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1 Introduction

The appearance of Hilbert series in the particle physics literature began with their ap-
plication to counting gauge invariants in supersymmetric theories [1-3], and flavour in-
variants [4, 5], and they were subsequently established for the purpose of enumerating
Lorentz invariant operators that can appear in the Lagrangian of an effective field theory
(EFT) [6-11] (see [12] for non-relativistic EFTs). One application of particular significance
is to the Standard Model (SM) EFT [13-15] — Hilbert series systematize the enumer-
ation of SMEFT operators [9, 16]. The SMEFT has as its constituents massless fields
that transform linearly under the gauge symmetries. These two properties enable a rigor-
ous treatment of the operator redundancies coming from equations of Motion (EOM) and
Integration by Parts (IBP) identities via conformal representation theory, as shown in [10].

In this paper, we demonstrate that Hilbert series can similarly systematize the enu-
meration of operators in the mesonic QCD chiral Lagrangian [17-20]. The endeavour to
enumerate/construct operators in this EFT parallels that in the SMEFT. Much effort has



gone into constructing operator bases at higher order in the EFT expansion — the chiral
dimension p* in this case. Since the leading order p? and next-to-leading order p* terms
in the chiral Lagrangian were computed in the original works [19, 20], results at order p®
have appeared [21-26], and recently at order p® [27]. Parallels also exist whereby operator
redundancies (due to EOM, IBP, or symmetry group relations) were missed in some of the
earlier attempts at order p® (see [27] for a review of the details), providing a compelling
reason to also have a systematic approach.

The Hilbert series technology for EFT operator enumeration has been expounded in
some detail in the literature (we refer the interested reader to e.g. [6, 10]). However,
for an application to the chiral Lagrangian, it is necessary to make some generalizations
and technical advances. First, a Hilbert series approach for non-linearly realized global
symmetries was developed in [10]. This was rooted in the CCWZ formalism [28, 29], and
only pion operators were considered. On the other hand, the QCD chiral Lagrangian
community uses a slightly modified setup where external source fields are introduced [19,
20], allowing one to extend the global SU(N¢)r x SU(Nf)g symmetry into a local symmetry.
This introduces additional building blocks beyond those discussed in [10], which must be
incorporated; see section 2. Similar to the pion field discussed in [10], some of these
external fields also do not form conformal representations (reps), precluding a rigorous and
straightforward treatment of IBP redundancies via conformal representation theory. We
follow [10] and use ideas from the theory of differential forms to systematically address IBP
relations.

The second technical advance we need is to systematically incorporate the charge
conjugation C' into the enumeration of the operator basis. The bulk of the chiral Lagrangian
community focuses on both C-even and P-even operators [21-27]. The reason for this is
phenomenological: C'P violation in the QCD Lagrangian is small, appearing in the phase
of the quark mass matrix and the 6 term. Of course, these lead to important physical
phenomena like K-K mixing and K; — 7%v0 decay. However, it is generally assumed that
the smallness of these terms in the UV Lagrangian (the QCD Lagrangian) justifies keeping
only the leading terms in the IR Lagrangian (the chiral Lagrangian), so that one can safely
ignore higher-dimension operators that violate C' and/or P. It was shown in [10] how
Hilbert series can capture the effect of parity P transformations, e.g. so as to separately
enumerate P-even and P-odd operators in a Lagrangian. There is a beautiful mirroring
of the treatment of the action of P developed in [10] in how C' is treated in the current
work. While parity acts as an outer automorphism of the Lie algebra of the Euclidean
spacetime symmetry group SO(d), C acts as an outer automorphism on the Lie algebra of
the unbroken SU(Nf)y symmetry group of the chiral Lagrangian. The construction of a
Hilbert series in both cases follows from the notion of ‘folding’ a Dynkin diagram, explored
in detail in appendix C of [10] for the action of P, and in appendix B of the current paper
for C.

In this paper, we extend the existing Hilbert series technology, and apply it to the
mesonic chiral Lagrangian. We reproduce/confirm all up-to-date operator enumeration
results that we are aware of in the literature. We also extend them to higher orders
and obtain new results. Among the C-even and P-even operators, the chiral Lagrangian



community often distinguishes operators which lead to processes where the intrinsic parity
of the process changes, while P is still nevertheless conserved, such as the process mm — 7w
which involves an odd numbers of pions. In practice, such operators in the Lagrangian will
have an e-tensor so that the total operator remains P-even. These operators are termed
“anomalous” by the chiral Lagrangian community [23, 24, 26]. In light of this, our most
immediately relevant new results in this paper are the enumeration of anomalous operators
at chiral dimension p®, which supplements the non-anomalous sector results in [27], and
hence completes the list of both C-even and P-even operators.

In addition, our method provides enumeration of other sectors of operators, such as
the CP-even, C P-odd, C-odd, and P-odd ones. We are not aware of previous results in the
literature starting at dimension p®, and we provide the operator content of these sectors in
this work. In the Standard Model, C'P violation is so particularly small that it is a great
laboratory for new physics effects. In fact, even mass dimension eight SMEFT operators
that are suppressed by multi-TeV scales can be important. From the chiral Lagrangian
point of view, they are encoded by operators of higher chiral dimensions that include
flavor-violating spurions (X in this paper). If there are light particles from new physics,
even higher dimension operators may play a role.

We emphasize that our “full” results are the Hilbert series themselves, containing max-
imum information about the operator content which is much more useful for the actual
construction of operators. Different sectors of operators are just various components or
combinations of them (see section 4 for details). For this purpose, we include the Hilbert
series at order p® and p® as supplementary material that accompanies this paper, and en-
courage the interested reader to investigate the accompanying Mathematica notebook. We
also emphasize that our method is completely systematic, which we illustrate by applying
it to count operators up to order p'S.

As well as being used to describe the low-energy limit of QCD, chiral Lagrangians are
used in many models of physics beyond the Standard Model. Perhaps the first examples
are the technicolor models [30, 31] where the electroweak symmetry breaking is described
by the chiral Lagrangian. In this case, the Nambu-Goldstone Bosons (NGB) are eaten
by the W and Z bosons without a Higgs boson. Even though such models are widely
believed to be ruled out experimentally, in particular by the measurements of the oblique
electroweak parameters S and T' [32, 33], it would be an interesting question to ask whether
higher order operators in the chiral Lagrangian would ameliorate the tension with precision
electroweak data. In this case, the observed Higgs boson would appear as an extra non-
NGB degree of freedom. Its description would require the so-called Higgs Effective Field
Theory (HEFT) [34] which we would like to discuss elsewhere [35]. On the other hand, if
the observed Higgs boson is regarded to be one of the Nambu-Goldstone bosons, the model
is a composite Higgs model [36]. Such models are well-motivated as they can explain the
hierarchy problem by protecting the Higgs boson mass against large quadratic divergences.
One of the main difficulties, however, is to obtain a large enough Higgs mass because the
self-coupling vanishes for Nambu-Goldstone bosons if the symmetry is exact; again higher
order operators can be of interest on this question. Finally, there are also applications of
chiral Lagrangians to study dark matter candidates, such as Strongly-Interacting Massive



Particles (SIMPs) [37], where the dark matter freezes out in a 3 — 2 annihilation process
via the Wess-Zumino term in the chiral Lagrangian. The mass spectrum among dark
matter particles can be sensitive to higher order operators [38]. In all, classifying operators
in chiral Lagrangians can be an important problem.

The structure of the paper is as follows. Section 2 serves to outline the notation and
terminology we use throughout the paper, and reviews the form of the linearly transforming
fields that were introduced in [22, 23] for use in the construction of the Lagrangian. In
section 3 we provide the details of how a Hilbert series based on these building blocks is
constructed, with particular emphasis on how this is constructed on the different C' and P
odd and even branches. Finally, section 4 presents information contained within the Hilbert
series in various ways, for example coarse-grained enumeration of operators, breakdown by
their C and P transformations etc.

We include four appendices, and supplementary material. Appendix A provides ex-
plicit character formulae that enter the Hilbert series for the various fields in the chiral
Lagrangian on the different C and P branches. Appendix B contains information on how
the character formulae on the C' odd branch are obtained from ‘folding’” Dynkin diagrams of
the special unitary group. Appendix D gives a more detailed breakdown of the new results
that enumerate the operators appearing in the anomalous Lagrangian at chiral dimension
p®. Appendix E provides enumeration of operators for four and five flavours of light quark
up to chiral dimension 16. The supplementary material Hilbert-series-p6-and-p8.nb
provides the full Hilbert series for the chiral Lagrangian at chiral dimension p% and p®.

