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Abstract—We consider the problem of inferring the conditional in-
dependence graph (CIG) of a high-dimensional stationary multivariate
Gaussian time series. A p-variate Gaussian time series graphical model
associated with an undirected graph with p vertices is defined as the
family of time series that obey the conditional independence restrictions
implied by the edge set of the graph. A sparse-group lasso-based
frequency-domain formulation of the problem has been considered in the
literature where the objective is to estimate the inverse power spectral
density (PSD) of the data via optimization of a sparse-group lasso based
penalized log-likelihood cost function that is formulated in the frequency-
domain. The CIG is then inferred from the estimated inverse PSD. In
this paper we establish sufficient conditions for consistency of the inverse
PSD estimator resulting from the sparse-group graphical lasso-based
approach.

I. INTRODUCTION

Graphical interaction models (“graphical models,” in short) are
an important and useful tool for analyzing multivariate data [1].
Graphical modeling is a form of multivariate analysis where one uses
graphs to represent models. A central concept is that of conditional
independence. Given a collection of random variables, one wishes
to assess the relationship between two variables, conditioned on the
remaining variables. In graphical models, graphs are used to display
the conditional independence structure of the variables.

Consider a graph G = (V,&) with a set of p vertices (nodes)
V ={1,2,---,p} = [p], and a corresponding set of (undirected)
edges £ C [p] x [p]. Also consider a stationary (real-valued), zero-
mean, p—dimensional multivariate Gaussian time series x(t), ¢t =
0,£1,+2,---, with ith component x;(t), and correlation (covari-
ance) matrix function R, (7) = E{z(t+7)x” (1)}, 7 =0,£1,---.
Given {x(t)}, in the corresponding graph G, each component series
{zi(t)} is represented by a node (¢ in V'), and associations between
components {x;(t)} and {x;(t)} are represented by edges between
nodes 7 and j of G. In a conditional independence graph (CIG),
there is no edge between nodes i and j if and only if (iff) z;(¢) and
x;(t) are conditionally independent given the remaining p-2 scalar
series xo(t), £ € [p], £ # i, £ # j. Thus, edge {i,j} € & iff time
series components x;(t) and z;(¢) are conditionally dependent, and
edge {i,j} ¢ & iff z;(¢t) and x;(t) are conditionally independent.
Gaussian graphical models (GGM) are CIGs where {z(t)} is a
multivariate Gaussian sequence.

A key insight in [2], [3] was to transform the series to the frequency
domain and express the graph relationships in the frequency domain.
Denote the power spectral density (PSD) matrix of {@(¢)} by Sz (f),
where S, (f) = 32 Rua(7)e 7*™7, the Fourier transform of
R, (7). Here f is the normalized frequency, in Hz, in the interval
[0,1) or (—0.5,0.5]. In [2], [3] it was shown that conditional inde-
pendence of two time series components given all other components
of the time series, is encoded by zeros in the inverse PSD, that is,
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{i,j} ¢ & iff the (i,7)-th element of S, (f), [S;*(f)]:; = O for
every f.

Graphical models were originally developed for random vectors
with multiple independent realizations [4, p. 234], i.e., for time series
that is independent and identically distributed (i.i.d.): p—dimensional
x(t), t = 1,2,---, with x(¢1) independent of x(t2) for t1 # to,
and () identically distributed for any (integer) ¢. Such models have
been extensively studied, and found to be useful in a wide variety
of applications [5]-[10]. Graphical modeling of real-valued time-
dependent data (stationary time series) originated with [2], followed
by [3].

A sparse-group lasso-based frequency-domain formulation of the
problem was investigated in [11] where the objective was to estimate
the inverse power spectral density (PSD) of the data via optimization
of a sparse-group lasso based penalized log-likelihood cost function
that was formulated in the frequency-domain. The CIG is then
inferred from the estimated inverse PSD. In this paper we establish
sufficient conditions for consistency of the approach of [11]. Only
the computational aspects of this problem were addressed in [11]
where simulation comparisons with [12] were also provided; [11]
significantly outperforms [12]. Further comparisons with [12] are in
[11].

