors and the rise of alternative processing architectures, or coprocessors, such as
graphics processing units (GPUs), FPGAs, and ASICs. With the rise of deep learning
(DL), these alternatives have become increasingly appealing due to the inherent
parallelism in both DL algorithms and in these coprocessors. The gains from using
coprocessors can be substantial, with improvements in algorithmic latency exceeding
multiple orders of magnitude. Given the scale of developments related to DL, future
growth in processor technology is increasingly leaning towards heterogeneous systems
in which combinations of CPUs, GPUs, FPGAs, and ASICs are all deployed, with
each designed to solve specific tasks. However, high energy physics (HEP) experiments
have thus far undertaken only limited use of alternative processors within the HLT
and offline computing grids, despite common use of machine learning (ML). HEP
experiments have historically relied on ML as a way to improve the overall quality
of the data and to separate small signals from enormous backgrounds [11]. DL
approaches have enhanced both the performance and flexibility of ML techniques.
In light of this, the LHC has been quick to adopt DL techniques to improve the
quality of data analysis. This includes core components such as low-level detector
energy reconstruction, electron and photon reconstruction, and quark and gluon
identification. The increasing deployment of these algorithms is starting to comprise a
significant portion of the overall computing budget. The goal of this study is to enable
the use of these algorithms in online and offline data processing tiers, in the context of
the LHC experiments’ increasing data rates. Our approach does this by offloading the
computational burden of these algorithms to GPUs while making minimal changes to
existing CPU-based workflows.

To achieve this, we move existing work a step further by exploiting the “as-
a-service” paradigm. In this paper, we design a prototypical framework for LHC
computing as a service. We develop DL algorithms to replace domain-specific
algorithms, to solve a variety of physics problems through DL inference. We then
transfer the algorithm to a coprocessor on an independent (local or remote) server
and re-configure the existing CPU nodes to communicate with this server through
asynchronous and non-blocking inference requests. With the inference task offloaded
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as a request to the server, the CPU is free to perform the rest of the necessary
computing within the event.

Deploying GPUs as a service (GPUaaS) is a natural way to incorporate alternative
coprocessors that has several advantages over a direct-connection approach. In
particular, deploying GPUaaS increases hardware cost-effectiveness by reducing the
number of GPUs required to achieve the same throughput. This is possible because
each GPU can service many more CPUs than a direct-connection paradigm would
allow. It is nondisruptive to the existing LHC computing model by offloading
the specific algorithms with minimal client-side re-configuration (see Section 3). It
facilitates seamless integration and scalability of heterogeneous coprocessors (such
as GPUs and FPGAs), as suited for optimal algorithmic performance. Finally, by
exploiting existing open-source, widely-adopted frameworks that have been optimized
for fast GPU-based DL, this approach can be adapted quickly to different tasks at the
LHC and beyond.

In this paper, we present several examples of integrating GPUaaS into LHC
workflows. We consider three ML-based algorithms that span a variety of LHC
computing applications. We integrate these algorithms into both online and offline
LHC workflows with GPUaaS and we benchmark them to evaluate the impact of
GPUaaS on the operation of the HLT and the offline computing grid. Based on our
results, we propose a model for incorporating GPUs and other coprocessors into LHC
computing workflows.

The remainder of this paper is organized as follows. In Section 2, we briefly
review related work. In Section 3, we provide an overview of the current LHC
computing model and the as-a-service computing model and we derive metrics that
maximize the cost-effectiveness of coprocessors in LHC workflows. Section 4 describes
the three ML-based algorithms to be deployed. We describe our configuration of
the servers in Google Cloud and LHC data centers and evaluate the limitations
of each site in Section 5. We also measure several performance-related quantities
relevant for full-scale LHC reconstruction as a service, including hardware throughput,
network bottlenecks, and scaling with number of GPUs. In Section 6, we determine
the hardware and networking requirements for maximizing the throughput of these
algorithms at scale for LHC computing as a service. Finally, we conclude in Section 7.

2. Related Work

Researchers across HEP have investigated the use of GPUs in detector reconstruction.
At the LHC, the focus has been on implementations for the HLT where faster
computing times lead directly to increased throughput. For offline computing at the
LHC, GPUs have not been considered since this would require a larger redesign of the
LHC computing grid. The work in this paper is different from previous approaches in
that we employ GPUaaS, which allows for use in both the HLT and offline workflows
without a large redesign of the existing LHC computing grid. Additionally, we utilize
DL algorithms, which allow for the use of existing GPU compiler frameworks to quickly
obtain optimized code. We stress that this is the first instance of GPU usage for offline
computing at the LHC, the first usage of GPUaaS at the LHC, and the first use of
DL with GPU acceleration for reconstruction of physics objects at the LHC.

Outside of detector reconstruction, DL algorithms are extensively used in HEP
in the later stages of data analysis. In this context, training of DL algorithms is
almost exclusively performed on GPUs. Additionally, the use of GPUs for DL has
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led to several new HEP data analysis frameworks that exploit GPUs, including the
hepaccelerate framework [12], GooFit [13], and pyhf [14].