2 Linear building blocks of the chiral Lagrangian

In this section, we briefly review the setup of the chiral Lagrangian. Following [19, 20]
(see e.g. [27] for the notation we use in the following), we consider the UV theory as the
QCD Lagrangian with four external source fields — vector v, axial-vector a,, scalar s,
and pseudo-scalar p:

Lyv = Lqcp + 7" (vu + aw“r’) a—q (8 - im5) q. (2.1)

The quark field ¢ has Ny components (flavors). The external fields are real N x Ny matrices
due to hermiticity of the Lagrangian. In addition, v, and a, are assumed to be traceless.
With these external fields, the global chiral symmetry (g7,9r) € SU(Ny)r x SU(N¢)r
satisfied by QCD can be extended into a local one. The consequently required transfor-
mation properties of the external fields are most recognizable in terms of the following

combinations
by = v, — a, — grlug) —i(0u9r) g}, (2:2a)
ru =V ag —  gr7ugh—i(Ougr) gk, (2:2b)
2 ‘
N = —W@q)(s +ip) — grYgl, (2-2c)

with F} denoting the pion decay constant.



In the IR, the chiral symmetry is spontaneously broken to SU(Ny)y by the quark
bilinear vev (gq). The basic building block of the resulting EFT is the Goldstone matrix
field &(m), which transforms nonlinearly as

&€= gréh (&, 90,9r) = h (€, 91.9r) £97 " (2.3)

with a certain element in the unbroken group h (&, gr,9r) € SU(Ny)y that also depends
on the field . Employing the linearization recipe proposed by CCWZ [28, 29], one can
find the linearly transforming building blocks under the unbroken group SU(Ny)y (see
e.g. [22, 23, 27]):

wy = up T =i O —ir)E- €@ -t €], (24a)
Si4 (D) =T (n)1=¢nelente, (2.4b)
e i =TT R (2.4c)

with T denoting the SU(Ny)y generators in the fundamental representation. Here F' 571%
are the field strengths for ¢/ /r#:

Fiw _ 8“6” o al/g,u _ i[£#7glj] , (2.5&)
FEV — MY — GVt — i[r“, TV] . (25b)

In the second line of eq. (2.4), we have split the field into the trace part (¥4) and the
traceless part Y4 for future convenience.

To build the chiral Lagrangian, we are interested in the effective operators built
by the fields in eq. (2.4) together with the covariant derivative D, which are invari-
ant under the Lorentz SO(4) symmetry,! internal unbroken SU(N £)v symmetry, parity
P, as well as charge conjugation C.2 One also needs a power counting scheme to trun-
cate the EFT expansion — the so-called chiral dimension in the case of the chiral La-
grangian. For the linear building blocks in eq. (2.4), the chiral dimensions are respectively
{uy, 24, (X)), frw} — {1,2,2,2}. In addition, each power of covariant derivative has
chiral dimension one. We summarize the transformation properties and chiral dimensions
of the linear building blocks ¢ = {u,, X+, (3+), f+,} in table 1 (see e.g. [27]).

3 Hilbert series for the chiral Lagrangian

In this section, we briefly summarize the procedure of using Hilbert series to find the

operator basis of the chiral Lagrangian. The Hilbert series method is a systematic approach

that is explored in some detail in [10]. In this section, we will keep the general discussion

brief and focus on its special features when applied to the case of the chiral Lagrangian.
We compute the main part of the Hilbert series Hy as

1
H0(¢ap) = /dlu’lnternal(y)/d:uSpacetime(x)]3(

p’ x) Z(¢7p? x? y) * (3'1)

Throughout this paper, we work in Euclidean spacetime where the Lorentz symmetry is SO(4).
2As usual, if one is interested in finding an operator basis, there are of course linear redundancies to
remove, such as EOM and IBP.



Fields | SU(Nf)y Intrinsic Parity Charge Conjugation ~Chiral Dim

Uy adjoint — ulj; 1
Y4 adjoint + »T 2
(34) singlet + (X4) 2
frw | adjoint + =S E 2

Table 1. Transformation properties and chiral dimensions of linear building blocks of the chiral
Lagrangian (see e.g. [27]).

The components of this expression are briefly explained in order:

1. The set of all the local operators modulo the EOM redundancies forms a linear space,
which furnishes a representation of spacetime and internal symmetry groups. The
integrand Z(¢,p,x,y) (closely related to a partition function) is what is known as
a character (a trace over a group matrix) of this (highly reducible) representation,
further graded by ¢ and p. It can be computed as

20p.2.) =1l o= sy = o [Z > Lo <g?>] ST

% i n=1

Here ¢ = {u, X4, (X4), f+} collectively denotes spurion variables that represent all
the linear building blocks (fields) of the chiral Lagrangian; p is the power counting
parameter, whose power indicates the chiral dimension of the term; x and y are
variables for the character function (i.e. trace) of the operator’s representation matrix
under the spacetime and internal symmetries, respectively.

The representation matrix g;(p, z,y) of a single particle module [10] (defined as
¢; and its derivatives) is a tensor product of that for the spacetime symmetry group
and that for the internal symmetry group:

gi(p, 2, y) = 6,7 (p, ) @ g (y) (3.3)
For the case of the chiral Lagrangian, the spacetime symmetry group is the Lorentz
SO(4), and a Zg group P = {1, P} due to parity; the internal symmetry group
is the unbroken SU(Ny)y, and a Za group C = {1,C} due to charge conjugation.
The two Zo actions do not commute with their respective groups, so the underlying
group structure is the semi-direct product groups SO(4) x P and SU(Ny)y % C, see
section 3.2. The character variable x parameterizes a maximal torus of the spacetime
symmetry group SO(4), z = (21, x2) with two being the rank of SO(4). The y variable
has a similar structure. Eigenvalues of the representation matrix g are integer powers
of the character variables. When these eigenvalues all come with the trivial overall
sign (i.e. plus), we have

x() =t (g(2)) = tr(g") =x(z"). (3.4)



Here we use z to denote a generic character variable, and have adopted an abbreviated
notation z" = (27, ---,27). Making use of this and the factorization in eq. (3.3),
we get

S
tr (g7 (p, ) = ;P ", ) X () (3.5)

Therefore, we can better organize eq. (3.2) into

Z(¢,p,x,y) = exp [Z Z Xi (o7, 0" 2", y")| (3.6)

znl

with x; the graded character for each single particle module:

Xi (06,0, T, ) = ¢ X PR (p, ) ydnternal () (3.7)

In appendix A, we discuss the single particle module formed by each field ¢; (and its
covariant derivatives), and provide the character list x5P** ™ (p, z) in eq. (A.4) and
xiternal (1) in eq. (A.6).

2. The integral [ le’Spacetime(w) % takes care of imposing the spacetime symmetries,
including Lorentz SO(4) invariance, translation invariance (namely IBP redundan-
cies), as well as parity (if desired). When parity is not imposed, this integral is
simply

1
/dMSpacetime( /dMSO P+(p ) (38)

with 1
(1 —pxy) (1 — pxl_1> (1 — pxa) (1 — pxgl) .

Because of the orthonormality of characters, the Haar measure integral [ duso( 2 (x)

Py (p,x) =

(3.9)

(i.e. integral over the group SO(4)) selects out the Lorentz representations of our
interest. For example, without the factor P( oL this would select out the Lorentz
singlets (scalars) out of the operator space represented by Z, and hence ‘imposes’
the Lorentz symmetry. The role of the additional factor % is to remove the IBP
redundancies (equivalently, imposing translation invariance). See section 3.1 below
for more explanations.

3. The Haar measure integral [ djip,oma)(y) takes care of imposing the internal symme-
tries, including the SU(Ny)y invariance, as well as the charge conjugation invariance
(if desired). When charge conjugation is not imposed, this integral is simply

/dMInternal(y) = /d:u'SU(Nf)(y)a (3.10)

which selects out the SU(Ny)y singlets via character orthonormality.

Clearly, in practical evaluation of the Hilbert series given in eq. (3.1), we will need the
character expressions for various reps, as well as the Haar measures (called Weyl integration
formula) for the classical Lie groups. These can be found in many group theory textbooks,
e.g. [39, 40]. See also appendices A and B in [10] for summaries.



