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Abstract. In this paper we describe the relationship between the finite free resolutions
of perfect ideals in split format (for Dynkin formats) and certain intersections of opposite
Schubert varieties with the big cell for homogeneous spaces G/P where P is a maximal
parabolic subgroup.

1. Introduction

Perfect ideals of codimension three have been investigated for a long time. Linkage theory
suggests that it might be possible to classify such ideals. Indeed, if one applies minimal
linkage to a perfect ideal of codimension three, one gets an ideal with a minimal free resolution
with the same sum of Betti numbers as the original one, and after a double link one obtains
an ideal whose free resolution has modules of the same ranks as for the original ideal.
In the paper [W2] the second author constructed the generic rings R̂gen for resolutions of

length three for any format. It turns out that their structure is related to the Kac–Moody
Lie algebra of the T -shaped graph Tp,q,r where the triple (p, q, r) = (r1 + 1, r2 − 1, r3 + 1) is
constructed from the ranks r1, r2, r3 of the differentials d1, d2, d3 of our resolution. We denote
the vertices of Tp,q,r as follows

xp−1 − xp−2 . . . x1 − u − y1 . . . yq−2 − yq−1

|
z1
|
...

zr−2

|
zr−1

This construction suggests that a special role is played by the so-called Dynkin formats
for which the graph Tp,q,r is Dynkin. In fact, the ring R̂gen is Noetherian precisely in such
cases. One also conjectures (for the case r1 = 1, i.e., the resolutions of cyclic modules R/I)
that these are precisely the formats for which every such ideal is licci.
The next idea is to relate the rings R̂gen to the resolutions of perfect ideals of a given

format. The natural idea is to describe an open set UCM (the Cohen–Macaulay locus) in

Spec R̂gen where the dual of the generic resolution Fgen
•

is acyclic. In [CVW] and [LW] a
precise conjecture on the form of the subset UCM for Dynkin formats is given. This conjecture
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is based on the observation that for Dynkin formats (except for the format (1, n, n, 1) with

n odd), the three top graded components of three critical representations in R̂gen can be

thought of as the differentials in another complex Ftop
•

of the format (f0, f1, f2, f3) over R̂gen.
The conjecture then says that the open set UCM is equal to the set Usplit where the complex
Ftop

•
is split exact.

The next task is to find the precise form of the general ideal resolved by a resolution
corresponding to a point in Usplit. This problem is resolved in [CVW] and in [CLKW] for
the formats of type Dn and E6. It is also proved in [CVW] that for the formats (1, n, n, 1)
with n even, and (1, 4, n, n− 3), we have the equality UCM = Usplit.

The method employed there consists of identifying the generators of R̂gen occurring in

some critical representations in R̂gen and calculating these structure theorems for split exact
resolutions using the defect variables. The structure theorems corresponding to the top
graded components then give the differentials in the complex which is a resolution of a
perfect ideal of codimension three which corresponds to a general point in UCM. For the
remaining types E7 and E8 the analogous method is very difficult to employ because the
representations W (d3), W (d2), W (a2) are too complex.

In the present paper we try another approach. We try to construct the relevant resolutions
of Dynkin formats by geometric means. A very interesting geometric pattern appears. We
prove that for all the Dynkin types there is a certain Schubert variety Ωλ of codimension 3
in a homogeneous space G(Tp,q,r)/Px1

(G(Tp,q,r) denotes the simply-connected simple group
corresponding to the graph Tp,q,r, Px1

is a maximal parabolic subgroup corresponding to the
vertex x1 in the above notation), such that the defining ideal of the intersection Yλ of Ωλ

with the opposite big open cell Y has exactly the resolution of the format corresponding to
the triple (p, q, r). We expect the singularity of Yλ to be the singularity of the general point
in Usplit (this is established for the types Dn and E6).
This proves the inclusion Usplit ⊆ UCM and shows that the expected general form of the

finite free resolutions of Dynkin formats show a definite pattern. The pattern conjecturally
extends to the resolutions of cyclic modules of arbitrary format. This will be taken up in a
future paper.
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was partially supported by the NSF grant DMS 1802067 and by the grant from Narodowa
Agencja Wymiany Akademickiej NAWA in Poland.
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at UCSD. We thank Shrawan Kumar for patiently answering several questions on Schubert
varieties. We also benefited from many discussions with Ela Celikbas, Lars Christensen,
Witold Kraśkiewicz, Jai Laxmi, Kyu-Hwan Lee, and Oana Veliche.