Within the context of online computing, GPUs were first integrated into the
180 compute nodes of the HLT workflow of the ALICE experiment at the LHC to
perform charged particle reconstruction. They were part of the ALICE operations
during 2010–2013 and 2015–2018 [15]. More recently, GPUs are being considered
for the HLT of the LHCb experiment [16, 17]. This HLT system relies completely
on charged particle tracking algorithms. Additionally, within the CMS experiment,
GPUs have been explored for charged particle reconstruction through the use of
cellular automata [18], and through the use of an accelerated pattern recognition
algorithm [19].Beyond charged particle tracking, algorithms for GPUs and FPGAs
have been developed (but not implemented) for real time processing of ring imaging
Cherenkov detectors for the LHCb HLT [20,21]. Beyond the LHC experiments, GPU
algorithms have been developed for the trigger readout of the mu3e experiment [22],
and the dark matter experiment NA62 [23]. These algorithms are planned to run in the
next round of data taking for each experiment, starting in 2021. In all instances, GPUs
have been considered in the context of direct connection to CPUs via PCI Express.
Additionally, the algorithms on GPUs presented in the aforementioned works did not
use DL.

Within the context of offline computing, GPU use in HEP has remained limited.
For LHC reconstruction it has never been considered. In neutrino physics, GPUs
have been used for simulation of the propagation of Cherenkov light signatures for the
IceCube experiment [24]. The experiment recently performed a large-scale test of a
GPU-only simulation of neutrino signatures, using over 50,000 GPU cores for a period
of 20 minutes [24,25]. While the study was able to utilize a large number of cores for
a single type of algorithm used in the simulation of the IceCube detector, it did not
constitute a full HEP reconstruction workflow consisting of a broad set of algorithms
that perform many different tasks.

The offline and online reconstruction software for large LHC experiments consists
of several million lines of CPU code. Rewriting this code to run on GPUs, for example
using CUDA, would be prohibitively costly and in some cases would likely lead to
substantially worse performance. In this paper, we present, for the first time, an
alternative model whereby only algorithms with substantial speedups are ported to
GPUs, with each GPU serving many CPU nodes. We demonstrate that GPUaaS
can be integrated within full LHC workflows and can produce significant overall
algorithmic speed improvements. A similar model for the utilization of CPUs and
FPGAs within the LHC workflow was presented in Ref. [26] using the Services for
Optimized Network Inference on Coprocessors (SONIC) framework [27]. The study
exploited the Microsoft Brainwave service [28] and demonstrated a decrease in deep
neural network (DNN) inference time by nearly 3 orders of magnitude when using
an FPGA compared to a CPU. This paper extends SONIC to support GPUaaS,
demonstrating a viable model for fast and nondisruptive integration of GPUs into
the LHC workflow.

3. As-a-service computing for LHC physics

The current LHC computing model shown in Figure 2. In typical LHC event
reconstruction, data is processed sequentially event-by-event, possibly on multiple
threads on the CPU. However, if certain algorithms are significantly accelerated by
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the use of coprocessors (as shown in Ref. [26]), a modified scenario with coprocessing
as a service can be considered. In this model, a single coprocessor can serve hundreds
of CPU processing elements. The CPUs are executing numerous different algorithms
of the full event reconstruction, whereas the inference server is executing a single
algorithm very efficiently. To benefit from this type of computing model, there must
be a sufficiently large acceleration such that the overhead of offloading this processing
onto a separate server does not further increase the reconstruction latency. To explain
when this is the case, we first review the reconstruction model at the LHC and then
discuss how as-a-service computing can be implemented within the LHC reconstruction
workflow.

Time
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Figure 2. Diagram comparing the traditional LHC production model on CPUs
(upper) with the GPUaaS approach (lower). Each block represents a module
within the reconstruction framework. For the GPUaaS approach, algorithm 2 is
run on the GPU, which allows the processing of the second event (outlined in
purple) to run concurrently with the first event (outlined in red).

3.1. LHC Reconstruction

Detectors at the LHC are general-purpose devices with millions of channels, each
of which records information from a particle passing through or decaying within it.
Event reconstruction involves optimally combining these the individual signals from
different detector channels to form the set of observable particles, including their
energy, momentum, and type, for each event. This collection of particles is then used
to infer the underlying physics process. For example, an event containing a Higgs
boson decaying to a bottom quark-antiquark pair can lead to roughly 100 particles
and we can use the aggregate properties of these particles to infer the presence of
a Higgs boson. The variety of particles with different signatures in each detector
(physics objects) that may be present in any given collision leads to a large number
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of different reconstruction algorithms that must be run on each event as each physics
object typically has its own reconstruction algorithm. This, in turn, leads to a large
codebase that is written entirely for CPUs.

Parallelization of the reconstruction algorithms that create particles is possible
by splitting the reconstruction into separate geometric regions and reconstructing the
individual particles within that region. Further parallelization is possible through
the separate reconstruction of the individual detectors before they are aggregated
into particles. The current reconstruction aims to exploit possible parallelization by
compartmentalizing separate reconstruction algorithms into modules that can be run
in parallel. No single algorithm dominates the overall computing time, but some
fundamental tasks, such as tracking and clustering detector hits to form particles, are
the most computationally intensive. The potential for parallelization has only partly
been realized through standard CPU optimizations, such as auto-vectorization. In this
work, large-scale batching of the reconstruction to allow for algorithm-level parallelism
is achieved through the use of DL algorithms on the GPU.

3.2. As-a-service computing

To apply DL under the as-a-service paradigm, we choose an algorithm that has a
significant speedup when using a GPU. We then take this algorithm and set up a GPU
inference server using the NVIDIA Triton Inference Server [29]. This package uses
a custom gRPC-based communication protocol [30], and it supports load-balancing
between multiple GPUs hosted together in a single server. Inference requests can be
made for models from various ML frameworks, and multiple models can be loaded on
the same server.