3.1 Addressing IBP redundancies

Without the factor ﬁw)’ the Haar measure integral in eq. (3.8) selects out all the scalar
(SO(4) singlet) operators. The additional factor % makes the Hilbert series into an
alternating sum of rank-k antisymmetric SO(4) tensors (which we will call forms as in [9,
10]), starting from k = 0, namely scalar. This largely removes the IBP redundancies,
except for the small caveat due to the existence of co-closed but not co-exact forms [9,
10]. In most generality, these forms give a further correction term AH in addition to
the main piece Hy in eq. (3.1), making the total Hilbert series H = Hy + AH. (See
section 7 in [10] for detailed elaborations.) However, experience has shown that AH only
contains operators at relatively low EFT orders. For example, it is proven in [10] that
AH in SMEFT only contains operators with mass dimension dim < 4, which follows from
conformal representation theory. For an EFT of pions, strong evidence was given in [10]
that AH only contains operators with mass dimension dim < 4, and it was conjectured
that no operators with dim > 4 contribute to AH. For our chiral Lagrangian at hand, we
enumerated all the co-closed but not co-exact forms by hand for chiral dimension below or
equal to p*, and found that none of them would survive once C' and P are both imposed (see
appendix C for a detailed elaboration). Therefore, for both C-even and P-even operators,
we have H = Hj at p? and p*. Beyond p*, we conjecture that AH does not contribute to
the mesonic chiral Lagrangian, even when C' and/or P are not imposed. This conjecture
is supported by the agreement we found between H( predictions and the enumerations by
other methods in the literature, as well as other supporting evidence given in [10]. With
this conjecture in mind, we will drop the subscript in Hy from now on, and simply call the
expression given in eq. (3.1) H.

3.2 Parity and charge conjugation

A detailed derivation and explanation on how to impose parity via the Hilbert series can
be found in appendix C of [10]. Here we summarize the practical recipe. We promote the
Lorentz symmetry SO(4) to the disconnected group by parity P (its outer automorphism):
0(4) =SO(4)xP ={04+(4),0_(4)}. Then the P-even Hilbert series is given by an average
over the two disconnected branches:

HP-even(¢’p) - /dMInternal(y) 9

1
/dﬂo+(4) (2) Prp.z) ZP" (¢,p,2,y)

+ / do_in (D) 5= 27 @pdw) |, (31D
where the function P_ (p, Z) is

P_(p,T) =

, 3.12
(1—par) (1—poy") (1= p?) )

and where we introduced the variable & for the odd branch elements g_ to distinguish
it from x used for the even branch elements g, because they have different numbers of



o) 0. (1) 0_(1)

Haar measure dpgo(ay(z) dpgp(2) (T)

(I1,0) rep character X(Sl?’(ozl)) (z) npxlslp@) (7)
(I1,12 # 0) rep character X?l?,(ljg (x) + X(Sl?,(f%?)(:r) 0

Table 2. Haar measure and characters for O(4) in terms of those of the classical Lie groups. A
general unitary SO(4) irreducible rep (irrep) is labelled by its highest weight I = (I1,13), which
satisfies | € 2Z, Iy — Iy € Z, and l; > |lo]. When I = 0, the SO(4) irrep forms an O(4) irrep
itself. In this case, there is an overall intrinsic sign choice np = =+ for the odd branch character,
which distinguishes real scalar (or vector etc.) from pseudo-scalar (or pseudo-vector etc.). When
lo # 0, the SO(4) reps (I1,12) ® (11, —I2) form an O(4) irrep. In this case, the odd branch character
vanishes. Our notation Sp(2k) denotes the compact symplectic group, Sp(2k) = Sp(2k, C) N U(2k).

components (see table 5). To compute the above two branches of Hilbert series, we need
the characters of various reps, as well as the Haar measure for the disconnected group O(4),
on both its branches O4(4). In table 2, we provide a summary of these in terms of those
of the classical Lie groups. They can be derived using the folding technique explained in
appendix C of [10].

Imposing charge conjugation can be achieved in a similar way as imposing parity.
In particular, we extend the internal symmetry SU(Ny) to the disconnected orbit group
ﬁJ(Nf) =SUNy) xC = {STLF(Nf), é‘fJ_(Nf)}, and the C-even Hilbert series is given by
an average over the two disconnected branches:

-even 1 +
Hﬁf (¢’p) = 5 [/duﬁ+(Nf)<y) /dMSpacetime(x) Z]?ff (éapaxvy)

+ [ ) ) [ spucine@ 75, Gpwi) [ (319)

where again we are using ¢ for the odd branch to distinguish it from y used for the even
branch, as they have different numbers of components (see table 5). To compute these two
branches of the Hilbert series, we need the characters of the singlet and adjoint rep, as well
as the Haar measure for the disconnected group SU(N ), on both of its branches SUL(N ).
These are summarized in table 3, in terms of those of the classical Lie groups. These results
can be derived by folding the Dynkin diagram A, = su(r + 1) with » = Ny — 1, which we
will explain in appendix B. Note that in table 3 we need to distinguish the even Ny = 2k
and the odd Ny = 2k + 1 cases. In addition, the SU(Ny) adjoint representation is self-
conjugate under charge conjugation. In this case, there is an overall intrinsic sign choice
N = £ for the odd branch character. For the chiral Lagrangian fields listed in table 1,
fields transforming as plus transpose (i.e. u,, X4, and f_,,) and those transforming as
minus transpose (i.e. fi,,) should obviously take opposite signs 7.; indeed the first set
(uu, X+, and f_,,) takes n, = —1 and the latter set, i.e. fi,, takes n, = +1.



SU(Ny) = SU(Ny) xC | SUL(N;)  SU_(N;=2k) SU_(N;=2k+1)
Haar measure dusuvy(y) dpso2k41) (9) dpgp(ar) (9)
singlet rep characters 1 1 1
.. SU(N SO(2k ~ Sp(2k ~
ad301nt rep characters Xadjf)in)t (y) C funEi2ar:elr3tal ( ) nCXfupn(jar)nental (y)

Table 3. Haar measure and characters for SAI/J(N ) = SU(Ny) x C in terms of those of the classical
Lie groups. SU(Ny) adjoint representation is self-conjugate under charge conjugation. In this case,
there is an overall intrinsic sign choice 7 = % for the odd branch character. Our notation Sp(2k)
denotes the compact symplectic group.

3.3 Character branches

It is clear from the discussion above that we need the integrand Z(¢,p,x,y) on different
branches of the disconnected groups: Zﬁjp i, ZZQ,:[P ¥, These are the (¢, p)-graded charac-
ters that can be evaluated as in eq. (3.2), taking the (representation matrix of the) group
element g++, g+ according to the branch selected. However, a subtlety is that the expres-
sion given in eq. (3.6) only applies to the fully even branch Zﬁ;P . When an odd branch
is involved, eq. (3.4) breaks down for even powers n = 2k, because certain eigenvalues of g,
which are still integer powers of the character variables, come with a minus sign. Taking
the parity case as an example, in the vector rep of O(4) (i.e. (I1,l2) = (1,0)), the odd
element g_ can be diagonalized into

z1 0 00
—1
g () — | V=00 (3.14)
0 010
0 0 0-1
The odd branch character is therefore
X— () =tr (g_ (i)) =427t (3.15)

This is as expected from the results in table 2. However, due to the minus sign in front
of the last eigenvalue in eq. (3.14), we see that the trace of even powers of g_ is less
straightforward:

tr (21 (7)) = x— (3%1), (3.16a)
tr (g2 (7)) # x— (5%). (3.16b)

The remedy is actually to use x4 instead for even powers:
tr (62 (@) ) = xy (7%, (3.17)

with a new variable z in place of . This new variable x has as many components as the
variable x, among which the number of independent ones however is only as many as that

~10 -



Xi, Ny odd-power even-power

Cc+pt dixt” (p.) X5y, ()

CHP~ | ¢ixt (0,3) XIn,(v)  dixE (0,7) XN, ()
C P | ¢ixd )Xy, @) dixd (0w) xSy, (0)

CP~ | ¢ixt” (0,3) x{n, @) dixd (0:7) XEy, ()

C,P branch d C,P branch

Table 4. Single particle module characters x;,” Ny, odd-power A4 X N} even-power in terms of group

pt
element characters xI~ and x¢ Nf.

of Z. One obtains Z from x by relating components in accordance with folding the Dynkin
diagram. In table 5, we summarize the relations among z, Z, and & for O(4), and y, 7, and
y for STJ(Nf) = SU(Ny) x C. This subtlety of evaluating tr (¢") reflected by eqgs. (3.16)
and (3.17) is also summarized in table 6.

