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Abstract

Recent efforts coupling our Sun-to-Earth magnetohydrodynamics (MHD) model and lower-corona
magnetofrictional (MF) model are described. Our Global Heliospheric MHD (GHM) model uses time-
dependent three-component magnetic field data from the lower-corona MF model as time-dependent boundary
values. The MF model uses data-assimilation techniques to introduce the vector magnetic field data from the Solar
Dynamics Observatory/Helioseismic and Magnetic Imager, hence as a whole this simulation coupling structure is
driven with actual observations. The GHM model employs a newly developed interface boundary treatment that is
based on the concept of characteristics, and it properly treats the interface boundary sphere set at a height of the
sub-Alfvénic lower corona (1.15 Re in this work). The coupled model framework numerically produces twisted
nonpotential magnetic features and consequent eruption events in the solar corona in response to the time-
dependent boundary values. The combination of our two originally independently developed models presented
here is a model framework toward achieving further capabilities of modeling the nonlinear time-dependent nature
of magnetic field and plasma, from small-scale solar active regions to large-scale solar wind structures. This work
is a part of the Coronal Global Evolutionary Model project for enhancing our understanding of Sun–Earth physics
to help improve space weather capabilities.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Solar wind (1534); Magnetohydrodynamics (1964);
Magnetohydrodynamical simulations (1966)

1. Introduction

The Coronal Global Evolutionary Model (CGEM; Fisher
et al. 2015; Hoeksema et al. 2020) is a model infrastructure
framework capable of utilizing solar-surface three-component
magnetic field data from the Helioseismic and Magnetic Imager
on the Solar Dynamics Observatory (SDO/HMI; Scherrer et al.
2012; Hoeksema et al. 2014), estimating the solar-surface
magnetic forces and energy fluxes, and simulating and
reproducing nonpotential highly twisted coronal magnetic field
features over a broad range of heliocentric distances from the
solar surface to interplanetary space. The PDFI (PTD-Doppler-
FLCT Ideal) method (e.g., Kazachenko et al. 2014; Fisher et al.
2020) is used to infer the solar-surface magnetic forces and
electric field matching the observed temporal evolution of the
magnetic field (Hoeksema et al. 2020).

The magnetofrictional (MF)model (e.g., Craig & Sneyd 1986;
Yang et al. 1986; van Ballegooijen et al. 2000) and MHD
models are powerful methods to simulate temporal evolution of
the coronal magnetic field matching the observations. In the
CGEM framework, the MF (Cheung & DeRosa 2012) and the
RADMHD model (Abbett 2007; Abbett & Fisher 2012; Abbett
& Bercik 2014) can numerically reproduce the coronal evolution
in response to solar-surface magnetic field variations (Sections
4–6 of Hoeksema et al. 2020). In these models, however, the
computation domain must often be limited to the lower corona,
typically up to at most 2.5 Re, to avoid the computational
difficulties at and beyond the Alfvén radius (at typically 3 ∼ 20
Re) or the critical radius of the Parker solution (at about 5.5 Re
with the specific heat ratio γ∼ 1).

To help enhance our capability in space weather studies, it is
desirable to extend these near-Sun models driven by advanced

recent observations to the orbit of Earth at 1 au and beyond. A

straightforward tactic for this domain extension is to apply

output information from a lower coronal model to another

solar-corona/solar-wind model (e.g., Steinolfson et al. 1982;

Linker et al. 1990, 1999; Usmanov 1993; Feng et al.

2010, 2015, 2017; Riley et al. 2011; Usmanov et al. 2011; Jin

et al. 2017), or a solar-wind model (e.g., Dryer et al. 1991;

Odstrcil & Pizzo 1999, 2009; Detman et al. 2011; Wu et al.