2. General setup

Throughout we work over a field k. (Our constructions will be insensitive to the choice of
field and in fact will be defined over Z, but we keep a field to avoid making extra remarks
throughout.)

Our goal is to describe the general complex from the open set Usplit of Spec(R̂gen) for a
Dynkin format. This seems to be related to Schubert varieties in homogeneous spaces for
groups of type Tp,q,r and goes as follows. Consider the Dynkin formats of free resolutions of
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length 3 of cyclic modules, i.e., assume the rank is r1 = 1. This means that the corresponding
graph Tp,q,r is T2,q,r. We also assume this graph is of Dynkin type.

We fix root data for our group G and look at the homogeneous space G/P where P =
Px1

is the maximal parabolic subgroup corresponding to the vertex on the arm of length
1 corresponding to p. We let B and B− denote the Borel subgroup and opposite Borel
subgroup, respectively. We use basic facts on Schubert varieties, described for example in
[LR, §3.3]. Our notation is for opposite Schubert varieties, i.e., an element of length ℓ indexes
a variety of codimension ℓ. The opposite Schubert varieties in G/P are described by the
cosets W/WP where W is the Weyl group corresponding to Tp,q,r and WP is the Weyl group
corresponding to smaller root system we get from Tp,q,r by removing x1. In our case we can
identify W/WP with the W -orbit of the fundamental weight ωx1

, and we now describe how
this works.

In what follows, we represent weights as a sum of fundamental weights, and represent
these by labeling the vertices of Tp,q,r by the corresponding coefficients. We deal with the
Weyl group action on the weight

σ0 = ωx1
=

1 0 0 0 · · · 0
0
...
0

.

Acting by elements of length ℓ inW of minimal length in their coset, we get opposite Schubert
varieties of codimension ℓ. Thus for length 0 we get σ0. For length 1 we get

σ1 =

−1 1 0 0 · · · 0
0
...
0

and for length 2

σ2 =

0 −1 1 0 · · · 0
1
...
0

.

Finally for length 3 we get two possibilities

σ3 =

0 0 1 0 · · · 0
−1
1
...
0

, σ′

3 =

0 0 −1 1 · · · 0
1
0
...
0

.

This picture says that in G(T2,q,r)/Px1
there is one opposite Schubert variety of codimen-

sion 1, one of codimension 2, and two of codimension 3. Define Ωw
P = B−wP/P in G/P . We

consider the opposite Schubert varieties Ωσ3

P and Ω
σ′

3

P and their intersections Y w
P with the big

cell Y . The cell Y is the unique open B-orbit. The varieties Yσ3
, Yσ′

3
are known to be normal

Cohen–Macaulay subvarieties of codimension 3 (see [KS, Proposition 3.4]).
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But the same picture represents the extremal Plücker coordinates of G(T2,q,r)/Px1
(see

[LR, §3.3.1]) embedded in P(Vx1
) where Vλ denotes the irreducible highest weight module

of highest weight λ. Each element w ∈ W/WP determines a unique linear function pw
(defined up to scalar) on P(Vx1

) and the defining equations of Yσ3
and Yσ′

3
are the Plücker

coordinates pτ such that τ is not ≤ than σ3 (resp. σ
′

3) in the Bruhat order. This follows from
the identification of the linear functions on Ωw

P with Demazure modules (see [LR, §§3.3.1,
3.3.3]). In this setup, Y is given by the condition ptop 6= 0 where ptop is the extremal Schubert
coordinate corresponding to the coset of maximal length ℓ = dimG(T2,q,r)/Px1

.
In what follows, working with the parabolic Px1

we give two interpretations of the varieties
Yσ3

, Yσ′

3
: one in terms of Plücker coordinates, the other in equivariant form related to the

grading on g(Em) (m = 6, 7, 8) corresponding to the simple root αx1
. The open cell Y is

identified with the unipotent radical of the opposite parabolic subgroup. The functions on
this space can be identified with the positive portion of the Lie algebra g(Em).

