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ABSTRACT KEYWORDS

Al for good (AI4G) projects involve developing and applying ar-
tificial intelligence (AI) based solutions to further goals in areas
such as sustainability, health, humanitarian aid, and social justice.
Developing and deploying such solutions must be done in collab-
oration with partners who are experts in the domain in question
and who already have experience in making progress towards such
goals. Based on our experiences, we detail the different aspects of
this type of collaboration broken down into four high-level cat-
egories: communication, data, modeling, and impact, and distill
eleven takeaways to guide such projects in the future. We briefly
describe two case studies to illustrate how some of these takeaways
were applied in practice during our past collaborations.
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1 INTRODUCTION

Advances in artificial intelligence (AI) and computing power have
given rise to powerful Al tools ubiquitous in many people’s per-
sonal and professional lives. These abilities are integrated into our
phones and computers, and are driven mainly by businesses that
have productized advances in Al at massive scales. Many of these
tools are broadly available and provide some social benefit (e.g.,
search engines, navigation tools). However, the promise of Al to
improve lives and protect vulnerable people and ecosystems has
not yet reached its potential.

AT for Good (AI4G) is a movement within the larger field of AI
that aims to develop and use Al methods to further progress to-
wards goals in sustainability, health, humanitarian aid, and social
justice, guided loosely by the UN Sustainable Development Goals
(SDGs) and priorities within local communities. Excellent litera-
ture reviews on the topic are offered by [17, 54, 61, 70]. A key
difference from commercial applications of Al is that those AI4G
problems and successes are often not defined by market need, but
rather by non-profits, social enterprises and governments seeking
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to solve problems that have not found solutions in the private sec-
tor. For example, researchers in the field of computational sustain-
ability [24] develop and apply methods to tackle problems such as
wildlife conservation [19], bioacoustics [82], bird-migration track-
ing [59] and poverty detection [34]. In recent years, a number of
pieces of criticism have been directed at the AI4G movement [10,
26, 40]. While these critiques raise important concerns such as the
bias of models trained on limited data, shifting attention away from
root causes of societal problems, and a paternalistic understanding
of the affected community, the discussion largely centers on the
difficulty of defining what is “good” in our societal context.

In this article we distill first-hand experiences from our research
lab focused on AI4G projects spanning several application areas
over two years. Cognizant of the complexity of problems in the
AT4G domain and our expertise restricted to the technical side of Al
(statistics, modeling, and engineering), we collaborate extensively
with external partner organizations (PO) to define good outcomes
for our projects, source and curate data, and realize real-world im-
pact from our modeling solutions. These AI4G projects contribute
to solving problems in two ways: we develop and apply Al tech-
niques to accelerate previously manual tasks such as data process-
ing to enable the PO to arrive at their solution faster, and we ana-
lyze and model collected data for additional insights. The collabo-
rative and practical nature of such projects means that the deliver-
ables are not just model weights, source code, and technical papers;
they crucially involve working with these POs (whose technical
capabilities and infrastructure vary greatly) to develop workable
engineering solutions for deployment that respect resource con-
straints that POs face, as well as communicating and documenting
our solutions — and their limitations — for the domain experts out-
side of computer science and engineering who use our models to
impact society.

We highlight challenges that are more pronounced in AI4G projects

compared to machine learning (ML) projects in the academic and
corporate spheres, outline strategies we have learned for under-
taking such projects, and reflect on difficulties we have faced mea-
suring our impact. We break these down into four sections in the
rest of the discussion: communication, data, modeling, and impact.
Finally, we describe two case studies, i.e. AI4G projects, that exem-
plify these difficulties and how we approached them in a real-world
setting.

2 COMMUNICATION

The relationship and interaction between data scientists and POs —

who are the domain experts that define problems, curate data, and

act on model outputs - is an important first topic. Domain experts

sometimes have decades worth of experience working in a prob-
lem area. Communicating all of this accumulated knowledge to

data scientists within a few days or weeks during project planning

can be difficult, but data scientists must be willing and ready to in-
corporate this knowledge into their modeling approaches. While

straightforward, accurate bi-directional communication at all stages
of an AI4G project is essential for its success, we focus below on ar-
eas where data scientists may need to drive the conversation with

the PO.

2.1 Setting realistic expectations from AI

It is often the case that POs have inflated expectations about the
capabilities of modern Al-based techniques due to the hype sur-
rounding the field! and its misrepresentation in the media [38].
In our experience, when initially proposing and scoping projects,
some POs may believe that there are pre-existing Al tools that can
be immediately adapted for a niche purpose with little to no train-
ing data (cf. [15]). However, our experience also shows that POs
respond well to open, honest communication about AT's capabili-
ties, or the need for (labeled) training data. Early conversations of-
ten involved directing POs’ expectations away from a model that
achieves all of their goals, which would require more training data
than is currently available, to more targeted models for which ap-
propriate and sufficient training data is available, and which will
still bring them significantly closer to their goals. For certain use
cases, an adequate and achievable approach is to use Al as a com-
plementary tool to streamline and accelerate current workflows,
rather than entirely supplanting them.