2011; Hayashi 2012; Shen et al. 2013; Shiota & Kataoka 2016;

Pogorelov et al. 2017; Pogano et al. 2018; Pomoell &

Poedts 2018; Xiong et al. 2018; Hinterreiter et al. 2019; Li

et al. 2020). A few other practical advantages are expected to

result from this model coupling tactic: it will be far easier to

fine-tune each model independently; the required computa-

tional resources will be substantially reduced compared to the

case where two or more models are fully integrated into a

single model code, and/or a single model handles the whole

region of interest, from the solar corona to interplanetary space,

with a vast magnitude range of temporal and spatial scales.
In this context, we have developed a new version of a Sun-

to-Earth MHD model, named the Global Heliospheric MHD

model (GHM) in the CGEM model framework (Section 7 of

Hoeksema et al. 2020), by modifying our existing MHD

models (Hayashi 2005, 2008, 2013; Hayashi et al. 2015). A

new feature in the Sun-to-Earth GHM model is a set of

boundary treatments for an interface boundary sphere to

introduce the outputs from the lower-corona MF model as

time-dependent boundary values to drive the upper corona and

solar wind. In developing the new interface boundary treatment

in the CGEM context, there are two requirements as described

below.
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The first requirement is that the interface is placed in the
lower corona. As shown in Merkin et al. (2016), Pogano et al.
(2018), and Li et al. (2020), the combination of two models is
indeed powerful, capable of reproducing temporal variations of
the plasma and magnetic field in the broader temporal scale and
spatial range than each model can. These model combinations
use two of the same or similar MHD models and have the
interface at the super-Alfvénic regions, hence all MHD
variables are ready for transferring from the inner-heliospheric
model to the outer-heliospheric one straightforwardly. In our
case, however, the plasma data are not provided from the MF
model to the GHM model. If we place the interface (or upper
boundary of the lower-corona MF model) in a sub-Alfvénic
region at, for example, 2.5 Re, we may need additional
assumptions for the physics quantities in order to obtain the
desired coronal features at that height. For example, in Yeates
& Mackay (2009), outward motions of the magnetic field are
enforced on and near the upper boundary sphere at 2.5 Re to
obtain a desired magnetic feature, the radial magnetic field
structures in the outer corona. This upper-boundary treatment
helps maintain an appropriate amount of the coronal magnetic
field fluxes in the simulated corona with the evolving bottom-
boundary solar-surface magnetic field, and yields long-term
variations of the global coronal magnetic field structures
successfully. However, the GHM model alone cannot numeri-
cally produce the closed-field coronal streamers or appropriate
contrasts between the plasma quantities in the open-field and
closed-field structures, if such outward flows are given all over
the bottom-boundary interface surface set at 2.5 Re. To model
the coronal plasma quantities from the time-evolving non-
potential coronal magnetic field structures, it is required, or is at
least a reasonable compromise, to fix the interface in the lower
corona, in order to obtain reasonable structures of the (ambient)
solar wind matching the magnetic structures derived from the
MF model. In this study, we set the interface at the heliocentric
distance of 1.15 Re, which is considered to be in a sub-
Alfvénic region.

The second requirement is that the boundary treatment must
be able to determine plasma quantities on the interface
boundary in a self-consistent manner. The MF model can very
robustly generate time-dependent three-dimensional coronal
magnetic structures; however, it does not provide direct
information about the plasma quantities necessary for the
GHM model. Hence, a proper set of physical and mathematical
assumptions must be introduced to the boundary treatment of
the GHM models, such that the boundary plasma quantities can
evolve consistently with the variations of magnetic field
specified from the MF model and with the governing MHD
equations.

To fulfill the second requirement, the GHM interface
boundary treatment assumes and uses the concept of
characteristics of the MHD equation system (e.g., Sauer-
wein 1966). The concept of the characteristics allows us to
form a set of equations dictating temporal variations of the
MHD variables on a boundary surface between two computa-
tion domains; hence, it is a powerful mathematical tool for
constructing an interface boundary treatment at the
r= 1.15 Re, mostly sub-Alfvénic region. Without satisfying
the mathematical concept, simulations may suffer from
nonphysical, numerical vibrations on and near the sub-Alfvénic
boundary surface sphere, and we will not be able to properly
simulate the responses of the MHD variables in the upper

corona and interplanetary space to the time-varying magnetic
field on the bottom-boundary sphere. In the present work, the
boundary treatment is a modified version of the method of
projected normal characteristics (Nakagawa et al. 1987; Wu &
Wang 1987) that we used in our previous work (e.g.,
Hayashi 2005, 2013).
This paper is organized as follows: Section 2 briefly

describes the MHD simulation schemes of the GHM.
Section 3 provides details of the interface boundary treatment.
Simulation procedures and results from a test simulation run,
for a selected period of 2011 February, are given in Section 4.
A summary and discussion are provided in Section 5.

