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Abstract—We consider the problem of inferring the conditional in-

dependence graph (CIG) of a high-dimensional stationary multivariate

Gaussian time series. A p-variate Gaussian time series graphical model

associated with an undirected graph with p vertices is defined as the

family of time series that obey the conditional independence restrictions

implied by the edge set of the graph. A sparse-group lasso-based

frequency-domain formulation of the problem has been considered in the

literature where the objective is to estimate the inverse power spectral

density (PSD) of the data via optimization of a sparse-group lasso based

penalized log-likelihood cost function that is formulated in the frequency-

domain. The CIG is then inferred from the estimated inverse PSD. In

this paper we establish sufficient conditions for consistency of the inverse

PSD estimator resulting from the sparse-group graphical lasso-based

approach.

I. INTRODUCTION

Graphical interaction models (“graphical models,” in short) are

an important and useful tool for analyzing multivariate data [1].

Graphical modeling is a form of multivariate analysis where one uses

graphs to represent models. A central concept is that of conditional

independence. Given a collection of random variables, one wishes

to assess the relationship between two variables, conditioned on the

remaining variables. In graphical models, graphs are used to display

the conditional independence structure of the variables.

Consider a graph G = (V, E) with a set of p vertices (nodes)

V = {1, 2, · · · , p} = [p], and a corresponding set of (undirected)

edges E ⊆ [p] × [p]. Also consider a stationary (real-valued), zero-

mean, p−dimensional multivariate Gaussian time series x(t), t =
0,±1,±2, · · · , with ith component xi(t), and correlation (covari-

ance) matrix function Rxx(τ) = E{x(t+τ)xT (t)}, τ = 0,±1, · · · .

Given {x(t)}, in the corresponding graph G, each component series

{xi(t)} is represented by a node (i in V ), and associations between

components {xi(t)} and {xj(t)} are represented by edges between

nodes i and j of G. In a conditional independence graph (CIG),

there is no edge between nodes i and j if and only if (iff) xi(t) and

xj(t) are conditionally independent given the remaining p-2 scalar

series xℓ(t), ℓ ∈ [p], ℓ 6= i, ℓ 6= j. Thus, edge {i, j} ∈ E iff time

series components xi(t) and xj(t) are conditionally dependent, and

edge {i, j} 6∈ E iff xi(t) and xj(t) are conditionally independent.

Gaussian graphical models (GGM) are CIGs where {x(t)} is a

multivariate Gaussian sequence.

A key insight in [2], [3] was to transform the series to the frequency

domain and express the graph relationships in the frequency domain.

Denote the power spectral density (PSD) matrix of {x(t)} by Sx(f),
where Sx(f) =

∑∞

τ=−∞ Rxx(τ)e
−j2πfτ , the Fourier transform of

Rxx(τ). Here f is the normalized frequency, in Hz, in the interval

[0, 1) or (−0.5, 0.5]. In [2], [3] it was shown that conditional inde-

pendence of two time series components given all other components

of the time series, is encoded by zeros in the inverse PSD, that is,
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{i, j} 6∈ E iff the (i, j)-th element of Sx(f), [S
−1
x (f)]ij = 0 for

every f .

Graphical models were originally developed for random vectors

with multiple independent realizations [4, p. 234], i.e., for time series

that is independent and identically distributed (i.i.d.): p−dimensional

x(t), t = 1, 2, · · · , with x(t1) independent of x(t2) for t1 6= t2,

and x(t) identically distributed for any (integer) t. Such models have

been extensively studied, and found to be useful in a wide variety

of applications [5]–[10]. Graphical modeling of real-valued time-

dependent data (stationary time series) originated with [2], followed

by [3].

A sparse-group lasso-based frequency-domain formulation of the

problem was investigated in [11] where the objective was to estimate

the inverse power spectral density (PSD) of the data via optimization

of a sparse-group lasso based penalized log-likelihood cost function

that was formulated in the frequency-domain. The CIG is then

inferred from the estimated inverse PSD. In this paper we establish

sufficient conditions for consistency of the approach of [11]. Only

the computational aspects of this problem were addressed in [11]

where simulation comparisons with [12] were also provided; [11]

significantly outperforms [12]. Further comparisons with [12] are in

[11].