One such example we have worked on involved a PO who ini-
tially approached us about building a natural language processing
(NLP) model to extract very nuanced author intent from decontex-
tualized 1- or 2-sentence texts in a small corpus of unlabeled doc-
uments. After gaining a better understanding of the specific use
case for the model, we worked with the PO to reframe the problem
in terms of multi-label topic classification, and also worked with
them to label the data. The result was a model that allowed the
PO to incorporate an entirely new data source (text) into a broader
initiative focused on quantifying human activities’ impacts on en-
vironmental resources.

In addition to discussing the general limitations of Al-based meth-
ods with regards to what can be achieved, depending on the PO’s
domain and technical expertise, it may also be crucial to make
them aware of more concrete issues encountered while building
ML models. These include overfitting in small data regimes, model
bias, generalization issues after deploying a model, adversarial at-
tacks, data and model privacy concerns, limitations of interpretable
models, etc. For example, lesion shape irregularity is one of the
most critical features in the clinical diagnosis of melanoma [1]. On
the other hand, recent studies have determined that convolutional
neural networks are negatively-biased in capturing shape-related
information from images [5, 21]. Clinical researchers who may
wish to develop a convolutional model for melanoma detection are
likely to be unaware of this finding, and effective communication
of this knowledge may facilitate the development of alternative
approaches. We believe that knowledge transfer should be a core
component of an AI4G project.

In contrast to these positive cases, there may be circumstances
in which POs need to be informed when their goals — even with
proper reframing — may not be achievable with Al For example,
a model trained to detect fish species from underwater cameras
may be highly accurate in identifying a few common species, but
the researchers may like to detect very rare species if, for example,
detection of the rare species is key to deciding whether some eco-
nomic development opportunity is allowed. In these cases, model

!For example, a Gartner 2020 report on emerging technologies places Al at the peak
in terms of inflated expectations [46].



creation may need to be postponed for time-consuming data collec-
tion and labeling. And in some cases it may be necessary to ask if
the current state of machine learning is able to meaningfully help
the PO in meeting its goals.

Takeaway 1. Educating POs about AI’s limits and op-
portunities is a core part of an AI4G project. Potentially
unrealistic expectations for Al can often be reframed
into achievable goals that streamline the PO’s work-
flows.

2.2 Project scoping and implementation

Collaborations between POs and technical experts on AI4G projects
are typically short-term or phased, hence it is important to set
priorities and expectations before beginning a project. For exam-
ple, one project we have worked on involves counting herd ani-
mals (e.g. cattle) over large areas from satellite imagery to moni-
tor the effectiveness of conservation policies. This is an expensive
task to perform manually, but can potentially be automated with
computer vision models. Instance segmentation of the animals is a
straightforward approach, however it is risky due to the lack of la-
beled data or low spatial resolution of the imagery. Less straightfor-
ward modeling approaches, such as coarser animal density estima-
tion models, can satisfy the same project goals, but may take more
effort to define upfront. Such approaches may also be informed by
domain knowledge — herd animals move in groups, resulting in
dense crowds more easily identifiable in imagery than individual
animals. The back-and-forth communication with the PO to un-
derstand the goal and explore appropriate modeling solutions is a
crucial part of the project life cycle.

We summarize questions to explore when scoping a project with
a PO as a guideline for future projects:

(1) Setting accurate goals: is the project oriented towards the
prediction or estimation of quantities, or is it towards the
visualization and representation of data? If the project is
oriented towards prediction/estimation, then what will be
done with the output from the model, who will use it (say,
for decision-making), and where will it be deployed? If the
project is oriented towards visualization/representation or
to interpretability/inference, what format is expected, who
will be consuming the end result, and — again — where will
it be deployed?

(2) What are the resource constraints of the PO? The compute
and storage resources available and the type of device where
the solution will be deployed (cloud-based, battery-powered
devices) should be taken into account to determine what
modeling solutions are possible.

(3) What is the technical expertise available at the PO? This will
determine the amount of support available for maintaining
a deliverable beyond the duration of the project.

(4) Does the problem require developing novel machine learn-
ing techniques? This will inform the project timeline and
the risk. It could present an opportunity to identify larger
research challenges and bring them into the ML community
at large.

(5) To what degree is data/model privacy a concern? The data
available to the PO can often contain personally identifiable

information about individuals. This would not only make
the dataset not releasable for the sake of reproducibility, but
also limit the public release of models since they may be
subject to privacy attacks [62].

(6) Is precise information on the data well documented? The PO
should convey the assumptions and the procedures under-
lying data collection. If the data has already been processed,
the processing steps should be communicated because cer-
tain pre-processing steps can introduce bias in the data [20].