2. Sun-to-Earth Global Heliospheric MHD Model (GHM)

The MHD simulation schemes used in this work are chiefly
the same as in our earlier work, such as the total variant
diminishing, the finite volume method, and the third-order
MUSCL with the minmod flux limiting function (see
Hayashi 2005, and references therein). The present model
framework uses the Lax–Friedrichs method, instead of the Roe-
type linearized Riemann solver, for speed. Temporal evolution
of the MHD variables is traced with a two-step Runge–Kutta
method.
With these methods in order to maintain computational

stability in solving the nonlinear system with the second-order
temporal and third-order spatial accuracies, (( ) )D t 2 and

(( ) )D x 3 , the GHM module solves the temporal evolution of
MHD variables governed by a set of compressible and ideal
MHD equations,
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where t, ñ, V, B, Pg,  , and g are the time, mass density,

velocity of plasma flow, magnetic field vector, gas pressure,

total energy density (ñV2/2+ Pg/(γ− 1)+ B2/8π), and the

solar gravitational force (−GMe/r
3
· r), respectively. The

origin of the position vector (r) is the center of the Sun, and

the plasma velocity (V) is evaluated in the frame rotating at the

sidereal angular velocity Ω(=14°.23/day). The electric field E

is calculated as (−V× B) except on and around the bottom-

boundary sphere where it is specified from the MF model data

as E=−∂tA. The colon (:) denotes the dyadic product of two

vectors. The specific heat ratio (γ) of the polytropic approx-

imation is assumed to be 1.05 and constant everywhere to

mimic the near-isothermal situation of the solar corona and

create the trans-Alfvénic solar wind (Parker 1958).
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The spatial grid system is constructed in a spherical
coordinate system. The angular cell size is constant at π/128
in both the longitudinal and latitudinal directions, which
matches the grid system of the lower-corona MF simulation. At
and near the north pole (θ∼ 0) and the south pole (θ∼ π), the
simulated primitive variables are averaged over power-of-two
cells in the longitudinal direction in order to mitigate the severe
Courant–Friedrich–Levy (CFL) condition imposed on the time
step size (Δt) (Hayashi 2008). In the radial direction a total of
145 grid cells cover the range of heliocentric distance from the
interface sphere at 1.15 Re to about 1 au, with the grid cell size
(Δr) gradually increasing from Δr= 0.01672 Re on the
bottom interface boundary sphere to about 3 Re at 1 au.

3. GHM-MF Interface Boundary Treatment

Our earlier model for the global solar corona and solar wind
(Hayashi 2005, 2008) is originally designed for simulating
coronal regions from the solar surface, set at 1 or 1.01 Rs, so
that the solar-surface magnetic field data (such as those in the
synoptic map format, e.g., Liu et al. 2017) can be directly used
as the boundary condition. In this earlier model, the projected
normal characteristics method (Nakagawa et al. 1987; Wu &
Wang 1987; Hayashi 2005) is applied to reduce unphysical
oscillations on and near the sub-Alfvénic boundary sphere. A
later version of our global MHD model (Hayashi 2013)
achieves the capability of introducing temporal evolution of the
radial component of the observed solar-surface magnetic field
as time-varying boundary values. We have recently developed
another type of data-driven MHD model for a local, active
region (AR; Hayashi et al. 2018, 2019). In this AR data-driven
MHD model, temporal variations of all three magnetic field
components are fully introduced as the curls of three electric
field vectors that are derived through three Poisson equations
(hence, named as the Surface Electric field Estimated with 3
Poisson solvers, SEE3Po; Hayashi et al. 2018, 2019).