Notation: Given A ∈ C
p×p, we use φmin(A), φmax(A), |A|,

tr(A) and etr(A) to denote the minimum eigenvalue, maximum

eigenvalue, determinant, trace, and exponential of trace of A, re-

spectively. The Kronecker product of matrices A and B is denotes

by A ⊗ B. For B ∈ C
p×q , we define ‖B‖ =

√
φmax(BHB),

‖B‖F =
√

tr(BHB) and ‖B‖1 =
∑

i,j |Bij | where Bij is the

(i, j)-th element of B, also denoted by [B]ij . Given A ∈ C
p×p,

A+ = diag(A) is a diagonal matrix with the same diagonal as A,

and A− = A−A+ is A with all its diagonal elements set to zero.

We use A−∗ for (A∗)−1, the inverse of complex conjugate of A,

and A−⊤ for (A⊤)−1. The notation yn = OP (xn) for random

yn,xn ∈ C
p means that for any ε > 0, there exists 0 < M < ∞

such that P (‖yn‖ ≤ M‖xn‖) ≥ 1− ε ∀n ≥ 1.

II. PENALIZED LOG-LIKELIHOOD

Given x(t) for t = 0, 1, 2, · · · , n − 1. Define the (normalized)

DFT dx(fm) of x(t), (j =
√
−1),

dx(fm) =
1√
n

n−1∑

t=0

x(t) exp (−j2πfmt) (1)

where

fm = m/n, m = 0, 1, · · · , n− 1. (2)

It is established in [13] that the set of complex-valued random vectors

{dx(fm)}n/2
m=0 is a sufficient statistic for any inference problem based

on dataset {x(t)}n−1
t=0 . Suppose Sx(fm) is locally smooth (a standard
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assumption in PSD estimation), so that Sx(fm) is (approximately)

constant over K = 2mt+1 consecutive frequency points fm’s. Pick

f̃k =
(k − 1)K +mt + 1

N
, k = 1, 2, · · · ,M , (3)

M =

⌊
N
2
−mt − 1

K

⌋

, (4)

yielding M equally spaced frequencies f̃k in the interval (0, 0.5). By

local smoothness

Sx(f̃k,ℓ) = Sx(f̃k) for ℓ = −mt,−mt + 1, · · · ,mt, (5)

where

f̃k,ℓ =
(k − 1)K +mt + 1 + ℓ

n
. (6)

It is known ( [14, Theorem 4.4.1]) that asymptotically (as n → ∞),

dx(fm), m = 1, 2, · · · , (n/2) − 1, (N even), are independent

proper (i.e., circularly symmetric), complex Gaussian Nc(0,Sx(fm))
random vectors, respectively; x(t) need not be Gaussian but must

satisfy some regularity conditions [13]. Then the joint probability

density of the sufficient statistic, for large n, is

fD(D) =

M∏

k=1

exp
(

−tr(D̃(f̃k)S
−1
x (f̃k))

)

πKp |Sx(f̃k)|K
=

M∏

k=1

fĎ(f̃k)
(Ď(f̃k))

(7)

where

Ď(f̃k) =
[

dx(f̃k,−mt
) dx(f̃k,−mt+1) · · · dx(f̃k,mt

)
]H

(8)

Ŝk =
1

K

mt∑

ℓ=−mt

dx(f̃k,ℓ)d
H
x (f̃k,ℓ)

︸ ︷︷ ︸

=:D̃(f̃k)

(9)

and Ŝk represents PSD estimator at frequency f̃k using unweighted

frequency-domain smoothing.