Due to the subtlety explained above, we split the Z expression in eq. (3.6) into odd
and even powers:

)
C,P branch 1 C,P branch 2k+1 | 2k+1 _2k+1 | 2k+1
ZN = €xp Z Z Xi, N odd-power (¢z D » L Y

s — £ 2k + 10 Ny

00
L¢P branch 2k 2k
+ Z Z ﬁ Xi,]\/f7 Zizg-power (¢Z 7p 'Y ) ) (318)

C,P branch C,P branch . .
where x; Ny, odd-power and x; Ny, even-power A€ different functions (except on the branch

C*P7), as summarized in table 4. The group element characters XZP * and ngivf in table 4
can in turn be obtained from tables 2 and 3, based on the representations formed by the
single particle module. It is a bit nontrivial to compute the characters Xf i, as one needs to
sum over all the components in a single particle module, which typically all live in different
representations in table 2. In appendix A, we provide explicit expressions of x’ * (eq. (A4))
and ngivf (eq. (A.6)) for each of the single particle modules in the chiral Lagrangian.

3.4 Hilbert series branches and cases

Now that we have defined the integrand Z on each branch of the disconnected groups, it
is natural to also define the following Hilbert series branches:

H, 7 (@ / M5t vy / dno, ) p+(1p,)ZC+P+ (¢,p.7,y),  (3.19a)
HS P (6,p) / s, vy W /d"o (9) (%) P_(lmzﬁfp (6,p,,y),  (3.19b)
Hy, " (¢,p) /dMsU (ﬂ)/duo+(4) (z) mzﬁf’f”* (6,p,z,7),  (3.19¢)

P (¢,p) = / A5 _ (v, / dpo_ () (7) - é,) )ZJC\;;P T (6, % F) . (3.194)

- 11 -



O(4) SU(2k) = SU(2k) x C SU(2k+1)=SU(2k+1) x C

zory | (z1,22) (Y1, Y2r) (Wi, Yak+1)

‘/iorg Mo (ylu'”)yk) (y17"'7yk)

jorg (iﬂl,].) (\/yila"'a\/yiv\/%v'”a\/%) (\/yila"'a\/yiala\/%a”'a\/%)

Table 5. Relations among z, Z, and = for O(4), and y, §, and g for éfJ(Nf) = SU(Ny) x C. Note
that our y variables for éfJ(N r) appear to have one more component than the rank of the group
r = Ny — 1. This is because it is more convenient to use an (r + 1)-dimensional vector space for
the root and weight system of su(r + 1) where all roots are orthogonal to the vector (1,1,---,1).
Consequently, a relation among the r+1 components of y is understood: H:;l y; = 1. The variable
y is obtained from y by relating components in accordance with folding the Dynkin diagram; see

appendix B for details.

G G, G_

) |6 x () e ()

Table 6. Traces of odd and even powers of group elements g € G = {G4,G_} on the even branch
G, and the odd branch G_. Here we have adopted an abbreviated notation z" = (27,--- , 2"), and

similarly for z" and z". The group G here could be either the group O(4) or the charge conjugation
orbit group SU(N;) = SU(N;) x C, and the variable z could be either = or y correspondingly.

These branches can be used to obtain the following symmetric cases of the Hilbert series

HE — gOTPY (3.20a)
gC-even _ % (HC+P+ + HCHP+) , (320b)
HP—even — 1 (HC+P+ + HC’+P_) (3 20C)

2 ’ '
[JC-even P-even _ i (HC+P+ 4 HC+P7 + }[CHPJr + HCiPi) , (3.20(21)

where we have suppressed the arguments (¢, p) and the subscript Ny. With the above sym-
metric cases, we can further derive other cases of interest, such as the various components
and partial sums of the Hilbert series regarding to the C' and P discrete symmetries, as
summarized in table 7:

HC—even P-odd _ HC—even . HC—even P—eveny (321&)
HC’—odd P-even _ HP—even _ HC—even P-even (321]3)
HC—odd P-odd _ Htot _ HC—even _ HP—even + HC—even P—even’ (321C)
JgC-odd _ prtot _ HC—even’ (3.21d)
HP—odd — Htot . HP—even’ (3216)
HC’P-even _ HC-even P-even + HC-odd P-odd’ (321f)
FCP-odd _ pytot _ pyCP-even (3.21g)
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Htot HP—even HP—odd

HC—even HC—even P-even HC—even P-odd

HC’—odd HC—odd P-even HC—odd P-odd

HCP-even — HC-even P-even + HC-odd P-odd

Table 7. Hilbert series split up into transformations under C' and P.

The C'P-even and C'P-odd series, egs. (3.21f) and (3.21g), are easily understood from the
constituent relations in eq. (3.20), e.g. HCP-even = L(gC™PT 4 go P7y,

4 Results

We begin by showing some examples of the Hilbert series we obtain using the method
described in the previous section. We consider the chiral Lagrangian with two light flavours
of quarks, Ny = 2, at chiral dimension p5.> On the CTPT branch, which counts all
operators (see eq. (3.20)), we have

HG L = D 2423+ D*f_ fo+2f* fL+D* fi42f fi42f3+2f f15_+D*52
212 )42 f (S )+2f2 (B )52 (E )+ DS H(D )2 f fy 5y
+D%Y S AN ()N DA (SR 122 (R )2 f (S )22 (D)
+32 (S )+ DHE ) (S)HE ) (E) AT T (B4)+ 55 () + D (24)?

HE NS E 342D fPutAD f frut2D fRut Df- Y _ut+Dfy ¥ u
+DY2 ut+Df (S Vut+Df (L VYu+DE_ (X Yu+Df Y u+Df S u

+DY_ Y ut+D(E_) S ut+DE2 ut+Df— (S ) ut+Df (S )u+DE_ (S )u
+DY (S ) ut D2 fou? +8 20+ D? fru® +10f— fru® +8f2uP4+2f_ S _u?

42, 2 w4282 w2+ DB Yl 42f (X VP 42f () u+ (B )2’

+2f Yt 2 S w28 Y w4253 w4+ DH (S ut 2 (B4 )u?

+2f (Z DB NS )+ (E) 4D f P +4D fud+2DY _ud
+2DY P2 D%t A f_ut A f 4 2(S ) ut - 2(2 Y ut+ Dut+3uS (4.1)

The above Hilbert series gives detailed information about the number of independent oper-
ators made out of the building blocks u,, etc. appearing in table 1, and covariant derivatives
(which have a chiral dimension of one).* To indicate the latter we have instated a symbol
D as a spurion for the derivative; the power to which it appears in each term is deduced by
chiral dimension counting. We emphasise that in the Hilbert series it is simply a variable,
not a (differential) operator, as are all other symbols that represent fields. For example,
the first term in eq. (4.1) represents an operator that is constructed out of two powers of

3We discuss the p* chiral Lagrangian in detail in appendix C.
4See appendix A for further details on how the covariant derivative is treated in the Hilbert series
formalism.
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f— fields, together with two covariant derivatives. The unit coefficient in front of this term
indicates that there is only one independent such operator. Similarly, the second term in
the above Hilbert series indicates that there are two independent operators constructed
out of three f_ fields, and so on.

Turning to the CT P~ branch, where P-odd operators come with a negative sign, we get

HG L, =D*f? - D*f_fi + D*f2 + D*Y? —52(2 )+ D*(3_)* - (3.)° - D?T_%,
+ (T84 + D8R — (S)% + T2(51) - DHE_)(T4) + (Z-)%(S4)
— X (B4 + B (B + DX(B4)? - (2)(E1)2 +(84)° - Df-S_u
+DfYX u—DY%u—Df (S Vu+Df (S Yu— DY (X )u+Df Y, u
~DfiSiu+ DE_Siu+ D(E_)Siu— DS3u+ Df-(S4)u— D (S )u
+ DE_(S4)u— DS (S )u — D?fou? + 2f2u* + D fru® + 2f1u? + 252 u?
— DA(X Y + (22)u? — 28 S + 282 u? + DS )u? — (SO (E 4 )u?
+ (2% 4+ 2Df ud — 2D f ud + 2DY_ud — 2DY 4 2D%*ut — 2(2_Yut
+ 22 ) ut — Dub + 3uS . (4.2)

Note that the Hilbert series HC P~ HC P and HC P~ generically contain negative
terms such that once combined with HC P as in eq. (3.20), they make the Hilbert series
that count operators of definite symmetry, where all terms will be positive, and indeed
integer.