3. Type E6

The Plücker coordinates vanishing on Yσ3
, where

σ3 =
0 0 1 0

−1
1

are the ones corresponding to the elements

1 0 0 0
0
0

,
−1 1 0 0

0
0

,
0 −1 1 0

1
0

,
0 0 −1 1

1
0

,
0 0 0 −1

1
0

.

There are also 5 Plücker coordinates vanishing on Yσ′

3
, symmetrically with respect to the

two arms of length 3. The intersection of both ideals is a complete intersection given by the
three Plücker coordinates

1 0 0 0
0
0

,
−1 1 0 0

0
0

,
0 −1 1 0

1
0

that are common in both ideals.
By construction, all opposite Schubert varieties are invariant under the action of the

opposite Borel subgroup B−. Generally, there is a larger parabolic subgroup that leaves
it invariant. This is explained for Schubert varieties in [LMS, Proposition 1.4], but we
can use the involution w 7→ wwP

0 where wP
0 is the minimal length coset representative of

the maximal element in W/WP to get the corresponding statement for opposite Schubert
varieties. Namely, the opposite Schubert variety Ωw is closed under the root subgroups
labeled by a simple root α if ℓ(sαw) > ℓ(w).

We see that the ideal of Ωσ3

P is invariant under the action of the root subgroups corre-
sponding to α1, α4, α5, α6. The Levi subgroup of the corresponding parabolic subgroup is

isomorphic to GL2 ×GL4. Analogously, Ω
σ′

3

P is invariant under the action of the root sub-
groups corresponding to α1, α3, α4, α6 and the corresponding Levi subgroup is isomorphic to
GL4 × GL2. The first equation corresponding to σ0 generates an ideal which is invariant
under α1, α3, α4, α5, α6, and the corresponding Levi subgroup is isomorphic to GL6.
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The equivariant picture is as follows. First, G/P is embedded in the fundamental repre-
sentation P(Vω2

) which is the adjoint representation. Consider the root space decomposition
of g(E6) and coarsen it to a Z-grading by considering the coefficient of α1. Then the grading
ranges from −2 to 2 and

g0 = gl6, g1 =
3
∧

k6, g2 =
6
∧

k6.

To get the big cell, we set ptop = 1 where ptop spans g2. The ideal of the embedding
of G/P into the adjoint representation is generated by quadratic polynomials, which are
homogeneous with respect to the α1-grading. In particular, given any relation that involves
ptopq for some homogeneous element q, we can express q as a sum of product of other
elements of smaller α1-degree. In particular, a homogeneous element of α1-degree d restricts
to a homogeneous polynomial of degree 2− d on Y .

The generators for the functions on Y can be identified with
∧3

k6⊕
∧6

k6 where the first
space has degree 1 and the second space has degree 2 (and is a subspace of g0). Let A denote
the coordinate ring of Y .

Theorem 3.1. The minimal free resolution of Yσ3
is of the form:

0 → A2(−7) → A6(−5) → A(−4)⊕ A4(−3) → A.

The minimal free resolution of Yσ′

3
has the same form. Furthermore, the ideals of these

varieties are linked by a complete intersection of length 3. The sum of the two ideals has a
resolution of format

0 → A(−10) → A6(−7)⊕ A(−6) → A12(−5) → A(−4)⊕ A6(−3) → A.

The numerator of the reduced Hilbert series of both k[Yσ3
] and k[Yσ′

3
] is

2t4 + 6t3 + 6t2 + 3t+ 1

and hence both Yσ3
and Yσ′

3
have degree 18. The numerator of the reduced Hilbert series of

k[Yσ3
∩ Yσ′

3
] is

t6 + 4t5 + 10t4 + 14t3 + 10t2 + 4t+ 1

and hence the degree of Yσ3
∩ Yσ′

3
is 44.

