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ABSTRACT. In this paper we describe the relationship between the finite free resolutions
of perfect ideals in split format (for Dynkin formats) and certain intersections of opposite
Schubert varieties with the big cell for homogeneous spaces G/P where P is a maximal
parabolic subgroup.

1. INTRODUCTION

Perfect ideals of codimension three have been investigated for a long time. Linkage theory
suggests that it might be possible to classify such ideals. Indeed, if one applies minimal
linkage to a perfect ideal of codimension three, one gets an ideal with a minimal free resolution
with the same sum of Betti numbers as the original one, and after a double link one obtains
an ideal whose free resolution has modules of the same ranks as for the original ideal.

In the paper [W2] the second author constructed the generic rings égen for resolutions of
length three for any format. It turns out that their structure is related to the Kac-Moody
Lie algebra of the T-shaped graph T, ,, where the triple (p,q,7) = (r1 + 1,72 — 1,75+ 1) is
constructed from the ranks r1, r9, r3 of the differentials dy, ds, d3 of our resolution. We denote
the vertices of T, ,, as follows

Tp-1 — Tp2 ... T1 — U - Y1 - Yg—2 — Yg-1

This construction suggests that a special role is played by the so-called Dynkin formats
for which the graph T, ,, is Dynkin. In fact, the ring Rgen is Noetherian precisely in such
cases. One also conjectures (for the case r; = 1, i.e., the resolutions of cyclic modules R/I)
that these are precisely the formats for which every such ideal is licci.

The next idea is to relate the rings ]%gen to the resolutions of perfect ideals of a given
format. The natural idea is to describe an open set Ucy (the Cohen-Macaulay locus) in
Spec Ryen where the dual of the generic resolution F& is acyclic. In [CVW] and [LW] a
precise conjecture on the form of the subset Ucy for Dynkin formats is given. This conjecture
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is based on the observation that for Dynkin formats (except for the format (1,n,n,1) with
n odd), the three top graded components of three critical representations in Rge, can be

thought of as the differentials in another complex F°P of the format (fo, f1, f2, f3) over f{gen.
The conjecture then says that the open set Ucy is equal to the set Ugpie where the complex
F'°P is split exact.

The next task is to find the precise form of the general ideal resolved by a resolution
corresponding to a point in Uy This problem is resolved in [CVW] and in [CLKW] for
the formats of type D,, and Eg. It is also proved in [CVW] that for the formats (1,n,n,1)
with n even, and (1,4,n,n — 3), we have the equality Ucy = Uspiit.-

The method employed there consists of identifying the generators of }?igen occurring in
some critical representations in _ﬁigen and calculating these structure theorems for split exact
resolutions using the defect variables. The structure theorems corresponding to the top
graded components then give the differentials in the complex which is a resolution of a
perfect ideal of codimension three which corresponds to a general point in Ucy. For the
remaining types E; and Eg the analogous method is very difficult to employ because the
representations W (ds), W(dy), W (ag) are too complex.

In the present paper we try another approach. We try to construct the relevant resolutions
of Dynkin formats by geometric means. A very interesting geometric pattern appears. We
prove that for all the Dynkin types there is a certain Schubert variety €2, of codimension 3
in a homogeneous space G(T,,,)/ Py, (G(Tp,,) denotes the simply-connected simple group
corresponding to the graph T, , ., P, is a maximal parabolic subgroup corresponding to the
vertex x; in the above notation), such that the defining ideal of the intersection Y) of €,
with the opposite big open cell Y has exactly the resolution of the format corresponding to
the triple (p, ¢, 7). We expect the singularity of Y\ to be the singularity of the general point
in Ut (this is established for the types D,, and Eg).

This proves the inclusion Ugpiy € Ucn and shows that the expected general form of the
finite free resolutions of Dynkin formats show a definite pattern. The pattern conjecturally
extends to the resolutions of cyclic modules of arbitrary format. This will be taken up in a
future paper.
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2. GENERAL SETUP

Throughout we work over a field k. (Our constructions will be insensitive to the choice of
field and in fact will be defined over Z, but we keep a field to avoid making extra remarks
throughout.)