In the present GHM model, all three components of
magnetic field and their temporal derivatives on the interface
boundary sphere are specified as the curl of the vector potential
and their temporal derivatives, as B=∇×A and ∂tB=

−∇×E=∇× (∂tA), given from the MF model. Our
provisional simulations, however, suggested that fully obeying
the given B often causes numerical instability. For example,
near-radial plasma flows at the coronal-hole bases may change
abruptly in response to a sudden increase of the horizontal
magnetic field. The MF model uses the pseudo plasma flow
vector assumed to be parallel to the local Lorentz force,
V∝ J× B, but we cannot use this pseudo-velocity as V is
always perpendicular to B. To achieve computational stability,
the interface boundary treatment in the GHM calculates the
temporal variations of the plasma quantities on the GHM
bottom boundary using the projected normal characteristics
method.

3.1. Magnetic and Electric Field Vectors on and around the
Interface Sphere

The MF model simulates the temporal variations of the
vector potential, A, in the lower corona, which the GHM uses
to determine the initial magnetic field distribution (at t= 0), as
B=∇× A, and the electric field (at t� 0), as E=−∂tA, to
drive the simulated system. The HMI vector magnetic field data
are used to determine the initial three-dimensional magnetic

field configuration of the MF model through the method
described in Section 4 of Hoeksema et al. (2020). Estimations
of B and E involve temporal and spatial interpolations because
the two models use different data file recording practices and
different differencing methods.
In the current framework, the MF model records the

magnetic field quantities every 2000 simulation time step
counts. Because the MF simulation time step varies in
accordance with the CFL condition, the physical time intervals
between two data files range from 5 to 10 hr. On the other
hand, the GHM model assumes data files are stored with a
constant physical time interval of, for example, 0.2 days.
Hence, a preprocessing step is needed to reorganize the MF
data to account for the difference, and the GHM uses the
reorganized data to calculate the temporal derivatives of the
vector potential, ∂tA. Although the temporal interpolation
process introduces some error, the error does not cause a large
amplitude of differences in the derived B from the original
values of the MF data.
The MF model uses the Yee-mesh system (Yee 1966) and

provides the magnetic field component normal to the cell face
at the face center and the vector potential and electric field on
the edges. Figure 1 shows the positions in a computational cell
to which the physical vector variables are assigned. The GHM
model requires numerical fluxes at the face centers to calculate
temporal derivatives of the MHD variables at the cell centers.
To adjust the differences in the positions, spatial interpolations
are applied. From A (E=−∂tA) at the edge centers (shown
with red-filled marks), B (∂tB) at the face centers (with

Figure 1. The vector quantities of the MF and GHM models in the staggered
Yee grid system. The vector potential A (the magnetic field vector B) of the MF
model is defined at the edge centers (face centers) and marked with red-filled
(blue-filled) marks in this diagram. In the GHM model, each component of the
electric field on the edges is calculated as Er,θ,f = −∂tAr,θ,f, and the temporal
variations of the magnetic field at the face center are calculated as
∂tB = −∇ × E. The fluxes of these curl products (or the line integrals along
edges) are interpolated to determine the values of B and ∂tB at the cell center,
which is not drawn in this plot. Three different shapes of marks represent the
components of vector quantities. A pair of diagonal curves are drawn on each
visible face to indicate its face center. Only the visible side in perspective is
drawn, except parts of edges at the back side drawn with dashed lines.
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blue-filled marks) are calculated with an ordinary curl
operation, the line integral along edges divided by the area of
the cell face. Each component of B and ∂tB at the cell center is
calculated as the average of the two line integrals (equal to the
total flux over the face) on the faces whose normal corresponds
to the vector component, then divided by the area of the section
containing the cell center.

The MF model does not cover the regions within about 17°
from the north and south poles of the solar surface. The current
GHM part fills the bottom-boundary surface near the poles with
the average value of Br of the nearest available data points, and
zero values for Bθ and Bf. No specific adjustments are made to
the electric field at the limit boundaries of the MF area
coverage, because the curl of this unadjusted E did not cause
unphysically large magnitudes of the magnetic field.

