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Abstract

Biosensor data have the potential to improve disease control and detection. However, the analysis of these data under
free-living conditions is not feasible with current statistical techniques. To address this challenge, we introduce a new
functional representation of biosensor data, termed the glucodensity, together with a data analysis framework based on
distances between them. The new data analysis procedure is illustrated through an application in diabetes with
continuous-time glucose monitoring (CGM) data. In this domain, we show marked improvement with respect to
state-of-the-art analysis methods. In particular, our findings demonstrate that (i) the glucodensity possesses an extraor-
dinary clinical sensitivity to capture the typical biomarkers used in the standard clinical practice in diabetes; (ii) previous
biomarkers cannot accurately predict glucodensity, so that the latter is a richer source of information and; (iii) the
glucodensity is a natural generalization of the time in range metric, this being the gold standard in the handling of CGM
data. Furthermore, the new method overcomes many of the drawbacks of time in range metrics and provides more in-
depth insight into assessing glucose metabolism.
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I Introduction

The steadily increasing availability and prominence of biosensor data have given rise to new methodological
challenges for their statistical analysis. A primary feature of these data is that the monitored individuals are
in free-living conditions, making a direct analysis of the recorded time series between groups of patients prob-
lematic if not infeasible. A clear example of such data is found in the study of diabetes, where continuous
glucose monitoring (CGM) is increasingly used. The elevation of glucose is distinct between individuals and is
influenced by factors such as mealtimes, diet composition, or physical exercise.! Consequently, an exciting topic of
debate is how to exploit the enormous wealth of information recorded by CGM to draw more reliable conclusions
about glucose homeostasis rather than the cursory summary measures such as fasting plasma glucose (FPG) or
glycated hemoglobin (Alc).?
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Since 2010, the American Diabetes Association (ADA) has included measurement of Alc levels to both diag-
nosis and diabetes control.®> Alc levels reflect underlying glucose levels over the preceding three months, testing is
convenient because blood samples can be obtained at any time of day, overnight fasting is not required, and Alc
within patient reproducibility is superior to that of fasting plasma glucose and oral glucose tolerance tests
(OGTTs).* However, recent articles have provided evidence for the need to go beyond Alc and use new measures
for glycemic control,”® in order to capture more diverse aspects of the temporally evolving glucose levels beyond
the average, for example, glucose variability and time in range metrics. The time in range metric measures the
proportion of time an individual’s glucose levels are maintained in different target zones. In the case of diabetes,
these can include ranges corresponding to hypoglycemia and hyperglycemia. An innovative article’ validated the
time in range metric, showing that it is a good predictor of long-term microvascular complications despite just
measuring glucose values seven times per day. Lu et al.® reached similar conclusions but using CGM technology
only for 24 h in each patient. At the same time, it is well known that two patients may have the same glycosylated
hemoglobin and a completely different glycemic profile.” These new approaches and findings have led clinical
specialists to consider that continuous glucose measurement during long monitoring periods can lead to more
accurate research and clinical practice results than standard methods.'® In fact, since 2012, the European
Medicine Agency'' recommends the use of CGM to validate the effect of drugs for treatment or prevention of
diabetes mellitus.

Traditionally, CGM was designed for risk management in real-time for type 1 diabetes, and control of glucose
values with insulin pumps.'>'* Notwithstanding, more recent applications of CGM have been more general. For
example, they involve screening patients, optimizing diet, epidemiological studies, assessing patient prognosis,
supporting treatment prescriptions, and have even been used in healthy populations.>!” In addition to the
increasing utility of CGM data, the technology is gradually becoming cheaper, and new devices capable of
measuring glucose in a non-invasive way are quickly emerging.'® All of these advances are facilitating the adop-
tion of CGM in standard clinical practice.

In 2012, a panel of experts discussed how to represent CGM data in an “easy to view format”."” They also
analyzed the convenience of using glycemic variability measures and other summary measures such as time in
range to extract the CGM’s recorded information. In 2019,>° ADA launched an updated consensus guide for
promoting the correct and standardized use of time in range metrics in standard clinical practice, defining several
practitioners’ target zones. A more recent review about the CGM metric establishes time in range as a gold
standard measure.?!