(7) How could the PO’s domain knowledge be incorporated in
modeling? During the project development stage, it may be
necessary to not rely entirely on data-driven techniques (for
instance, for feature learning), but also utilize PO’s knowl-
edge of domain-relevant metrics and features that have been
identified as significant in their field. For example, in radi-
ology, dozens of hand-crafted radiomic features have been
previously found to be significant predictors of cancer sur-
vival and response to therapy [4].

Takeaway 2. To ensure we develop solutions that are
practically useful, project scoping needs to be an ongo-
ing dialogue with the PO.

3 DATA

Most AI4G projects start with the PO sharing a dataset they have
previously collected and labeled, or pointing out public datasets
that are relevant to the problem. While specific funding opportu-
nities for creating datasets for ML applications and novel methods
to take advantage of weakly labeled public data [73, 83] or gen-
erated data [8] exist, exploiting these is often not possible. This
is in contrast to enterprise applications where ML teams are also
responsible for collecting training data and have budget allocated
for curating datasets with specific ML tasks in mind. In this section
we reflect on recurring challenges related to data availability and
quality in the context of AI4G projects; for an in-depth discussion
of data issues present in high-stakes Al applications, refer to [57].

3.1 Adapting to previously collected datasets

Limitations in the data collection process often influence the de-
gree to which an AI4G project can be successful, possibly more
so than they affect the outcomes of commercial or academic Al
projects, which have more control over data collection.

First, there is a discrepancy between the purpose of data col-
lection by POs that have the goal of solving an application prob-
lem and data collection by groups that have the goal of creating a
generalizable model. The POs need not necessarily care about the
metadata associated with data points that they label for furthering
their goals, while such metadata may be important for quantifying
how a model trained on such data will generalize. Put differently,
if data collection is conducted by a PO with a focus on the content,
rather than technical specifications of the data, then this can cause
problems in post-hoc modeling steps.

Extending the example of counting herd animals from the last
section, the PO might label herd animals from satellite imagery at
a variety of spatial resolutions. The imagery could be at a spatial
resolution of 0.1, 0.3, or 0.5 m/pixel; as long as the PO can count
the types of animals of interest over a given area and date, they



can meet their goals. On the other hand, a machine learning model
that has been trained to identify herd animals from only 0.1 m/pixel
imagery will likely not generalize to 0.5 m/pixel imagery as objects
will be 5 times smaller in each dimension. The metadata associated
with the labeled data is necessary to inform modeling decisions
(e.g. augmenting the scale of satellite data and labels during model
training will allow the model to generalize over a range of scales).
This is in contrast to settings where data is collected specifically for
the purpose of building effective models, where metadata would be
considered explicitly at the data collection stage.

In addition to the completeness of metadata, quality and con-
sistency of data collection, which do not affect experts’ ability to
discern the content but which pose additional generalization chal-
lenges to machine learning models, are a frequent issue. For exam-
ple, in a study applying speech feature modeling to analyze men-
tal health issues, the recording of conversations between military
personnel with suicide risk and their therapists is used to predict
their emotional bond [43]. Here, the consistent use of dedicated mi-
crophones for the two speakers in a controlled environment was
found to improve modeling outcomes, however this aspect of data
collection would not affect the manual analysis of the recordings.

Second, AI4G projects often involve sensitive data necessitating
the adherence to strict ethical and legal restrictions that make us-
ing such data more difficult. For example, many agencies would
like to train computer vision models to detect images of Child
Sexual Abuse Material (CSAM), but databases such as the Child
Abuse Image Database (CAID) maintained by the UK Government
are not accessible to other organizations [11]. Other examples in-
clude applications with healthcare data — models that identify pul-
monary features from chest x-ray imagery need to be trained with
labeled chest x-rays, a data source that initially requires pairing pa-
tient records with their chest x-rays. These sensitive applications
require specialized privacy-preserving modeling methods and a
layer of complexity that other applications do not entail. POs may
choose to share synthetic data generated using generative mod-
els instead of real data but these approaches also may be prone to
membership inference attacks [30]. Recent work on privacy pre-
serving ML has developed both defenses [41, 77] and ways to mea-
sure the privacy risks from releasing models [33, 37].

Third, the amount and quality of data available in some AI4G
projects will be limited. This is not specific to AI4G projects, how-
ever is worth mentioning due to the frequency with which such
projects come up. For example, projects that involve detecting poul-
try barns, solar farms, or other relatively uncommon features from
satellite imagery require having a labeled dataset of such features.
However, creating labeled data in these applications is expensive
as it requires annotators to first find examples of the objects in
question over large landscapes before labeling them appropriately.
In our experience, these type of satellite image annotations will
not be in a format that is immediately useable (e.g. point labels for
a segmentation problem), or will be a biased sample (e.g. many la-
bels from a specific area rather than a sample of labels from a broad
area).