3.2. Projected Normal Characteristics Method

The boundary treatment will determine the temporal
variations of these quantities on the interface boundary sphere
in accordance with the concept of the characteristic. In our
earlier work (Hayashi 2013), where only the distribution of Br

and its temporal variation are specified, we can solve the
temporal variations of the other MHD variables simulta-
neously. However, in this case, the GHM has all three
components of the magnetic field and their temporal variations
specified; hence, we need to modify the existing boundary
treatments. In brief, we split the simulation updating procedure
into two stages.

In the first stage, the MHD variables are updated as if the
temporal variations of the bottom-boundary magnetic field are
equal to zero. We use the choice labeled Case O in Hayashi
(2005), in which two different sets of characteristics relation-
ships are applied depending on the value of the radial
component of the plasma flow, Vr. The first relationship for
Vr∼ 0 is typically in the bottom-boundary regions of stagnant
plasma at the base of closed-field coronal streamers, and the
second for Vr> 0 in the base of open-field coronal holes.

In the second stage, the specified temporal variation of
bottom-boundary magnetic field ΔB is added to the simulated
B, and the other MHD variables (plasma quantities and total
energy density) evolve following a new set of the character-
istics equations. Practical forms of the new set of characteristics
equations and calculation steps are given in the Appendix.

In the first stage, the two horizontal components of the
boundary magnetic field (Bθ and Bf) can be altered. Among the
possible choices we examined, this is likely the best alternative
for maintaining numerical stability and achieving the capability
for tracing the given temporal variations of the boundary
magnetic field with reasonable accuracy.

3.3. Boundary Magnetic Field Derived through Interface
Treatments

As described in previous sections, there are several occasions
in the GHM simulation model at which the horizontal
components of the simulated bottom-boundary magnetic field
can deviate from those given by the MF model. These
occasions include linear interpolation, errors in the discretized
schemes, and the characteristic-based boundary treatments. In
particular, the characteristic-based boundary treatment specifi-
cally deals with the nonlinear MHD interaction between the
boundary surface and the computation domain above the

surface, and hence, the derived temporal variations cannot be
predicted. As such, it is possible that the differences grow
unacceptably large in time.
Figure 2 compares the bottom-boundary magnetic field of

the GHM with the magnetic field of the MF model at the same
height at t=+3d. Except at the northern and southern limits of
the MF model areal coverage, the differences are moderately
small. One of the factors expected to be a likely cause of the
differences is the boundary treatment for the regions with
Vr> 0 (corresponding to the base of a coronal hole).
Fortunately, we do not see significantly large differences in
the regions with Vr> 0 (shown in the top row). This is
probably because the regions corresponding to the coronal-hole
bases tend to have a predominantly radial magnetic field with
relatively small horizontal components both in the GHM and
MF models. Instead, a few regions with large differences are
found around the coronal-hole bases. These regions are at outer
parts of the previously closed-field regions (corresponding to
the coronal streamers), and the horizontal components in such
regions are more likely affected by the variations of the global
magnetic field distribution and by the interactions between the
open-field coronal holes and the closed-field coronal streamers.
The scatter plots in Figure 3 compare the two magnetic field

maps qualitatively. The area-weighted correlation coefficient
for Br is about 1.0, and that of the two horizontal components is
about 0.7. The slope and intercept of the linear regression are
close to 1 and 0 for the three components. The average absolute
differences in Bθ and Bf are about 0.2 Gauss, within 10% of the
original MF data. These numbers suggest that our boundary
treatment reasonably reproduces the given temporal variations
of magnetic field; hence we believe that the simulated
responses of the solar corona and solar wind to the given
variation are reasonable.