Software frameworks in HEP are typically written in C++. The software
framework for the CMS experiment, CMSSW [31], uses task-based multithreading
enabled by tbb [32]. This facilitates asynchronous, non-blocking calls to external
resources using a feature called ExternalWork [33]. This is the most efficient way to
utilize coprocessors as a service because the CPU running the experiment software
can perform other tasks while the service call finishes. For this paper, we have taken
advantage of these features by extending the CMSSW version of the SONIC software
to perform remote gRPC calls to GPUs via the Triton Inference Server. In the SONIC
approach, only the client code needs to be provided in the software framework. This
minimizes the maintenance burden, as the client code has just two responsibilities:
converting between the experiment and server data formats, and making the call
to the server via the chosen communication protocol. All the details of the model
architecture, any optimizations, and even the choice of coprocessors can be decided
on the server without any change in the client. This setup enables the modified
reconstruction workflow depicted in Figure 2.

By extending the SONIC framework to handle the gRPC calls utilized by the
NVIDIA Triton Inference Server, the new client code uses a standard interface such
that the user-developed software to convert between experiment and server data
formats remains independent. Beyond the specification of the remote server protocol
and location within a global configuration file, the user code remains completely intact,
and switching between the remote FPGA calls, remote GPU calls, and other local calls
are done seamlessly through a configuration file.
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3.3. Metrics for optimization

To determine the cost-effectiveness of deploying a given algorithm as a service, we
compose a simplified heuristic. We assume a computing model similar to those used
by LHC experiments, which schedules modules to run during the service request, as
in Figure 2. We introduce the GPU-to-CPU replacement ratio F eq

GPU to maintain the
same throughput:

F eq
GPU =

X − S − L

Y
, (1)

where X is the algorithm processing time on the CPU, S is the overhead time due to
input/output packaging in SONIC, and L = f(Y + T ) is the rescheduling time as a
function of the algorithm processing time on the GPU Y and the packet transfer time
T . For instance, a value of F eq

GPU = 32 implies that one GPU can replace 32 CPUs at
no cost in the overall event throughput. The optimal value of F eq

GPU depends on the
demands of the system design, as well as the algorithm- and software-dependent values
for both S and L. Time spent in data transfer or queuing on the server plays a small
role in total throughput because of the asynchronous, non-blocking call employed in
SONIC.

We use F eq
GPU as a guide to contextualize our results for GPU acceleration for

each of the different scenarios studied. It is derived provided that no substantial
bottlenecks are present in the software infrastructure, and further studies will refine
this model. In the following sections, we explore the GPU speedups utilizing the
SONIC framework for algorithms with various F eq

GPU values. We discuss the discovered
bottlenecks and present a path towards a realistic implementation of GPUaaS at the
LHC. An interesting potential extension of these studies would be to systematically
investigate the relationship between F eq

GPU and throughput and latency.

4. Algorithms

To investigate the scalability of deploying DL as a service for LHC experiments, we
study three distinct algorithms. Together, these algorithms span LHC computing,
from low-level tasks of local detector energy reconstruction to high-level tasks of
offline object identification. They also exhibit a range of speedups on coprocessors.
Each algorithm performs as well as a CPU reference algorithm at resolving physical
quantities. We then accelerate these algorithms with GPUaaS in realistic LHC
workflows.

While the emphasis in this paper is on DL algorithms because optimized GPU
implementations already exist, many LHC algorithms are currently not ML-based
and likely will remain that way in the future. Nonetheless, many of these tasks
have been shown to benefit significantly in computational performance if deployed
on coprocessors with custom implementations [34]. The technology we develop for
the ML algorithms as a service is flexible and its extension to non-ML algorithms is
straightforward.

4.1. Hadron Calorimeter Reconstruction

The simplest algorithm that we study is called Fast Calorimeter Learning (FACILE),
a deep neural network consisting of 2,000 parameters. This algorithm was trained
on simulated collisions at the LHC using generator-level information to reconstruct
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the energy deposited by particles in the hadron calorimeter (HCAL) of the CMS
experiment. FACILE uses 15 inputs that contain information about raw charge
deposits, geometry, and the gain of the HCAL channel in question. FACILE consists of
batch normalization layers and dense layers with rectified linear unit (ReLU) activation
functions. The layers consist of 30, 20, 10, 5, and 3 neurons each, respectively.

The HCAL is a core component of LHC experiments and a prototypical
subdetector for which to implement ML as-a-service reconstruction for several reasons.

First, good resolution in the HCAL is important for sensitive measurements
in particle physics, such as events with a Higgs boson decaying to bottom quarks.
We find that local and global objects reconstructed with FACILE have as good or
better resolution compared to the nominal algorithm that does not use ML. Second,
the nominal HCAL reconstruction algorithm in CMS requires 60 ms of CPU time,
accounting for approximately 15% of the online computing budget [35]. FACILE offers
a significant improvement in computing performance when operated as a service by
reducing the CPU time to less than 7 ms, resulting in an estimated F eq

GPU = 27,
which we verify experimentally. The remote time (including 2 ms of GPU latency) is
largely eliminated by the asynchronous, non-blocking ExternalWork feature employed
by SONIC. Finally, by exploiting GPU performance for large batch sizes, FACILE
offers enhanced physics potential by reconstructing all 16,000 HCAL channels in
parallel with little added latency, instead of reconstructing only the highest energy
channels.