As a simple check, one can readily verify that egs. (4.1) and (4.2) can be combined as
per egs. (3.20c¢) and (3.21e) to produce parity even and odd Hilbert series that only contain
terms with positive, integer coefficients. Note how, for example, the penultimate terms in
egs. (4.1) and (4.2), £Du® (five u,, fields and one derivative, which is parity odd in the case
Ny = 2), cancel each other in the sum eq. (3.20c) to produce the P-even Hilbert series.

As mentioned in the introduction, it is common in the literature to separate out oper-
ators which include a spacetime epsilon tensor e#?? — denoting these ‘anomalous’ terms,
for example see [23] at chiral dimension p®. This information is also available with our
method, using the fact that the e tensor changes sign under parity transformations. For
overall P-even operators, such epsilon terms must have an odd number of intrinsic parity
odd fields. Writing the dependence on variables explicitly, one can define a flipped version
of the Hilbert series

Hﬂipped(u7 E-i-a X, <2+>7 <E—>7 f—‘r? f—) = H(_u’ E+7 -X_, <E+>7 _<2—>7 f+7 _f—) ) (43)

i.e. variables corresponding to fields with negative intrinsic parity are negated, such that
the Hilbert series without ‘anomalous’ operators is given by

1
HYwe = 5 (HP - Higar) (4.4)

It follows that a Hilbert series for the anomalous terms only is constructed as

He—only =H — Hyoe . (45)
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chiral dim  SU(2)  SU(3) SU(4) SU(5) SU(6) SU(7) SU(8)
p? 2 (0) —
p* 10 (0) 12 (0) 13 (0) —
p° 56 (5) 94 (23) 112 (24) 114 (24) 115 (24) —
P’ 475 (92) 1254 (705) 1752 (950) 1839 (998) 1859 (999) 1861 (999) 1862 (999)

Table 8. Enumeration of both C-even and P-even operators in the chiral Lagrangian with 2 < Ny <
8 light quarks (SU(Ny) unbroken symmetry). Numbers not in parentheses count non-anomalous
operators (i.e. excluding operators which involve an €/*#?), while numbers in parentheses count only
the anomalous operators. The arrow ‘—’ denotes that the entry is repeated to complete the row.

For P-odd Hilbert series, the above logic is reversed — epsilon terms must have an even
number of intrinsic parity odd fields, and the plus sign in eq. (4.4) gets replaced by a
minus sign.

Of course, one can “coarse-grain” the information; setting all of the variables u, ¥4,
(X4), ft, and D to unity in a Hilbert series, one obtains the total number of independent
operators. We will present a few results using this coarse graining, but we stress that
Hilbert series with full field content information — as in eq. (4.1) — have greater utility
than simply providing an overall enumeration and indeed contain information much more
useful for the actual construction of operators (see [10], and developments e.g. [41, 42]).

Table 8 summarises the coarse-grained Hilbert series output for the both C-even and
P-even chiral Lagrangian with 2 < N, < 8 flavours, at chiral dimension p? through pS,
providing the enumeration of both non-anomalous and anomalous operators, with the latter
being the number given in parentheses. We find agreement with the most up to date results
in the literature (accounting for missed relations as summarised in [27]). Concretely, the
known results are the non-anomalous operators at chiral dimension p? [19, 20], p© [21, 22, 25]
and p® [27], and the anomalous operators at chiral dimension p* (of which there are none,
see e.g. [43]) and p® [23, 24], for the physical cases SU(2), SU(3), and for the asymptotic
number in each row, which corresponds to what is denoted SU(Ny) in the literature.6

The main new result shown in table 8 is the enumeration of C-even and P-even anoma-
lous operators at chiral dimension p®, thus completing the enumeration all C-even and P-
even operators at this order — we present a more detailed breakdown in appendix D. Also
new are the enumeration of operators at p¥ in the (non-physical) cases where the number
of light quarks 3 < Ny < k.

In table 9, we show the number of C-even, P-even, and C' P-even (i.e. including both C-
even P-even and C-odd P-odd) operators at chiral dimension p® and p®, for the physically

5Regarding the agreement at order p? and p*, we point the reader to the comments made in section 3.1.

5The ‘general Ny’ flavours counting, or ‘SU(Ny) case’, is often presented in the literature, meaning no
SU(Ny) group theory relations are imposed to reduce the number of operators. More concretely, at a given
chiral dimension p*, this number can be taken to mean the SU(Ny > k) counting, which corresponds to
the asymptotic numbers in each row of table 8. These numbers are actually technically more difficult to
obtain with the Hilbert series method (on account of the more complicated characters/group integral) than
the physical cases.
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Figure 1. The number of independent operators in the C-even P-even chiral Lagrangian as a
Red dashed line, through points numbered 2,10,61, ...,
corresponds to all operators in the case of two light quark flavours, Ny = 2. Orange solid line,
through points numbered 2,12, 117, ..., corresponds to all operators in the case of three light quark
flavours, Ny = 3. The green dot-dashed and cyan dotted lines (without numbered dots) are,
respectively, the cases Ny = 4 and Ny =5 (the enumeration is provided in appendix E).

function of chiral dimension, up to p'S.

Ny=2 Ny =3
chiral dim Total C-even P-even CP-even Total C-even P-even C P-even
P8 151 103 82 88 315 206 165 178
8 1834 1050 943 975 6882 3768 3479 3553

Table 9. Enumeration of operators in the chiral Lagrangian broken down by behaviour under C,
P, and CP transformations, for the cases of Ny = 2 and Ny = 3 light quark flavours. In contrast
to table 8, ‘anomalous’ terms which involve an €*¥?? are not separated out, and are included in the
enumeration. Note that C'P-even counts both C-even P-even and C-odd P-odd operators.

relevant cases Ny = 2,3. The number of P-even and P-odd operators are roughly equal,
as might be expected from the fact that there are two versions of most fields, one with
even intrinsic parity, and one with odd. On the other hand, we observe there are somewhat
more C-even operators than C-odd at these chiral dimensions. Furthermore, comparing the
entries in table 9 to those in table 8, we see that the number of C-odd and P-odd (and hence
C P-even) operators is only roughly 30-40% of the number of C-even and P-even at chiral
dimension p®, and 70-80% at chiral dimension p®. Further results on C-odd and P-odd
operators, as well as C'P-odd operators, can be found in the accompanying Mathematica
notebook. All results shown in table 9 are, to the best of our knowledge, new.

Finally, in figure 1 we look at the growth of C-even and P-even operators for Ny = 2,3
as the chiral dimension grows large, up to p'%. As expected on general grounds (see e.g.
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the discussion in [10]) the number of independent operators grows exponentially. Similar
growth was observed in the SM EFT [9]; for the mesonic QCD chiral Lagrangian we see
that the growth of operators is smoother as all building blocks are bosonic, so the variations
evident in moving between even and odd mass dimensions in the SM EFT are not present.
We also plot curves which show the growth of operators for the unphysical cases of Ny = 4,5
for comparison (with enumeration provided in appendix E); at fixed chiral dimension we
observe the number of operators converging to a fixed value with increasing Ny, as seen in
the rows of table 8.

5 Discussion

In summary, we have adapted the Hilbert series technology so as to apply it to the enumer-
ation of operators in the mesonic QCD chiral Lagrangian. This provides a systematic way
to determine operator content at a given chiral dimension. We confirmed existing results
in the literature; new results presented include the C-even and P-even operator content of
the anomalous chiral Lagrangian at chiral dimension p®, and the C-even, P-even, and C P-
even operator content at chiral dimension p% and p®. We augmented aspects of the Hilbert
series method, most notably through the inclusion of the operation of charge conjugation
via the folding of su(n) Dynkin diagrams, as well as previously unconsidered field content.