Motivated by the problem of analyzing data gathered via CGM more precisely while still leveraging the
advantages possessed by time in range metrics, we propose an approach based on the construction of a functional
profile of glucose values for each subject. Conceptually, the approach is a natural extension of time in range
metrics in which the intervals simultaneously shrink in size and increase in number so that the new profile
effectively measures the proportion of time each patient spends at each specific glucose concentration rather
than a coarsely defined range. As a result, the new functional profile, which we refer to as a glucodensity,
automatically and simultaneously captures all parameters arising from individual glucose distributions. To illus-
trate our new glucose representation graphically, Figure 1 shows a set of constructed glucodensities that represent
the data objects for which we will propose using a tailored set of statistical methods. The glucose profile patterns
are clearly heterogeneous between individuals, both in mean, variability, or any other distributional character-
istics including the hypo and hyperglycemia range, where glucodensities have different support depending on
patient condition. For example, in normoglycemic patients, glucose generally oscillates between 75 and 150 mg/
dL, while in some patients with diabetes, glucose can reach concentrations of 400 mg/dL in the range of severe
hyperglycemia. Moreover, the shape of the glucodensities is entirely different, with existing variability patterns
along all glucose concentrations between normoglycemic and diabetes patients.

Mathematically, glucodensities constitute functional-distributional data since each glucodensity represents a
distribution of glucose concentrations. As such, these complex and constrained curves cannot be directly
analyzed with the usual techniques. To overcome this, we introduce a framework for the analysis of gluco-
densities by compiling suitable methods based on the calculation of distances between them. We also reveal
our representation’s superior clinical capacity compared to classical measures of diabetes control and diag-
nostics. Finally, we demonstrate that our representation has a higher sensitivity than the standard time in
range metric to explain the glycemic differences between patients in various settings, including regression
analysis. A new shiny interface to use the methods outlined in this paper is available at https://tec.citius.
usc.es/diabetes.
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Figure |. Glucodensities are estimated from a random sample of the AEGIS study including normoglycemic and patients with
diabetes. For each patient, our glucose representation estimates the proportion of time spent at each glucose concentration over a
continuum, representing a more sophisticated approach to assess glucose metabolism. Currently, the time in range metrics that are
the gold standard CGM data representation in diabetes only quantify glycemic distributional differences along the previously pre-
defined target zones that correspond to coarsely defined intervals, resulting in information loss.

1. Outline

The structure of this paper is as follows. First, we briefly describe the AEGIS study. We then formally introduce
the concept of glucodensity, the estimation methods, and some essential statistical background to understand the
statistical procedures introduced in the paper. Subsequently, we explain the regression models used in the vali-
dation of the representation. Afterward, we show the results that demonstrate the superiority of glucodensity over
glucose representations that are currently in use. Then, we illustrate the use with real data of the glucodensities
methodology in two-sample testing and cluster analysis. Finally, we discuss the clinical implications of these
results, their limitations, and new perspectives of the glucodensities method in medicine and device technology.

2 Sample and procedures

2.1 Study design

A subset of the subjects in the A Estrada Glycation and Inflammation Study (AEGIS; trial NC701796184 at
www.clinicaltrials.gov) provided the sample for the present work. In the latter cross-sectional study, an age-
stratified random sample of the population (aged >18) was drawn from Spain’s National Health System
Registry. A detailed description has been published elsewhere.”> For a one-year period beginning in March,
subjects were periodically examined at their primary care center where they (i) completed an interviewer-
administered structured questionnaire; (i) provided a lifestyle description; (iii) were subjected to biochemical
measurements, and (iv) were prepared for CGM (lasting sixdays). The subjects who made up the present
sample were the 581 (361 women, 220 men) who completed at least two days of monitoring, out of an original
622 persons who consented to undergo a six-day period of CGM. Another 41 original subjects were withdrawn


http://www.clinicaltrials.gov
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Table 1. Characteristics of AEGIS study participants by sex. Mean and standard deviation are shown.

