arXiv:2006.00071v2 [physics.ins-det] 10 Jul 2020

FERMILAB-PUB-339-SCD
ACCEPTED

PREPARED FOR SUBMISSION TO JINST

Speeding up Particle Track Reconstruction using a
Parallel Kalman Filter Algorithm

Steven Lantz,“ Kevin McDermott,” Michael Reid,“ Daniel Riley,” Peter Wittich,” Sophie
Berkman,” Giuseppe Cerati,” Matti Kortelainen,” Allison Reinsvold Hall,” Peter Elmer,© Bei
Wang,¢ Leonardo Giannini,? Vyacheslav Krutelyov,? Mario Masciovecchio,” Matevz Tadel,?
Frank Wiirthwein,? Avraham Yagil,d Brian Gravelle,” Boyana Norris.¢

4 Cornell University, Ithaca, NY, USA 14853

b Fermi National Accelerator Laboratory, Batavia, IL, USA 60510
¢ Princeton University, Princeton, NJ, USA 08544

4UC San Diego, La Jolla, CA, USA 92093

¢ University of Oregon, Eugene, OR, USA 97403

E-mail: mic-trk-rd@cern.ch

ABsTRACT: One of the most computationally challenging problems expected for the High-Luminosity
Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event
reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical
trajectories incrementally while incorporating material effects and error estimation. Recognizing
the need for faster computational throughput, we have adapted Kalman-filter-based methods for
highly parallel, many-core SIMD architectures that are now prevalent in high-performance hard-
ware. In this paper, we discuss the design and performance of the improved tracking algorithm,
referred to as MKFIT. A key piece of the algorithm is the MAaTrIPLEX library, containing dedicated
code to optimally vectorize operations on small matrices. The physics performance of the mxFiT
algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from
simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm
as a function of the parallel resources utilized and find large speedups both from vectorization and
multi-threading. MkFIT achieves a speedup of a factor of 6 compared to the nominal algorithm
when run in a single-threaded application within the CMS software framework.

Keyworbps: Data processing methods; Pattern recognition, cluster finding, calibration and fitting
methods; Performance of High Energy Physics Detectors.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with

the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

mailto:mic-trk-rd@cern.ch

Contents

1 Introduction

1.1
1.2

Physics Motivation and Goals
Moore’s Law Transformed: Track Reconstruction Opportunities

2 Overview and Objectives

3 Kalman Filter Tracking

4 Algorithm Design and Implementation

4.1 Challenges and Drivers For Algorithm Design
4.2 Parallelization Strategy
4.2.1 Vectorization using MATRIPLEX
4.2.2 Multithreading using TBB tasks
4.3 Coordinate Representation
4.4 Detector Description and Navigation
4.5 Branching of Candidates
4.6 Duplicate removal steps
4.7 GPU implementation
5 Results
5.1 Introduction
5.2 Platforms and General Configuration
5.3 Physics Results
5.4 Computing Results
5.5 Integration in CMSSW

6 Conclusions and Outlook

O 0 3 N L

11
11
12

12
12
13
13
14
18

19

1 Introduction

1.1 Physics Motivation and Goals

The experimental challenges of High Energy Physics (HEP) experiments such as the Compact Muon
Solenoid [1] (CMS) at the CERN Large Hadron Collider [2] (LHC) are vast. The rate at which
interesting processes (signal) are produced in the beam collisions is many orders of magnitude lower

than the most common and well-known processes (background) occurring in proton interactions.

For this reason, experiments need high proton collision rates (“instantaneous luminosity"). For

a fixed proton bunch colliding frequency (40 MHz at the LHC), the instantaneous luminosity is

increased by squeezing the beams so that they have larger proton density at the beam colliding

point; this leads to a larger number of simultaneous proton interactions for each bunch crossing,
commonly referred to as “pileup” (PU). In the upcoming upgrade of the accelerator from the LHC
to the High-Luminosity LHC [3] (HL-LHC), the instantaneous luminosity will increase by a factor
of 5 with respect to the current LHC operations, leading to PU values as high as 200.

Experiments are read out at the beam collision rate, and each readout defines an “event". The
resulting amount of data recorded by the experiments is so large that it cannot be entirely stored and
processed. A “trigger” system filters interesting events in real time, where a first selection is applied
at hardware level (L1 trigger) followed by a software-based selection (High Level Trigger, HLT, or
“online" processing) [4]. Events selected by the trigger are saved and subsequently processed for
analysis (“offline" processing).

A fundamental component of both online and offline processing is event reconstruction, i.e.,
the process of converting raw signals from the many detector elements into higher-level physics
observables. With increasing PU, reconstruction algorithms are facing increasing complexity in the
data, mostly due to the higher detector occupancy; this implies that for combinatorial algorithms
the time needed to process one event increases dramatically. Higher PU values also reduce the
precision with which an event can be reconstructed, typically leading to increased backgrounds.

Computing resources available to the experiments define a time budget for reconstruction
processing. Requirements are particularly strict at the HLT, where data is processed in a dedicated
computing farm and a yes/no decision needs to be made at a rate of 100 kHz. The rate will increase to
750 kHz during the HL-LHC. Reconstruction is both the driver of the per-event processing time and
of the selection quality: more advanced reconstruction algorithms allow interesting physics events
to be selected with more surgical precision. Reconstruction time also limits offline processing,
in terms of the size of data and simulation samples produced in a given time frame; clearly the
capability to reprocess the data to take advantage of improved calibrations, as well as being able to
generate larger simulated samples for more precise signal and background predictions, has a direct
impact on the physics output of the experiments.

The work presented in this paper focuses on a particular component of the event reconstruction:
track reconstruction or tracking. Tracking is the reconstruction of charged particle trajectories from
the energy deposits (‘“hits") they produce in the detector. It is by far the most time-consuming step
in the whole reconstruction process, both online and offline, and, due to its combinatorial nature,
its processing time diverges at large PU [5]. By the start of the HL-LHC, the expected CPU needs
of the LHC experiments are projected to exceed the available resources by a factor of 4 [6].

An option to keep the tracking time under control is to limit the reconstruction to high-
momentum particles or “regions of interest” as seeded by energy deposits in other subdetectors.
Similarly, one could consider not reconstructing displaced tracks, or those originating from PU
vertices. However, these reductions involve real physics trade-offs. For instance, not reconstructing
low-momentum tracks has implications for being able to detect leptons from soft SUSY particles [7];
tracks from PU interactions are used to measure, and then mitigate, the effect of PU on an event-by-
event basis [8]; displaced tracks are critical to detect b quark decays [10], for tau lepton tagging [11]
and to reconstruct photon conversions [12], which are needed for maximal acceptance in the
H — yy decay channel [13]. So while it might be possible to speed up tracking by neglecting
certain kinds of tracks, this leads to unacceptable physics compromises.

1.2 Moore’s Law Transformed: Track Reconstruction Opportunities

Solutions for speeding up tracking with no physics compromises come from recent developments in
computing architectures. Moore’s Law states that chip transistor counts increase exponentially over
time for the same cost. Over four decades, these increases in transistor counts turned into exponential
gains in the performance of software applications like those used in particle physics. Around 2005,
the computing processor market reached an epochal turning point: power density limitations in
chips ended this trend, so that serial applications no longer immediately run exponentially faster
on subsequent generations of processors. This is true even though the underlying transistor count
continues to increase per Moore’s Law. What changed is that the extra transistors now provide
processors with more and more parallel elements running at roughly the same speed as in prior
generations.