Our goal is to describe the general complex from the open set Ugpit of Spec(Rgen) for a
Dynkin format. This seems to be related to Schubert varieties in homogeneous spaces for
groups of type T, , , and goes as follows. Consider the Dynkin formats of free resolutions of
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length 3 of cyclic modules, i.e., assume the rank is 7; = 1. This means that the corresponding
graph T, is Ty ,,. We also assume this graph is of Dynkin type.

We fix root data for our group G and look at the homogeneous space G/P where P =
P,, is the maximal parabolic subgroup corresponding to the vertex on the arm of length
1 corresponding to p. We let B and B~ denote the Borel subgroup and opposite Borel
subgroup, respectively. We use basic facts on Schubert varieties, described for example in
[LR, §3.3]. Our notation is for opposite Schubert varieties, i.e., an element of length ¢ indexes
a variety of codimension ¢. The opposite Schubert varieties in G/P are described by the
cosets W/Wp where W is the Weyl group corresponding to T, ;. and Wp is the Weyl group
corresponding to smaller root system we get from T}, ;, by removing z;. In our case we can
identify W/Wp with the W-orbit of the fundamental weight w,,, and we now describe how
this works.

In what follows, we represent weights as a sum of fundamental weights, and represent
these by labeling the vertices of T, ,, by the corresponding coefficients. We deal with the
Weyl group action on the weight

Acting by elements of length £ in W of minimal length in their coset, we get opposite Schubert
varieties of codimension ¢. Thus for length 0 we get 0. For length 1 we get

-1 10 0--- 0

0
01 = .
0
and for length 2
0O -1 10--- 0
1
09 =
0
Finally for length 3 we get two possibilities
0O 010 -+ 0 00 -1 1 0
-1 1
o3 = 1 : ohy= 0
0 0

This picture says that in G(Ts,,)/P,, there is one opposite Schubert variety of codimen-
sion 1, one of codimension 2, and two of codimension 3. Define Q% = B~wP/P in G/P. We
consider the opposite Schubert varieties 7 and Qg” and their intersections Y% with the big
cell Y. The cell Y is the unique open B-orbit. The varieties Yo, Y, are known to be normal
Cohen-Macaulay subvarieties of codimension 3 (see [KS, Proposition 3.4]).
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But the same picture represents the extremal Pliicker coordinates of G(Ta,,)/ Py, (see
[LR, §3.3.1]) embedded in P(V,,) where V) denotes the irreducible highest weight module
of highest weight A\. Each element w € W/Wp determines a unique linear function p,
(defined up to scalar) on P(V,,) and the defining equations of Y, and Y,, are the Pliicker
coordinates p, such that 7 is not < than o3 (resp. ¢3) in the Bruhat order. This follows from
the identification of the linear functions on Q% with Demazure modules (see [LR, §§3.3.1,
3.3.3]). In this setup, Y is given by the condition pyp, # 0 where pyop, is the extremal Schubert
coordinate corresponding to the coset of maximal length ¢ = dim G(Tq )/ Py,

In what follows, working with the parabolic P,, we give two interpretations of the varieties
Yoy, Yoy one in terms of Pliicker coordinates, the other in equivariant form related to the
grading on g(E,,) (m = 6,7,8) corresponding to the simple root «,,. The open cell Y is
identified with the unipotent radical of the opposite parabolic subgroup. The functions on
this space can be identified with the positive portion of the Lie algebra g(E,,).

3. TYPE Eg
The Pliicker coordinates vanishing on Y,,, where
0 0 10
O3 = —1
1
are the ones corresponding to the elements
1 000 -1 100 0 -1 10 00 —11 000 -1
0 , 0 ) 1 , 1 , 1
0 0 0 0 0

There are also 5 Plicker coordinates vanishing on Y, symmetrically with respect to the
two arms of length 3. The intersection of both ideals is a complete intersection given by the
three Pliicker coordinates

1000 ~1 100 0 -1 10
0 : 0 , 1
0 0 0

that are common in both ideals.