Notation: Given A € CP*P, we use ¢min(A), Pmax(A), |A],
tr(A) and etr(A) to denote the minimum eigenvalue, maximum
eigenvalue, determinant, trace, and exponential of trace of A, re-
spectively. The Kronecker product of matrices A and B is denotes
by A ® B. For B € CP*?, we define ||B|| = \/¢max (B B),
|Bllr = yu(BB) and ||B|1 = >_, ; |Bi;| where Bij is the
(,7)-th element of B, also denoted by [B];;. Given A € CP*P,
AT = diag(A) is a diagonal matrix with the same diagonal as A,
and A~ = A — A" is A with all its diagonal elements set to zero.
We use A™* for (A*)™', the inverse of complex conjugate of A,
and AT for (AT)~!. The notation y, = Op(x,) for random
Yn, Ty, € CP means that for any € > 0, there exists 0 < M < oo
such that P(||ly,|| < M|jzn]) >1—¢cVn > 1.

II. PENALIZED LOG-LIKELIHOOD

Given «(t) for ¢ = 0,1,2,--- ,n — 1. Define the (normalized)
j =

DFT o (fm) of (1), G = v=1),
dy(fm) = x(t) exp (—j27 fmt) (1)

where

f’m:m/nv m:0715"'7n_1' (2)

It is established in [13] that the set of complex-valued random vectors
{dz( fm)}:;/jo is a sufficient statistic for any inference problem based
on dataset {x()} 7=, . Suppose Sy (fm) is locally smooth (a standard
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assumption in PSD estimation), so that S, (fm) is (approximately)
constant over K = 2m; + 1 consecutive frequency points f,’s. Pick
(k—1DK+m;+1

fk: N )

N
M — \‘thlJ 7 )

k:1727"'7M7 (3)

K

yielding M equally spaced frequencies fk in the interval (0,0.5). B
local smoothness

Sm(fk,g):Sz(fk) for 6 = —my,—my + 1, ,my, 5)

where
(k—1)K+mi+1+1¢

n

fre = (6)

It is known ( [14, Theorem 4.4.1]) that asymptotically (as n — o0),
ds(fm), m = 1,2,---,(n/2) — 1, (N even), are independent
proper (i.e., circularly symmetric), complex Gaussian N¢(0, Sz (fm))
random vectors, respectively; @(t) need not be Gaussian but must
satisfy some regularity conditions [13]. Then the joint probability
density of the sufficient statistic, for large n, is

M exp (—tr(D(fr)S5 " (fi)) M o
( % = ) = H f]’)(fk)(D(fk))
™ P‘Sz(fk k=1

(N

fp(D) =
Pt K

D(fx) = [dz(fk ) da(fr—mo41) - dz(fk,mt)]H ®)

si-L 3 a

L=—my

o (fr0)ds (froe) )

=:D(fr)

and Sy, represents PSD estimator at frequency fr using unweighted
frequency-domain smoothing.

In the high-dimension case of K < p(p—1)/2 (# of unknowns in
S5 1(fx))). one may need to use penalty terms to enforce sparsity and
to make the problem well-conditioned. We wish to estimate inverse
PSD matrix ®, = S;l(fk). In terms of ®j, we have the log-
likelihood [11]

Infp(D) x —~G({®}) (10)
M

= [nj@u + @) - or (S + Si21)] ()
k=1

where the first expression in (11) follows by specifying the pdf of D
in terms of joint pdf of D and D* (correct way to handle complex
variates [15]). Imposing a sparse-group sparsity constraint [5], [16],
minimize a penalized version of negative log-likelihood w.r.t. {®}

Lscr({®}) = —In fp(D) + P({®}), (12)
P({®}): Z Z "I’k]u + A2 Z Z‘[‘I’k ij
g g
(13)

where A1, A2 > 0 are tuning parameters. Computational aspects of
this problem were addressed in [11] where simulation comparisons
with [12] were also provided; [11] significantly outperforms [12].

In this paper we analyze properties of the minimizer {<i>} of
Lor({®}).