In the high-dimension case of K < p(p−1)/2 (# of unknowns in

S−1
x (f̃k))), one may need to use penalty terms to enforce sparsity and

to make the problem well-conditioned. We wish to estimate inverse

PSD matrix Φk := S−1
x (f̃k). In terms of Φk, we have the log-

likelihood [11]

lnfD(D) ∝ −G({Φ}) (10)

:=

M∑

k=1

[

(ln |Φk|+ ln |Φ∗
k|)− tr

(

ŜkΦk + Ŝ
∗
kΦ

∗
k

)]

(11)

where the first expression in (11) follows by specifying the pdf of D

in terms of joint pdf of D and D∗ (correct way to handle complex

variates [15]). Imposing a sparse-group sparsity constraint [5], [16],

minimize a penalized version of negative log-likelihood w.r.t. {Φ}
LSGL({Φ}) = − ln fD(D) + P ({Φ}), (12)

P ({Φ}) := λ̄1

M∑

k=1

p∑

i,j=1
i6=j

∣
∣
∣[Φk]ij

∣
∣
∣+ λ̄2

p∑

i,j=1
i 6=j

√
√
√
√

M∑

k=1

∣
∣
∣[Φk]ij

∣
∣
∣

2

(13)

where λ̄1, λ̄2 ≥ 0 are tuning parameters. Computational aspects of

this problem were addressed in [11] where simulation comparisons

with [12] were also provided; [11] significantly outperforms [12].

In this paper we analyze properties of the minimizer {Φ̂} of

LGL({Φ}).

III. CONSISTENCY

Define p× (pM) matrix Ω:

Ω = [Φ1 Φ2 · · · ΦM ] (14)

With 0 ≤ α ≤ 1, re-express the objective function (12) as

LSGL(Ω) = G({Φ}}) + αλn

Mn∑

k=1

pn∑

i,j=1
i 6=j

∣
∣
∣[Φk]ij

∣
∣
∣

+ (1− α)λn

pn∑

i,j=1
i6=j

√
√
√
√

Mn∑

k=1

∣
∣
∣[Φk]ij

∣
∣
∣

2

(15)

where we now allow p, M , K (see (3)), and λ to be functions of

sample size n, denoted as pn, Mn, Kn and λn, respectively. Note

that KnMn ≈ n/2. Pick Kn = a1n
γ and Mn = a2n

1−γ for some

0.5 < γ < 1 so that Mn/Kn → 0 as n → ∞. We have rewritten λ̄1

and λ̄1 as αλn and (1−α)λn, respectively, following [16]. Parameter

λ > 0 is a penalty (tuning) parameter used to control sparsity, and

0 ≤ α ≤ 1 yields a convex combination of lasso and group lasso

penalties (α = 0 gives the group-lasso fit while α = 1 yields the

lasso fit). In (15), an ℓ1 penalty term is applied to each off-diagonal

element of Φk via αλn

∣
∣
∣[Φk]ij

∣
∣
∣ (lasso), and to the off-block-diagonal

group of Mn terms via (1 − α)λn

√
∑Mn

k=1 |[Φk]ij |2 (group lasso).

The function LSGL(Ω) is strictly convex in Ω for Φk ≻ 0 ∀k.

We follow proof technique of [17] which deals with i.i.d time series

models and lasso penalty, to establish our main result, Theorem 1.

Assume

(A1) Define the true edge set of the graph by E0, implying that

E0 = {{i, j} : [S−1
0 (f)]ij 6≡ 0, i 6= j, 0 ≤ f ≤ 0.5}

where S0(f) denotes the true PSD of x(t). (We also use Φ0k

for S−1
0 (f̃k) where f̃k is as in (3), and use Ω0 to denote the

true value of Ω). Assume that card(E0) = |(E0)| ≤ sn0.

(A2) The minimum and maximum eigenvalues of pn × pn PSD

S0(f) ≻ 0 satisfy

0 < βmin ≤ min
f∈[0,0.5]

φmin(S0(f))

≤ max
f∈[0,0.5]

φmax(S0(f)) ≤ βmax < ∞ .

Here βmin and βmax are not functions of n (or pn).

Let Ω̂λ = argminΩ :Φk≻0 LSGL(Ω). Theorem 1 whose proof is

given in Sec. IV, establishes consistency of Ω̂λ.