4. Simulation and Results

The GHM simulation consists of two parts. In the first part,
the time-relaxation simulation is performed starting with the
initial three-dimensional magnetic field configuration obtained
through the potential-field source-surface model (PFSS model;
Altschuler & Newkirk 1969; Schatten et al. 1969) using a Br

map at t= 0 from the MF data at r= 1.15 Re. In the second
part, the relaxed state is driven with the time-dependent electric
field E=−∂tA from the MF model.
Figures 4 and 5 show the magnetic field lines obtained

through the two parts of the GHM simulation. The initial PFSS
magnetic field in the relaxation simulation is shown in plot (a).
The initial plasma flow is the trans-Alfvénic near-isothermal
polytropic plasma flow (the Parker solution; Parker 1958), with
the plasma flow on the inner boundary sphere adjusted to be
parallel to the magnetic field, V≔ (VrBr/B

2
)B. With Br fixed all

through the relaxation simulation, the simulated system will
reach a relaxed, quasi-steady state matching the global
boundary distribution of Br (plot (b)). With the current
simulation setting (i.e., the temperature at the critical radius
of the initial Parker solution at r∼ 5.5 Re of 1.0 MK), one
relaxation simulation typically takes the physical time of about
50 hr until the simulated system reaches a (quasi-)steady state
for r< 50 Re, or about 5 to 7 days for r< 1 au.
The relaxed state obtained through the first simulation is

used as the initial condition in the second data-driven
simulation, in which the relaxed (quasi-)steady state is driven
by the time-dependent three-component boundary magnetic
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field. Plots (c) and (d) in Figures 4 and 5 exhibit an example of
the obtained coronal magnetic field variations. The GHM
simulation can numerically produce twisted nonpotential
magnetic field structures, just as the MF model does for the
lower corona. It can also numerically produce eruptions, or
sudden outward motions, of twisted magnetic field structures.
One such eruption is found in the region above a newly
emerging solar active region (NOAA 11158) that is taken into

account in the data-assimilation process in the MF model.
Figure 6 offers another demonstration of the erupting magnetic
field structure.
The eruption of the magnetic structure is accompanied by

compression of the coronal plasma in the vicinity. Figure 7
shows the propagation of a shell-shaped density enhancement
caused by the magnetic eruption event shown in Figure 6. An
advantage of compressible MHD models is the capability of

Figure 3. Scatter plots of the magnetic field components between the MF data at 1.15 Re and the bottom-boundary values in the GHM simulation; from left, the radial,
latitudinal, and longitudinal components at t = +3d. Colors represent the area-weighted scatter density, counted with a bin size of 0.1G, in a logarithm scale. Red,
green, and blue colors are for the scatter densities, 102, 101, and 100 in units of 4π/104 sr, respectively. The near-pole areas that the MF model does not cover are not
included in generating these plots.

Figure 2. Latitude–longitude maps of bottom-boundary variables, at t = +3d. From left to right, the radial, colatitudinal, and longitudinal components of four vector
quantities of (from bottom) the magnetic field in the MF model, the bottom-boundary magnetic field of the GHM MHD model, and the differences of the magnetic
field between the MHD model and the MF model, and the simulated bottom-boundary plasma velocity, are shown. Positive (negative) values are presented with blue
(red) colors, truncated at the values in the right side of the plots. Anomalous values near the top and bottom of each plot are caused through the treatments of the
boundaries of the MF area coverage.
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simulating the evolution of plasma quantities. This density
enhancement propagates at a speed just about 50 km s−1

greater than surrounding coronal plasma flows. This rather
slow motion is in part due to the polytropic assumption. The
plasma at r< 5 Re is not well accelerated to reach Alfvén
speed, hence the plasma density (which roughly obeys the
mass-flux conservation law, ~V const.r ) is much higher than
in the actual corona.

5. Summary and Discussion

In this paper the methodology of the GHM model and its
interface boundary treatment with the lower coronal magneto-
friction model are provided, and the results from a test
simulation for a selected period (2011 February) are presented.

As seen in Figures 4 and 5, several nonpotential twisting
structures of the coronal magnetic field are numerically
reproduced. As a consequence of increases of the nonpotenti-
ality (or magnetic pressure, or magnetic energy density),
eruption events are numerically reproduced (Figure 6).
Simulation of such eruption events in a data-driven physics-
based manner demonstrates the new capability the CGEM
project aims at. It should be noted, however, that this particular
simulated eruption event does not correspond to any actual
event observed within a few days of the simulated eruption
time. The present model is not yet ready for operational use or
space-weather purposes. Nonetheless, we would emphasize
that the presented model combination can be a key piece of a

model framework aimed toward the more powerful capability

of data-driven modeling of enigmatic nonlinear processes in the

solar corona, solar wind, and heliosphere.
Several aspects of the GHM model still need improvement.