III. CONSISTENCY

Define p x (pM) matrix €:

Q=[P Py - Pu] (14)
With 0 < o < 1, re-express the objective function (12) as
My, Pn
Lsar(9) = GU@I +ar Y- D |1y
k=1 4,j=1
i
Pn My,
A=) Y Z @l a9
g=1
ki

where we now allow p, M, K (see (3)), and A to be functions of
sample size n, denoted as p., M,, K, and \,, respectively. Note
that K,,M,, ~ n/2. Pick K,, = a1n” and M,, = asn'~7 for some
0.5 < 7 < 1o that M, /K, — 0 as n — oo. We have rewritten \;
and \; as a\, and (1—a)\,, respectively, following [16]. Parameter
A > 0 is a penalty (tuning) parameter used to control sparsity, and
0 < a <1 yields a convex combination of lasso and group lasso
penalties (a« = O gives the group-lasso fit while @ = 1 yields the
lasso fit). In (15), an ¢; penalty term is applied to each off-diagonal
element of @, via a\, |[Pk]i;| (lasso), and to the off-block-diagonal

group of M, terms via (1 — @)\, M | [@x]i5]2 (group lasso).
The function Lgcr(92) is strictly convex in € for @5 >~ 0 Vk.

We follow proof technique of [17] which deals with i.i.d time series
models and lasso penalty, to establish our main result, Theorem 1.
Assume

(A1) Define the true edge set of the graph by &, implying that
€ = {{i,j} + [Sg'(Nliy #£0, i #j 0 < f <05}
where So( f) denotes the true PSD of x(t). (We also use ®ox
for Sy (fx) where fx is as in (3), and use €2 to denote the
true value of ). Assume that card(&y) = [(£0)| < Sno.

(A2) The minimum and maximum eigenvalues of p, X p, PSD
So(f) = 0 satisfy

0< ﬂmin S ¥ min ¢m1n(SO (f))

€[0,0.5]
< ma. ¢max(50(f)) S ﬁmax < 0.

fe[oo 5]

Here Pmin and Bmax are not functions of n (or py).

Let Q) = argming: &, >0 Lsar(§2). Theorem 1 whose proof is
given in Sec. IV, establishes consistency of 2.
Theorem 1 (Consistency). For T > 2, let

21n(16p; My,)

= S P Tn) 1

Co =80 H;%cX([SO(f)]u) n(pn) (16)
Given real numbers §; € (0,1), d2 > 0 and C1 > 0, let
R =C2Co/Bm, Ca2= (44 C1+8)(1+6)>, a7
Mnlpn £ 50 lnen) =, = (1), a8)
Ny =21n(16p} M,), (19)
Ny =argmin<n : r, < 91min (20)
- (20
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Suppose the regularization parameter \,, and « € [0, 1] satisfy

2Ch ln(pn)< /\n
C1Co Pn In(pr)
/. e *Mn_n\/( Sn0>7Kn .

Then if the sample size is such that K, > max{Ni, N2} and
assumptions (A1)-(A2) hold true, €2, satisfies

€2 — QollF < Rry, (22)

with probability greater than 1 — 1/p7,~2. A sufficient condition for
the lower bound in (21) to be less than the upper bound for every o €
[0,1]is C1 =2(1+ a(v/M, —1)). In terms of rate of convergence,
€203 — Qol[r = Op (Cirn) @

Remark. If a = 0, then C, is a constant, and therefore, |2 —
Qollr = Op (7). If a > 0, then C1 = O(y/M,,), therefore, |2 —
Qollr = Op (\/ETH). As note before, since K, M, ~ n/2, if
one picks K,, = ai1n” and M,, = aan'~" for some 0 < v < 1, then
we must have % <y < 1sothat M2/K, — 0asn — oo, ensuring

Carn = o(1). In fact, one needs 4/ w —0. 0O

IV. PROOF OF THEOREM 1

Our proof relies on the method of [17] which deals with i.i.d time
series models and lasso penalty, and our prior results in [18] dealing
with complex Gaussian vectors (not time series). From now on we use
the term “with high probability” (w.h.p.) to denote with probability
greater than 1 — 1/p],~2. First we need several auxiliary results.