Proof. We know that the resolution of Yσ3
is of the form

0 → F3 → F2 → A(−4)⊕ A(−3)4 → A.

Consider the ideals Iσ3
and Iσ′

3
in A and the ideal (α) = (pid, psx1 , psusx1 ) generated by the

first three Plücker coordinates. This ideal is radical by [BK, Corollary 2.3.3]. It follows that
Iσ3

and Iσ′

3
are linked via (α), as this is true set-theoretically and both ideals (α) : Iσ3

and
(α) : Iσ′

3
are radical. Now using [U, §1] we see that the ideals Iσ3

and Iσ′

3
are linked via α,

which is a complete intersection generated by polynomials of degrees 3, 3, 4.
By the theory of linkage (see for example [BE, §5]) the dual of the mapping cone of the

resolution of the complete intersection to the resolution of Yσ3
gives a resolution for Yσ′

3
(up

to a grading shift). This has the form

0 → A(−10) →
A(−10)⊕
A(−7)4⊕
A(−6)

→
A(−7)2⊕
A(−6)⊕
F∗

2(−10)
→

F∗

3(−10)⊕
A(−4)⊕
A(−3)2

→ A
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The last few terms cancel since they identify generators and relations from the original two
resolutions, and the result is

0 → A(−7)2 → F∗

2(−10) →
F∗

3(−10)⊕
A(−4)⊕
A(−3)2

→ A

We know that the ideal of Yσ′

3
is minimally generated by 4 cubics and 1 quartic, and the

differential F∗

2 → F∗

3 is minimal, so we conclude that F3 = A(−7)2. This tells us that
rankF2 = 6. Let d1 ≤ · · · ≤ d6 be the degrees of its generators. Since Yσ3

has codimension
3, the alternating sum

1− 4t3 − t4 +
6

∑

i=1

tdi − 2t7

is divisible by (1− t)3, which translates to its first two derivatives being 0 at t = 1:

−12− 4 +
6

∑

i=1

di − 14 = −24− 12 +
6

∑

i=1

di(di − 1)− 84 = 0,

or equivalently,

6
∑

i=1

di = 30,
6

∑

i=1

d2i = 150.

The plane
∑6

i=1 di = 30 is tangent to the sphere defined by the second equation at the point
(5, 5, 5, 5, 5, 5), so this point is the unique solution to both equations.

By [U, Proposition 1.3], the ideal Iσ3
+ Iσ′

3
is Gorenstein. This is the defining ideal of

the Schubert variety Yσ4
of codimension 4 which is contained both in Yσ3

and Yσ′

3
. To get

the form of its resolution we again appeal to [U, Proposition 1.3] which implies that this
resolution is a mapping cone of the map of complexes covering an injection of the canonical
module of the coordinate ring of Yσ3

(resp. Yσ′

3
) into the resolution of the coordinate ring of

Yσ3
(resp. Yσ′

3
). �

3.1. Linear section. A certain linear section of the first minimal free resolution is described
in [CLKW]. The description of the generators given there is a little different, as the present
pattern was not observed at that time.

Now we consider the restriction of the ideals to Sym(
∧3

k6).

Lemma 3.2. The restriction of pσ3
to

∧3
k6 is the unique (up to scalar) SL6-invariant ∆

of degree 4 on
∧3

k6.

The invariant ∆ can be described as a hyperdiscriminant of the representation
∧3

k6, i.e.,
the equation of the hypersurface projectively dual to the Grassmannian (see for example
[W1, §9C]).

Proof. pσ3
is a lowest weight vector and hence has α1-degree −2. By what we said above, it

becomes a quartic function upon restriction to Y . Next, we also said above that the ideal
generated by pσ3

is invariant under GL6. This implies that pσ3
itself is invariant under the

subgroup SL6. Next, we need to show that this restriction is nonzero. If not, then the
quartic in A is h2, where h is the generator of

∧6
k6, which is non-reduced. �
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As explained above, Yσ3
is invariant under the Levi subgroup GL2 ×GL4, so we choose

a decomposition k6 = F ⊕G where F = k4, G = k2 are spanned by the first 4, respectively
last 2, coordinate vectors.