Finally, open datasets often have significant data curation issues.
For example, a Kaggle dataset for predicting the outcome of preg-
nancies in India has been shown to be missing key data from the
original survey, resulting in misleading predictions [67]. POs that

want to help reduce infant mortality can be misled by such datasets
or the promise of effective models from open competitions that
use such data. Another issue is the lack of query infrastructure
around public datasets which creates significant friction in projects
that might use such data. A positive example is Google Earth En-
gine [25], which allows researchers to quickly query across its col-
lection of public satellite imagery, visualize sample patches, and
assess if the data is of sufficient quantity and resolution for the
intended analysis.

Takeaway 3. Datasets in AI4G projects may not be im-
mediately useful for creating models. When creating
models with such data, it is important to understand
the associated metadata, collection process, and any se-
curity or privacy concerns.

3.2 Dealing with subjective data annotation

The variables of interest in several socially important domains in-
volving human perception and decision-making are ambiguous and
ill-defined. Different annotators might interpret the definition of
labels differently, leading to inconsistent and noisy labels. For ex-
ample, the colloquial meaning of “depression” might be different
from its meaning in a clinical context [79]. The data annotation
process for an Al system aimed at diagnosing clinical depression
should be cognizant of the difference. Creating a taxonomy of la-
bels could minimize the annotator’s subjectivity. This also requires
transparency in the interpretation of the labels and clearly commu-
nicating its limitations during different stages of the project life
cycle, including annotation, modelling and deployment to mini-
mize the semantic ambiguity of labels. An in-depth discussion on
ambiguous labels in the context of computational social sciences
can be found in [14]. When subjectivity of the labels are inherent
due to the variability in human perception, it should be a standard
practice to employ multiple annotators for each example and judge
the feasibility of the task by evaluating inter-annotator agreement.
Several methods have been proposed to obtain estimates of the true
ground truth labels from the noisy/subjective labels collected from
multiple annotators [42, 48].

Takeaway 4. In several socially important domains, la-
bels suffer from subjective annotation. Such situation
should be identified upfront to avoid introducing in-
consistencies in the modeling pipeline.

3.3 Creating training and test sets with the
application scenario in mind

Poor choices of training, validation and test set splits can result in
an estimated model performance that does not reflect actual per-
formance when deployed (for other lessons learnt in evaluating
model performance, see section 4.3). This is especially relevant in
humanitarian aid and conservation applications where models are
expected to generalize well spatially and/or temporally.

For instance, with marine mammal sound detection [81], while
generating train/test splits, consideration should be given to differ-
ent types of underwater and anthropogenic noises such as those
from commercial ship generators, mining, aircraft, and seasonal



effects on ocean waves. As another example, the xBD dataset asso-
ciated with the xView Challenge [28] is a large-scale public dataset
designed to enable building damage assessment for humanitarian
assistance and disaster recovery. It consists of data from 19 dis-
asters from around the world between 2011 and 2019. However,
scenes from the 19 disasters are present in all of the official train,
test and hold-out splits, whereas it would be more useful to report
performance on unseen locations as the next disaster will likely
strike elsewhere. The same is true for the SpaceNet Challenge Se-
ries for building footprint extraction, where the default splits cre-
ated by the challenge’s utilities contain overlapping locations [69].
Subsequent studies have shown that performance drops drastically
when applying a trained building damage classifier to an unseen
location, even within the same region [29, 68]. As another exam-
ple requiring spatial generalization, until very recently, all studies
of animal species classification on camera trap images were split
across sequences of images but not across locations. This results
in precision and recall metrics of greater than 90% [44]. In reality,
performance is much worse if we split the data by camera location,
and even worse if we split by ecosystem [9, 58].

Many past studies in wildfire risk prediction, another problem
important to both disaster relief and environmental conservation,
assume certain random variables to be independent and identically
distributed in the evaluation phase [12, 53, 56]. However, natural
hazards like wildfires are stochastic events with spatio-temporal
dimensions, and evaluating models of such events based on ran-
domized training and test splits leads to information leakage, mis-
leading organizations who operationalize such models [22].

In applying machine learning to medical imaging, Zech et al.
[80] found that a dataset of chest x-rays curated for screening pneu-
monia cases could be used to train a model to accurately predict
which hospital system the x-ray comes from, indicating that the
pneumonia detection model developed from the dataset could have
been aided by features not related to the medical condition. The
training and test splits should be chosen to measure how well the
model will work for unseen x-ray machines.

Takeaway 5. Carefully consider how to split the data
into training and test sets so that the model’s ability to

generalize to unseen instances of input is measured.

4 MODELING

The models used in AI4G contexts usually involve a different set
of requirements and constraints compared to general Al applica-
tions. First, AI4G models are developed in applied ML contexts.
Most of the models are developed with domain-specific motiva-
tions and limitations in mind. In consequence, models developed
for mainstream ML fields, such as NLP or computer vision, require
cautious adaptation and deployment to the specific domain. Fur-
thermore, the process of model development is motivated first by
application requirements instead of pure novelty or state-of-the-
art performance.