By construction, all opposite Schubert varieties are invariant under the action of the
opposite Borel subgroup B~. Generally, there is a larger parabolic subgroup that leaves
it invariant. This is explained for Schubert varieties in [LMS, Proposition 1.4], but we
can use the involution w +— ww! where w{ is the minimal length coset representative of
the maximal element in W/Wp to get the corresponding statement for opposite Schubert
varieties. Namely, the opposite Schubert variety Q2% is closed under the root subgroups
labeled by a simple root « if {(s,w) > ¢(w).

We see that the ideal of 27} is invariant under the action of the root subgroups corre-
sponding to ay,ay, as,ag. The Levi subgroup of the corresponding parabolic subgroup is
isomorphic to GLs x GL4. Analogously, Q;é is invariant under the action of the root sub-
groups corresponding to aq, ag, oy, ag and the corresponding Levi subgroup is isomorphic to
GL,; x GL;y. The first equation corresponding to oy generates an ideal which is invariant
under aq, ag, oy, as, ag, and the corresponding Levi subgroup is isomorphic to GLg.
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The equivariant picture is as follows. First, G/P is embedded in the fundamental repre-
sentation P(V,,,) which is the adjoint representation. Consider the root space decomposition
of g(Eg) and coarsen it to a Z-grading by considering the coefficient of ;. Then the grading
ranges from —2 to 2 and

3 6
go = gls, g1 = /\k67 go = /\kﬁ.

To get the big cell, we set pyp = 1 where piop, spans go. The ideal of the embedding
of G/P into the adjoint representation is generated by quadratic polynomials, which are
homogeneous with respect to the ay-grading. In particular, given any relation that involves
Diopq for some homogeneous element ¢, we can express ¢ as a sum of product of other
elements of smaller ai-degree. In particular, a homogeneous element of «1-degree d restricts
to a homogeneous polynomial of degree 2 —d on Y.

The generators for the functions on Y can be identified with A® kS @ A®k® where the first
space has degree 1 and the second space has degree 2 (and is a subspace of gg). Let A denote
the coordinate ring of Y.

Theorem 3.1. The minimal free resolution of Y, is of the form:
0 — A%(=7) — A%(—5) — A(—4) ® A*(-3) — A.
The minimal free resolution of Yy, has the same form. Furthermore, the ideals of these

varieties are linked by a complete intersection of length 3. The sum of the two ideals has a
resolution of format

0 — A(=10) = A%(=7) ® A(—6) — A?(=5) — A(—4) ® A°(=3) — A.
The numerator of the reduced Hilbert series of both k[Y,,] and k[Y,.] is

/
3

2t + 613+ 612+ 3t + 1

and hence both Y, and Yo, have degree 18. The numerator of the reduced Hilbert series of
k[Y,, N Yaé] is

10 4 41° 4 10t* + 1443 + 108> + 4t + 1
and hence the degree of Y5, N Yy, is 44.

Proof. We know that the resolution of Y, is of the form
0—F3—Fy,— A(—4) @ A(-3)* = A.

Consider the ideals I,, and L,é in A and the ideal (o) = (piq, Dsqy s psuszl) generated by the
first three Pliicker coordinates. This ideal is radical by [BK, Corollary 2.3.3]. It follows that
I,, and I, are linked via («), as this is true set-theoretically and both ideals («) : I, and
(@) : I are radical. Now using [U, §1] we see that the ideals I,, and I, are linked via a,
which is a complete intersection generated by polynomials of degrees 3, 3, 4.

By the theory of linkage (see for example [BE, §5]) the dual of the mapping cone of the
resolution of the complete intersection to the resolution of Y5, gives a resolution for Y, (up
to a grading shift). This has the form

A(-10)@ A(-7)® Fi(-10)®
0— A(—10) » A(=-7)'@® — A(-6)® — A(-4)p — A
A(-6) F3(-10) A(=3)?
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The last few terms cancel since they identify generators and relations from the original two
resolutions, and the result is

Fi(—10)a
0— A(=7)?% = Fi5(-10) - A(-de — A
A(-3)?