The present GHM model assumes a polytropic plasma with

specific heat ratio close to 1, which is a widely used assumption

in solar-corona simulations. However, this assumption should

be replaced with more physics-based coronal heating/accel-
eration models such as those shown in Usmanov et al. (2011)

and Feng et al. (2017). For simplicity magnetic diffusivity is

not included in the governing equations in the current stage of

our effort, but this must be included in the future, as magnetic

reconnection is a key process for reproducing coronal energetic

events.
The mathematical concept employed in this work properly

handles physical information propagating from one side of the

interface to the other, and in principle can handle information

propagating in the other direction as well. The RADMHD

model can simulate the low corona in a more physical way than

the MF approach, but it is much more computationally

expensive, particularly when extending the model over global

spatial scales. Yet there are significant advantages of coupling

two global dynamic models. One such advantage is the

possibility of a two-way interface coupling in which the

characteristic-based methods will sort the MHD wave modes

(or information associated with the wave modes) maintaining

consistency in physics in both models.

Figure 4. Snapshots of the coronal magnetic field lines, viewed from the direction of 340 Carrington longitude degrees and 15 degrees latitude north at selected
computation parts and simulation instants: (a) the potential-field configuration as the initial value of time-relaxation simulation (first simulation part), (b) the MHD-
relaxed state, (c) the data-driven state at t = +2d in the second simulation part, and (d) the data-driven state at t = +2.3d. In the lowermost corona at r � 1.15 Re, the
field line segments with positive (negative) Br are colored with cyan (yellow). At r � 1.15 Re, the blue and red colors are, respectively, indicating positive and
negative Br polarity of the magnetic field.
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Figure 5. Same as in Figure 4 except that only the field lines at a lower coronal volume (r � 2 Re) are drawn. The field lines within 45 longitude degrees from the
view point are omitted, for better visibility of a newly emerging solar active region (AR 11158) whose polarity pair is visible in (c) and (d).

Figure 6. Selected field lines demonstrating an erupting twisted magnetic field structure, above a large active region (AR 11158). The colors on the sphere shows the
boundary Br on the interface boundary sphere at 1.15 Re (blue for positive polarity and red for negative polarity).
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It is also possible to construct a one-way interface, from
RADMHD to GHM, in which the GHM bottom-boundary
variables will fully follow the outputs from RADMHD without
using the characteristic-based boundary treatments, as
RADMHD will provide all eight MHD variables. In this case,
the vertical gradients of the MHD variables will be a key piece
of information to be passed from the RADMHD to the GHM;
because information of the physical state at a single height is
not sufficient for the GHM to simulate the upper corona and
solar wind in a physically consistent manner such that, for
example, the divergence-free condition can be maintained
properly. Although there are some difficulties anticipated in
coupling the RADMHD and GHM models, such as those
arising from the difference in the specific heat ratio (5/3 in the
RADMHD and 1.05 in the GHM), potential benefits of such a
new model coupling could be substantial.
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Appendix
A Characteristic-based Method with Magnetic Field

Addition

In the concept of characteristics, the number of constraints
given on temporal variations of MHD variables on a boundary
surface must be equal to the number of MHD waves incoming
(in the global solar-corona model, the incoming waves are

those directing outward from the Sun). In the case of the GHM-

MF interface, in general, the number of incoming waves is five

or six; hence, we have to give six constraints.
Let us consider a time step from t

n to t n+1
(= t n+Δt; the

superscripts, n and n+ 1 are time step counts). We give three

constraints by specifying arbitrary temporal variations of the

magnetic field, ΔB(=B
n+1

− B
n
). Another two constraints are

given by assuming that the simulated plasma flow is parallel to

the local magnetic field at the two instants, V
nPBn and

V
n+1PBn+1. It must be noted that this condition does not

always hold. For example, in a horizontal magnetic flux tube

moving radially away from the Sun, the plasma motion vector

is not parallel to the magnetic field vector. Nonetheless, this is

the best choice among possible choices we had tested.
Letting ΔX be a variation of a variable X over time