Theorem 1 (Consistency). For τ > 2, let

C0 = 80 max
ℓ,f

([S0(f)]ℓℓ)

√

2 ln(16pτnMn)

ln(pn)
. (16)

Given real numbers δ1 ∈ (0, 1), δ2 > 0 and C1 > 0, let

R =C2C0/β
2
min, C2 = (4 + C1 + δ2)(1 + δ1)

2 , (17)

rn =

√

Mn(pn + sn0) ln(pn)

Kn
, C2rn = o(1) , (18)

N1 =2 ln(16pτnMn), (19)

N2 =argmin

{

n : rn ≤ δ1βmin

C2C0

}

. (20)
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Suppose the regularization parameter λn and α ∈ [0, 1] satisfy

2C0

√

ln(pn)

Kn
≤ λn√

Mn

≤ C1C0

1 + α(
√
Mn − 1)

√
(

1 +
pn
sn0

)
ln(pn)

Kn
. (21)

Then if the sample size is such that Kn > max{N1, N2} and

assumptions (A1)-(A2) hold true, Ω̂λ satisfies

‖Ω̂λ −Ω0‖F ≤ Rrn (22)

with probability greater than 1− 1/pτ−2
n . A sufficient condition for

the lower bound in (21) to be less than the upper bound for every α ∈
[0, 1] is C1 = 2(1+α(

√
Mn − 1)). In terms of rate of convergence,

‖Ω̂λ −Ω0‖F = OP (C1rn) •
Remark. If α = 0, then C1 is a constant, and therefore, ‖Ω̂λ −

Ω0‖F = OP (rn). If α > 0, then C1 = O(
√
Mn), therefore, ‖Ω̂λ−

Ω0‖F = OP

(√
Mn rn

)
. As note before, since KnMn ≈ n/2, if

one picks Kn = a1n
γ and Mn = a2n

1−γ for some 0 < γ < 1, then

we must have 2
3
< γ < 1 so that M2

n/Kn → 0 as n → ∞, ensuring

C2rn = o(1). In fact, one needs

√
M2

n
(pn+sn0) ln(pn)

Kn
→ 0. �

IV. PROOF OF THEOREM 1

Our proof relies on the method of [17] which deals with i.i.d time

series models and lasso penalty, and our prior results in [18] dealing

with complex Gaussian vectors (not time series). From now on we use

the term “with high probability” (w.h.p.) to denote with probability

greater than 1− 1/pτ−2
n . First we need several auxiliary results.

Lemma 1 below is specialization of [19, Lemma 1] to Gaussian

random vectors. It follows from [19, Lemma 1] after setting the sub-

Gaussian parameter σ in [19, Lemma 1] to 1.

Lemma 1. Consider a zero-mean Gaussian random vector z ∈
R

p with covariance R ≻ 0. Given n i.i.d. samples z(t), t =
0, 1, · · · , n− 1, of z, let R̂ = (1/n)

∑n−1
t=0 zz⊤ denote the sample

covariance matrix. Then R̂ satisfies the tail bound

P
(∣
∣
∣[R̂−R]ij

∣
∣
∣ > δ

)

≤ 4 exp

(

− nδ2

3200maxi(R2
ii)

)

(23)

for all δ ∈ (0, 40maxi(Rii)) •
Exploiting Lemma 1, we have Lemma 2 regarding Ŝk. We denote

S0(f̃k) as S0k in this section.

Lemma 2. Under Assumption (A2), Ŝk satisfies the tail bound

P
(

max
k,q,l

∣
∣
∣[Ŝk − S0k]ql

∣
∣
∣ > C0

√

ln(pn)

Kn

)

≤ 1

pτ−2
n

(24)

for τ > 2, if the sample size n > N1, where C0 is defined in (16)

and N1 is defined in (19). •
Proof. We will use dk(ℓ) for dx(f̃k,ℓ). Notice that Ŝk is the

covariance estimate based on Kn i.i.d. samples dk(ℓ) of dk ∼
Nc(0,S0k). Define dkr = Re(dk), dki = Im(dk) and zk =
[d⊤

kr d⊤
ki]