Men (n=220) Women (n=361)

Age, years 478+ 148 482+ 14.5

Alc, % 5.6+09 55+07

FPG mg/dL 97 +£23 9l £21
HOMA-IR mg/dL.pUl/m 3.97 £5.56 2.74+£247

BMI kg/m? 289 +4.7 27.7+£53
CONGA mg/dL 0.88 +0.40 0.86 £0.36
MAGE mg/dL 33.6+£223 312+ 146
MODD 0.84+0.58 0.77+£0.33

BMI: body mass index; FPG: fasting plasma glucose; Alc: glycated hemoglobin; HOMA: IR: homeostasis model assess-
ment-insulin resistance; CONGA: glycemic variability in terms of continuous overall net glycemic action; MODD: mean
of daily differences; MAGE: mean amplitude of glycemic excursions.

from the study due to non-compliance with protocol demands (n=4) or difficulties in handling the device
(n=37). The characteristics of the participants are shown in the Table 1.

2.2 Ethical approval and informed consent

The present study was reviewed and approved by the Clinical Research Ethics Committee from Galicia, Spain
(CEIC2012-025). Written informed consent was obtained from each participant in the study, which conformed to
the current Helsinki Declaration.

2.3 Laboratory determinations

Glucose was determined in plasma samples from fasting participants by the glucose oxidase peroxidase method.
Alc was determined by high-performance liquid chromatography in a Menarini Diagnostics HA-8160 analyzer;
all Alc values were converted to DCCT-aligned values.” Insulin resistance was estimated using the homeostasis
model assessment method (HOMA-IR) as the fasting concentration of plasma insulin (¢ units/mL) x plasma
glucose (mg/dL)/405.%*

2.4 Glycemic variability

Glycaemic variability was measured in terms of continuous overall net glycemic action (CONGA),* the mean
amplitude of glycemic excursions (MAGE),*® and the mean of the daily differences (MODD)?” in glucose
concentration.

2.5 CGM procedures

At the start of each monitoring period, a research nurse inserted a sensor (EnliteTM, Medtronic, Inc., Northridge,
CA, USA) subcutaneously into the subject’s abdomen and instructed him/her in the use of the iPro™ CGM
device (Medtronic, Inc., Northridge, CA, USA). The sensor continuously measures the interstitial glucose level
40-400 (range mg/dL) of the subcutaneous tissue, recording values every 5min. Participants were also provided
with a conventional OneTouchR VerioR Pro glucometer (LifeScan, Milpitas, CA, USA) as well as compatible
lancets and test strips for calibrating the CGM. All subjects were asked to make at least three capillary blood
glucose measurements (usually before the main meals). These readings were taken without checking the current
CGM reading. The sensor was removed on the seventh day, and the data downloaded and stored for further
analysis. If the number of data-acquisition “skips” per day totaled more than 2h, the entire day’s data were
discarded.

2.6 Time-in-range metric

The time in range metric was calculated with two different methods. In the first, through the CGM records of the
AEGIS study, we estimate the deciles of CGM records with normoglycemic patients and use these deciles as cut-
offs that define the relevant ranges (Table 2). In the second, we use cut-off points established by the ADA in the
2019 Medical guideline®® (Table 3).



Matabuena et al. 1449

Table 2. Cut-offs for metric time in range using own estimations
through normoglycemic individuals of AEGIS study.

Range | <85
Range 2 85-90
Range 3 91-94
Range 4 95-98
Range 5 99-101
Range 6 102105
Range 7 106109
Range 8 110115
Range 9 116-124
Range 10 >125

Table 3. Cut-offs for metric time in range following ADA guidelines®.