4.1 Incorporating domain expertise

Domain expertise from the PO can help in model development as
POs often have decades of experience and accumulated knowledge

in defining and solving related problems. Specifically, domain ex-
pertise is useful in: i) determining adequate features and data repre-
sentations, ii) enforcing inductive bias and regularization in mod-
els, iii) choosing simplified parameterizations, iv) interpreting the
learned models and outputs.

Domain expertise is invaluable for collecting features that are
relevant to a problem. This is especially relevant in AT4G problems
where there are few samples compared to the number of features
or where informative features are mixed with noisy features. For
instance, to predict the late effects of chemotherapy on cancer pa-
tients, we found that including all chemotherapy drugs gave us a
higher predictive performance as compared to prior work. How-
ever, clinical researchers know that only certain drugs have been
clinically linked to certain late effects in other prior analyses. This
suggests that the additional confounding features were probably
spurious contributors to predictive performance and hence should
not be included in the model.

In addition to helping determine data representation, domain
expertise can help improve performance by embedding specific
knowledge, often in the form of inductive bias or regularization,
in model design. For example, finding promising solar cell tech-
nologies is often a difficult and a time-consuming task. A solar cell
consists of a stack of various semiconductor materials, where each
layer performs a certain electrical and optical function and fabri-
cation parameters are optimized for maximizing solar energy cap-
tured. A machine learning model can avoid the need for resource-
intensive physical experiments and accelerate the parameter op-
timization step. Combining a supervised machine learning model
with a physical model of solar cell operation calibrated by an ex-
pert allowed for a model regularization method based on physical
principles [49] and an order of magnitude reduction in the time
and resources required to create a solar cell [45, 49].

Further, AI4G projects often involve collaborations spanning
multiple countries and POs in a different country are likely to face
unique challenges that only local experts would be aware of. For
example, work on the anti-poaching PAWS project [18] uses the
local knowledge of park rangers to constrain predicted search pat-
terns to areas that can be feasibly visited.

If an interpretable model is used, then domain experts may be
able to use aggregated model predictions to draw larger conclu-
sions about a problem. For example, in our collaboration studying
the food security in low-resource communities in Malawi based on
survey panel data of households, domain experts were able to use
the outputs of interpretable models to recognize spatial and sea-
sonal patterns associated with the food security status of the com-
munities and villages. These community-level insights can help lo-
cal governments manage their resources more efficiently across
the communities and over time.

Takeaway 6. Endeavor to incorporate the PO’s do-
main expertise in model development when possible
through methods such as feature selection and engi-
neering, model choice, and model regularization.




4.2 Model development with resource
constraints

Since deployed models are maintained by the PO who often has
less resources than enterprises focused on mainstream ML applica-
tions, resource constraints once the model is operationalized limit
the choice of models. In addition to the financial cost of running
sophisticated models on potentially large datasets, deploying to re-
mote regions in battery-powered devices and carbon emission re-
lated environmental cost are also important considerations.

For example, Robinson et al. [51] trained a fully convolutional
neural network (CNN) on over 55 terabytes of aerial imagery to cre-
ate a high-resolution land cover map over the United States. Differ-
ences in seconds of running time per batch translate to hundreds
of dollars in the cost of the final computation. Here, a larger, state-
of-the-art model would incur a ~270% increase in the cost of the
final computation for a fractional increase in performance metrics
such as accuracy and intersection-over-union, and so a trade-off in
favor of lowering the cost was made.

In wildlife conservation [74] and accessibility applications [75],
models need to be deployed to edge or mobile devices of vary-
ing capacity. For instance, the Seeing AI> mobile app, which helps
people with vision impairment or low vision to better understand
their surroundings, uses deep learning architectures specifically
designed for low resource settings.

State-of-the-art deep learning models have large carbon foot-
prints from training and operation [63], which is a concern for
AT4G projects in particular. Applications such as the one described
in Lacoste et al. [35] allow the model developer to choose a data
center location powered to a large extent by renewable energy
sources and a cloud provider who offsets the remaining emissions.

Takeaway 7. Carefully consider a project’s con-
straints during deployment in advance before settling
on a modeling approach.

4.3 Evaluation and metrics

Model validation is a crucial part of any Al project. In AI4G projects,
validation metrics will not only need to measure how well the
model is performing in standard ways (e.g. accuracy, AUC-ROC,
intersection over union), but how well the model is performing
with respect to any domain-specific requirements.

For example, the common part of commuters (CPC) [36] is a
domain-specific metric used in measuring how well predicted com-
muting flows align with ground truth data. This metric jointly con-
siders all commuting flows together, as opposed to a common ML
metric such as mean squared error that only considers pairwise
errors between a single origin and destination. Reporting CPC re-
veals more about the overall structure of a predicted set of flows
and is thus important to report in AI4G projects that consider com-
muter or migration flows [50].