⊤ ∈ R
2pn . Then with Ry1y2 := E{y1y

⊤
2 } and

R̂y1y2 := (1/Kn)
∑

ℓ y1(ℓ)y
⊤
2 (ℓ), we have

Ŝk = R̂dkrdkr
+ R̂dkidki

+ j
(

−R̂dkrdki
+ R̂dkidkr

)

(25)

and

S0k = Rdkrdkr
+Rdkidki

+ j (−Rdkrdki
+Rdkidkr

) (26)

Also, zk ∼ Nr(0,R0k). Since dk(ℓ) is proper, a little algebra leads

to

[S0k]qq = 2[R0k]qq, q = 1, 2, · · · , pn (27)

Denote the estimate of R0k based on Kn samples as R̂zzk. By

Lemma 1 and applying the union bound over all Mn(2pn)
2 entries

of R̂zzk −R0k, k = 1, 2, · · · ,Kn, we have

P

(

max
k,q,l

∣
∣
∣[R̂zzk −R0k]ql

∣
∣
∣ >

δ

4

)

≤ Ptb

= 4Mn(2pn)
2 exp

(

− Knδ
2/16

3200maxk,i([R0k]2ii)

)

(28)

= 16Mnp
2
n exp

(

− Knδ
2/16

800maxk,i([S0k]2ii)

)

, (29)

for all δ/4 ∈ (0, 40maxk,i([R0k]ii), equivalently, for all δ ∈
(0, c−1

∗ ), where in the last step above we have used (27), and

c∗ = (80max
k,i

([S0k]ii))
−1 . (30)

It follows from (25)-(26) that

max
k,q,l

∣
∣
∣[Ŝk − S0k]ql

∣
∣
∣ ≤ max

k,q,l

∣
∣
∣[R̂dkrdkr

−Rdkrdkr
]ql

∣
∣
∣

+max
k,q,l

∣
∣
∣[R̂dkrdki

−Rdkrdki
]ql

∣
∣
∣+max

k,q,l

∣
∣
∣[R̂dkidkr

−Rdkidkr
]ql

∣
∣
∣

+max
k,q,l

∣
∣
∣[R̂dkidki

−Rdkidki
]ql

∣
∣
∣ ≤ 4 max

k,q,l

∣
∣
∣[R̂zzk −R0k]ql

∣
∣
∣

implying

{

max
k,q,l

∣
∣
∣[R̂zzk −R0k]ql

∣
∣
∣ ≤ δ

4

}

⊆
{

max
k,q,l

∣
∣
∣[Ŝk − S0k]ql

∣
∣
∣ ≤ δ

}

.

(31)

Hence, using (29), we have

P
(

max
k,q,l

∣
∣
∣[Ŝk − S0k]ql

∣
∣
∣ ≤ δ

)

≥ P
(

max
k,q,l

∣
∣
∣[R̂zzk −R0k]ql

∣
∣
∣ ≤ δ

4

)

= 1− P
(

max
k,q,l

∣
∣
∣[R̂zzk −R0k]ql

∣
∣
∣ >

δ

4

)

≥ 1− Ptb .

Thus

P
(

max
k,q,l

∣
∣
∣[Ŝk − S0k]ql

∣
∣
∣ > δ

)

≤ Ptb . (32)

Now with C′
0 = c−1

∗

√
2 ln(16pτ

n
Mn)

ln(pn)
, pick δ to satisfy

δ = C′
0

√

ln(pn)

Kn
∈ (0, c−1

∗ ) ⇒ c∗δ = c∗C
′
0

√

ln(pn)

Kn
∈ (0, 1) .