We conclude here with a discussion of an interesting possible application of our work
concerning the rare decays of hadrons. This is inspired by the recent results from the
KOTO experiment at J-PARC, which reported possible excess events in K — 7'vi [44].
If taken literally, it appears to violate the well-known Grossman-Nir bound [45]. The
bound is based on the assumptions of isospin and lepton-flavor conservation, which forces
the decay to be a C'P-violating effect at the leading order in the EFT. Yet they pointed
out that higher-order C' P-conserving operators can contribute to the process. In addition,
isospin violation and/or lepton-flavor violation also open up possible loopholes. We believe
our classification of higher-order operators in the chiral Lagrangian facilitates the study
of identifying possible sources of higher-order operators with new flavor violations. Even
though higher-order operators are suppressed when the new physics scale is above the
electroweak scale, this is a place where the Standard Model contribution is so suppressed
that they can play an important role. In addition, there are models with light new particles
(e.g., [46-54]). In this case, our classification can be straightforwardly expanded to include
new light degrees of freedom in the Hilbert series.
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A Characters of single particle modules
Schematically, the single particle modules relevant for the chiral Lagrangian are

Uy, by f,ul/
D,y uy D, % Dy, fuw

R, = 5 Ry = ; R, =
“ Dy, Dyyuy > Dy Dy 2 ! Dy Dy v

(A1)

Here we use X to cover the cases ¥4, (X1), and f to cover the cases fi. We describe the
above list of components as being ‘schematic’, because many components are actually ab-
sent /vanishing due to additional properties satisfied by the single particle modules. There
are three of these properties:

Equations of Motion : DVu, =0, (A.2a)
Lie Algebra Relations : D,u, — Dyu, =0, (A.2Db)
Bianchi Identities : D, fu, + D, fup+ Dy fou =0. (A.2c)

Precisely speaking, the listed properties do not make these three combinations zero, but
actually obtainable from components with less number of derivatives (see e.g. [22, 27]).
Therefore, they can be treated as zero in computing the Hilbert series. With the same
spirit, the covariant derivatives can be treated as commuting objects: [D,, D,] = 0.

With the above, we can find the SO(4) representations for all the components in the
single particle modules

D"y, : (n+1,0), (A.3a)
D"Y . sym"(1,0), (A.3Db)
D"f,, : sym™(1,0) ® ((1,1) & (1, —1)) — sym™ 1 (1,0) ® (1,0) + sym” 2(1,0). (A.3c)

In the last line above, the ‘—’ sign of the second term should be understood as a quotient;
it makes sense because the second term is a subspace of the first term. From these repre-
sentations, it is straightforward to compute the explicit expressions of the characters XiP *
for all the single particle modules. The results are

X’5+ (p,.’I}): (1_p2) P+ (p,fI,'l,H?Q)_l, (A4a)
Xy .3) = —p(1-p?) (21 + 27" = p) P_ (p,m1), (A.4b)
XEs (p.w) = XBs, (p.2) = PP Py (p,21,22), (A.dc)
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X5, (P, &) = X{s,) (p, &) = +p*P_ (p,11), (Add)
1 2 x
X?I(p,w)—pQ[xlszrlJr T
r1xr2 T2 1

—p (a:l +ay! + xy —|—x2_1) +p?| Py (p, 1, 22), (A.de)

XF. (0.3) = +p* (v + 27! = p) P- (0, 11), (A.4f)
with the definitions
1
(1 —pz1) (1 - pﬂﬁfl) (1 — px2) (1 - px2_1> ’
1
(1—pa1) (1—pa7") (1= p2)

P, (p,x1,22) = (A.5a)

P_(p,z1) = (A.5b)

For completeness, we also provide the explicit expressions of the characters XZ-OEf for all
the single particle modules

+
Xy v, () = Xy v, (8) = (A.6a)
+ + SU(N

XS, ) = X5, v, () = XFi v, () = xadjom’;) (y), (A.6D)

- - - SO(2k+1 -
Xg, Ny=2k (9) = Xgi,Nfzzk (9) = :FXfi,Nf o () = fun(damen)tal (@) (A.6c)

B Sp(2k -
Xg, Ny=2k+1 (7) = Xzi,Nf 2k+1 (7) = ¢Xfi,Nf 2k+1 (9) = ﬁf)ndar)nental (7) - (A.6d)

B Folding for charge conjugation

In order to impose charge conjugation invariance via Hilbert series, we need to figure out the
characters (and Haar measure) on the odd branch of the orbit group STJ(N ¢) = SU(Ny)xC.
These are summarized in the main text (table 3) for the representations relevant to the
chiral Lagrangian. In this appendix, we show how to derive these results.

Consider an arbitrary irrep of SU(Ny). If it does not form a SU(N ¢) rep by itself,
one needs to find its Charge conjugation partner rep, and pair them up to form an irrep
of SU(Nf) In such SU(Nf) irreps, the group elements on the odd branch g_ € SU_(N )
are off-block-diagonal and hence have vanishing characters, y— = tr(g—) = 0. The more
nontrivial case is that the given SU(Ny) irrep is self-conjugate under C' and hence forms
a STJ(N ) irrep by itself.” In this case, y_ follows from the C-invariant weights of the
irrep, which are obtained from the (C-invariant) highest weight by subtracting C-invariant
linear combinations of the simple roots of SU(Ny). These invariant combinations are in
turn generated by a new set of simple roots, which can be obtained by folding the Dynkin
diagram A, (with » = Ny —1) representing the Lie Algebra su(r+1). In fact, there are two

"In fact, each such self-conjugate SU(N;) irrep can form two distinct é\[/J(N ¢) irreps, depending on an
intrinsic sign choice no = = in its transformation under C. Consequently, there is an overall sign in the
character for the odd branch elements, as reflected in table 3.
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kinds of folding that one can define: folding by average and folding by sum. The former
gives us the C-invariant subalgebra; and the latter gives us the C-invariant weight lattice,
which is what we need in this appendix. (See [55] and also appendix C.2 in [10] for details.)
In what follows, we will show that As_1 folded by sum yields By, corresponding to the
root system of s0(2k + 1); Ay folded by sum yields Cj, corresponding to the root system
of sp(2k). The results in table 3 in the main text hence follow.

B.1 Root and weight systems

We first summarize the root and weight system for A, = su(r+1), as well as its orbit groups
By = s0(2k + 1) and Cy = sp(2k). The roots are vectors on the root lattice generated by
simple roots 7; obtained from a Cartan matrix A

Ay = 2% . (B.1)
The diagonal elements of Cartan matrix are all A;; = 2, while non-diagonal elements are
non-positive A;; < 2. It is required that A = DS where D is a diagonal matrix while
S is symmetric. This requirement allows for a classification of Cartan matrices. Dynkin
diagrams are graphical representation of Cartan matrices. The weights are vectors on the
weight lattice generated by fundamental weights w; defined by the simple roots

wi-rj

For A, = su(r 4+ 1), the Cartan matrix has A;; = 2, A;;+1 = Ait1; = —1 for ¢ =
1,---,r — 1 and otherwise zero,
2—-1 0--- 0 0 O
-1 2—-1--- 0 0 O
0-1 2--- 0 0 O
A= : Pl (B.3)
o 0o 0--- 2-1 0
o 0 0---—-1 2-1
o 0o 0--- 0-1 2

It is convenient to use (r + 1)-dimensional vector space, where all roots are orthogonal to
the vector (1,1,---,1). The simple roots are
—_———

r+1

ay = (15_1707"' 7070>O)
Qg = (0717_1)"' 707070)

Ap_1 = (070707'” 717_170)
ar = (0,0,0,---,0,1,-1).

—90 —



The complete set of roots is given by
(oo L, F L) (B.5)

There are r(r + 1) of them. Together with the r Cartan generators, they form the set of
(r +1)? — 1 generators. The fundamental weights are

1

H1 = 5 (17 _17 _17 T 7_17 _17 _1)
1

H2 = § (1317_17"' 7_17_17_1)

(B.6)
1
Hr—1 = 5 (171717"' 717_17_1)

1

=5 (L1111 -1).

The (first) fundamental representation has its highest weight as the first fundamental
weight 1, and all the other weights further obtained from it:

(_17 7_17+1a_17 7_1> (B7)

N =

There are in total r + 1 of them, including the highest one.