What are these power-efficient “parallel elements”? In microprocessors, they take two main
forms: multiple cores, each of which is a CPU in its own right; and vector processing units, which
add “Single Instruction, Multiple Data” (SIMD) execution capability to these cores. Thus for CPUs
in the present phase of Moore’s Law, the extra parallelism is resulting in higher per-processor
core counts and wider vector processing units. Another variant occurs in General Purpose Graphics
Processing Units (GPGPUs, or simply GPUs), where the parallel elements take the form of thousands
of relatively simple stream processors; these are likewise growing in number over time.

The evolution also appears to be toward heterogeneous mixes of these solutions. For instance,
the CPU-based nodes of a computing cluster may be augmented with GPU accelerator cards.
Such a mix presents a challenging target to application programmers. However, it turns out that
modern CPUs and GPUs both favor the same kinds of parallelism in applications: namely, multiple
threads or streams of execution, each of which is executed in SIMD fashion. Thus, while particular
implementations may vary, there is a clear indication of the general evolutionary path that high-
performance software will need to take, in light of the commonly available hardware.

2 Overview and Objectives

This paper describes the design, implementation, and performance of a tracking algorithm known as
MKF1T. The code developed in this project allows for a paradigm shift by switching tracking software
from being sequential to becoming both multithreaded and vectorized. The mkFiT algorithm is a
new implementation of the traditional Kalman filter (KF) approach for charged particle tracking [14].
KF algorithms have been used effectively in many particle collider experiments such as CMS and
ATLAS, but are typically difficult to vectorize due to the many branch points required to explore
different track candidates. The project mostly targets multicore CPU architectures such as the
Intel® Xeon® and Intel® Xeon Phi™ processors and coprocessors, but the general SIMD and
parallelization strategies employed by mxFiT would allow the algorithm to run efficiently on other
multicore CPUs as well. Initial explorations into a GPU implementation have also been performed,
but will not be discussed extensively in this article.

In order to achieve the granularity needed to perform pattern recognition in very dense envi-
ronments, modern HEP tracking detectors consist of millions of sensors arranged in multiple layers
around the interaction region. Tracking traditionally proceeds in three main stages: seeding, build-
ing, and fitting. Seeding provides the initial estimate of the track parameters based on a few hits in

a subset of the innermost detector layers; since seeding typically does not employ KF techniques,
it is not part of this work. Building then collects additional hits in other detector layers to form a
complete track. After hits have been assigned to each track, a final fit is performed to provide the
best estimate of the track parameters. Track building is the most time-consuming step of HEP event
reconstruction and is the focus of this project.

The initial objective of the MKFIT project is to demonstrate substantial speedups and similar
physics performance compared to the offline track building algorithm used by CMS and implemented
in CMSSW, the software framework for the experiment [15]. The CMS track building software
uses an iterative tracking approach, where each iteration removes hits associated with found tracks,
thereby reducing the combinatorial complexity for subsequent iterations. The mkFit algorithm is
currently applied to the first iteration of the offline CMS track building, which is responsible for
building the majority of high-quality, prompt tracks. With appropriate bookkeeping and re-tuning
of the tracking parameters, MxF1T could be adapted for the other CMS tracking iterations as well.
Additionally, work is ongoing to test the performance of the mxFiT algorithm in the context of the
CMS HLT.

Section 3 describes the essential components of a Kalman-filter-based tracking algorithm. In
Section 4, we describe the algorithm’s implementation and parallelization strategy. The physics
and computational performance of the algorithm are demonstrated in Section 5, and the outlook
and future plans for the project are discussed in Section 6.

3 Kalman Filter Tracking

Kalman filtering [16] is a technique that determines the internal state of a linear dynamic system
by recursively processing discrete measurements where random perturbations are present both in
the measurements and in the system itself. While its most common application is in the navigation
of aircraft and ships, it is also applied to a much broader variety of domains, including particle
tracking in HEP experiments [14].

In a HEP tracking detector, every sensor detects and reads out the ionization charge deposited
by impinging particles. Such detectors require electronics, cables, cooling systems, and support
structures for a total material budget frequently exceeding one radiation length. Furthermore, the
entire detector is immersed in a strong magnetic field (usually homogeneous) to make the charged
particle trajectories roughly helical, so that each particle’s momentum can be inferred from its
helix curvature. KF-based tracking algorithms are widely used because they naturally incorporate
estimates of material effects (deviations due to multiple scattering, energy loss) while fitting the
trajectory of a given particle to a helix.

Other algorithms originating in the image processing community are amenable to paralleliza-
tion, and they have been explored by different groups. These include Hough Transforms [17] and
Cellular Automata [18], among others. However, they are not the main algorithms in use at the
LHC today for track building, while KF algorithms have proven to be robust and perform well in
the difficult experimental environment of the LHC [19, 20]. Rather than abandon the collective
understanding of how KF algorithms perform in the HEP context, we wish to extend this well-known
tool by designing an optimal implementation on highly parallel architectures.

The core logic unit of the KF algorithm is shown in Figure 1. This unit forms the basis for
both the track building and the track fitting steps. The unit begins with the propagation of the track
state, defined as the track parameters and corresponding uncertainties (covariance matrix), from
one layer to the next. At the new layer, a y? is computed between the propagated track state and the
hit measurement on that layer. Finally, the track state is updated using the information from the hit
measurement.

updated state

airer N —— XMn=xNIN+ KN (mn-Hie xN1y)

odé—.

Nth measurement —— MN

propagation to N ——— =Fn-1°XxN"Ino1
(x,¥,2,px,py,pz)

x.y,2) .

updated state N-1
after N-1 X

N-1

Figure 1. Representation of the logic unit of the Kalman filter for charged particle tracking, where the
notation follows conventions in [14]. The track state (x) is propagated from layer N-1 to layer N (using
a linear function F for simplicity), and then updated with the measurement on layer N (my) using the
“Measurement Matrix" H and the “Kalman Gain" matrix K.

Fitting simply consists of the iterative application of the KF logic unit over a defined set of
hits associated to a track. Therefore, to first order, its speed scales linearly with the number of
tracks in each event. Building, instead, needs to identify at each layer which hits are compatible
with a given track candidate, if any. Starting from a seed, for each compatible hit a new candidate
is created and propagated to the next layer. Track candidates originating from the same seed are
sorted according to a score function (depending on the number of found hits, the number of layers
crossed without a corresponding hit being found, and the total x?) so that the best ones are retained
at each layer. At the end of the process, the candidate with the best score is selected. For a more
detailed description of the algorithm logic, see [19]. Due to its combinatorial nature, building is
by far the most time-consuming step of tracking and it scales worse than linearly with increasing
occupancy. For these reasons, track building has been the primary focus of the mxFit project.

4 Algorithm Design and Implementation

4.1 Challenges and Drivers For Algorithm Design

The promise of highly parallel architectures comes with significant trade-offs, so that algorithms
need to be specifically designed to run efficiently on them. First, these architectures commonly

feature two types of parallelism: vectorization and multithreading. Vector or SIMD operations
perform a single instruction on multiple data at the same time, in lockstep; therefore, branching
points in the algorithm may lead to significant performance degradation. Multithread parallelism,
on the other hand, involves performing different instructions on different data at the same time;
in this case, the factors limiting performance are load balancing and synchronization between
threads. In addition, threads may be in contention for data from memory, since a processor’s
memory bandwidth and caches are limited resources. Therefore, algorithms are penalized unless
their data structures are refactored to minimize memory usage and to favor regular access patterns
such as “structures of arrays”. In a nutshell, an efficient parallel algorithm must have its whole
flow engineered toward ensuring that all the parallel processing units are constantly occupied with
floating-point operations.