Range | <54
Range 2 54-69
Range 3 70-180
Range 4 181-250
Range 5 >250

3 Definition and estimation of the glucodensity

For patient i, denote the gathered glucose monitoring data by pairs (#;, Xj), j = 1,...,m;, where the t; represent
recording times that are typically equally spaced across the observation interval, and X; is the glucose level at time
tij € 0, T;). Note that the number of records m;,, the spacing between them, and the overall observation length T;
can vary by patient. One can think of these data as discrete observations of a continuous latent processes Y;(7),
with X;; = Y;(¢;). The glucodensity for this patient is defined in terms of this latent process as f;(x) = F/(x), where

17
Fo) = [ 1000 < vd )
Ti Jo
for inf Yi(1) <x < sup Yi(1) )
1€[0.7}] 1€[0,T;)

is the proportion of the observation interval in which the glucose levels remain below x. Since F; are increasing
from 0 to 1, the data to be modeled are a set of probability density functions f;, i=1,...,n.

Of course, neither F; nor the glucodensity f; is observed in practice, but one can construct an approximation
through a density estimate f,() obtained from the observed sample. In this case of CGM data, the glucodensities
may have different support and shape. Therefore, we suggest using a non-parametric approach to estimate each
density function. For example, using a kernel-type estimator, we have

Fix) =3 K- ),
! 1

j=

where /;> 0 is the smoothing parameter and K, (s) = hiK(ﬁ) The choice of K does not have a big impact on the
efficiency of the estimator, but the value of /; is crucial.?® ’

In the standard setting of independent random samples, a vast number of approaches for selecting the smooth-
ing parameter are available in the literature. Common strategies include cross-validation, minimizing the esti-
mated mean integrated squared error (MISE), or a “rule of thumb” derived from the assumption that the density
is Gaussian. In this last case, the choice can be explicitly written as h; = 1.06&[n1f1/ 5, where ¢; is the sample
standard deviation of the X;;*

Nevertheless, in our particular setup, we are estimating the density function of a stochastic process/time series,
which is more difficult in theory. However, in a seminal work in this area, Hall et al.*® showed that the rule of
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thumb and other traditional smoothing parameter selection strategies behave well. Additionally, the number of
density function estimators that exist are considerable, and we can also employ other approaches as the use of
orthogonal expansions (e.g. Fourier or Wavelet basis), splines, and histograms. For further details, the reader is
referred to the relevant literature.?*3!-3

3.1 Distance-based descriptive statistics

Let [a,b] be an interval of the real line, which may be unbounded, and suppose that each glucodensity f; has
support contained in [, b]. From a statistical point of view, the sample fi,...,f, may be modeled and analyzed
using methods of functional data analysis.**** However, since the f; must be positive and satisfy f Sfi(x)dx =1,
classical methods have in recent years been adapted to account for the nonlinear, distributional structure of
density samples.>>® The general approach is to define a metric or distance between densities that, in turn,
leads to descriptive statistics that respect the unique density I})roperties For example, define the data space of
glucodensities as A := {f: [a,b] — R" : 3[ )dx =1 and f ’f(x)dx < oo}. Given two arbitrary glucoden-
sities f,g € A, the 2- Wasserstem distance between fand gis

1
we(frg) = \/ /0 (F'(x) — G(x))*dx 3)

where F and G are the cumulative distribution functions (cdfs) of the density functions fand g.

The 2-Wasserstein distance is a natural distance to measure the similarity between density functions through its
representation in the space of the quantile (inverse cdf) functions, and it has already been successfully applied in
biological problems. Furthermore, it has computational and modeling advantages compared to the usual L2[a, b]
metric when glucodensities have different support within [a, b]. Finally, it has a physical interpretation in the
theory of optimal transport.