We know that the ideal of Y, is minimally generated by 4 cubics and 1 quartic, and the
differential F; — F3 is minimal, so we conclude that F3 = A(—7)2. This tells us that
rank Fy = 6. Let dy < --- < dg be the degrees of its generators. Since Y,, has codimension
3, the alternating sum

6
L—4t® — 4y et — 2"
i=1
is divisible by (1 — ¢)3, which translates to its first two derivatives being 0 at t = 1:

6 6
—12-4+ Y di—14=-24—12+ ) di(d; — 1) — 84 =0,

i=1 i=1

or equivalently,

6 6
> di=30, ) d=150.
=1 =1

The plane Z?:1 d; = 30 is tangent to the sphere defined by the second equation at the point
(5,5,5,5,5,5), so this point is the unique solution to both equations.

By [U, Proposition 1.3, the ideal I,, + I, is Gorenstein. This is the defining ideal of
the Schubert variety Y,, of codimension 4 which is contained both in Y5, and Y,;. To get
the form of its resolution we again appeal to [U, Proposition 1.3] which implies that this
resolution is a mapping cone of the map of complexes covering an injection of the canonical
module of the coordinate ring of Y, (resp. Y,;) into the resolution of the coordinate ring of
Yo, (resp. Y.). O

3.1. Linear section. A certain linear section of the first minimal free resolution is described
in [CLKW]. The description of the generators given there is a little different, as the present
pattern was not observed at that time.

Now we consider the restriction of the ideals to Sym(A®k®).

Lemma 3.2. The restriction of py, to N*kS is the unique (up to scalar) SLg-invariant A
of degree 4 on N\’ kS,

The invariant A can be described as a hyperdiscriminant of the representation /\3 kS ie.,

the equation of the hypersurface projectively dual to the Grassmannian (see for example
(W1, §9C]).

Proof. ps, is a lowest weight vector and hence has a;-degree —2. By what we said above, it
becomes a quartic function upon restriction to Y. Next, we also said above that the ideal
generated by p,, is invariant under GLg. This implies that p,, itself is invariant under the
subgroup SLg. Next, we need to show that this restriction is nonzero. If not, then the
quartic in A is h%, where h is the generator of /\6 kb which is non-reduced. O
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As explained above, Y, is invariant under the Levi subgroup GL,; x GLy4, so we choose
a decomposition kb = F @ G where F' = k*, G = k? are spanned by the first 4, respectively
last 2, coordinate vectors.

So our restricted Schubert variety is in the affine space Spec(A’) where

3 2 2
A =Sym(gy) =Sym(\Fe AN\FeGaeFo \G).

Lemma 3.3. The five defining equations of the restriction of Yy, to Spec(A’) are A, and
g—ﬁ, where {y;} is a basis of (\* F)*.

Proof. We have already explained the appearance of A. The remaining 4 functions have
a-degree —1 and hence restrict to cubic functions. By equivariance, these functions are
closed under the action of GL(F') x GL(G) and the upper triangular block G* ® F', so must
span the space /\3 F. Since the invariant A is unique, this space is spanned by its partial
derivatives with respect to (A F)*. O

The five equations defining the ideal of Y, restricted to Spec(A’) in this language are
similar, we just decompose kb = F’ @ G’ with dim F’ = 2, dim G’ = 4.

Lemma 3.4. The five defining equations of the restriction of Yy, to Spec(A’) are A and %,
where {2} is a basis of the dual of N> F' @ G'.

The proof is similar to the proof of Lemma 3.3.

4. TYPE E;

Much of the setup here follows that of the previous section. Rather than re-explain all of
the details, we will just list the results of the calculations.

As before, we coarsen the root decomposition of g(E;) by considering the coefficient of as.
The non-negative components of the resulting Z-graded decomposition are as follows:

3 6
go = gl;(k), o = /\k7, g = /\k7.

We let A denote the coordinate ring of the big cell. We can identify its linear functions with
the positive portion of this decomposition.