The above factors prevent the straightforward parallelization of an existing piece of code
of sufficient complexity. KF tracking in particular faces a number of challenges. Due to its
combinatorial nature, branching is at the very heart of KF track building: multiple combinations
of hit patterns must be explored and compared in order to find the best one. Indeed, every hit
constitutes a possible branching point: if a hit is deemed compatible with the track candidate under
evaluation, a new logical path is created. Following the branches in a way that is consistent with
the SIMD computing model is a significant challenge. Furthermore, as the track candidates are
built, they typically probe and select different numbers of hits, since the detector occupancy is not
uniformly distributed on a per-event basis. This leads to the challenge of parallel work imbalance,
at both vector and thread levels. Finally, the combinatorial search takes place among O(100k) hits
in the detector, organized in O(10k) hits per layer, and yet a track candidate needs to probe only
O(1-10) hits in the vicinity of its crossing point on a given layer. The compatibility test for these
few hits requires just a small number of floating point operations. This means the KF algorithm
presents extra challenges in terms of data locality and in terms of arithmetic intensity (floating-point
operations per memory access).

To realize any of the potential performance gains, the problem needs to be rearranged to
optimize resource usage and to fit into the parallel hardware environment. While the algorithm
implementation will be described in detail in the next sections, it is useful to list up front the guiding
principles we rely upon in its design. First, in order to most efficiently exploit vectorization, we
factorize the algorithm so that branching points are confined in specific non-vectorized functions,
while the core of the KF logic unit is expressed in terms of SIMD data structures and computations.
Second, in order to utilize as many cores as possible while at the same time minimizing the load
imbalance across threads, we employ a thread scheduling strategy at multiple levels, with large
parallel regions corresponding to fixed boundaries in terms of detector or data partitions and with
a more fine-grained parallelism at track level. Finally, to achieve efficient usage of the memory
resources, we reduce as much as possible the data structures, while organizing the data in partitions
for fast access, representing the detector geometry using parametric descriptions rather than large
lookup tables, and minimizing memory movements especially during SIMD processing steps.

4.2 Parallelization Strategy

Collision events inside a particle detector are naturally independent of each other, so assigning
different events to different threads is an accepted and viable strategy for implementing coarse-grain

parallelism in KF-based tracking software. However, if the goal is to unlock the vector or SIMD
potential of modern CPUs or GPUs, this approach is insufficient in itself, since vectorization entails
fine-grain parallelism at the level of single instructions. Matrix-based algorithms are generally
vectorizable, but only if the rows or columns of the matrices are large enough to fill (say) the
vector registers of a CPU; such registers may hold as many as 16 floating-point numbers at a time.
Likewise, for the GPU, one looks for operations that can be done in “warps” of 32. But the matrices
involved in KF-based tracking are 6x6 or smaller and do not meet the basic size requirements.

Fortunately, it is also true that the various tracks created within an event can be built and fitted
independently, and this gives us a different possible route for expressing SIMD parallelism in KF-
based tracking. Track candidates may be grouped together so that they propagate in lockstep fashion
from one layer of the detector to the next. They may then be extended with compatible hits, where
“compatible” means that adding a given hit to a track candidate allows the track to pass a y? test.
This process results in an updated, and possibly expanded, set of track candidates for propagation to
succeeding layers. Of course, vectorization works best when the SIMD operands are contiguous in
memory, as this allows the operands to be fetched as already-formed vectors (“coalesced memory
accesses”, in GPU terms). As we will see, this preference leads to data structures that are rather
different from the ones that would use when Kalman filtering one track at a time. One should now
think in terms of groups of small matrices, and how to form SIMD operations from such groups
efficiently.

Concurrent processing of track candidates not only enables SIMD processing, it also expands
the opportunities for multithreading. Different threads can now work together as they advance
groups of track candidates layer by layer. The mkFitT algorithm is structured with three different
levels of multithreading:

1. Loop over events: The coarsest level of parallelism occurs over events by processing multiple
events concurrently.

2. Loop over detector regions: Within each event, we divide the seed tracks into regions based
on the detector geometry.

3. Loop over groups of seed tracks: The finest grain parallelism occurs over groups of seed tracks,
so that different threads will examine distinct collections of hits on each layer, effectively
reducing the memory footprint of each thread.

Overall, our parallelization strategy radically shifts the focus of the KF algorithm. Instead of
advancing one track candidate at a time through the detector until all possible tracks from the event
have been evaluated and assessed, we consider the global set of track candidates that is present at
one layer and propagate it to the next, then to the next, until the final layer is reached. At each layer,
current track candidates may be extended by adding a compatible hit, and the retained candidates
are again grouped so they can be evaluated via SIMD-style matrix operations as they proceed to the
next layer.

4.2.1 Vectorization using MATRIPLEX

In order to optimize efficient vector operations on small matrices, and to decouple the computational
details from the high-level algorithm, we have developed a new matrix library, MaTrIPLEX. The

MaTtripLEX memory layout (Fig. 2) uses a matrix-major representation optimized for loading vector
registers for SIMD operations on a set of small matrices, using the native vector-unit width on
processors with vector units. MATRIPLEX is similar in concept to other, independently developed
solutions [21]. MaTrIPLEX includes a code generator for defining optimized matrix operations, with
support for symmetric matrices and on-the-fly matrix transposition. Patterns of elements that are
known by construction to be zero or one can be specified, and the resulting code will be optimized
to eliminate unnecessary register loads and arithmetic operations. The generated code can be either
standard C++ or macros that map to architecture-specific intrinsic functions. MATRIPLEX structures
and auto-generated code are used for all KF-related operations on tracks and hits, and in general for
all matrix operations. For vectorization of parts of track propagation, where track parameters are
transported to a new position using non-linear functions, compiler-assisted vectorization is used.

R1 _ MI(L1) M(12) | MON MQ2,1) e | MINN) ML) MI(1,2) M™I(1,N) MI(2,1) e | MY
R2 _ M1, 1) MY(1,2) | MN) M2,1) e | NN M1 1) M2(12) | | MT(IN) M2y | MeNN)
o | S
Ma(l,1) Ma() || MR M1 ME(NN) Min(l,1)
vector unit

Figure 2. Matriplex data structure representation for a matrix size NxXN and a vector unit size n. Due to the
use of "matrix-major" storage order, the first elements of n different small matrices M are properly aligned
for quick SIMD processing. With a single vector instruction, these n elements can be added or multiplied (or
both) with their counterparts in n other matrices, vectors, or scalars which are stored similarly.

4.2.2 Multithreading using TBB tasks

In the preceding sections, we identified several opportunities for multithreading due to the algorith-
mic independence of events and tracks. These possibilities include processing in parallel multiple
events, detector regions, and groups of seed tracks. One challenge is that at every level of possible
parallelization the workloads are highly irregular: different events have different levels of complex-
ity; different detector regions have variable numbers of layers and hit occupancy, especially in the
transition regions where both the barrel and one of the endcaps of the CMS detector must be con-
sidered; and different seed tracks will have different numbers of hits, layers, and viable candidates.
Many of these irregularities depend on the path each individual track candidate takes as it traverses
the detector, making them inherently unpredictable.