So our restricted Schubert variety is in the affine space Spec(A′) where

A′ = Sym(g1) = Sym(
3
∧

F ⊕

2
∧

F ⊗G⊕ F ⊗

2
∧

G).

Lemma 3.3. The five defining equations of the restriction of Yσ3
to Spec(A′) are ∆, and

∂∆
∂yi

, where {yi} is a basis of (
∧3 F )∗.

Proof. We have already explained the appearance of ∆. The remaining 4 functions have
α-degree −1 and hence restrict to cubic functions. By equivariance, these functions are
closed under the action of GL(F )×GL(G) and the upper triangular block G∗⊗F , so must
span the space

∧3 F . Since the invariant ∆ is unique, this space is spanned by its partial
derivatives with respect to (

∧3 F )∗. �

The five equations defining the ideal of Yσ′

3
restricted to Spec(A′) in this language are

similar, we just decompose k6 = F ′ ⊕G′ with dimF ′ = 2, dimG′ = 4.

Lemma 3.4. The five defining equations of the restriction of Yσ′

3
to Spec(A′) are ∆ and ∂∆

∂zi
,

where {zi} is a basis of the dual of
∧2 F ′ ⊗G′.

The proof is similar to the proof of Lemma 3.3.

4. Type E7

Much of the setup here follows that of the previous section. Rather than re-explain all of
the details, we will just list the results of the calculations.
As before, we coarsen the root decomposition of g(E7) by considering the coefficient of α2.

The non-negative components of the resulting Z-graded decomposition are as follows:

g0 = gl7(k), g1 =
3
∧

k7, g2 =
6
∧

k7.

We let A denote the coordinate ring of the big cell. We can identify its linear functions with
the positive portion of this decomposition.

In this case, Vx1
is not the adjoint representation, so we need its Z-graded decomposition

as well (see [LW, §5.3.3]). We do not repeat it here, but just note that the grading goes from
0 to 7 and the top and bottom pieces are 1-dimensional. As before, setting the element in
top degree to be nonzero cuts out the big cell.

The ideal of Yσ3
is generated by 6 elements which are Plücker coordinates corresponding

to the elements

1 0 0 0 0
0
0

,
−1 1 0 0 0

0
0

,
0 −1 1 0 0

1
0

,

0 0 −1 1 0
1
0

,
0 0 0 −1 1

1
0

,
0 0 0 0 −1

1
0
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The ideal of Yσ′

3
is generated by five Plücker coordinates corresponding to the weights

1 0 0 0 0
0
0

,
−1 1 0 0 0

0
0

,
0 −1 1 0 0

1
0

,

0 0 1 0 0
−1
1

,
0 0 1 0 0

0
−1

Theorem 4.1. The minimal free resolution of Yσ3
is of the form:

0 → A2(−13) → A7(−9) → A(−7)⊕ A5(−6) → A.

The minimal free resolution of Yσ′

3
is of the form:

0 → A3(−13) → A7(−10) → A(−7)⊕ A4(−6) → A

Furthermore, the ideals of these varieties are linked by a complete intersection of length 3.
The resolution for the sum of the two ideals has the form

0 → A(−19) → A7(−13)⊕ A(−12) → A7(−10)⊕ A7(−9) → A(−7)⊕ A7(−6) → A.

The numerator of the reduced Hilbert series of k[Yσ3
] is

2t10 + 6t9 + 12t8 + 20t7 + 23t6 + 21t5 + 15t4 + 10t3 + 6t2 + 3t+ 1

and hence Yσ3
has degree 119. The numerator of the reduced Hilbert series of k[Yσ′

3
] is

3t10 + 9t9 + 18t8 + 23t7 + 24t6 + 21t5 + 15t4 + 10t3 + 6t2 + 3t+ 1

and hence Yσ′

3
has degree 133. The numerator of the reduced Hilbert series of k[Yσ3

∩ Yσ′

3
] is

t15+4t14+10t13+20t12+35t11+56t10+77t9+91t8+91t7+77t6+56t5+35t4+20t3+10t2+4t+1

and hence Yσ3
∩ Yσ′

3
has degree 588.