Δt(= t n+1
− t n) and writing the temporal variation of X over

the time step Δt as X
n+1

= X
n
+ΔX, the parallel condition

(V×B= 0) yields - =q f q fV B V B 0n
r
n

r
n n

, , and -q f
+ +V Bn

r
n

,
1 1

=q f
+ +V B 0r
n n1

,
1 , leading to two constraint relationships,

( )D + D - D - D =q f q f q f q fB V V B B V V B 0 A1r r r r, , , ,

after disregarding the second-order differences.
Imposing the parallel condition with the given ΔB is

equivalent to discarding the Alfvén wave mode. Therefore, in

the current GHM model, only two outgoing compressible

MHD wave modes (i.e., the fast and slow modes) are

considered in constructing the characteristic-based boundary

treatment for the second stage of the two-step updating

procedure. Here we note that the first stage of the two-step

updating procedure considers the Alfvén wave mode; therefore,

the Alfvén mode wave is taken into account through the two-

stage updating procedure as a whole.
From the polytropic relationship, which is also applied in the

governing equations,

⎜ ⎟⎡
⎣

⎤
⎦
⎛
⎝

⎞
⎠

· ( )
¶
¶
+  =

g
V

t

P
0, A2

g

Figure 7. The standard deviations of the simulated plasma density calculated at each height from 1.15 to 11 Re, on a cone surface at 11°. 25 south latitude, at t = +2.1,
+2.3, and +2.5d. The regions with higher (lower) density than the average at each height are colored with blue (red), superimposed with contour lines placed at a fixed
interval of 0.5 standard deviation level. A shell-shaped density enhancement, associated with the eruption of twisted magnetic field structure shown in Figure 6, starts
propagating outward from around 20° of Carrington longitude.
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the last sixth constraint is given as

( )
g

D = D


P
P

. A3g
g

By combining the six constraints above, we can rewrite the

characteristics equations for the fast and slow modes as

⎡
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⎢
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⎜
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( )

( )

( )

( )

( )

( )

g
g

+
-

-
+ +

D

+
+ +

+
+ +

D

= D - D

+ D - D
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-
- +

D

+
+

D

+
+

D

q f
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where Lml is the element of left eigen matrix of the MHD

equation system, L (Cargo & Gallice 1997; Hayashi 2005),

with a subscript m for indicating the mth MHD variables, and l

for the lth MHD wave mode. In a convention (Hayashi 2005),

m runs from 1 to 7 for ñ,ñVr,ñVθ,ñVf,ñBθ,ñBf, and  , and l

runs from 1 to 7 for the wave modes with the eigenvalues (or

wave mode speed) of Vr− Vf, Vr− VA, Vr− Vs, Vr, Vr+ Vs,

Vr+ VA, Vr+ Vf (here, Vf, VA, and Vs are the fast, Alfvén, and

slow mode speeds, respectively, in the radial direction or the

normal to the boundary surface, respectively).
Equation set (A4) consists of two equations (l= 5 for the

outgoing slow mode and l= 7 for the outgoing fast mode) with
two unknown variables. The temporal variations of magnetic
field (ΔB) appearing at the right-hand side are all given and
known, and the two unknown variables, Δñ and Δ(ñVr), at the
left-hand side can be determined. This two-equation set is
always solvable, except when |Br|∼ 0 , ñ∼ 0, or Pg∼ 0. The
other remaining temporal variations, Δ(ñVθ), Δ(ñVf), and ΔPg

(or D ), are calculated through Equations (A1) and (A3).
Notice that the derived temporal variations are all zero when
ΔB= 0 (for example, in the time-relaxation simulation).

The equation set (A4) has Br at the denominator, hence it is
not applicable for regions on or close to the polarity inversion
lines or magnetically neutral lines where |Br|/|B| is small. For
such horizontal-field regions, another characteristic-based
boundary condition labeled as BC0 in Hayashi (2005), which
handles stagnant-plasma regions (Vr= 0), is applied.
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