Another example comes from cancer imaging, where special-
ized extensions of the receiver operating characteristic (ROC) anal-
ysis are used to evaluate the lesion detection performance by ra-
diology readers: localization ROC (LROC) quantifies not only the
correct binary diagnosis, but also takes into account the accuracy

https://www.microsoft.com/en-us/ai/seeing-ai

of lesion localization within an image. The free-response operating
characteristic (FROC) extends the notion of LROC to the multiple-
lesion detection task [6].

These and other domain-specific metrics can potentially be in-
cluded in modeling as well as in evaluation. For example, if the
domain-specific metric is differentiable with respect to the pre-
dicted quantity and computed on a per-sample basis, then it can
be used in combination, or in place of, common loss functions
when training models with gradient descent based methods. In the
medical-imagery domain, such loss functions have been used to
better capture domain-specific problem characteristics [65].

In other cases, a domain-specific metric is not necessary, how-
ever domain experts will care little about commonly reported ML
metrics. For example, mean average precision (mAP) involves av-
eraging the precision of a model at all possible recall values. This
average will include, for example, the precision of the model at 1%
recall which is not informative as such performance would never
be acceptable. Precision@k, where k is the lowest tolerable recall,
is a more appropriate metric. As we discuss in Section 2, arriving
at this metric involves extended dialogue with domain experts.

Finally, the data collection process by the PO can be imperfect,
therefore model evaluation based solely on such datasets might be
insufficient. For example, in the case of the anti-poaching PAWS
project, the dataset is collected by limited park rangers via foot pa-
trolling over a vast area. As such, many regions in the protected
areas are not thoroughly covered by the rangers every month and
the dataset does not perfectly represent the area under study. Build-
ing a long-term collaboration with POs to deploy machine learning
solutions for pilot tests before a full commitment can bring impor-
tant insights about the performance of the trained model in the
wild [23, 78].

Takeaway 8. Check if domain-specific metrics can be
incorporated during training and validation of models
and determine which ML metrics are relevant to solv-
ing the problem at hand.

4.4 Humans in the loop

In the industry, continued data collection and user-supplied labels
allow models to be improved over time, the so-called “data fly-
wheel” effect [16, 66]. In a similar manner, many scientific fields
have come up with labeled datasets and models [13, 64, 71] that
are continuously updated as labeling techniques (such as physical
simulations or data acquisition methods) are improved. A common
industry practice for improving model performance is to iterate on
improving datasets instead of iterating on improving models [31].
In both cases, having humans continually in the loop — whether
by labeling or tuning model behavior based on feedback from a de-
ployed system — provide large benefits to the overall project out-
comes.

In general, the one-off nature of AI4G projects preclude this

common way of improving model performance. Accumulating expert-

annotated labels, even those created with efficiency gains enabled
by the first version of the model, lies outside of formal infrastruc-
tures and therefore model re-training is not done as often.


https://www.microsoft.com/en-us/ai/seeing-ai

At the same time, most of the models used in AI4G projects do
not enable complete automation. For example, the output of a medi-
cal diagnosis model will be interpreted by health professionals, and
final decision may be made based on the patient’s clinical history
and the presence of secondary signs and symptoms that are not
captured by the model [39]. Here, a human must be in the mod-
eling loop evaluating every output of a model. More broadly, the
output of all AI4G models will be inspected by domain experts
in the PO and their feedback will constitute a form of weak su-
pervision that must be included in the modeling process in order
to produce a suitable deliverable. For example, POs that rely on
highly accurate land cover data will often need to make manual
corrections to modeled outputs, and, as such, will have a difficult
time using land cover predictions with artifacts such as rounded
corners on building that are not easily correctable in GIS software.
This type of feedback is only apparent after one iteration of mod-
elling and inspecting the results with the PO. Glacier monitoring
is another scenario where incorporating humans in the loop have
been shown valuable. Baraka et. al proposed a glacier mapping tool
that uses semantic segmentation predictions as a starting point and
allows domain experts for easy adjustments of those predictions
for a faster glacier mapping system [7].

Thus, achieving a balance between having human feedback in-
cluded in the modeling process and staying within-scope is a cru-
cial part of finishing such AI4G projects. We have found active
learning pipelines to be beneficial towards this end. With an active
learning pipeline, participants at the PO can be engaged directly
during the modeling process and will allow their feedback (in the
form of labels) to be directly incorporated in the final deliverable.

We note that the active learning loop can also incorporate hu-
mans more tightly. For example, when humans are further allowed
to choose the locations to label (versus being presented locations),
and can observe the effect labeling those locations has on model
output after a retraining period, they can more efficiently train
land cover models [52]. Finally, as active learning methods more
tightly couple dataset collection with model training, they show
promise in reducing the total amount of manual effort required
to produce a final product. For instance, active learning training
of camera trap species identification models has been found to
match state-of-the-art accuracy with orders of magnitude fewer
annotated training samples [55].