In this case, V,, is not the adjoint representation, so we need its Z-graded decomposition
as well (see [LW, §5.3.3]). We do not repeat it here, but just note that the grading goes from
0 to 7 and the top and bottom pieces are 1-dimensional. As before, setting the element in
top degree to be nonzero cuts out the big cell.

The ideal of Y, is generated by 6 elements which are Pliicker coordinates corresponding
to the elements

1 0000 -1 1 0 0 0 0O -1 1 00
0 , 0 , 1 ;
0 0 0

00 -1 10 0 00 -1 1 0 00 0 -1
1 : 1 : 1
0 0 0
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The ideal of Y, is generated by five Pliicker coordinates corresponding to the weights

10000 -11 0 0 0 0 -1 100
0 , 0 , 1 ;
0 0 0

0 0 1 00 0 0 100

~1 : 0

1 -1

Theorem 4.1. The minimal free resolution of Y,, is of the form:

0 — A*(—13) = AT(-9) — A(-7) ® 4°(—6) — A.
The minimal free resolution of Y, is of the form:

0— A3(—~13) —» AT(—=10) — A(=7) ® A*(—6) — A

Furthermore, the ideals of these varieties are linked by a complete intersection of length 3.
The resolution for the sum of the two ideals has the form

0— A(—=19) = AT(-13) ® A(—12) — AT(—10) @ A(-9) — A(=7) ® A"(—6) — A.
The numerator of the reduced Hilbert series of k[Y,,] is
261 + 617 + 126% + 207 + 231° + 218° + 15" + 104° + 61> + 3t + 1
and hence Y,, has degree 119. The numerator of the reduced Hilbert series of k[Y,] is

3
3¢10 + 9¢° + 18t + 23¢7 + 24t° 4 218> + 15¢* + 10> + 66> + 3¢ + 1
and hence Y;; has degree 133. The numerator of the reduced Hilbert series of k[Y, N Yo, ] is
0+ 4t 108" 4+ 206+ 356 + 5610+ 7787+ 9145+ 9187 + 770+ 5617 + 35¢* +20t° + 10> + 4t + 1
and hence Y,, N Yo, has degree 588.

Remark 4.2. We have verified with Macaulay2 that the restriction of Y, and Y, to A K7
continue to have codimension 3 (when char(k) = 0). We do not yet have a conceptual proof
of this, but we will describe how these ideals look assuming this fact.

There is an invariant A of degree 7 on g, which can be described as a hyperdiscriminant
of the representation /\3 k7, i.e., the equation of the hypersurface projectively dual to the
Grassmannian (see for example [W1, §9C]).

To describe the restriction of Y,,, we write k’ = F & G with dim F' = 5, dim G = 2. We
consider the ring

3 2 2
A =sym(g) =Sym(\Feo A\FeGaFa \G).

and the equations of Y, restrict to polynomials A, 0A/Jy;, where {y;} is a basis of the dual
of F® /\2 G. The argument is similar to the previous section; the key point is why we get a
nonzero multiple of A: there are no degree 7 invariants on Sym(A°®k” @ A°k7) other than

A.

We get a resolution

0— A?(—13) — A"(=9) = A (-7) @ A®(—6) — A'.
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The equivariant form of this resolution is as follows (Here S, denotes a Schur functor.
This is valid in characteristic 0, and more care is needed in general to describe the correct
representations. ):

Sia444F ® Sy3GD
S54444F @ S33G

S33333F ®S33G @ A'(=T)®
S33332F ®S2G ® A'(—6)

Now we describe the restriction of Y;,. We decompose k" = F' & G’ where dim F' = 3,
dim G' = 4. We get

0 — See666F ®S54G @ A'(—13) — ( ) ® A'(—9) —

— — A

A" = Sym(gy) = Sym(/g\ F'e /Q\F’ RG OF' ® /2\6*’ @/B\G’).
We get the ideal of Y,; generated by five elements A, 0A/0z;, where {2;} is a basis of the
dual of A®G’. This gives a resolution of the format
0 — A™(—13) — A""(—10) — A"(=7) p A"™(—6) — A”".
The equivariant form of this resolution is (in characteristic 0):

S554F" @ S4444G'®
S555F" @ S4443G

S333F ® S3333G" @ A"(=T7)®
S333F" @ S3220G" ® A”(—6)

0= Sre6l" ®Ss5555G" @ A"(—13) — ( ) ® A"(-10) —

— A", O

5. TYPE Eg

Much of the setup here follows that of type Eg. Rather than re-explain all of the details,
we will just list the results of the calculations.