Due to the irregularity of the workloads, static work partitioning schemes proved to be in-
efficient, largely due to tail effects where threads that happened to be assigned small workloads
would wait for threads with larger workloads to complete. To mitigate the tail effects, we use
Intel® Threading Building Blocks (TBB), which allows us to break the workload into relatively
fine-grained tasks and balance the workload through dynamic task “stealing”. We parallelize at
all the levels previously listed, using nested parallel-for loops, which TBB processes efficiently by
building a tree of tasks. For the innermost loop over groups of seed tracks, we use a simple adaptive
calculation to attempt to set the task size large enough to minimize overheads but also small enough

to allow effective load balancing. We find that the triply nested structure gives us considerable
flexibility to adapt to different workload characteristics, resulting in significant improvements in
CPU utilization compared to our initial attempts at static scheduling using OpenMP.

4.3 Coordinate Representation

In our implementation of the KF algorithm, we make use of a coordinate representation in global
coordinates. This choice is mainly driven by the need to minimize the size of data structures, and in
particular those related to the detector description. Working in the local coordinates of each sensor
module would require storing the global position and rotation of each module in addition to the local
positions of the hits. In global coordinates, hit locations are simply defined by their 3D positions:
(x, y, z). Helical trajectories of charged particles in a uniform magnetic field are likewise represented
using global Cartesian coordinates for the spatial reference point, while using polar coordinates for
the momentum vector: (x, y, z, ¢, 6, 1 /pr), where ¢ is the azimuthal angle of the momentum vector,
6 is the angle of the momentum vector with respect to the direction of the magnetic field (assumed
to be along the z axis), and pr is the transverse component of the momentum vector with respect to
the direction of the magnetic field. It is also useful to define an additional variable, pseudorapidity
n = —In(tan(6/2)), which will be used in later sections. While the minimal representation of a
helix needs only 5 parameters and ours may look redundant, a sixth parameter is formally needed to
define the current position along the helix (path length). Our representation also has the advantage
that the track and hit positions are immediately comparable. Covariance matrices for hit and track
parameters are defined as 3x3 and 6x6 symmetric matrices, respectively. The dimension of these
matrices exceeds their rank, so they could be stored in more compact forms; however, defining
covariance matrices that directly map the parameter representation is clearly convenient since no
transformations are needed.

4.4 Detector Description and Navigation

The geometry of tracker detectors typically follow a hierarchical structure, from layers in different
detector types to the actual sensors on the modules. Tracking algorithms usually navigate through
this hierarchy (typically described in terms of templated classes) to locate the actual measurements
on the sensors. As described below, MxFiT instead relies on a simplified detector description, with
the goal of reducing memory and instruction-level overheads.

The detector geometry and the instructions to navigate through it ("steering parameters") are
implemented in MKFIT as a plugin that populates in-memory data structures with the required
information. This functionality allows us to support multiple geometry options, which currently
include a simple geometry used for development, and the CMS "Phase 1" tracker geometry [22];
these geometries, as implemented in mxFiT, are shown in Fig. 3. All detector-specific information
resides only in the plugin code.

Geometry in MKFIT is described as a vector of LayerInfo structures that contain the physical
dimensions of a layer and parameters and flags relevant for track building. Layers are described in
terms of inner and outer layer radius and minimum and maximum z coordinate; such a description
is sufficient for both barrel (extending along z) and endcap layers (extending perpendicular to z).
LayerInfo includes information about layer type, hit search windows, and an optional hole in the layer

coverage; if needed, this structure could be extended for even more general acceptance handling.
MKFIT does not implement a description of geometry elements such as individual modules within

a layer.
= 120
=100 E F
s F -]
=
E 100 =
0= c !
E []
70E 80]
60— I]
50— 60]
P ——————————
40 [=
E p————————
30 ———
20 ——
20—
— =000
[P ERPI R EU I B = T | |
20 40 60 80 100 120 0 50 100 150 200 250

300
z[em] z[em]

Figure 3. Geometry representations as implemented in MxFrT: simple geometry for development (left) and
CMS Phase I geometry (right). The rectangles correspond to the geometric r-z ranges as defined in the
LayerInfo. In order to reduce overheads arising from a full geometry description, MkFIT makes use of a
coarse representation of the CMS Phase I geometry; for a description of the actual CMS Phase I geometry
see [22].

For track building, steering parameters need to be defined for every tracking region. Five
tracking regions are currently defined based on 17, which is useful for separating the tracks according
to the areas of the detector they will encounter. Note that the concept of tracking regions could
also be extended to separate tracks according to other kinematic properties of the tracks. The
steering parameters contain, most importantly, a vector of LayerControl structures that hold layer
indices (mapping into the LayerInfo vector) that need to be traversed during track building. The
steering parameters also include layer parameters and flags that are specific for this tracking region,
such as tagging layers as possible seeding layers. This allows the track building algorithm to be
completely agnostic of the detector structure: it simply follows the layer propagation plan in the
steering parameters and executes operations in accordance with the control flags in LayerControl
and LayerInfo structures.

Track propagation is performed in two steps. In the first step, the track state is propagated to
the average radius or z of the layer (for barrel and endcap layers, respectively); here hits within
a compatibility window (adjusted for the layer spread with respect to the average coordinate) are
identified. In the second step, the track is propagated to the actual position of each candidate hit
and a y? is computed to determine which hits match the track best. In the version of the algorithm
used for this paper, MxF1T can only add one hit per layer to each track candidate. If a track crosses
two overlapping modules on the same layer, competing track candidates may be created, but both
hits cannot be stored in the same candidate. The ability to collect more than one hit per layer is
currently in development, but as we will see in Sec. 5, the physics performance is already sufficient
for the purpose of the present demonstration.

For the CMS Phase I geometry, we include the effects of multiple scattering and energy loss by
defining two-dimensional arrays, indexed in r-z, with values of the radiation length and the material
composition term in the Bethe-Block formula [23-25]. These constants account for the amount of
material a particle would have to traverse in propagating from module to module. mxFiT supports

~-10-

the usage of both constant and parameterized magnetic fields, and the type of field description can
be selected each time propagation is required in the code.

4.5 Branching of Candidates

As already mentioned, track building is a combinatorial process: when a track candidate is prop-
agated to a layer, hits located within a compatibility window are probed and those that yield the
best x? lead to new candidates (branching) that are then propagated to the next layer. The number
of allowed candidates branching off a seed is limited by a configuration parameter, MaxCand. The
combinatorial behaviour leads to several computational challenges.

The first challenge is data locality. The key to reducing this problem is to spatially partition
hits and tracks so that hits are accessed efficiently, and so that tracks, when processed concurrently,
access overlapping sets of hits. As mentioned, tracks are partitioned into tracking regions that define
the general sequence of layers the tracks can cross. Within each tracking region, seeds are sorted by
n (based on the outermost hit of the seed), so tracks are processed in this order on every layer, and
hits too are typically accessed in the same 5 order. Additional second-order sorting of tracks in ¢
was considered but has not been implemented, because of the expected divergence of tracks in the
¢ space as they curve differently in the magnetic field. In order to access hits efficiently, it is helpful
to introduce a new coordinate variable ¢ that stands for z in the barrel and for r in the endcaps; this
allows for a common description of MxF1T algorithms in both detector regions. Indices of hits in
every layer are split into g-bins (which are equivalent to n-bins) and each of them is sorted on ¢.
Algorithmically, a single sorting value is calculated for each hit and all hit indices for a given layer
get sorted with a single radix sort operation. Within each g-bin, an equidistant partitioning table in
@ is created to provide a fast look-up of compatible hits.