Takeaway 9. AI4G projects require humans in the
loop to some extent. Active learning pipelines can en-
able POs to engage with the modeling process directly
during a project.

5 IMPACT

Lacking in the usual business indicators such as revenue and user
engagement, one of the most difficult aspects of an AI4G project is
measuring the degree to which it is successful, and weighing the
success by the potential impact in advancing a PO’s mission. In
turn, an AI4G project’s potential impact will not be realized with-
out the PO or the broader communities adopting the technology.
Indeed, there are many more press releases, blog posts, and promis-
ing published results than functioning Al systems actively “doing
good” in the world. In this section, we attempt to understand why

that is by exploring the three related issues of deployment, adop-
tion and impact.

5.1 Uphill path to deployment and adoption

Unlike research developing novel techniques or theoretical under-
standing, AI4G projects necessitate the deployment of any devel-
oped models, and separately and often more difficult, the adoption
of such technologies by the PO and related communities, for the
effort to be meaningful [72]. This “last mile” problem can be espe-
cially challenging in AI4G projects since engineering is often not
a focus for a PO or a research group.
In our experience, deployment entails three scenarios:

i) a one-time scoring of relevant input data to produce derived
data for the PO’s downstream analysis and publication,

ii) areal-time API exposing the model for applications such as
anti-poaching and invasive species monitoring,

iii) a batch processing mechanism triggered automatically or
by the user to process a large quantity of raw data for recur-
ring analysis, such as while processing conflict videos from
a region for weapon detection [2].

The first scenario requires the least engineering effort beyond model
development, but may not result in lasting impact. Real-time APIs
have recurring cost, in addition to requiring upkeep and integra-
tion with the client application consuming model output. Batch
processing could take advantage of discount cloud compute at low-
traffic times and parallelize model scoring. It is often necessary
to guide the PO in understanding whether they require real-time
always-on model deployment or if offline batch processing is suffi-
cient. There is also a lot of enthusiasm for deploying ML models on
edge devices so that the PO can avoid uploading the raw data for
processing in low-connectivity regions. In this case, it is important
to communicate any trade-offs compressing the model through
techniques such as quantization may have on performance [60, 76].
To truly enable productivity gains from using Al tools and cloud
infrastructure, the POs often need a much larger piece of software
to orchestrate scoring raw data using the model and interact with
the model outputs, of which Wildlife Insights is a notable example
for accelerating wildlife surveys using computer vision models [3].

Adoption is the harder problem because, in many ways, it is
outside of the control of the technical team. Identifying how ML
metrics translate into time saved in the PO’s workflows is para-
mount. Taking input from human-computer interaction experts
may be helpful at this stage, as is thinking about how to integrate
model output with the software used in downstream analysis. For
example, being able to preview model outputs above a certain con-
fidence threshold can help the domain expert to filter out input files
that do not contain any subjects of interest; pre-populating the la-
bel field with the most common class may save many keystrokes
during manual review [27]. We have also found that open-sourcing
the model development code builds trust in the model, and the code
repository with discussion boards can act as a hub for the commu-
nity involved in transfusing Al into their domain.



Takeaway 10. Maintaining deployed models requires
long-term engineering resource commitments. Focus-
ing on time saved instead of pure ML metrics helps or-
ganizations adopt the technology.

5.2 Measuring impact

Typical machine learning projects measure success in terms of model
evaluation metrics (e.g. F1-score, ROC-AUC, etc.) (also see discus-
sion in the last section) or business key performance indicator (KPIs)
(e.g. click-through rate, daily active users, etc.). However, in the life
cycle of AI4G projects, model evaluation metrics serve more as a
basis of discussions with POs about a model’s capabilities and lim-
itations; the KPIs important to the POs are outcomes that can be
several steps removed from the model outputs. It is important to
learn about the PO’s KPIs in the scoping phase of the project to
inform the approach.

A challenge in creating lasting impact comes from the lack of
a business model for these AI4G endeavors. We are finding ways
to step out of a funding mindset and grow the technical capabil-
ities of the PO so that they could be self-sufficient in subsequent
data collection and re-training efforts. This is another place where
two-way communication is important (see Section 2): the technical
team often does not get to see the impact of their work in the field.
Maintaining a relationship with the PO after the technical portion
of the project is complete to get updates on how their workflows
have been impacted is important in maintaining a long-term col-
laboration and acts as part of a larger feed-back loop for solving
the application problem.

In our engagements with POs, we do not concern ourselves with
defining what is a positive impact against the final problem the PO
aims to tackle. We rely on the domain experts at the PO to deter-
mine what the intended eventual impact is and to what extent a
project furthers the PO’s mission. More proximal to data model-
ing, in collaborating with POs on AI4G projects we have found two
ways for Al techniques to realize impact: finding structure and in-
sights from large datasets, and making domain experts’ workflows
more efficient so that they may scale out their work. Therefore, it
may require working with the PO to find ways to track the imme-
diate impact of an AI4G model on their data analysis or workflow
efficiency, in addition to impacts on the PO’s end mission.