In terms of physics and computational performance, FACILE is well-suited for
both online and offline applications. We deploy it in both settings. For instance,
we perform a high-bandwidth test designed to emulate, for the first time at scale, a
realistic LHC online computing system with coprocessors as a service.

4.2. Electron Regression

DeepCalo is a midsize convolutional neural network (CNN) trained for electron energy
regression for the ATLAS detector. It operates at a higher, more abstract level
compared to FACILE since it reconstructs the energy from an entire region of a
calorimeter subdetector. Compared to nominal techniques, DeepCalo improves energy
resolution and robustness against pileup, both of which are important for the HL-
LHC [36]. The model is trained on electrons reconstructed from a Monte Carlo
simulation of collisions spanning a wide range of energies. Each collision deposits
energy in the electromagnetic calorimeter (ECAL) cells. These energy deposits are
encoded as a 56 × 11 pixel image with 4 channels that represents a 2D patch of the
detector of width 0.175 in η and 0.270 in φ. The 4 channels represent 4 separate layers
of the ECAL and each pixel value represents the amount of energy deposited at that
location and in that layer in η and φ. Using these images, DeepCalo estimates the
energy of the electron.

DeepCalo is composed of 1.8 million parameters. The first component of the CNN
consists of 5 convolutional blocks. The first block performs a 5×5 convolution, followed
by batch normalization and a leaky ReLU activation function. Each subsequent
convolutional block performs a 2 × 2 maximum pooling, followed by two instances
of a sub-block consisting of a 3 × 3 convolution, batch normalization, and a leaky
ReLU activation function. The final component of DeepCalo consists of three fully-
connected layers, with the last layer producing a prediction for the electron energy.

In this study, we deploy DeepCalo as a service on GPU coprocessors for offline
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reconstruction. In the offline test, we maximize the event throughput and compare
the performance to on-site, CPU-based implementations. When deployed as a service,
DeepCalo shows significant performance gains by reducing the latency per event from
75 to 1.5 ms and, when optimized, to 0.1 ms. This yields an estimated F eq

GPU = 50
(750) before (after) optimization.

4.3. Top Quark Tagging

ResNet-50 is a CNN composed of 23 million parameters, 49 convolutional layers of 7×7,
3×3, and 1×1 convolutions with “skip connections,” and 1 fully-connected layer, which
predicts 1000 class probabilities for natural images [37]. In earlier studies [26], the
ResNet-50 CNN architecture was re-purposed to identify events containing top quarks
(top quark tagging). In addition, CMS has implemented similar CNN-based top quark
tagging algorithms for offline reconstructions [38]. Another study [39] showed that
ResNet-50 could be modified to perform top quark tagging with performance rivaling
leading ML algorithms. Of the three algorithms, ResNet-50 is the most complex and
has the longest latency on GPU, and we estimate F eq

GPU = 150. We choose it to enable
benchmarking of a CPU-prohibitive algorithm as a service. In particular, ResNet-50
has a CPU latency of the order of seconds, which is prohibitively high for use even in
offline reconstruction scenarios.

In Ref. [26], we observed a speedup by orders of magnitude by deploying ResNet-
50 as a service on FPGA coprocessors. In this study, we extend our earlier studies by
deploying ResNet-50 as a service on GPU coprocessors in LHC workflows. This enables
top quark tagging to be performed in offline reconstruction. ResNet-50 also serves as
a prototypical large benchmark algorithm comparable in burden to other major tasks
in LHC computing, such as tracking. The specifications and GPU utilization of the
three algorithms are summarized in Table 1.

Table 1. Summary of the specifications of each algorithm, including model
parameters, GPU memory usage, and GPU utilization. The memory usage and
GPU utilization are quoted at the point of maximum GPU throughput.

Algorithm
Batch Architecture Trainable Number GFLOP GPU memory GPU utilization
size type parameters of layers per batch usage [GB] [%]

FACILE 16,000 Dense 2k 5 0.032 1 20
DeepCalo 5 Convolutional 2M 13 0.43 2.6 40
ResNet-50 10 Convolutional 23M 50 39 12 95

5. GPU Performance Studies

For online computing, we integrate FACILE into the HLT, the second tier of CMS
data acquisition. For offline computing, we consider all three algorithms in stand-
alone workflows. The client is implemented based on SONIC in CMSSW with real
inputs and conditions. We quantify the hardware and networking requirements to
run these algorithms as a service in LHC computing. To achieve this, we measure
the coprocessor throughput (in events processed per second), the number of servers
and GPUs required to service a given number of clients, and the network bandwidth
limitations (arising from on-premises and external sources) in both LHC computing
clusters and on the Google Cloud Platform.
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We focus on achieving a hardware-efficient deployment of the algorithms by
monitoring server properties and GPU utilization. We also measure how throughput
scales with the number of GPUs by deploying many GPUs on a single server with a
customized Google Kubernetes engine setup (as described in Section 5.3). Finally, we
investigate various optimizations for the GPUs to further increase the throughput.
Ultimately, in Section 6, we apply our findings to determine the hardware and
networking requirements to perform full-scale LHC computing with coprocessors as a
service.