The non-negative portion of the Z-graded decomposition of g(Eg) with respect to ay looks
like

3 6 8
=0k, a=AK = @=AK, g=AkKck

We let A denote the coordinate ring of the big cell. We can identify its linear functions with

the positive portion of this decomposition.

In this case, V, is not the adjoint representation, so we need its Z-graded decomposition
as well (see [LW, §6.3.3]). We do not repeat it here, but just note that the grading goes from
0 to 16 and the top and bottom pieces are 1-dimensional. As before, setting the element in
top degree to be nonzero cuts out the big cell.

The ideal of Yy, is generated by 7 elements which are the Pliicker coordinates corresponding
to the elements

1 00 00O -1 10000 0 -1 1000
O 3 O ’ 1 )
0 0 0
00 -1100 000 -110 0000 —-11 000O0¢O0 -1
1 : 1 : 1 : 1
0 0 0 0
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There are 5 Pliicker coordinates vanishing on Y, , they correspond to weights

1 00 0 0O -1 1 0 0 0 O 0O -1 1 0 0 O
0 , 0 : 1 ;
0 0 0

O 0 1 0 0O 0O 0 1 0 0O
~1 : 0
1 -1

Theorem 5.1. The minimal free resolution of Y, is of the form:

0 — A*(—31) — A®(—-21) — A(—16) @ A%(—15) = A
The minimal free resolution of Y, is of the form:

0 — A*(=31) — A%(—25) — A(—16) ® A*(—15) — A

Furthermore, the ideals of these varieties are linked by a complete intersection of length 3.
The resolution for the sum of the two ideals has the form

0 — A(—46) — A*(=31) ® A(=30) — A%(—25) @ A*(-21) — A(—16) @ A%(—15) — A.
The numerator of the reduced Hilbert series of k[Y,,] is
2128 + 6127 4+ 12620 4 20t%° + 301%* + 42t + 56t*2 + 72t 4 90120+
+1108" + 124¢"8 4+ 132617 + 1344 + 130t + 1201 + 105t 4 9112 + 7811+

+66t'0 + 55t° + 45t° 4 361" + 28° + 21> 4 15t + 10¢* + 6t° 4 3t + 1
and hence the degree of Y, is 1640. The numerator of the reduced Hilbert series of k[Y5,] is

4178 12077 4 2417 + 40t + 602" 4 841% + 104172 + 120t + 132t%°+
+140tY 4 144" 4 1447 4 1400 + 132t + 120t + 105t + 91412 + 78¢1+
+66t'0 + 55¢° 4 45t% + 36t7 + 28¢5 + 21> + 15t* + 10> + 6t> + 3t + 1
and hence the degree of Y, is 1960. The numerator of the reduced Hilbert series of k[Y,MY, ]
1S
12 4 4t 10670 4 2083 + 35638 + 56637 + 8430 4 120t3° + 1653 + 22013 + 28632
436431 + 455t + 5602 + 680¢%® + 808127 4 936t%° 4 1056t%° + 1160t** 4 1240t>* + 1288t*
+1304¢2! 4 1288t%° + 1240t + 1160¢'® + 1056t'7 + 936t1¢ 4 808¢'° + 680t + 560t
+455t1% + 364t + 286110 + 220t° + 165t° + 1207 + 8415 + 56¢° + 35t* + 20t + 10t* + 4t + 1
and hence the degree of Y, MYy, is 20400.

Remark 5.2. We conjecture that the restriction of Y, and Y, to /\3 k® remain codimension
3. We have been unable to verify this even computationally; we now describe the restrictions
assuming the fact.