(33)

Let us pick

c∗δ =

√

2 ln(16pτnMn)

Kn
=

√

N1/Kn < 1 (34)

for Kn > N1, thereby satisfying δ ∈ (0, c−1
∗ ). Using (30) in (29),

we have

Ptb =16Mnp
2
n/ exp(c

2
∗δ

2Kn/2) = 16Mnp
2
n/ exp(ln(16p

τ
nMn))

=
1

pτ−2
n

. (35)

Finally, since maxℓ,f [S0(f)]ℓℓ ≥ maxk,i[S0k]ii, hence, C0 ≥ C′
0,

bound (24) holds. This completes the proof. �

Lemma 3 deals with a Taylor series expansion using Wirtinger

calculus; its proof is omitted for lack of space.

Lemma 3. For Φk = Φ
H
k ≻ 0, define a real scalar function

c(Φk,Φ
∗
k) = ln |Φk|+ ln |Φ∗

k| . (36)
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Let Φk = Φ0k + Γk with Φ0k = Φ
H
0k ≻ 0 and Γk = Γ

H
k . Then

using Wirtinger calculus, the Taylor series expansion of c(Φk,Φ
∗
k)

is given by

c(Φk,Φ
∗
k) = c(Φ0k,Φ

∗
0k) + tr(Φ−1

0k Γk +Φ
−∗
0k Γ

∗
k)

− 1

2
(vec(Γk))

H(Φ−∗
0k ⊗Φ

−1
0k )vec(Γk)

− 1

2
(vec(Γ∗

k))
H(Φ−1

0k ⊗Φ
−∗
0k )vec(Γ∗

k) + h.o.t. (37)

where h.o.t. stands for higher-order terms in Γk and Γ
∗
k. •

Lemma 3 regarding Taylor series expansion immediately leads to

Lemma 4 regarding Taylor series with integral remainder, needed to

follow the proof of [17] pertaining to the real-valued case.

Lemma 4. With c(Φk,Φ
∗
k) and Φk = Φ0k + Γk as in Lemma 3,

the Taylor series expansion of c(Φk,Φ
∗
k) in integral remainder form

is given by (v is real)

c(Φk,Φ
∗
k) = c(Φ0k,Φ

∗
0k) + tr(Φ−1

0k Γk +Φ
−∗
0k Γ

∗
k)

− g
H(Γk)

(∫ 1

0

(1− v)H(Φ0k,Γk, v) dv

)

g(Γk) (38)

where

g(Γk) =

[
vec(Γk)
vec(Γ∗

k)

]

, H(Φ0k,Γk, v) =

[
H11 0

0 H22

]

(39)

H11 = (Φ0k + vΓk)
−∗ ⊗ (Φ0k + vΓk)

−1
(40)

and

H22 = (Φ0k + vΓk)
−1 ⊗ (Φ0k + vΓk)

−∗ • (41)

We now turn to the proof of Theorem 1.

Proof of Theorem 1. Let Ω = Ω0 +∆ where

∆ = [Γ1 Γ2 · · · ΓMn
] (42)

Γk = Φk −Φ0k, k = 1, 2, · · · ,Mn, (43)

and Φk, Φ0k are both Hermitian positive-definite, implying Γk =
Γ

H
k . Let

Q(Ω) := LSGL(Ω)− LSGL(Ω0) . (44)

The estimate Ω̂λ, denoted by Ω̂ hereafter suppressing dependence

upon λ, minimizes Q(Ω), or equivalently, ∆̂ = Ω̂−Ω0 minimizes

G(∆) := Q(Ω0 +∆). We will follow the method of proof of [17,

Theorem 1] pertaining to real-valued i.i.d. time series. Consider the

set

Θn(R) :=
{

∆ : Γk = Γ
H
k ∀k, ‖∆‖F = Rrn

}

(45)

where R and rn are as in (17) and (18), respectively. Observe that

G(∆) is a convex function of ∆, and

G(∆̂) ≤ G(0) = 0 . (46)

Therefore, if we can show that

inf
∆

{G(∆) : ∆ ∈ Θn(R)} > 0 , (47)

the minimizer ∆̂ must be inside the sphere defined by Θn(R), and

hence

‖∆̂‖F ≤ Rrn . (48)

Using Lemma 4 we rewrite G(∆) as

G(∆) =

Mn∑

k=1

(A1k +A2k +A3k) +A4 , (49)

where, noting that Φ−1
k = Sk,

A1k =g
H(Γk)