The second challenge is that different seeds may produce a different number of candidates, and
this may lead to a load imbalance in the concurrent processing. In order to minimize this problem,
at each layer MATRIPLEX objects are populated by candidates from different seeds so that all SIMD
units are maximally occupied.

Finally, each new branch requires creating a copy of the original candidate, and this operation
is serial. To mitigate the impact from this serial work, we moved copying outside of all vectorizable
operations into what we term the “clone engine". The clone engine approach only copies the
best N < MaxCand track candidates per seed after reading and sorting a bookkeeping list of all
compatible hits. This is in contrast to a first attempt at the combinatorial KF, which copied a
candidate each time a hit was deemed compatible, then sorted and kept only the best N candidates
per seed after all the possible hits on a given layer for all the input candidates were explored. The
clone engine leads to a speedup of about 20%.

4.6 Duplicate removal steps

Before passing seeds to MxFiT for track building, the seed collection is “cleaned" by removing
multiple instances of seeds that are most likely based on hits belonging to the same outgoing
particle. The cleaning algorithm compares the fitted seed parameters pt , 1, and ¢ to eliminate
duplicate seeds and is tuned so as to not cause any drop in track building efficiency for high pileup
events. In the case of the CMS Phase I geometry, the duplicate seeds arise due to detector module

—11 =

overlaps that are rather significant, especially in the endcaps. Low pr tracks (below 2 GeV/c) are
more affected due to bending in the r-¢ plane during their flight through the detector. Multiplicity
of seeds from a single particle frequently reaches 8 and can go as high as several tens. To further
reduce the duplicate rate in MxFiIT, a second duplicate removal step occurs after the track building.
This step first compares the pr, 17, and ¢ parameters of the built tracks and then checks how many
hits are shared between the tracks. These dedicated duplicate removal steps are not necessary for
the standard track building algorithm used by CMSSW; CMSSW processes seeds sequentially, and
a seed is rejected if all of its hits have already been used by a track candidate found earlier.

4.7 GPU implementation

Given the recent trend in the computing market strongly favoring GPUs, in the longer term we plan
to work on a GPU implementation of mxFit. While a large fraction of the work we have done so
far should apply just as well to GPUs (which also rely on two types of parallelization, over data
and over tasks), large differences are introduced by the different memory hierarchy and the need
for data transfers from the host. These are significant issues for an algorithm with low arithmetic
intensity such as track building. A separate challenge is that a GPU-only implementation would
require a duplication of code and maintenance; to solve this challenge, we plan to explore possible
portable solutions to allow the same code to run on both GPUs and multicore CPUs. All combined,
an efficient GPU implementation of MkFIT is not a trivial task and may not necessarily outperform
the current version, or at least not without substantial effort.

5 Results

5.1 Introduction

In this section, we demonstrate the performance of the MmxFiT algorithm. First, we present results
for physics quantities of interest such as efficiency, fake rate, and duplicate rate. Second, we discuss
the computational performance, including timing comparisons with the nominal CMSSW tracking
algorithm. The input data for these tests is a simulated data sample of ¢f events with an average
pileup per event of 50 using the Phase I CMS geometry in 2018 and assuming realistic detector
conditions. Studies with higher average pileup values are also planned but require updating the
CMS geometry to incorporate the planned tracker upgrades [26]. There are two setups that can be
used to validate the performance of the mxFrT algorithm: standalone and integrated. The standalone
setup (Sec. 5.3 - 5.4) does not require the CMSSW environment and is used for development and
controlled tests of the algorithm. It includes a suite of computational benchmarks that are useful
for identifying potential gains or losses in computational performance and for testing proposed
changes and improvements to MmxF1T. External profiling tools, such as those provided by Intel® and
TAU [27], were also used for more fine-grained inspection of potential bottlenecks in source code.
The integrated setup (Sec. 5.5) runs MxF1T within CMSSW, which gives us access to the standard
CMS validation tools as an additional check on the performance of mMxFir.

When processing CMS events, MkFIT relies on hit and seed data to be provided externally.
In the standalone setup, MxFiT reads the input hit and seed data from a binary file created by a
converter application. Additionally, the binary file can also contain vectors of simulated tracks

— 12—

and reconstructed tracks as found by standard CMS tracking used in the validation of MKFIT’S
performance. In the integrated setup, dedicated CMSSW modules convert the input hits and seeds
into the MxF1T format.

5.2 Platforms and General Configuration

The primary architectures used in the testing and development of the mxFiT algorithm are Intel®
multicore and many-core devices, i.e., Intel® Xeon® processors and Intel® Xeon Phi™ processors
and coprocessors, although the latter product line has been effectively terminated. We use the
following machines for presenting physics and computational performance:

* “KNL” (Knights Landing) — 64 cores: Intel® Xeon Phi™ processor 7210 @ 1.30 GHz

» “SKL-SP” (Skylake-Scalable Processor) — dual socket x 16 cores: Intel® Xeon® Gold 6130
processor @ 2.10 GHz

In order to exploit the two AVX-512 vector processing units per core featured on these machines,
MKFIT is compiled using Intel® C++ Compiler version 19.0.4 with the instruction set native to the
device. Intrinsic functions for memory alignment and access are used whenever possible. Additional
flags are included in the compilation to perform routine code optimizations (e.g., function inlining
and branch prediction from speculative execution) and to ensure high utilization of vector registers.
We enable Intel® Hyper-Threading Technology on all machines, and test up to the maximum
number of hardware threads in each machine, i.e., 256 for KNL and 64 for SKL-SP.

The machines were configured in the following way for the tests below. The clock frequency
scaling governor was set to “performance” mode, which signals to the clock frequency manager to
prevent ramping down the clock frequency unless absolutely necessary. Intel® Turbo Boost was
disabled to reduce confusion when measuring the computational scaling behavior as a function of
the number of threads.

5.3 Physics Results

In this section we compare the physics performance of MKF1T to that of the track building algorithm
used in CMSSW version 10_4_0_patchl in terms of metrics that probe the correctness and com-
pleteness of the track hits identified during track building. We focus on the first tracking iteration
of the offline CMS tracking, seeded by quadruplets of hits located in the pixel detector [18].

The efficiency of the mkFiT algorithm is evaluated with respect to simulated tracks that are
prompt (that is, originate at or near the collision point), within the strip detector acceptance
(In] < 2.5), and matched to a track seed. The last requirement is applied in order to factor out
the efficiency for finding seeds, which are an external input to MkFIT. A reconstructed track is
considered matched to a simulated track if more than 75% of the reconstructed track hits are shared,
including the hits from the seed. The track building efficiency is defined as the fraction of simulated
tracks that are matched to at least one reconstructed track. Figure 4 shows the efficiency as a
function of 7 for tracks with pr > 0.9 GeV and the efficiency as a function of track pr. The MxFIT
algorithm is at least as efficient as the nominal CMSSW algorithm for all values of track and pr.

Figure 5 (left) shows the duplicate rate as a function of n for tracks with pr > 0.9 GeV. The
denominator of the duplicate rate includes all simulated tracks that are matched to at least one

13-

reconstructed track, and the numerator includes all simulated tracks that are matched to multiple
reconstructed tracks. The duplicate rate is worse for higher values of 1 due to the larger number of
overlapping detector modules leading to multiple track seeds for a single charged particle. The two
duplicate removal steps outlined in Sec. 4.6 reduce the overall duplicate rate in MxFiT from over
30% to less than 1%.