5.1. Online Computing

To study the use of coprocessors as a service in online computing, we run the full
CMS HLT with local HCAL reconstruction performed by FACILE as a service.
FACILE is particularly well-suited for an online computing application because the
algorithm it replaces is responsible for 15% of the HLT latency per event. In this
study, the clients are deployed as jobs running single-thread HLT instances on virtual
machines in Google Cloud using the HEPCloud framework [40–42]. HEPCloud deploys
jobs submitted on batch systems to CPU instances created dynamically at a cloud
computing site. The jobs are synchronized by adding a waiting period such that
each job begins processing information only when all jobs are ready. This ensures
that all jobs send calls to the GPU server during the same time period, enabling an
accurate measurement of GPU and network throughput. Since FACILE has a small
GPU latency (2 ms) compared to the HLT (500 ms), it proved essential to run on
CPUs absent of other jobs for a realistic emulation of the current system of dedicated
HLT cores. The cloud enabled this by reducing systematic uncertainties arising from
shared CPUs on-premises. The server was deployed at the same site and consisted
of a Google compute instance with either 1 or 4 NVIDIA Tesla V100 GPUs. This
client-server configuration realistically emulates a fraction of the dedicated HLT CPU
farm at CERN with the addition of as-a-service computing.

The results of this test are shown in Figure 3. Each client is allotted 7,000
simulated LHC benchmark timing events. The timing distribution for the HLT
running FACILE as a service is shown in the top panel for servers with 1 or 4
GPUs in red and blue violins. The average time to run the nominal HLT algorithm
locally on the CPU is shown in a dotted black line. For fewer than 500 clients, a
decrease of approximately 10% in the total time is observed with FACILE as a service
with 1 GPU when compared to the nominal algorithm. This largely eliminates the
CPU burden of HCAL reconstruction. Since the HLT farm at CERN operates under
latency restrictions, this demonstrates an opportunity to increase the throughput of
the current trigger system by 10%, or alternatively, partitioning 10% of the existing
machines to be used for other tasks. An increase in aggregate HLT latency occurs
only above 300 clients for a single GPU, and above 1,000 clients for 4 GPUs. This
increase represents the point where GPU throughput limitations begin to dominate,
indicating that at least 300 HLT instances can be serviced by a single GPU without
penalty. This slightly exceeds our expectation of 180 HLT instances, based on our
computation of F eq

GPU = 27 divided by the 15% CPU time fraction, but confirms the
overall scaling. As a result, we conclude that operating reconstruction as a service is
more efficient than having GPUs directly connected to CPUs. We explore this further
by describing a scale design in Section 6. We note that the long tails in the figure
are caused by scheduler assignments where fewer jobs are run on certain machines,
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Figure 3. The distribution of the total time (including median and whiskers)
to run the high level trigger with the HCAL reconstruction performed with
FACILE as a service (upper). Servers with 1 and 4 GPUs are shown as red
and blue violins. The average time taken to process the same events using the
nominal HCAL reconstruction is shown as a dotted black line. High level trigger
throughput running FACILE for servers with 1 and 4 GPUs in red and blue
markers, respectively (lower).
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leading to improved throughput for a small number of jobs, but a negligible effect in
overall throughput.

The HLT throughput with FACILE as a service is shown in the bottom panel of
Figure 3. For the single GPU server (red circles), the throughput asymptotes above
300 simultaneous processes, while for the 4 GPU server (blue triangles), it does not
yet asymptote even up to 1,000 simultaneous processes.

5.2. Offline Reconstruction

Figure 4. Diagram of the architecture for large-scale processing using GPU as
a service. In this scenario, a GPU server within Google Cloud (right) is used to
serve many offline computing centers processing LHC data (left). The calls are
sent remotely over the internet as gRPC requests.

In the offline computing scenario, a single GPU service can be used by several
remote computing clusters at the same time as depicted in Figure 4. We investigate
the use of FACILE, DeepCalo, and ResNet-50 for LHC offline computing by executing
a dedicated workflow process for each model. Our tests assume a benchmark LHC
computing throughput of 5,000 events per second, and we estimate the coprocessors
necessary to attain this. The processing of each model includes realistic input,
formatting, and output steps. To emulate a realistic global offline computing scenario
with CPU workers, as shown in Figure 4, we deploy clients to CPU clusters at MIT
and Fermilab. These CPUs send gRPC requests over the internet to servers in Google
Cloud’s us-central1-a zone in Council Bluffs, Iowa. While not shown here, we
repeated these same tests on-premises going from on-site CPUs to the GPU with
Google Cloud and we observed nearly identical throughput saturation and networking
effects to the tests observed when going from a remote location to the same GPU
within Google Cloud. This implies that communication over distance is reliable at the
network bandwidths of interest.

5.2.1. FACILE The throughput of FACILE as a service is shown for different
numbers of clients and GPUs in Figure 5. A server with a single GPU is found
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Figure 5. The throughput of FACILE operated as a service in events per second
versus the number of simultaneous clients. The marker indicates the mean and
the error bars indicate the standard deviation. The throughput tests are repeated
with 1, 4, 8, and 24 GPUs connected to the server, represented by red circles,
orange triangles, green diamonds, and pink hexagons, respectively. The network
bandwidth from the transfer of inputs from the client to the server is shown on
the right vertical axis.

to saturate at a throughput of 500 inferences per second for a V100 GPU. This limit
is due to the hardware latency and occurs above 50 clients. The V100 GPU is used
because it offers a 10–20% gain over other GPU models.