For By, = so(2k + 1), the Cartan matrix has A;; = 2, A;;41 = Ai41; = —1 for
i1=1,---,k—2, Ap_1, = —1, while Ay 1_1 = —2 and otherwise zero,
2—-1 0--- 0 0 O
-1 2—-1--- 0 0 O
0-1 2--- 0 0 O
A= I S (B.8)
0o 0 0--- 2-1 0
0O 0 0---—-1 2-1
0 0 O0- 0-2 2

The simple roots are
61 = (1a_170707"' 70)
/82 == (07]-7_1)0)"' 70)

/kal - (0707 70717_1)
ﬁk: (ana ’0,071)'
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Note that the last one Sy is a short root. The fundamental weights of so(2k + 1) are

V1:(1707O>"' 7070)
1/2:(171707"' 7070)

(B.10)
V-1 = (171717"' 5170)
1
v =—(1,1,1,---,1,1).
2
For Cy = sp(2k), the Cartan matrix has A;; = 2, Ajiy1 = Aiy1s = —1 for i =
1,--- ,k—2, Agp_1 = —1, while Ap_1, = —2 and otherwise zero,
2—-1 0--- 0 0 O
-1 2-1--- 0 0 O
0-1 2--- 0 0 O
A= 0o ] (B.11)
0O 0 O 2-1 0
O 0 0---—-1 2-2
0O 0 O 0-1 2
The simple roots are
Y1 = (]-7_170707”' 70)
Y2 = (0717_170"" >O)
(B.12)
VYe—1 = (0505 7071’71)
Yk = (0707 707072>'
Note that the last one ~y; is a long root. The fundamental weights of sp(2k) are
pP1 = (170707"' 7070)
P2 = (171>O7"' 3070)
(B.13)

pk—1:(171717"' 7170)
Pk:<171717"'71>1)

B.2 Folding Agr_1

Let us first discuss the case r = 2k — 1, an odd number. In this case, there is a middle node
in the Dynkin diagram — the simple root «aj. The folding is defined by adding columns
of the Cartan matrix transformed by the automorphism. Note that the middle node is
invariant under the automorphism and there is no sum. In terms of roots, it corresponds
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1 k-1 k 2k -1
Ay O— -+ —O—O0—O0— -+ —O

B, O—:-+—QO >0

Figure 2. Folding the Dynkin diagram Asi_1 by sum yields the Dynkin diagram By.

to a; = «; + agg_; except for ap — . For example in the case of As, the folding is

2-1 0 0 0 2-1 0
-1 2-1 0 0 -1 2-1
0-1 2-1 0= 0-2 2. (B.14)
0 0-1 2-1 -1 2-1
00 0-1 2 2-1 0

The last two rows are clearly redundant. Removing them, we obtain the Cartan matrix
of Bs. The procedure is depicted by figure 2. The folding yields the following new simple

roots: B
f1=a1+ayk1 =(1,-1,0,0,---,---,0,0,1,—1)
Bo=as+agko =(0,1,-1,0,---,---,0,1,—1,0)
(B.15)
Br—1=ag_1+ g1 =(0,---,0,1,—1,1,-1,0,--- ,0)
Br. = au, =(0,---,0,0,1,-1,0,0,---,0).
In terms of a root system, these are equivalent to the following set
f1=(1,-1,0,0,---,0)
B2 =(0,1,-1,0,---,0)
(B.16)

/Bk:fl = (ana 70717_1)
ﬁk: (0505 )07071)’

which is nothing but the root system of By given in eq. (B.9). The corresponding Lie
algebra so(2k + 1) is not a subalgebra of su(2k). Nevertheless, this is the root system that
generates the C-invariant weights. Therefore, on the odd branch S;IVJ_(Qk), the characters
X— = tr(g—) are given by SO(2k + 1) characters; and the Haar measure is given by the
SO(2k + 1) Haar measure.

The concrete character dictionary is

SU
XOURE = SOk (B.17)

Here p denotes the highest weight of a general self-conjugate representation of SU(2k):

2k—1

n=3" nii, (B.18)
=1
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with n; = nok_;, and u; the SU(2k) fundamental weights listed in eq. (B.6). The corre-
sponding SO(2k + 1) rep in eq. (B.17) is the one with the highest weight

k
v= Zniui , (B.19)
i=1

where v; are the fundamental weights of SO(2k + 1) listed in eq. (B.10). Note that there
is also an overall intrinsic sign freedom 7 = % in eq. (B.17), as explained before.

Taking the adjoint rep of SU(2k) as an example, we have n; = ngi_1 = 1 and n; =
0, for i = 2,---,2k — 2. This tells us the corresponding SO(2k + 1) rep is v = v; — the
vector representation. Therefore, we obtain

SU(2k SO(2k+1
X— a(,djo)lnt = 7IC'Xvecgcor ) . (BQO)

We can also verify this from the explicit character expressions. The character of the SU(2k)
adjoint rep is

SU(2k Yi
o (¥) = 2k — 1+ Z - (B.21)

i#j i
Here y = (y1,--- ,yar), with [[?*, v = 1 understood (see table 5). Upon folding (either
by average or by sum), we need to identify yor11-; = y; “fori=1,---k (as dictated by

eq. (B.15)), and the above character becomes

k
SU(2k) _ 2 L Yi 1
XadJ01nt folded — 2k -1 + Z (yl > + 22 ( - + + Yilj + yly]
= 1<j

) . (B.22)

We know that the C-invariant subgroup of SU(2k) is Sp(2k) [56] (which can be figured out
using folding by average), so this folded character must be able to decompose into Sp(2k)
characters. Indeed, we find

SU(2k) Sp(2k) Sp(2k
Xadjoint-folded = Xp=2p1 +Xp2(p2)7 (B.23)

with

Sp(2k) Yi i 1
PG = k+Z (yz : ) +Z< IR m ) : (B.24a)
(2

i<j Yj Yi 1Y

Y
X%p(pik—k 1+Z<z++yzyj+

i<j YilY;j

! ) , (B.24b)

Furthermore, in these two Sp(2k) irreps, the charge conjugation element C' should just be
+1, with opposite signs. Therefore, the C-invariant character is given by the difference
between them, with an arbitrary overall sign n- = %1:

— k
SU(2k Sp(2k 1
e = e [ng( 5) _ X,%p(,ik)] e ll +3 (yf n zﬂ)] = o SO@HH (42) | (B.25)
= )

This agrees with eq. (B.20) upon the redefinition y; — ,/y;, and hence the square root in
table 5.
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B.3 Folding Aqj

Let us now turn to the case » = 2k, an even number. This one is an oddity. We normally
see statements that Asp Dynkin diagram cannot be folded. For instance, the Wikipedia
page on Dynkin diagram® states “the one condition on the automorphism for folding to
be possible is that distinct nodes of the graph in the same orbit (under the automorphism)
must not be connected by an edge; at the level of root systems, roots in the same orbit
must be orthogonal”. As there is no middle node in the Dynkin diagram Asg, all the simple
roots pair up under the outer automorphism, as depicted by figure 3. In particular, the two
connected simple roots oy, and a1 have to be in the same orbit, violating the above stated
condition. The folding is defined by adding columns of the Cartan matrix transformed by
the automorphism. In terms of roots, it corresponds to o; — ; + awop+1—;. For example
in the case of Ag, the folding would have produced

2-1 0 0 0 O 2-1 0
-1 2—-1 0 0 O -1 2-1
0-1 2-1 0 O . 0-1 1 . (B.26)
0 0-1 2-1 O 0-1 1
0 0 0-1 2-1 -1 2-1
0 0 0 0-1 2 2-1 0

The last three rows are clearly redundant. Removing them, we obtain the matrix

2-1 0
—1 2-1|, (B.27)
0-1 1

which is not a legitimate Cartan matrix because As3s = 1 # 2. This problem has been
overcome in refs. [57, 58] by allowing for an additional factor of two for the last column,
and it becomes a legitimate Cartan matrix

2-1 0
-1 2-2, (B.28)
0-1 2

which is that of C3. This procedure generalizes to all Kac-Moody algebras. With this new
definition, folding Asg by sum yields the following new simple roots:
A1 = a1 + agk =(1,-1,0,0,0,---,0,0,0,1,—1)
Yo = o + gy = (0,1,—1,0,0,---,0,0,1,—1,0)
(B.29)
V-1 = Qg—1+ agr2 =(0,---,0,1,—1,0,1,—1,0,--- ,0)
Yk = 2 (o + ag41) = (0,---,0,0,2,0,—-2,0,0,---,0).