The fake rate is defined as the fraction of reconstructed tracks that are not matched to a simulated
track. The fake rate of the MxFrT algorithm is shown in Figure 5 (right) as a function of 7 for tracks
with pt > 0.9 GeV; the performance of mxFiT and CMSSW in terms of fake rate is similar, with
MKFIT 3.5% higher in overall absolute terms. Note that the results shown in Figure 5 include all
tracks produced by the track building step; the fake rate is further reduced for both mxFrr and
CMSSW tracks by additional track selections that are applied after the final fit in CMSSW.

It is also important to ensure that the tracks reconstructed by mxFit are similar in quality as the
tracks reconstructed by CMSSW, e.g., by verifying that the algorithm collects the majority of hits
along the track. Figure 6 shows the number of layers with found hits in tracks that are reconstructed
by MxFir and CMSSW; the overall average number of layers is 15.1 for CMSSW and 14.9 for
MKFIT.

In summary, while not identical, the MxFit results in terms of the metrics presented here are
sufficiently close to those of the nominal CMSSW algorithm so that, for the purpose of the present
demonstration, the two algorithms can be considered equivalent from the physics performance point

of view.
Track building efficiency for sim tracks with P> 0.9 GeV Track building efficiency vs. sim track P,
> F >
g T 2
8 i L ia I T TR 3 T R S I
B LT TN g T 5F T
0.9}% &l T TT 13 _fx 3L -..IT 09 - TT |
E —t— | |
08— o8f=+
07f r
C —— CMSSW o7 - —— CMSsSwW
0.6:— + MKFit 0.6; +— MKkFit
A AT AT ARSI RSN BT | P | L
o8 -2 -1 0 1 2 1 10) 10°
Sim track 1 Sim track p_

Figure 4. Efficiency of the MkF1T (red) and nominal CMSSW (blue) track building algorithms as a function
of the track 5 (left) and pr (right). The efficiency with respect to track n is calculated for tracks with
pt > 0.9 GeV. The efficiency is defined as the fraction of simulated tracks that are matched to at least one
reconstructed track; only simulated tracks matched to a seed are considered. Sample used: first CMS offline
tracking iteration for ¢7 events with <PU>=50 and CMSSW version 10_4_0_patchl.

5.4 Computing Results

This section outlines the computational performance of mxFrT, measured primarily with a set of
benchmarks that test the scaling behavior of MkF1T as a function of increased resources. We first
measure the vectorization and multithreading performance solely of the track building subroutine
within MkFIT, ignoring the time for I/O, seed preparation, hit organization, etc. In both tests, we
process a total of 100 events and sum the build times for all but the first event. In these tests,

_ 14—

Duplicate rate for sim tracks with p_> 0.9 GeV Fake rate for tracks with p_ > 0.9 GeV

<
IS

i3 F) F
S 014~ [E
° 5 2 03s5F
8 o — CMSSW g E — CMSSW
3 03—
P < MKFit E - MKFit
025? 3
008 0.2 i it
0.0} 0.153_* + + ty
0 04:— - ++*‘H"m *i %#* A
! E 4‘ 4‘ 0.1 54' ++++++’t @ b +:++i+
i i it gatact
G:H ‘J ‘\] A ‘,IHHMLI]FH‘.] LLLLLLL I-”-'LMML LI [“ H P P S E U S B B
%] 0 1 2 —2 = 0 1 2
Sim track Reconstructed track n

Figure 5. Duplicate rate (left) and fake rate (right) of the MxF1T (red) and nominal CMSSW (blue) track
building algorithms as a function of the track n, for tracks with pt > 0.9 GeV. The duplicate rate is defined
as the fraction of simulated tracks matched to at least one reconstructed track that are matched to multiple
reconstructed tracks. The CMSSW values are nearly zero. The fake rate is defined as the fraction of
reconstructed tracks that are not matched to a simulated track. Sample used: first CMS offline tracking
iteration for 7 events with <PU>=50 and CMSSW version 10_4_0_patch]1.

20

18

—a—

———a—

16

14

— 6

#
{
{
i

12

10

Average Number of Layers

— CMSSw

—— mkFit

N » [=2] ©
TT T [T T T[T T T[T T T[T T [TTT

c e b b b
0 -2 -1 0 1 2

Track n

Figure 6. Number of layers with found hits in tracks reconstructed by the MxFir algorithm (red) and tracks
reconstructed by CMSSW (blue) as a function of 7. The layer count includes the seed. Tracks are required
to be matched to a simulated track. Sample used: first CMS offline tracking iteration for ¢ events with
<PU>=50 and CMSSW version 10_4_0_patchl.

events are processed one at a time, i.e., the number of concurrent events is one. We also limit
the vectorization test to a single thread, to factorize speedups due to vectorization from those
due to multithreaded parallelism. The vectorization test is performed by varying the vector width
of MaTrrpLEX in multiples of two, effectively limiting the use of vector registers to the number
of floating point numbers in the width of MATRIPLEX; otherwise, the compiler is instructed to
auto-vectorize and optimize the code as much as possible. It is worth noting that when disabling
auto-vectorization with MaTrIPLEX width set to one, the track building time slows by a further 15%,

— 15—

thus demonstrating that part of the code is still vectorized when MATRIPLEX width is set to one. The
multithreading test measures the performance on top of the maximum vectorization performance
by gradually increasing the number of threads.

To demonstrate the scaling behavior as a function of additional resources, we compute the
speedup: for each point tested, we divide the wall-clock time measured for vector width (number of
threads) equal to one by the wall-clock time measured for vector width (number of threads) equal
to N. The speedup results of the vectorization and multithreading tests are shown in Fig. 7.

Vectorization Scaling Thread Scaling
o [o 30
£ £
s r / s |
a 3 a |
K4 r x L
[%] [2]
S T S
5 | % 20
g s |
3 2 -
[L (]
2 g |
%) : ideal scaling (] | Ideal Scaling
r 4 |- Amdahl's Law (p=69%) 10 — — Amdahl's Law (p=95%)
! /2 Amdahl's Law (p=97%)
= —e— SKL-SP |
3 —e— SKL-SP
H —&— KNL [
—8— KNL
0 | | L 0 L L1]
0 5 10 15 0 50 100 150
Matriplex Width Number of Threads

Figure 7. Vectorization speedup as a function of the MaTripLEX width (left), and multithreading speedup as
a function of the number of threads allotted (right), for MmxFiT track building (only) on KNL, and SKL-SP.
The code is complied with the instruction set native to the processor in each case, regardless of MATRIPLEX
width. The ideal speedup curve (solid line) assumes perfect scaling as a function of increased resources;
speedup curves based on Amdahl’s Law (dotted and dashed lines) are shown for comparison.

The scaling results in Fig. 7 can be interpreted using Amdahl’s Law [28], which relates the
speedup due to increased resources (from either vectorization or multithreading) to p, the fraction
of the program that is parallelizable. The serial fraction (1 — p) necessarily limits the speedup,
since additional resources cannot increase the performance of the serial portion. We infer p from
the results by writing Amdahl’s Law in the form

_1-Q/5)

PET=aRy O

where S is the measured speedup, and R is the ratio of available to original resources. Given
measured speedups on SKL-SP (KNL) with a maximum of 2.7 (2.9) at a MATRIPLEX vector width
of 16, the fraction of the track building code that is effectively vectorized is nearly 70%. Notice that
the speedup when shifting from MatrPLEX width of one to width of two is consistently smaller
than for larger widths, possibly because there are no native instructions for a vector size of two.
Multithreading tests show maximum speedup values of § = 15.5 (S = 26.6) at 64 (128) threads on
SKL-SP (KNL), thus implying that the fraction of code that is parallelized is at least 95%.