There is an invariant A of degree 16 on g;, which can be described as a hyperdiscriminant
of the representation /\3 k8, i.e., the equation of the hypersurface projectively dual to the
Grassmannian (see for example [W1, §9C]).

We write k® = F & G with dim F = 6, dimG = 2 with A’ = Sym(g;). Conjecturally,
when restricted to A’, the resolution of Y, is

0 — A?(=31) = A®(-21) — A'(—16) @ A®(—15) — A’
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We also conjecture that the ideal of Y, is generated by A, 9A/Jy;, where {y;} is a basis
of the dual of FF ® /\2 G. As far as we are aware, this does not follow formally from the
codimension conjecture in this case.

The equivariant format of this resolution is (in characteristic 0):

Sgss888F ®Sg7G @ A(—9)D
Sossssst ®S77G® A(—-21)

S6,6,6,6,6.6F @ SesG @ A'(—16)D
S6,6,6,665F ® S55G @ A'(—15)
To describe the restriction of Yy, we set k8 = F' © G’ where dim I = 4, dim G’ = 4 and
A" = Sym(g;). Conjecturally, when restricted to A”, the resolution is
0 — A"™(=31) — A"(—25) — A"(—16) @ A" (-15) — A”".
We conjecture that the ideal of Y, is generated by five elements A, A /Jz;, where {z;} is a

0 = Si2121212.1212F ® S1110G ® A,(—31) — —

— A

basis of the dual of /\3 G'. Again, this does not seem to follow formally from the codimension
conjecture.
The equivariant format of this resolution is (in characteristic 0):

S10,10,10,10F” @ Sg 998G’ ® A"(—9)®
S10,10,10,0F" ® Sg.9.99G" ® A”(—25)

S6,6,6,6F/ ® S6,6,6,6G/ &® AH(—IG)@
S6,6,6,6F, ® 8675,5,5G/ & A”(—15)

0 = Si312,1212F ® S1111,1111G" ® A"(=31) — -

— A", O

6. QUESTIONS

In the Dynkin case the most important problem is to decide whether the five resolutions
we get for Dynkin types Eg, E7, Eg are generic resolutions for perfect ideals of codimension
three with resolutions of these formats. This is equivalent to saying that each perfect ideal
of codimension 3 with a resolution of Dynkin format has a split complex F°P.

The pattern with the Pliicker coordinates and the pair of Schubert varieties of codimension
3 generalizes beyond Dynkin diagrams. For any T, ,, with p = 2 we get in the homogeneous
space G(T,,.,)/ Py (G is a Kac-Moody group corresponding to T, ,,, Py, is a parabolic
corresponding to a simple root corresponding to vertex ;) two opposite Schubert varieties
Q55 and ), of codimension 3. These are ind-varieties. The opposite Schubert varieties {2,
and €),; are normal and Cohen—Macaulay by [KS, Proposition 3.4].

In this case there is no analogue of the big cell Y. Instead we should do the following.
Let us denote by p,, the Pliicker coordinate corresponding to w € W/Wp. We have open
sets U, (v € W/Wp) in G(T,,,)/ P, consisting of points for which p, # 0. The sets U,
are infinite dimensional affine spaces. One should look at the sets Y, ,, := {,, N U, and
Y;,’Ué = Qoé NnU,.

In the non-Dynkin cases the main questions are as follows.

(1) Can we find a sequence of open cells Y,,, cofinal in the Bruhat order on W/Wp, so
that for each n, the defining ideals of ¥;, NY,, and of ¥, N Yo, have the resolutions of
the corresponding formats?

(2) If the answer to the preceding question is yes, one could ask whether the series of

resolutions F{" of the cyclic modules given by the defining ideals of Y,, NY,, and of
Y, N Y, could have the versality property with respect to free resolutions of perfect
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ideals of this format, i.e., each such resolution comes by a change of rings from the
resolution F for some n.

One needs first to deal with the affine cases, i.e., the diagrams E, = To44 (self-linked
format (1,6,8,3)) and with Eg = Ty 36 (formats (1,8,9,2) and (1,5,9,5)).

[Wi]

[W2]
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