(∫ 1

0

(1− v)H(Φ0k,Γk, v) dv

)

g(Γk) , (50)

A2k =tr
(

(Ŝ − S0k)Γk + (Ŝ − S0k)
∗
Γ

∗
k

)

, (51)

A3k =λ̄1(‖Φ−
0k + Γ

−
k ‖1 − ‖Φ−

0k‖1) , (52)

A4 =λ̄2

pn∑

i 6=j

(‖Ω(ij)
0 +∆

(ij)‖F − ‖Ω(ij)
0 ‖F ) , (53)

Ω
(ij)
0 :=[[Φ01]ij · · · [Φ0Mn

]ij ]
⊤ ∈ C

Mn , (54)

∆
(ij) :=[[Γ1]ij · · · [ΓMn

]ij ]
⊤ ∈ C

Mn . (55)

Define

d1n :=

√

ln(pn)

Kn
, d2n := d1n

√

(pn + sn0) . (56)

Similar to proof of [18, Theorem 1] (see (42) therein), we deduce

that

A1k ≥ ‖Γk‖2F
(
β−1
min + ‖Γk‖F

)−2
. (57)

But ‖Γk‖F ≤ ‖∆‖F = Rrn. Hence

A1k ≥ ‖Γk‖2F
(
β−1
min +Rrn

)−2
(58)

and

A1 =

Mn∑

k=1

A1k ≥
∑Mn

k=1 ‖Γk‖2F
(
β−1
min +Rrn

)2 =
‖∆‖2F

(
β−1
min +Rrn

)2 (59)

Similar to the proof of [18, Theorem 1] (see (48) therein), we deduce

that w.h.p.

|A2k| ≤ 2C0

(
‖Γ−

k ‖1 d1n + ‖Γ+
k ‖F d2n

)
. (60)

Hence with A2 =
∑Mn

k=1 A2k,

|A2| ≤
Mn∑

k=1

|A2k| ≤ 2C0

Mn∑

k=1

(

d1n‖Γ−
k ‖1 + d2n‖Γ+

k ‖F
)

. (61)

We now derive an alternative bound on A2. We have w.h.p.

|A2| ≤ 2

pn∑

i,j=1

Mn∑

k=1

∣
∣[(Ŝ − S0k]ij

∣
∣ ·

∣
∣[Γk]ij

∣
∣ (62)

≤ 2C0 d1n

pn∑

i,j=1

Mn∑

k=1

∣
∣[Γk]ij

∣
∣ (63)

≤ 2C0 d1n

pn∑

i,j=1

(√
Mn‖∆(ij)‖F

)
(64)

= 2
√
MnC0 d1n

(
‖∆̃−‖1 + ∆̃

+‖1
)

(65)

where ∆̃ ∈ R
pn×pn has its (i, j)th element ∆̃ij = ‖∆(ij)‖F .

We now bound A3k. Let Ec
0 denote the complement of E0, given

by Ec
0 = {{i, j} : [S−1

0 (f)]ij ≡ 0, i 6= j, 0 ≤ f ≤ 0.5}. For an

index set B and a matrix C ∈ C
p×p, we write CB to denote a matrix

in C
p×p such that [CB ]ij = Cij if (i, j) ∈ B, and [CB ]ij = 0 if

(i, j) 6∈ B. Then Γ
−
k = Γ

−
kE0

+ Γ
−
kEc

0

, and ‖Γ−
k ‖1 = ‖Γ−

kE0
‖1 +

‖Γ−
kEc

0

‖1. We have

A3k = λ̄1(‖Φ−
0k + Γ

−
k ‖1 − ‖Φ−

0k‖1)
= λ̄1(‖Φ−

0k + Γ
−
kE0

‖1 + Γ
−
kEc

0

‖1 − ‖Φ−
0k‖1)

≥ λ̄1(‖Γ−
kEc

0

‖1 − ‖Γ−
kE0

‖1) (66)
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leading to (A3 =
∑Mn

k=1 A3k)