Lemma 1 below is specialization of [19, Lemma 1] to Gaussian

random vectors. It follows from [19, Lemma 1] after setting the sub-
Gaussian parameter o in [19, Lemma 1] to 1.
Lemma 1. Consider a zero-mean Gaussian random vector z €
RP with covariance R > 0. Given n iid samples z(t), t =
0,1,---,n—1,0of z, let R=(1/n) 37"~ zz" denote the sample
covariance matrix. Then R satisfies the tail bound

A 77/62
P — ij <4 - 2
(7~ R[> 0) < eXp( 3200maxi(Rfi)> @3
for all § € (0,40 max;(Ri;)) e

Exploiting Lemma 1, we have Lemma 2 regarding S. We denote
So(fr) as Sox in this section.
Lemma 2. Under Assumption (A2), S}, satisfies the tail bound

In(pn) 1
Py o
s )

- T2
n Pn

P(g}% S — Sola (24)

for 7 > 2, if the sample size n > N1, where Cj is defined in (16)
and Nj is defined in (19). e

Proof. We will use di(¢) for d.(fr.). Notice that S is the
covariance estimate based on K, i.i.d. samples di(¢) of dp ~
NC(O,SOk). Define dkr = Re(dk), dki = Im(dk) and Zk =
[di, di]" € R Then with Ry, := E{yiy;} and
Ry, ys = (1/Kn) X, 91 (0ys (£), we have

Sk = derdkr + deidki +J (7derdk7ﬂ + detdkr) (25)

and

Sox = Ray,,ay, + Ray,ay; + 7 (—Ray,ap, + Rayiay,) (26)

Also, zj, ~ N (0, Roy,). Since dj(¢) is proper, a little algebra leads
to

[SOk]qq = 2[R0k]qu q=12,-- ,pn (27)

Denote the estimate of R, based on K, samples as Rzzk. By
Lemma 1 and applying the union bound over all M, (2p,)?* entries
of R... — Rox, k=1,2,---, K,, we have

0
- | <P
>4>_ tb

K,56%/16
3200maxk,i([R0kEi)> e
K,6%/16
800 maxg,;([Soxl2%) ) ’

for all /4 € (0,40maxy ;([Rox]ii), equivalently, for all § €
(0,cy 1), where in the last step above we have used (27), and

P (max’[Rzzk — R()k]ql
k,q,l

= 4M,,(2pn)° exp (—

= 16M,p>. exp (— (29)

¢ = (80 H}iaix([s()k}n‘))fl (30)

It follows from (25)-(26) that

max ’[Sk — Sox]qr| < I,{laﬂ[derdkr — Ray, a5, ]a
34, 24,

+ max ‘ [Ray,ay; — Ray,dyla| + max ‘ [Ray;dy., — Rayidg, ol

<4 max‘[Rzzk — Rok}ql

+ max ‘ [Ra,,ay,, — Ray,ay,)at

kyq,l
implying
. 5 .
{maX [R.2k — Roklq| < *} c {max‘[Sk — Sox]q| < 5} .
k,q,l 4 k,q,l
(3D
Hence, using (29), we have
P(maX [Sk — Sorla| < 5) > P(maX ’[Rzzk — Roi]q| < é)
k,q,l k,q,l 4
—1- P(max ‘[Rzzk — Roilg| > é) >1- Py.
k,q,l 4
Thus
P(r]?ml( ][s} — Sorla| > 5) < Py. (32)
e
Now with Cjy = \/%, pick ¢ to satisfy
lIl n — ’ In n
5 =0Cf [(fn) €(0,e;') = b =y I(fn) €(0,1).
(33)
Let us pick
21In(1
el = n(# VMK, <1 (34)

for K, > Ni, thereby satisfying § € (0,c; *). Using (30) in (29),
we have

Puy =16 M,z / exp(ci6° K, /2) = 16M,,p2 / exp(In(16p;, M,,))
- 35)