Remark 4.2. We have verified with Macaulay2 that the restriction of Yσ3
and Yσ′

3
to

∧3
k7

continue to have codimension 3 (when char(k) = 0). We do not yet have a conceptual proof
of this, but we will describe how these ideals look assuming this fact.

There is an invariant ∆ of degree 7 on g1, which can be described as a hyperdiscriminant
of the representation

∧3
k7, i.e., the equation of the hypersurface projectively dual to the

Grassmannian (see for example [W1, §9C]).
To describe the restriction of Yσ3

, we write k7 = F ⊕ G with dimF = 5, dimG = 2. We
consider the ring

A′ = Sym(g1) = Sym(
3
∧

F ⊕

2
∧

F ⊗G⊕ F ⊗

2
∧

G).

and the equations of Yσ3
restrict to polynomials ∆, ∂∆/∂yi, where {yi} is a basis of the dual

of F ⊗
∧2 G. The argument is similar to the previous section; the key point is why we get a

nonzero multiple of ∆: there are no degree 7 invariants on Sym(
∧3

k7 ⊕
∧6

k7) other than
∆.

We get a resolution

0 → A′2(−13) → A′7(−9) → A′(−7)⊕ A′5(−6) → A′.
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The equivariant form of this resolution is as follows (Here Sλ denotes a Schur functor.
This is valid in characteristic 0, and more care is needed in general to describe the correct
representations.):

0 → S6,6,6,6,6F ⊗ S5,4G⊗ A′(−13) →

(

S4,4,4,4,4F ⊗ S4,3G⊕
S5,4,4,4,4F ⊗ S3,3G

)

⊗ A′(−9) →

→
S3,3,3,3,3F ⊗ S3,3G⊗ A′(−7)⊕
S3,3,3,3,2F ⊗ S2,2G⊗ A′(−6)

→ A′.

Now we describe the restriction of Yσ′

3
. We decompose k7 = F ′ ⊕ G′ where dimF ′ = 3,

dimG′ = 4. We get

A′′ = Sym(g1) = Sym(
3
∧

F ′ ⊕

2
∧

F ′ ⊗G′ ⊕ F ′ ⊗

2
∧

G′ ⊕

3
∧

G′).

We get the ideal of Yσ′

3
generated by five elements ∆, ∂∆/∂zi, where {zi} is a basis of the

dual of
∧3 G′. This gives a resolution of the format

0 → A′′3(−13) → A′′7(−10) → A′′(−7)⊕ A′′4(−6) → A′′.

The equivariant form of this resolution is (in characteristic 0):

0 → S7,6,6F
′ ⊗ S5,5,5,5G

′ ⊗ A′′(−13) →

(

S5,5,4F
′ ⊗ S4,4,4,4G

′⊕
S5,5,5F

′ ⊗ S4,4,4,3G
′

)

⊗ A′′(−10) →

→
S3,3,3F

′ ⊗ S3,3,3,3G
′ ⊗ A′′(−7)⊕

S3,3,3F
′ ⊗ S3,2,2,2G

′ ⊗ A′′(−6)
→ A′′. �

5. Type E8

Much of the setup here follows that of type E6. Rather than re-explain all of the details,
we will just list the results of the calculations.

The non-negative portion of the Z-graded decomposition of g(E8) with respect to α2 looks
like

g0 = gl8(k), g1 =
3
∧

k8, g2 =
6
∧

k8, g3 =
8
∧

k8 ⊗ k8.

We let A denote the coordinate ring of the big cell. We can identify its linear functions with
the positive portion of this decomposition.

In this case, Vx1
is not the adjoint representation, so we need its Z-graded decomposition

as well (see [LW, §6.3.3]). We do not repeat it here, but just note that the grading goes from
0 to 16 and the top and bottom pieces are 1-dimensional. As before, setting the element in
top degree to be nonzero cuts out the big cell.