A3 ≥ λ̄1

Mn∑

k=1

(‖Γ−
kEc

0

‖1 − ‖Γ−
kE0

‖1) . (67)

Similarly,

A4 ≥ λ̄2(‖∆̃−
Ec
0

‖1 − ‖∆̃−
E0
‖1) . (68)

By Cauchy-Schwartz inequality, ‖Γ−
kE0

‖1 ≤ √
sn0‖Γ−

kE0
‖F ≤√

sn0‖Γk‖F , hence

Mn∑

k=1

‖Γ−
kE0

‖1 ≤
√
Mnsn0‖∆‖F . (69)

Set ‖Γ−
k ‖1 = ‖Γ−

kE0
‖1 + ‖Γ−

kEc
0

‖1 in A2 of (61) to deduce that

w.h.p.

αA2 +A3 ≥ α(λn − 2C0d1n)

Mn∑

k=1

‖Γ−
kEc

0

‖1

− α(2C0d1n + λn)

Mn∑

k=1

‖Γ−
kE0

‖1 − α2C0d2n

Mn∑

k=1

‖Γ+
k ‖F

≥ −α
(

(2C0d1n + λn)
√
sn0 − 2C0d2n

)√
Mn‖∆‖F (70)

where we have used the fact that λn ≥ 2C0d1n and
∑Mn

k=1 ‖Γ+
k ‖F ≤√

Mn‖∆‖F . Now use A2 of (65) to deduce that w.h.p.

(1− α)A2 +A4 ≥ (1− α)
(

(λn − 2C0

√
Mnd1n)‖∆̃−

Ec
0

‖1

− (2C0

√
Mnd1n + λn)‖∆̃−

E0
‖1 − 2C0

√

Mnpnd1n‖∆‖F
)

≥ −(1− α)‖∆‖F
(

λn
√
sn0 + 2C0

√
Mnd1n

(√
sn0 +

√
pn

))

(71)

where we have used the facts that λn ≥ 2C0

√
Mnd1n, and

‖∆̃−
E0
‖1 ≤ √

sn0‖∆̃−
E0
‖F ≤ √

sn0‖∆‖F (by Cauchy-Schwartz

inequality).

Since rn =
√
Mnd2n >

√
Mnsn0d1n, w.h.p. we have

A2 +A3 +A4 ≥ −‖∆‖F
(

α
(
4C0rn + λn

√
Mnsn0

)

+ (1− α)
(
λn

√
sn0 + 4C0rn

))

≥ −‖∆‖F
(

4C0rn + λn
√
sn0(α

√
Mn + (1− α))

)

≥ −‖∆‖F
(

(4 + C1)C0rn
)

(72)

where we have used the fact that, by (18) and (21),

λn
√
sn0(α

√
Mn + (1 − α)) ≤ C1C0rn. Using (49), (59)

and (72), and ‖∆‖F = Rrn, we have w.h.p.

G(∆) ≥‖∆‖2F
[ (

β−1
min +Rrn

)−2 − (4 + C1)C0

R

]

. (73)

For n ≥ N2, if we pick R as specified in (17), we obtain Rrn ≤
RrN2

≤ δ1/βmin. Then

1

(β−1
min +Rrn)2

≥ β2
min

(1 + δ1)2
=

(4 + C1 + δ2)C0

R

>
(4 + C1)C0

R
,

implying G(∆) > 0 w.h.p. This proves the desired result. �

V. CONCLUSIONS

Graphical modeling of dependent Gaussian time series was con-

sidered. A sparse-group lasso-based frequency-domain formulation

of the problem has previously been investigated in [11] where the

objective was to estimate the inverse power spectral density (PSD) of

the data via optimization of a sparse-group lasso based penalized log-

likelihood cost function that is formulated in the frequency-domain.

The graphical model is then inferred from the estimated inverse PSD.

In this paper we established sufficient conditions for consistency of

the inverse PSD estimator resulting from the sparse-group graphical

lasso-based approach.
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