As we increase the number of GPUs on the server using a customized Google
Kubernetes Engine setup (see 5.3.2, we find that the throughput scales linearly and
with high efficiency. Servers with 4 and 8 GPU saturate at approximately 2,000 and
4,000 inferences per second, as shown in Figure 5, respectively. Therefore, the LHC
throughput requirement can be satisfied by a single 10 GPU server. This indicates
that the Google Kubernetes Engine employed here is an efficient way to increase the
throughput. The 24 GPU server test with 2,000 clients, in pink, is designed to probe
the limit on network bandwidth between the LHC clusters and Google Cloud. This
test becomes limited by a network bottleneck of unknown origin and we observe a
peak bandwidth exceeding 70 Gb/s. The number of clients at which saturation occurs
also scales with the number of GPUs; for example, the 4 GPU server in orange does
not saturate until nearly 500 clients. We note that we were not able to plot out the
entire throughput distributions due to the expense of each test.

The throughput is highly sensitive to the server configuration. Initially, we
deployed a server with a single 4 CPU ingress node handing off the request to nodes
with GPUs. These tests proved to be limited to a throughput of 1,500 inferences
per second (12 Gb/s) regardless of client number, indicating there was a bandwidth
limitation at the destination rather than between MIT and Google Cloud. As a
result, we iteratively reconfigured our server to deploy multiple machines behind a
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Figure 6. The throughput of DeepCalo as a service on an NVIDIA V100 GPU
in events per second versus the number of simultaneous clients. The markers
indicate the mean throughput and the error bars indicate the standard deviation.
With server side optimizations, the batch size is configured dynamically to prefer
a batch of 250 or 500 (as explained in Section 5.3.1) and to use five concurrent
model executions. The network bandwidth from the transfer of inputs from the
client to the server is shown on the right vertical axis.

load balancer, as described in Section 5.3.2.

5.2.2. DeepCalo As DeepCalo performs an image classification task, we expect it
to be computationally bound rather than bandwidth limited. In our studies, we
investigate the application of DeepCalo in offline reconstruction, which is throughput
limited. We evaluate the performance of running DeepCalo as a service by running
up to 1,000 clients on-premises on Fermilab’s computing cluster and deploying a GPU
server in Google cloud. We set the batch size to 5 because this is the approximate
number of electrons expected per reconstructed collision in a realistic LHC scenario.

We consider the case of a single NVIDIA V100 GPU server deployed on Google
Cloud. The results are shown in Figure 6. For a batch size of 5, the throughput
increases rapidly until 20 simultaneous clients, and it saturates at 680 events per second
between 20 and 50 simultaneous clients. At 200 simultaneous clients, the utilization
of the GPU saturates at 45% and the bandwidth peaks at 270 Mb/s, suggesting that
the batch size is limiting GPU utilization. Further optimizations to DeepCalo, namely
dynamic batching, are discussed in Section 5.3.1.

In a previous study, the latency on four Xeon E5-2698 CPUs was found to be
15 ms per electron–or 75 ms for an event of 5 electrons [36]. With our baseline GPU
performance, we compute 680 events per second or 1.5 ms per event. We also observe
a factor of 50 improvement in the throughput.
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5.2.3. ResNet-50 ResNet-50 is deployed as a service with clients on Fermilab’s
computing cluster and servers with 1, 4, and 8 NVIDIA Tesla T4 GPUs in Google
Cloud. The throughput obtained using ResNet-50 are shown in Figure 7. A single
GPU server saturates at 25 (batch 10) inferences per second, at about 10 clients. We
find that the throughput scales linearly with the number of GPUs, although with
approximately 85% efficiency, slightly lower than for FACILE.
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Figure 7. Throughput of ResNet-50 as a service in events per second versus the
number of simultaneous clients. The markers indicate the mean throughput and
the error bars indicate the standard deviation. The throughput tests are repeated
with 1, 4, and 8 GPUs connected to the server, represented by yellow triangles,
gold squares, and orange circles, respectively. The network bandwidth from the
transfer of inputs from the client to the server is shown on the right vertical axis.

5.3. Optimizations

5.3.1. Dynamic Batching Dynamic batching is a feature of the Triton Inference
Server that serves to increase both the throughput and hardware efficiency. It
performs an added server-side queue of requests from the client until an optimal
batch size is reached. The performance gains of dynamic batching are also related
to the “instance groups,” or simultaneous executions of a model. This poses an
optimization problem between the dynamic batch size and model concurrency. The
use of dynamic batching is particularly interesting in that it circumvents the LHC
computing paradigm of splitting computations on an event-by-event basis. Here,
multiple events can be processed simultaneously within a single computation, without
redesigning the computing model. We stress that this type of scheduling is only
beneficial when GPUs are servicing a large number of parallel processes.

In the initial DeepCalo measurements, we found that the choice of batch size
limited the utilization and throughput of the GPU. In our studies, we found that a
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low number of model execution instances and a high dynamic batch size yielded the
best throughput result. Figure 6 shows the throughput gains when using dynamic
batching. At 200 simultaneous clients, the throughput shows no signs of saturation;
at this point, the throughput is about 4,200 events per second, representing a factor of
6 improvement. When extended to 1,000 simultaneous clients, the throughput reaches
9,800 events per second, representing a factor of 14 gain in throughput, and the GPU
utilization increases to 80%. At 1,000 clients, the bandwidth peaks at 3.9 Gb/s,
which is roughly the same bandwidth limit observed with FACILE. On the other
hand, dynamic batching for FACILE yielded no gain in throughput. We conclude
that the most significant gains of dynamic batching are found for large models that
naturally operate with small batch sizes.

5.3.2. Server optimization and monitoring We performed tests on many different
combinations of computing hardware, which provided us with a deeper understanding
of networking limitations within Google Cloud and on-premises data centers. Even
though the Triton Inference Server does not consume significant CPU power, the
number of CPU cores provisioned for the node did have an impact on the maximum
ingress bandwidth reached in our early tests.