— 16—

We can also measure the speedup achieved by processing multiple events concurrently. In this
case, the time used for computing the speedup is the average wall-clock time per event for processing
MKFIT, which now includes sections outside of the track building algorithm. In order to obtain full
thread utilization, we increase the workload to reconstruct 5000 events times the number of events
processed concurrently. The speedup results with respect to one thread and one concurrent event
are displayed in Fig. 8. As can be seen, by processing events concurrently, latencies between events
are hidden and a very impressive scaling can be achieved. In fact, we measure a maximum speedup
of 35.2 (76.0) on SKL-SP (KNL), appreciably larger than the total number of physical cores.

With a similar configuration, we can also measure the total throughput in events per second for
MKFIT, comparing the performance in a multithreaded instance to that when multiprocessing a set
of instances. In this context, multiprocessing refers to launching multiple instances of mxFiT each
with a single thread, whereas multithreading refers to a single instance of the MxFit program that
is launched with multiple threads. For ease of comparison, we set the total number of concurrent
events equal to the number of threads in the multithreaded throughput test, and then use that as the
number of instances for the corresponding multiprocessing test. The results of these tests are shown
in Fig. 9. On a single thread, the throughput on the SKL-SP is 3.4 times higher than the throughput
on the KNL. With fully loaded machines, the difference reduces to a factor of 1.8. The points along
the multithreaded curve can be mapped to the first point along each of the multiple event-in-flight
curves in Fig. 8, where the total number of concurrent events equals the number of threads for those
tests. The throughput tests demonstrate that the multithreaded mxFit produces about 3.5% (1.5%)
less throughput compared to the multiprocessed mxFiT at maximum load on the SKL-SP (KNL)
machine. While multiprocessing may achieve an ever-so-slight advantage in throughput, it requires
many instances of a program, where every instance and its data must be loaded into memory. An
efficient multithreaded program can share resources, and therefore significantly reduce the memory
footprint. This comes at the expense of some overhead to the operating system scheduler that must
manage scheduling tasks and dividing resources. The fact that the overhead is proven to be at the
precent level demonstrates the excellent division of tasks within MxFrT.

Concurrent Event Scaling on KNL Concurrent Event Scaling on SKL-SP
40—

100

= - 1Events -®2Events -®-4Events -®8Events -® 16 Events - —e- 1Events

—e- 2 Events
—eo- 4 Events
—e- 8 Events
—e— 16 Events
32 Events
—e— 64 Events
----Ideal Scaling

35
= 32 Events 0-64 Events - 128 Events =+ Ideal Scaling -

80

30

25

60: /

40 y]

20{—345
b ‘\
-

o T e T T T e L T el 1
0 50 100 150 200 250 30 40 50 60
Number of Threads Number of Threads

ﬂ

Average Speedup per Event
T
L

Average Speedup per Event

IN]
o

Figure 8. Speedups with respect to one thread and one concurrent event, when varying the number of threads
for a fixed number of concurrent events, on KNL (left) and SKL-SP (right). Speedups are based on the full
MKFIT loop time, which includes I/O and seed preparation in addition to track building.

17—

KNL Throughput Test SKL-SP Throughput Test

T F T T — 13 T F L e B L
o 70 o o E
£ f e —] £ 35F =
< 60F B < F E
£ F 7 £ 30F : -
¢ B \; s 30: //// B
2 50F =3 £ ; |
3 O F E 3 25F =
3 E 3 3 £]
& O E @ 20F]
E Ideal scaling : E / Ideal scaling 4
30F e~ Multthreading E 155 -~ i e
E —e— Multiprocessing] E / —e— Multiprocessing 3
20 / m 10 5

10F] sF /]
0 T B B N 07“/‘(”\H"\HH\HH\HH\HH\‘:

0 50 100 150 200 250 0 10 20 30 40 50 60
Number of Threads Number of Threads

Figure 9. Speedup as a function of the number of threads for the full MxFrt loop time, when the number
of threads in one instance equals the number of concurrent events (blue), and the number of single-threaded
instances equals the number of threads (red), for KNL (left) and SKL-SP (right).

5.5 Integration in CMSSW

The MxFIT algorithm is included in the CMS software distribution as an external package, along
with dedicated processing modules within CMSSW. There are separate modules for packaging
the input data (i.e., seeds and hits) into the format expected by mkFiT, for executing the MmxFiT
algorithm, and for reorganizing the results from mxFiT back into the nominal CMS data formats.
These modules provide high-level configuration and steering of the mkFit execution, and they can
be used as a drop-in replacement for the default pattern recognition module in the CMS tracking.
The data format conversions between CMSSW and MxFit introduce a sizeable overhead to the
execution time, up to about about 25% of the mkFiT time; in the future such overhead could be
mitigated or removed by harmonizing the data format definitions. This model of inclusion allows
the MkFIT code to remain independent of CMS particularities, while also allowing MKFIT to be
developed and tested in a more lightweight environment compared to the full CMSSW.

Within this setup we can directly compare the time performance of the first iteration of
offline track building when performed with mxFiT versus CMSSW. This test uses just a single
thread on SKL-SP, processing 1000 events. The mxFit algorithm is compiled with the Intel®
C++ Compiler (version 19.0.4), and CMSSW version 10_4_0_patchl is compiled with the GNU
Compiler Collection (version 7.3.1) as released by CMS.

The results of this test can be seen in Fig. 10. Note that MxFi1t is used as a replacement for the
track building only. With further development, the MmxFiT approach could be adapted for the track
fitting in addition to the track building, but that is not part of the present work. mkFiT achieves a
>6x speedup over CMSSW for the track building. The measured times include all overheads, in
particular the data format conversions mentioned earlier. The 6x speedup includes speedups from
vectorization (as shown in Fig. 7), in addition to general algorithmic improvements, such as the
lightweight representation of the detector geometry that was described in Sec. 4.4. Notably, the
CMSSW track fitting now takes longer than mkFit track building. In other words, using mxFiT, the
track building is no longer the most time-consuming step in CMSSW reconstruction.

—18 -

CMS tracking, first iteration

4005--..-:‘-*—'-:..-IXCMSSW o
o BO0f b -+ - {4 MKFit
E :]]] "
= 300fcremaann _eeaa- e e
= F : ; : :
= 250:_....:. e R TEERER
= ; : : : .
SA)10] IR == R e
o C . : : :
%D 150:_....:. ﬁ REEE
E}‘ : . L L] [l
j: 100f=assafoanans e e ..
50:_........‘..:.
N S -
: S @
@@Q% ¢y /%? ‘g -/@%j {5&
& 7

Figure 10. Comparison of the single-thread time to run MKFIT as an external within the CMSSW framework
(red) to the time to run the standard first iteration of offline tracking in CMSSW (blue). Note that mxF1T
is used as a replacement for the building step only. MkFiT achieves a speedup >6x over CMSSW in the
track building stage. Time measured on SKL-SP using ¢7 events with <PU>=50 and CMSSW version
10_4_0_patchl.

6 Conclusions and Outlook

The KF-based track building algorithm is the main driver in CPU time increase at the LHC with
increasing instantaneous luminosity. We successfully re-engineered the KF-based track building
algorithm for parallel processing: about 70% of the core algorithm is effectively vectorized (speedup
close to 3x), and multithreading achieves speedups exceeding the number of available physical
cores with scaling close to the multiprocessing limit. The physics performance of the re-designed
algorithm is comparable to state-of-the-art algorithms, with further fine-tuning still possible. Tests
within the CMS reconstruction framework show that MxFir is faster than the default algorithm on
the offline first tracking iteration, and that track building is now faster than track fitting. These results
demonstrate that MkF1T is a viable solution to the timing problem of charged particle tracking at the
LHC. Work is underway towards a full integration in the CMS experiment, including application
to multiple tracking iterations and integration in the HLT configuration, and, in the longer term,
towards a GPU-friendly implementation.