The ideal of Yσ3
is generated by 7 elements which are the Plücker coordinates corresponding

to the elements

1 0 0 0 0 0
0
0

,
−1 1 0 0 0 0

0
0

,
0 −1 1 0 0 0

1
0

,

0 0 −1 1 0 0
1
0

,
0 0 0 −1 1 0

1
0

,
0 0 0 0 −1 1

1
0

,
0 0 0 0 0 −1

1
0

.
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There are 5 Plücker coordinates vanishing on Yσ′

3
, they correspond to weights

1 0 0 0 0 0
0
0

,
−1 1 0 0 0 0

0
0

,
0 −1 1 0 0 0

1
0

,

0 0 1 0 0 0
−1
1

,
0 0 1 0 0 0

0
−1

.

Theorem 5.1. The minimal free resolution of Yσ3
is of the form:

0 → A2(−31) → A8(−21) → A(−16)⊕ A6(−15) → A

The minimal free resolution of Yσ′

3
is of the form:

0 → A4(−31) → A8(−25) → A(−16)⊕ A4(−15) → A

Furthermore, the ideals of these varieties are linked by a complete intersection of length 3.
The resolution for the sum of the two ideals has the form

0 → A(−46) → A8(−31)⊕ A(−30) → A8(−25)⊕ A8(−21) → A(−16)⊕ A8(−15) → A.

The numerator of the reduced Hilbert series of k[Yσ3
] is

2t28 + 6t27 + 12t26 + 20t25 + 30t24 + 42t23 + 56t22 + 72t21 + 90t20+

+110t19 + 124t18 + 132t17 + 134t16 + 130t15 + 120t14 + 105t13 + 91t12 + 78t11+

+66t10 + 55t9 + 45t8 + 36t7 + 28t6 + 21t5 + 15t4 + 10t3 + 6t2 + 3t+ 1

and hence the degree of Yσ3
is 1640. The numerator of the reduced Hilbert series of k[Yσ′

3
] is

4t28 + 12t27 + 24t26 + 40t25 + 60t24 + 84t23 + 104t22 + 120t21 + 132t20+

+140t19 + 144t18 + 144t17 + 140t16 + 132t15 + 120t14 + 105t13 + 91t12 + 78t11+

+66t10 + 55t9 + 45t8 + 36t7 + 28t6 + 21t5 + 15t4 + 10t3 + 6t2 + 3t+ 1

and hence the degree of Yσ′

3
is 1960. The numerator of the reduced Hilbert series of k[Yσ3

∩Yσ′

3
]

is

t42 + 4t41 + 10t40 + 20t39 + 35t38 + 56t37 + 84t36 + 120t35 + 165t34 + 220t33 + 286t32

+364t31 + 455t30 + 560t29 + 680t28 + 808t27 + 936t26 + 1056t25 + 1160t24 + 1240t23 + 1288t22

+1304t21 + 1288t20 + 1240t19 + 1160t18 + 1056t17 + 936t16 + 808t15 + 680t14 + 560t13

+455t12 + 364t11 + 286t10 + 220t9 + 165t8 + 120t7 + 84t6 + 56t5 + 35t4 + 20t3 + 10t2 + 4t+ 1

and hence the degree of Yσ3
∩ Yσ′

3
is 20400.

Remark 5.2. We conjecture that the restriction of Yσ3
and Yσ′

3
to

∧3
k8 remain codimension

3. We have been unable to verify this even computationally; we now describe the restrictions
assuming the fact.

There is an invariant ∆ of degree 16 on g1, which can be described as a hyperdiscriminant
of the representation

∧3
k8, i.e., the equation of the hypersurface projectively dual to the

Grassmannian (see for example [W1, §9C]).
We write k8 = F ⊕ G with dimF = 6, dimG = 2 with A′ = Sym(g1). Conjecturally,

when restricted to A′, the resolution of Yσ3
is

0 → A′2(−31) → A′8(−21) → A′(−16)⊕ A′6(−15) → A′.