Takeaway 11. Domain experts within POs should
define mission-related impacts. When quantification
of direct model impact is needed, work with the PO
to identify opportunities to quantify both immedi-
ate (workflow or analysis enhancement) and farther-
removed (mission-related) impacts of the AI4G project.

6 CASE STUDIES
6.1 NLP to map Syrian conflict

Problem:

The Carter Center (TCC) has been working on supporting a polit-
ical solution to the wars in Syria3. Since 2012, TCC has initiated a
conflict mapping project that analyzes an unprecedented volume
of citizen-generated information about the conflict. Every week,

3https://www.cartercenter.org/countries/syria.html

TCC compiles a report using the information it receives from the
Armed Conflict Location and Event Data (ACLED) Project? [47],
which curates news stories and articles recording incidents related
to the war in Syria. This report is read by various committees in
the UN, foreign ministries and NGOs. Given the weekly timeline
(Takeaway 7), collating the incoming data into a structure suitable
for their analysis manually has been difficult given the increasing
volume of reports. Automating this curation process would reduce
the thousands of hours of work needed by professional analysts.
Solution:

Our work automated this process by classifying the information
into several categories such as shelling, artillery fire, and aerial

bombardment. We helped TCC build a high-precision, neural network-

based natural language processing (NLP) model that reclassifies
the input conflict events at the granularity desired by TCC (Take-
away 6). This improvement in data processing allowed TCC em-
ployees to then focus on subsequent analysis of the conflict events
(Takeaway 9).

6.2 Mapping solar farms across India

Problem:

At the end of 2020, India was only 2% away from the target of
40% installed non-fossil fuel electricity capacity, one of its Paris
Climate Agreement targets [32]. While it is encouraging to see
renewable energy production systems, such as solar farms, being
rapidly built, it is also important to locate such installations in a
way that avoids encroaching on the habitats of endangered species
and other ecological reserves. An international conservation NGO
has been working with states in India to create a tool for identi-
fying areas where solar and wind developments are less likely to
cause ecological harm. However, information on where solar in-
stallations are located is only available for two states, and so we
worked together with the NGO to use satellite imagery to try iden-
tify solar installations across all of India.

Solution:

Finding solar farms from satellite imagery is straight-forward to
formulate as a semantic segmentation task, but the labels that were
available for the project were both few and not in the format needed
for this ML task: only 72 point labels of locations of solar farms in
two states were available (Takeaway 3). To overcome this limita-
tion, we first pre-trained a convolutional neural network to cluster
pixels in the input satellite imagery by color (i.e. in an unsuper-
vised manner). We then used an interactive training application
to quickly fine-tune the network to segment the classes of interest
and used this fine-tuned model to obtain weak segmentation labels
for the entirety of the study area. These weak labels make it possi-
ble to train a supervised semantic segmentation network that was
capable of accurately detecting solar farms. Solar farms found by
this supervised model were validated by analysts at the NGO. In to-
tal we were able to find and validate 1422 solar installations across
India. The human-in-the-loop process we used was a crucial com-
ponent in both training and evaluation, enabling ML models yield
reliable results given the small amounts of labels available initially
(Takeaway 9). Given the large area of interest, we must also rely

4https://www.acleddata.com/data/
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on free satellite imagery, which is lower in resolution than com-
mercial imagery; we accept this constraint to ensure our solution
remains practically useful in the long term as the NGO updates
the map each year (Takeaway 10). To reduce the number of false
positive identifications, we incorporated OpenStreetMap data to
remove areas of roads, snow and water bodies, a post-processing
step informed by expertise in geospatial analysis (Takeaway 6).

7 CONCLUSION

Our work presents a broad overview of the considerations neces-
sary while working on AI4G problems and the challenges encoun-
tered therein. We observe that the most useful AI4G projects result
from working closely with specific stakeholders and understand-
ing their operations and needs; attention to the particular char-
acteristics of the problem while developing ML models, metrics
and evaluation; a deep understanding of ethics and fairness con-
cerns; a commitment to sound scientific and engineering practices
and a transfer of technology that empowers the beneficiaries to un-
derstand and learn from the solution, and hopefully, adapt it with
their changing needs. To support our observations we present sev-
eral examples from our own experiences and relevant literature
and summarize the learned lessons in takeaways. We hope that
our endeavor helps researchers who are passionate about social
good causes by bridging the gap between ML methodologies and
their potential for relevant impact. However, we note that there
are many problems and questions still outstanding, and that we
are continually learning and growing our own repertoire in tack-
ling challenging issues and working with POs. Becoming good at
AT4G is a process that we are actively engaged in, and we hope
others join us and learn with us.
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