19—

Acknowledgments

This work is supported by the U.S. National Science Foundation, under the grants PHY-1520969,
PHY-1521042, PHY-1520942, PHY-1624356, and OAC-1836650, and by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of High
Energy Physics, Scientific Discovery through Advanced Computing (SciDAC) program. We are
thankful to the CMS Collaboration for providing access to the CMSSW software framework and
the configurations to produce the simulated samples used for testing.

References

[1] CMS collaboration, The CMS Experiment at the CERN LHC, JINST 3 (2008) S08004.
[2] L. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001.

[3] G. Apollinari, I. Béjar Alonso, O. Briining, P. Fessia, M. Lamont, L. Rossi et al., High-Luminosity
Large Hadron Collider (HL-LHC), CERN Yellow Rep. Monogr. 4 (2017) 1.

[4] CMS collaboration, The CMS trigger system, JINST 12 (2017) P01020 [1609.02366].
[S] CMS collaboration, Vertexing and Tracking Algorithms at High Pile-Up, PoS Vertex2014 (2015) 037.

[6] J. Albrecht and et al., A Roadmap for HEP Software and Computing R&D for the 2020s, Computing
and Software for Big Science 3 (2019) .

[7] CMS collaboration, Search for supersymmetry in events with soft leptons, low jet multiplicity, and
missing transverse energy in protondASproton collisions at \/s=8 TeV, Phys. Lett. B759 (2016) 9
[1512.08002].

[8] D. Bertolini, P. Harris, M. Low and N. Tran, Pileup Per Particle Identification, JHEP 10 (2014) 059
[1407.6013].

[9] CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13
TeV, JINST 13 (2018) PO5011 [1712.07158].

[10] CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13
TeV, JINST 13 (2018) PO5011 [1712.07158].

[11] CMS collaboration, Performance of reconstruction and identification of T leptons decaying to
hadrons and v, in pp collisions at \s = 13 TeV, JINST 13 (2018) P10005 [1809.02816].

[12] CMS collaboration, CMS Tracking Performance Results from Early LHC Operation, Eur. Phys. J.
C70 (2010) 1165 [1007.1988].

[13] CMS collaboration, Observation of the Diphoton Decay of the Higgs Boson and Measurement of Its
Properties, Eur. Phys. J. C74 (2014) 3076 [1407.0558].

[14] R. Fruhwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum. Meth. A262
(1987) 444.

[15] C.D. Jones, M. Paterno, J. Kowalkowski, L. Sexton-Kennedy and W. Tanenbaum, The new CMS
event data model and framework, in Proceedings of International Conference on Computing in High
Energy and Nuclear Physics (CHEPO06), 2006, https://indico.cern.ch/event/408139/.

[16] R.E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the
ASME-Journal of Basic Engineering 82 (1960) 35.

~20-—

https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1088/1748-0221/12/01/P01020
https://arxiv.org/abs/1609.02366
https://doi.org/10.22323/1.227.0037
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1016/j.physletb.2016.05.033
https://arxiv.org/abs/1512.08002
https://doi.org/10.1007/JHEP10(2014)059
https://arxiv.org/abs/1407.6013
https://doi.org/10.1088/1748-0221/13/05/P05011
https://arxiv.org/abs/1712.07158
https://doi.org/10.1088/1748-0221/13/05/P05011
https://arxiv.org/abs/1712.07158
https://doi.org/10.1088/1748-0221/13/10/P10005
https://arxiv.org/abs/1809.02816
https://doi.org/10.1140/epjc/s10052-010-1491-3
https://doi.org/10.1140/epjc/s10052-010-1491-3
https://arxiv.org/abs/1007.1988
https://doi.org/10.1140/epjc/s10052-014-3076-z
https://arxiv.org/abs/1407.0558
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
https://indico.cern.ch/event/408139/

[17] V. Halyo, P. LeGresley, P. Lujan, V. Karpusenko and A. Vladimirov, First Evaluation of the CPU,
GPGPU and MIC Architectures for Real Time Particle Tracking based on Hough Transform at the
LHC, JINST 9 (2014) P04005 [1310.7556].

[18] F. Pantaleo, “New Track Seeding Techniques for the CMS Experiment.” CERN-THESIS-2017-242,
2017.

[19] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the
CMS tracker, JINST 9 (2014) P10009 [1405.6569].

[20] ATLAS collaboration, Performance of the ATLAS Track Reconstruction Algorithms in Dense
Environments in LHC Run 2, Eur. Phys. J. C77 (2017) 673 [1704.07983].

[21] K. Kim, T. B. Costa, M. Deveci, A. M. Bradley, S. D. Hammond, M. E. Guney et al., Designing
vector-friendly compact blas and lapack kernels, in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC *17, (New York, NY, USA),
Association for Computing Machinery, 2017, DOI.

[22] CMS collaboration, CMS Technical Design Report for the Pixel Detector Upgrade, Tech. Rep.
CERN-LHCC-2012-016, CMS-TDR-011, 2012. 10.2172/1151650.

[23] ParticLE Data Group collaboration, Review of Particle Physics, Phys. Rev. D98 (2018) 030001.
[24] CMS collaboration, Studies of Tracker Material, Tech. Rep. CMS-PAS-TRK-10-003, 2010.

[25] CMS collaboration, Precision measurement of the structure of the CMS inner tracking system using
nuclear interactions, JINST 13 (2018) P10034 [1807.03289].

[26] CMS collaboration, The Phase-2 Upgrade of the CMS Tracker, Tech. Rep. CERN-LHCC-2017-009,
CMS-TDR-014, 2017.

[27] S.S. Shende and A. D. Malony, The TAU Parallel Performance System, Int. J. High Perform.
Comput. Appl. 20 (2006) 287.

[28] G. M. Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities, in Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
pp- 483485, 1967, DOL

21—

https://doi.org/10.1088/1748-0221/9/04/P04005
https://arxiv.org/abs/1310.7556
https://doi.org/10.1088/1748-0221/9/10/P10009
https://arxiv.org/abs/1405.6569
https://doi.org/10.1140/epjc/s10052-017-5225-7
https://arxiv.org/abs/1704.07983
https://doi.org/10.1145/3126908.3126941
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/1748-0221/13/10/P10034
https://arxiv.org/abs/1807.03289
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1145/1465482.1465560

	1 Introduction
	1.1 Physics Motivation and Goals
	1.2 Moore's Law Transformed: Track Reconstruction Opportunities

	2 Overview and Objectives
	3 Kalman Filter Tracking
	4 Algorithm Design and Implementation
	4.1 Challenges and Drivers For Algorithm Design
	4.2 Parallelization Strategy
	4.2.1 Vectorization using Matriplex
	4.2.2 Multithreading using TBB tasks

	4.3 Coordinate Representation
	4.4 Detector Description and Navigation
	4.5 Branching of Candidates
	4.6 Duplicate removal steps
	4.7 GPU implementation

	5 Results
	5.1 Introduction
	5.2 Platforms and General Configuration
	5.3 Physics Results
	5.4 Computing Results
	5.5 Integration in CMSSW

	6 Conclusions and Outlook