To scale the GPU throughput in flexibly, we deployed a Google Kubernetes Engine
cluster for server side workloads. The cluster was configured using a Deployment
and ReplicaSet [43], which control Pods, groups of one or more containers with
shared storage and network and a specification to run the containers [44], and
their resource requests. Additionally, a load balancing service was deployed which
distributed incoming network traffic among the Pods. We implemented Prometheus-
based monitoring [45] of overall system health and inference statistics. All metrics
were visualized through a Grafana [46] instance, also deployed in the same cluster.

We note a Pods contents are always co-located and co-scheduled, and run in a
shared context within Kubernetes Nodes [44]. We kept the Pod to Node ratio at 1:1
throughout the studies, with each Pod running an instance of Triton Inference Server
(v20.02-py3) from the NVIDIA Docker repository.

It can be naively assumed that a small instance n1-standard-2 with 2 vCPUs,
7.5 GB of memory, and different GPU configurations (1, 2, 4, 8) would be able
to handle the workload. However, Google Cloud imposes a hard limit on network
bandwith per virtual CPU (vCPU). After performing several tests, we found that
horizontal scaling would allow us to increase our ingress bandwidth since Google Cloud
imposes a hard limit on network bandwidth at 2 Gb/s per vCPU up to a theoretical
maximum of 16 Gb/s for each virtual machine [43].

Given these parameters, the ideal setup for optimizing ingress bandwidth was to
provision multiple Pods on 16-vCPU machines with fewer GPUs per Pod. For GPU-
intensive tests, we took advantage of having a single point of entry through Kubernetes
load balancing and provisioning multiple identical Pods, where the sum of the GPUs
attached to each Pod is the total GPU requirement.

5.3.3. Future optimizations Throughout these tests, we monitored the GPU
utilization. ResNet-50 largely saturated GPU utilization, whereas FACILE and
DeepCalo used 20% and 45% of the GPU, respectively. This indicates the throughput
is batch limited. Throughput and GPU utilization can be optimized using dynamic
batching for DeepCalo, as described above, but not for FACILE. Follow-up studies
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will investigate optimizations for small models like FACILE.

6. Scaling

We now apply our findings to determine the GPU resources, networking and compute
resources required for a modified LHC computing system in which algorithms with
large speedups on coprocessors are deployed as a service. To assess the amount needed,
we compute the required resources for the scaling of the three algorithms in either the
HLT or offline computing cases. As a benchmark, we use the plateau performance
numbers measured per GPU for each of the algorithms. We summarize these in
Table 2. As an estimate of the total amount of required resources, we make some
assumptions for the typical latency and throughput that we would expect for the
online reconstruction and offline reconstruction. We emphasize that these numbers
are approximate and used here for illustrative purposes.

Table 2. Summary of the three algorithms in terms of replacement with respect
to a CPU (F eq

GPU), inferences per second, individual packet size (Mb), and network
bandwidth per GPU (Gb/s). These numbers are quoted for the desired batch per
event. The asterisk (∗) identifies an algorithm using dynamic batching.

Algorithm F eq
GPU

Inf./s Size/batch Throughput/GPU
[Hz] [Mb] [Gb/s]

FACILE 27 500 7.7 3.9
DeepCalo 50 680 0.4 0.3
DeepCalo∗ 750 9,800 0.4 3.9
ResNet50 150 25 48.2 1.2

A typical LHC HLT consists of 1,000 servers, each with 32 cores, for a total of
32,000 CPU cores. This system is designed to process events at a rate of 100,000
events per second. The goal of the HLT is decide whether the event is sufficiently
interesting to preserve for further reconstruction. As a consequence, the HLT
performs a sequential, tiered reconstruction and filtering of the event and immediately
rejects the event if it fails any filter in the sequence in order to prevent further
reconstruction [47, 48]. With an emulated HLT, we find that a single GPU running
FACILE can serve 300–500 different HLT nodes while preserving a 10% reduction
in the per event throughput. This means that roughly 100 GPUs are needed to
serve FACILE for the whole HLT. Moreover, if 100 GPUs were added to the system,
10% or 3,200 CPU cores could be removed from the system. We emphasize that
FACILE represents only the tip of the iceberg in the use of deep learning in low-
level reconstruction at the LHC. The algorithm uses less than a tenth of the GPU
memory, and its GFLOP is less than a tenth of the other algorithms (see Table 1).
As a result, it can be extended to carry out sophisticated reconstruction tasks (thus
merging multiple algorithms) without large increases in latency.

While there is a significant reduction in the number of processing cores, there
is an increase in network usage. With each GPU, an additional network bandwidth
of 3.9 Gb/s is required. A server of 10 GPUs would thus require 40 Gb/s while
simultaneously serving 100 HLT servers (3,200 cores). While this bandwidth is large,
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it is already attainable. A setup of one 10 GPU server, serving 100 HLT servers, would
be a logical design for the system that could be implemented with existing technology.

Lastly, we consider the option of adapting the DeepCalo algorithm or ResNet-
50 to run in the HLT with our benchmark batch values. We expect that a 4 GPU
server with a bandwidth of 16 Gb/s would be sufficient to run DeepCalo for the whole
HLT system. ResNet-50 with the default batch size of 10 images would require 1,600
GPUs with a total added bandwidth of 1.9 Tb/s. The large number of GPUs and the
large bandwidth would require significant and costly modifications to the design of
the current HLT, making it impractical. However, a ResNet-50 implemenation using
a batch size of 1, or equivalently an inference rate below the expectation for a batch
size of 1 by applying the algorithm only to some events, would result in a comparable
number of GPU servers to FACILE. This conclusion meshes well with the fact that
high-energy top quark candidates are relatively rare so it may be reasonable to run a
ResNet-50 top quark tagging algorithm once or less per event.