Finally, since maxg, t[So(f)]ee > maxy,:[Sox]:, hence, Co > CJ,
bound (24) holds. This completes the proof. M
Lemma 3 deals with a Taylor series expansion using Wirtinger
calculus; its proof is omitted for lack of space.
Lemma 3. For ®), = <I)kH > 0, define a real scalar function
o(®r, i) =

In|®] + In |®5|. (36)
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Let ®, = ®¢p, + 'y with ®or, = &L = 0 and Ty, = T'Z. Then
using Wirtinger calculus, the Taylor series expansion of ¢(®y, ®})
is given by

c(®r, ®)) = c(Bok, Por) + tr(®, T + 8, T5)

— 5 (vee(Tw)™ (25 © By Jvee(T)

_ %(vec(FZ))H(fI)JkI ® @5 vee(T}) + hot.  (37)
where h.o.t. stands for higher-order terms in T'y, and T';,. e

Lemma 3 regarding Taylor series expansion immediately leads to
Lemma 4 regarding Taylor series with integral remainder, needed to
follow the proof of [17] pertaining to the real-valued case.

Lemma 4. With ¢(®, ®;) and ® = Por + 'y, as in Lemma 3,
the Taylor series expansion of ¢(®y, ®}) in integral remainder form
is given by (v is real)

o(®r, B) = c(Por, Biy) + tr(Po, T + 25, Th)

— gy (/01(1 — 0)H (®0p, Tk, v) dv) aTy)  (3%)

where
[ vee(Tw) | Hi1 O
(39)
Hii = (®op +0T%) " @ (Por + vrkrl (40)
and
Hjy = (o +0T%) ' @ (Ror +0L) " @ (41)
We now turn to the proof of Theorem 1.
Proof of Theorem 1. Let 2 = €29 + A where
A=[Ts - Ta] 42)
I‘k:q)k_¢0k7k}:172,"'7Mn7 (43)

and ®, Por are both Hermitian positive-definite, implying I', =
o Let

Q) :=Lsar () — Lsar(Qo) - (44)

The estimate €25, denoted by Q hereafter suppressing dependence
upon A, minimizes Q(£2), or equivalently, A = Q — Q) minimizes
G(A) :=Q(Qo + A). We will follow the method of proof of [17,
Theorem 1] pertaining to real-valued i.i.d. time series. Consider the
set

O (R) == {A . T =TF Yk, |Al|F = an} 45)

where R and r, are as in (17) and (18), respectively. Observe that
G(A) is a convex function of A, and

G(A) < G(0)=0. (46)
Therefore, if we can show that
igf{G(A) tAcO,(R)} >0, 47

the minimizer A must be inside the sphere defined by ©,,(R), and
hence

|A|lr < Rrn. (48)
Using Lemma 4 we rewrite G(A) as
My,
G(A) = (Auk + Aok + As) + As, (49)
k=1

where, noting that <I>,;1 =S,

A =g" () </01(1 - v)H(@ok,Fk,U)dv) g(Tx), (50)

Aoy =t (8~ So )T + (8 — Sox)'TE) | 1)
Ak =2 (@0, + 5 11 — | @g4l11) 2)
Pn
Ay =X Y1957 + AD || — |95 ), 53
i#j
Q) =[[®or]iy - [Bowr, i) € T, oD
AW =[[T)ij - [Tag)iy) T € CYr ©5)
Define
In(p,

Similar to proof of [18, Theorem 1] (see (42) therein), we deduce
that

Ar > [TlF (Bain + Tk 7). 7)
But |Tx||r < ||A||r = Rry. Hence
A > [TxlF (Bin + Rra) (58)
and
Mp M, 5 5
™ ||

(B + Rra)’ - (B + Rra)”

Similar to the proof of [18, Theorem 1] (see (48) therein), we deduce
that w.h.p.