Shttps://en.wikipedia.org/wiki/Dynkin_diagram.
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1 E k+1 2k
Ay O— -+ —O O O Oo— -+ —O

C, oOo— -+ —a=X0

Figure 3. Folding the Dynkin diagram Asj by sum yields the Dynkin diagram C.

Note the additional factor of two in the last line. In terms of a root system, these are
equivalent to the following set
v =(1,-1,0,0,---,0)
v2 = (0,1,—1,0,---,0)
(B.30)

Ye—1 = (Oa 07 ce 707 1’ _1)

Yk = (0707 707072)‘
which is nothing but the root system of C given in eq. (B.12). Therefore, on the odd
branch SU_(2k + 1), the characters xy_ = tr (g—) are given by Sp(2k) characters; and the

Haar measure is given by the Sp(2k) Haar measure.
The concrete character dictionary is

Sl,j;(fk+1) e Xip(zk) (B.31)

Here p denotes the highest weight of a general self-conjugate representation of SU(2k + 1):

T (832

with n; = nogi1-4, and p; the SU(2k 4+ 1) fundamental weights listed in eq. (B.6). The
corresponding Sp(2k) rep in eq. (B.31) is then the one with the highest weight

p= Z nip; - (B.33)

where p; are the fundamental weights of Sp(2k) listed in eq. (B.13). Note that there is also
an overall sign freedom in eq. (B.31), due to the intrinsic sign choice 7 = +, as explained
before.

Taking the adjoint rep of SU(2k + 1) as an example, we have n; = ng, = 1 and
n; =0, fori =2,--- 2k — 1. This tells us the corresponding Sp(2k) rep is p = p; — the
(first) fundamental representation. Therefore, we obtain

SU(2k+1) Sp(2k)
—, adjoint — "MCXfundamental * (B'34)

We can also verify this from the explicit character expressions. The character of the
SU(2k + 1) adjoint rep is

2k 1
SU(2k+1) — 9k hs Yi B.35
adJomt + Z yj : ( . )
i#j
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Here y = (y1,- -+ , y2x+1), with H?i'fl y; = 1 understood (see table 5). Upon folding (either
by average or by sum), we need to identify yogio—; = yl-_l fort =1,--- )k and yp11 = 1
(as dictated by eq. (B.29)), and the above character becomes

SU(2k+1 1 Yi 1
Xadjf)mt fo)lded =2k + Z yz + ) + 2% +2 Z - + — + Uil + R (B36)
=1 y 7,<] yly]

We know that the C-invariant subgroup of SU(2k + 1) is SO(2k + 1) [56], which can be
figured out using folding by average. So this folded character must be able to decompose
into SO(2k + 1) characters. Indeed, we find

SU(2k+1) _ . SO(2k+1) SO(2k+1
Xadjoint-folded — Xv=21, + l/=l(/2 ) ) (B37)
with
SO(2k+1) k 1 Yi yj 1
Xv=2u, =k+ Z yz + ) + Y + + Z + YilYj + s (B38a)
=1 y Yi i<j yly]

Yj 3/ YiYy;

k
o =k 3 (wer )3 (2
i=1

1
1<J

Furthermore, in these two SO(2k + 1) irreps, the charge conjugation element C' should just
be 1, with opposite signs. Therefore, the C-invariant character is given by the difference
between them, with an arbitrary overall sign 7. = £1:

— k
SU(2k+1 SO(2k+1 1
X ot = 1 o2y = xGOZY] = e [Z (y? + yz> = nexp2o (7). (B-39)

=1

This agrees with eq. (B.34) upon the redefinition y; — /y;, and hence the square root in
table 5.

C Hilbert series for the p* chiral Lagrangian

While our methods allow us to enumerate the chiral Lagrangian to high order, it is im-
portant to cross-check the results with known results at lower order. We discussed this
for the p® Lagrangian in the main text; however, perhaps the most familiar result are the
NLO terms, i.e. the p* operators [19]. Here we provide the Hilbert series results for the p*
Lagrangian, which we hope will enable readers who are familiar with the chiral Lagrangian,
but less familiar with Hilbert series techniques, to gain some footing with results they al-
ready know. Throughout this appendix we will work explicitly with two flavors, Ny = 2,
for which there are 10 operators in the basis [19].

One minor complication with the p* Hilbert series, which we mentioned in section 3.1,
is the need for AH; that is, there are co-closed but not co-exact forms that contribute
spurious information to the output of Hp in eq. (3.1) (see section 7 of [10] for a general,
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detailed discussion). In fact, the output of the Hilbert series makes it entirely obvious that
something is amiss:

o+ pt

HG L | =20t +2f @ + 210 + (S + () +2fF +2f2 + 2f, f- + 57 + 52

p4
+ X484 (B2 + (52 + (Z4)(8-) + D' = Dfyu— Df-u— Du?,
(C.1)

where we have highlighted in blue the terms which are seemingly non-sensical (there is no
operator composed of only four derivatives, and the other terms have negative coefficients).
In fact, it’s easy to explicitly identify the co-closed but not co-exact forms that lead to the

issue:

form contribution to Hy
ehvpo +D4

€ frPue —Dfiu

puvpo )+ + (02)
14
€pvpo fL U7 —Df_u
€pvpot” ulu’ —Du?

As explained in [9, 10], the full Hilbert series can be written as H = Hy + AH, where AH
contains the information about co-closed but not co-exact forms. Similar to the different
branches of Hj defined in eq. (3.19), we find different branches for AH determined from
the various quantum numbers of the operators above in eq. (C.2):

AHG L = —D*+ Dfiu+ Df u+ Du?, (C.3a)
AHG L = +D*+ Dfiu— Df u+ Du?, (C.3b)
AHG = —D*—Df,u+Df u— Du?, (C.3¢)
AHG L, o +D* -~ Dfyu—Df u— Du?. (C.3d)

These can be combined analogously to egs. (3.20) and (3.21); here we list only a few such
combinations:

AH]%}EZVSH P-even .y =0 , (C4a)
AHFge =0 (C.4b)
AHﬁf;gdd]p4 = -D*+ Dfu+ Df u+ Dub. (C.4c)

Accounting for the above, we arrive at the C-even, P-even Hilbert series for the p*
chiral Lagrangian,

HGEse reven| =2t 4 fou? + () + S+ 2430 432 4 (247 + (2)7, (C5)
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Anomalous p® Ny Ny=3 Ny=2
All fields 999 705 92

No ¥4 or (¥4) | 565 369 0
No fiu 79 45 2
Only u, 36 16 0

Table 10. Breakdown of the anomalous operators at p® in the chiral Lagrangian.

which, indeed, tells us that there are ten operators in the p* basis [19]. For fun, we also
list out the C'P-even and C'P-odd results:

C P-even
H Ny=2

= 2ut + fru? + fou (S + T R e fo+ 2+ 22
+(Z)? 4+ (22)%, (C.6a)

HF-g4d o frul + fou? + (S0P + f2 + 2+ fofo + 2080+ (24)(52). (C.6b)

Ny=2

D Hilbert series for anomalous terms in the p® chiral Lagrangian

In the supplementary material we include a Mathematica notebook containing the full
Hilbert series for the anomalous C-even and P-even chiral Lagrangian at chiral dimension
p2. In this appendix, we provide a breakdown of the enumeration of the classes of operators
appearing at this order, which mirrors the breakdown of the non-anomalous terms that
appeared in tables 3-8 of ref. [27]. In particular, we consider four cases:

1. All fields included

2. Excluding scalar and pseudo-scalar fields ¥4, (34)

3. Excluding vector and axial-vector fields f,,

4. Excluding all the external fields ¥4, (¥4), and fi,,
In table 10, we list the total number of operators in each of these cases, for Ny = 2,

Ny = 3, and the general N; case (operationally Ny > 8 in our approach). For more
detailed breakdowns, we refer the reader to the supplementary material.

E Enumeration of operators for Ny = 4,5 up to chiral dimension 16

The following table contains the enumeration of operators used for the Ny = 4 and Ny =5
curves shown in figure 1.

Chiral Dim: p? p4 P8 p® p'® pl? p14 p'®

SU(4) 2 13 136 2702 78632 2675469 95181455 3419764470
SU(5) 2 13 138 2837 88575 3346187 135986333 5710835325

(E.1)
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