Offline computing at the scale of a single LHC experiment consists of computing
clusters that provide a total of roughly 150,000 CPU cores. Event reconstruction
times are on the order of 30 s per event, yielding a throughput of 5,000 reconstructed
events per second. If we were to run FACILE in this system, a single server of 10 GPUs
operating with a bandwidth of 39 Gb/s would be able to sustain the full reconstruction
load. Applying the same scaling for DeepCalo, we find that 1 GPU would be sufficient
to run the reconstruction for a whole LHC experiment. Lastly, for ResNet-50 at a
batch size of 10, a setup of 200 GPUs with 240 Gb/s bandwidth would be sufficient
to support 150,000 cores. In this case, with ResNet-50 applied to all reconstructed
events, a realistic scenario would consist of 10 separate GPU servers, each running
with 24 Gb/s bandwidth. In contrast, for ResNet-50 inference on CPUs with a batch
size of 10, the reconstruction time per event would increase by 18 s. This would require
a 60% increase in the computing clusters or an additional 90,000 cores to sustain the
same throughput.

In the context of LHC algorithms, DL algorithms are being developed at all levels
of the detector reconstruction. Algorithms that run on aggregate event properties are
comparable in size to ResNet-50. The full collection of particles in a collision after
reconstruction is found to be on the order of 1,000 particles per event [49]. Given the
number of particles, a computation of the event size ranges from 0.5–2.5 Mb, which is
less than size of single event requests performed in tests with FACILE. Consequently,
we observe that data rates and throughput for future LHC algorithms are comparable
to that of the results presented with FACILE. Therefore, at no added complexity
in networking or design, the framework presented in this paper can be extended for
algorithms designed for the future particle reconstruction at the LHC.

7. Conclusion

We have demonstrated a core framework that enables the use of deep learning (DL)
as a service with direct applications to the processing of LHC data. Our framework,
Services for Optimized Network Inference on Coprocessors (SONIC), utilizes gRPC to
perform asynchronous, non-blocking calls to a GPU server. Our server infrastructure
can address both small and large scale use cases. With our infrastructure, we have
tested three algorithms that span a large space of ML model complexities and batch
sizes. Together, these algorithms serve as benchmarks for a wide array of LHC
reconstruction tasks. In each case, we have measured the algorithm throughput
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and demonstrated comparable throughput for as-a-service computing both remotely
and on-site. We fully integrated a DL algorithm called Fast Calorimeter Learning
(FACILE) for LHC reconstruction in the high-level trigger (HLT), the second tier
of the LHC data processing and filter, and we found that this algorithm can lead
to a 10% overall reduction in the computing demands. This latency reduction is
almost equivalent to removing the hadron calorimeter reconstruction latency from
the HLT entirely, and it matches the expected optimal performance when performing
standalone algorithmic tests. Finally, we demonstrated the use of FACILE, DeepCalo,
and ResNet-50 for offline reconstruction. A server implementation in the cloud was
found to operate at data rates and inference times comparable to the demands set by
LHC offline reconstruction. This is a concrete validation of the SONIC framework,
demonstrating the viability of coprocessors as a service on representative scales for
LHC computing.

While our focus was on accelerating DL algorithms with GPUs, this work can
be applied to any algorithm that can be implemented on a GPU and appropriately
integrated into a GPU server. This work is largely agnostic to the hardware and
software implementations of the algorithm and can be adapted for other types of
coprocessors and other scientific experiments. As DL accelerator tools are constantly
evolving and improving, we expect the speedups observed in this paper to become
even larger.

From our studies, we delineated certain considerations for designing an optimal
system with GPUs-as-a-service (GPUaaS) for the LHC. In particular, an optimized
scheduling framework is needed to ensure that remote operations of algorithms incur
minimal losses in performance. Additionally, sufficient bandwidth is needed to ensure
that the full performance of the accelerator servers can be achieved for both remote
and local as-a-service operation. Finally, both a load balancer and an optimized and
flexible server infrastructure are needed to ensure robust operation. In this paper, we
have demonstrated that all of these demands can be met with existing resources.

In the context of physics performance, our results lead to direct performance
improvements that can be implemented immediately in the LHC computing model. In
particular, we found that: (1) DL inference as a service can enable a significant increase
in event throughput, (2) algorithms with complexities not previously attainable can
be operated in the LHC reconstruction workflow, (3) optimized versions of algorithms
can be implemented without disrupting the existing computing model, and (4)
simultaneous multi-event processing is achievable in the reconstruction workflow.
Concurrently with these studies, an extensive suite of new DL techniques for LHC
reconstruction have been developed [50–63]. The current work will enable the
integration of these algorithms into the LHC computing model in a seamless and
computationally efficient way.

We would like to stress that this work represents the beginning of developments
in coprocessor computing both at the LHC and other large scale experiments. This
work and related studies are encouraging for physicists in other fields, such as neutrino
physics, gravitational wave detection, and astrophysics, to pursue a similar computing
model. As a consequence, we believe that this work may lead to a paradigm shift in
the scientific computing model, enabling us to meet the enormous scientific computing
demands in the next decade.
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