|Aak| < 2Co (|IT% 1 din + [T || 7 dan) - (60)
Hence with Ay = >0 Aoy,
My, Mo,
[A2] <3 [Azk] <2C0 Y (dunlT5 11 + dznl T 1) - 61)
k=1 k=1
We now derive an alternative bound on As. We have w.h.p.
Pn  Mp
[A2] <23 318 = Soxlss| - |[Telis ] (62)
i,j=1k=1
Pn My
<2Codin Y Y [Tl (63)
ij=1k=1
Pn .
<2Codin Yy (VM| A||p) (64)
ij=1
= 2/ My Codin (JA™ |1 + AT (65)

where A € RP"*Pn has its (i, j)th element A;; = | AU ||

We now bound Asy. Let £5 denote the complement of &, given
by € = {{i,j} : [So'(f)ly =0, i #j, 0 < f <0.5}. For an
index set B and a matrix C € CP*P we write Cp to denote a matrix
in CP*? such that [CB}ij = Cij if (’L,]) € B, and [CB]ij =0 if
(i,j) ¢ B. Then T, = F}Zso + I‘l;eg’ and [T [l1 = ||I‘;sg”l +
||I‘,;£8H1. We have

Ase = Mi([|[®gx + T 1 — |@oxl11)
A ([[@or + Trg, lln "‘I‘;:ngl = [ ®gxll1)
2 M (ITkegll = Trg, lln)

(66)
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leading to (As = ZQ@I Asp)

M’VL
As > 00> (Il = 1Tk, 1) - (67)
k=1
Similarly,
Ag > Xa(| Azl = [AZ ) - (68)

By Cauchy-Schwartz inequality, ||T;¢ [[1 < v/Snol|Tpe llr <
/5n0||Tk|| 7, hence

My
D Il Il < VMasnol|Allr - (69)

k=1

Set [Ty (1 = |ITpg, llr + HI‘,;SSHl in Ay of (61) to deduce that
w.h.p.

My,
aly + Az > a(A, — 2Codiy) Z IT kgl
k=1
M, My,
— a(2C0d1n + An) > |[Trg, It — 02Codan > |IT |7

k=1

> —a((2C0d1n + An)V/500 = 2Codan | VM| Al (70)

k=1

where we have used the fact that A, > 2Cod1,, and S0, |TF || <
VM, ||A||r. Now use Az of (65) to deduce that w.h.p.

(1= a)ds + A = (1= a)(An = 2CovVMadin) | Agg
— (200VMndin + )1 Ag, i = 2Co v/ Mapndinl| Al r)

> —(1 = )| Allr (An/5mo + 2Cov/ Madin (Vo + v/im))
(71

where we have used the facts that An > 2Co/Mpdin, and
Azl < VsnollAg, llr < V/snol|Allp (by Cauchy-Schwartz
inequality).

Since 7, = VMndan > /My, Snodin, w.h.p. we have

Ao+ As + As > —| Al (04(4Corn + AV My50)
+ (1= @) (An/5n0 + 4Corn) )

> ~||Allr (4Corn + Any/5mo(av/ My + (1 - a)) )

> || Allr((4+Cr)Corn) )

where we have used the fact that, by (18) and (21),

Anv/Eno(av/ M, + (1 — @) < CiCorn. Using (49), (59)
and (72), and ||A||r = Rry., we have w.h.p.

G(A) Z||A[F | (B + Rra) = %] ,

For n > N, if we pick R as specified in (17), we obtain Rr,, <
RT’N2 S 61//8min- Then

(73)

1 > Bin _ (44 C1+62)Co
(B + Bra)? — (1+01)? R
(4+ C’l)Co
> 7R s

implying G(A) > 0 w.h.p. This proves the desired result. W

V. CONCLUSIONS

Graphical modeling of dependent Gaussian time series was con-
sidered. A sparse-group lasso-based frequency-domain formulation
of the problem has previously been investigated in [11] where the
objective was to estimate the inverse power spectral density (PSD) of
the data via optimization of a sparse-group lasso based penalized log-
likelihood cost function that is formulated in the frequency-domain.
The graphical model is then inferred from the estimated inverse PSD.
In this paper we established sufficient conditions for consistency of
the inverse PSD estimator resulting from the sparse-group graphical
lasso-based approach.
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