SCHUBERT VARIETIES AND FINITE FREE RESOLUTIONS OF LENGTH THREE 11

We also conjecture that the ideal of Yσ3
is generated by ∆, ∂∆/∂yi, where {yi} is a basis

of the dual of F ⊗
∧2 G. As far as we are aware, this does not follow formally from the

codimension conjecture in this case.
The equivariant format of this resolution is (in characteristic 0):

0 → S12,12,12,12,12,12F ⊗ S11,10G⊗ A′(−31) →
S8,8,8,8,8,8F ⊗ S8,7G⊗ A′(−9)⊕
S9,8,8,8,8,8F ⊗ S7,7G⊗ A′(−21)

→

S6,6,6,6,6,6F ⊗ S6,6G⊗ A′(−16)⊕
S6,6,6,6,6,5F ⊗ S5,5G⊗ A′(−15)

→ A′.

To describe the restriction of Yσ′

3
, we set k8 = F ′ ⊕G′ where dimF ′ = 4, dimG′ = 4 and

A′′ = Sym(g1). Conjecturally, when restricted to A′′, the resolution is

0 → A′′4(−31) → A′′8(−25) → A′′(−16)⊕ A′′4(−15) → A′′.

We conjecture that the ideal of Yσ′

3
is generated by five elements ∆, ∂∆/∂zi, where {zi} is a

basis of the dual of
∧3 G′. Again, this does not seem to follow formally from the codimension

conjecture.
The equivariant format of this resolution is (in characteristic 0):

0 → S13,12,12,12F
′ ⊗ S11,11,11,11G

′ ⊗ A′′(−31) →
S10,10,10,10F

′ ⊗ S9,9,9,8G
′ ⊗ A′′(−9)⊕

S10,10,10,9F
′ ⊗ S9,9,9,9G

′ ⊗ A′′(−25)
→

S6,6,6,6F
′ ⊗ S6,6,6,6G

′ ⊗ A′′(−16)⊕
S6,6,6,6F

′ ⊗ S6,5,5,5G
′ ⊗ A′′(−15)

→ A′′. �

6. Questions

In the Dynkin case the most important problem is to decide whether the five resolutions
we get for Dynkin types E6, E7, E8 are generic resolutions for perfect ideals of codimension
three with resolutions of these formats. This is equivalent to saying that each perfect ideal
of codimension 3 with a resolution of Dynkin format has a split complex Ftop

•
.

The pattern with the Plücker coordinates and the pair of Schubert varieties of codimension
3 generalizes beyond Dynkin diagrams. For any Tp,q,r with p = 2 we get in the homogeneous
space G(Tp,q,r)/Px1

(G is a Kac–Moody group corresponding to Tp,q,r, Px1
is a parabolic

corresponding to a simple root corresponding to vertex x1) two opposite Schubert varieties
Ωσ3

and Ωσ′

3
of codimension 3. These are ind-varieties. The opposite Schubert varieties Ωσ3

and Ωσ′

3
are normal and Cohen–Macaulay by [KS, Proposition 3.4].

In this case there is no analogue of the big cell Y . Instead we should do the following.
Let us denote by pw the Plücker coordinate corresponding to w ∈ W/WP . We have open
sets Uv (v ∈ W/WP ) in G(Tp,q,r)/Px1

consisting of points for which pv 6= 0. The sets Uv

are infinite dimensional affine spaces. One should look at the sets Yv,σ3
:= Ωσ3

∩ Uv and
Yv,σ′

3
:= Ωσ′

3
∩ Uv.

In the non-Dynkin cases the main questions are as follows.

(1) Can we find a sequence of open cells Yn, cofinal in the Bruhat order on W/WP , so
that for each n, the defining ideals of Yn ∩ Yσ3

and of Yn ∩ Yσ′

3
have the resolutions of

the corresponding formats?
(2) If the answer to the preceding question is yes, one could ask whether the series of

resolutions F
(n)
• of the cyclic modules given by the defining ideals of Yn ∩ Yσ3

and of
Yn ∩ Yσ′

3
could have the versality property with respect to free resolutions of perfect
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ideals of this format, i.e., each such resolution comes by a change of rings from the

resolution F
(n)
• for some n.

One needs first to deal with the affine cases, i.e., the diagrams Ê7 = T2,4,4 (self-linked

format (1, 6, 8, 3)) and with Ê8 = T2,3,6 (formats (1, 8, 9, 2) and (1, 5, 9, 5)).
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