As glucodensities are distributional data, the subsequent application of the usual techniques for functional
data, such as estimation of mean, covariance, and regression models, may lead to misleading results. Hence, we
have chosen to use models based on the 2-Wasserstein distance, although other choices are possible. As a starting
point, based on the notion of distance, we can generalise the mean and variance of a random variable that takes
values in an abstract space with metric structure.’® As we will see, similar adaptations can be developed for
regression, hypothesis testing, or to perform cluster analysis. Given a distance d: 4 x A — R" between density
functions, of which dj» is one example, and a random variable f defined on A, the Fréchet mean of fis

wy = argmin E((/, g)).
geA

The Fréchet variance of fis then
= E(d(f, 1))-

If the choice of distance is the Wasserstein metric dj», these are given the names of Wasserstein mean and
variance, respectively. In this particular case, equation (3) implies that ,u,»is the density whose quantile function is
the pointwise mean of the random quantile function F~'. Moreover, af is interpreted as the integral of the
pointwise variance of F~!. In general, calculation of the Fréchet mean is not easy, and we must resort to com-
putational approximations.*’

In the following subsections, we will extend these concepts of Frechet to statistical methodologies of regression,
clustering, and hypothesis testing based on the notion of distance.

4 Regression models with glucodensities

4.1 Non-parametric regression model with glucodensity as the predictor

Let f'be a functional random variable taking values in (A4, dy») and Y a random variable that takes values in the
real line. We assume the following regression relationship between f and Y, which represent the predictor and
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response variables, respectively:
Y= g(f) +¢ @)

where g : A — R is an unknown smooth function, and the random error e satisfies E(e) = 0.
Given a sample {(f;, Y;) € 4 x R}/_,, most non-parametric estimators g(-) have the form of a weighted average
of the responses,

g(x) = Z”: Wyi(X) Y. (5)
i=1

In general, the weights w,;(x) depend on the distance selected to measure the”similarities between the density
functions f; and x, with larger distances receiving lower weights, and satisfy Z wyi(x) = 1.%° A typical choice
would be the Nadaraya-Watson weights i=1

K( fl(~\l‘lﬁ))

n d(x.fj)
Zi:l K h

where / is a smoothing parameter and K : R — R is a known univariate probability density function called the
kernel. For more details about this procedure, see Ferraty and Vieu.*’ As an alternative for the above method, we
can use the kernel methods in Reproductive Kernel Hilbert Spaces (RKHS).*!?

(6)

Wwpi(X) =

4.2 Regression model with glucodensity as the response

In the case of regression models with a density function as response, the literature is not very extensive to the
current date.***’ In this article, we use the model proposed in Petersen and Miiller*> which allows us to incor-
porate the desired metric dy» and is a direct generalization of classical linear regression. The primary rationale for
the use of this model is that, unlike the other approaches cited above, there is a methodology developed to
perform inferential procedures such as confidence bands and hypothesis testing in order to establish the signif-
icance of the input variables in the model.**

Let /' be a random variable (e.g. a glucodensity) that take values in the space of (A4,dy») defined above.
Consider a random vector U C R that contains the set of predictors. Our interest is in the Fréchet regression
function, or function of conditional Fréchet means,

f(u) = argmin E(d5. (f,¢)|U = u),u € RY. (7)

geA

Petersen and Miiller*” impose a particular model for f that, in direct analogy to classical linear regression, takes
the form of a weighted Frechet mean

f(u) = argmin E(s(U, u)d%(f,g)),u € R (8)

geA
Here, the weight function is
s(Uu) = 14+ (U= )= (u—p), p = E(U), = = Cov(U) ©)

and X is assumed to be positive definite.

Given a sample (U, f;),i = 1,...,n, of independent pairs each distributed as (U, f), one can proceed to estimate
f(u) for any desired input u. Due to the intimate connection between the Wasserstein metric and quantile
functions as in equation (3), for most inferential procedures it is sufficient to estimate the conditional
Wasserstein mean quantile function Q(u) corresponding to f(u). Let D be the set of quantile functions, Q;, the
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quantile function corresponding to the random density f;, and define empirical weights s;,(u) =1+
(U, — U)TZ (u— U), where U and X are the sample mean and variance of the U, respectively. The natural
estimator under dy, is the weighted empirical mean quantile function

n

O(u) = argmin > 5in(x)[|Q — Q1> (10)
1

0eDp 4
where || - || denotes the 22[0, 1] norm on D. )

A straightforward algorithm for computing Q(u) is shown in Supplementary Material of the original refer-
ence.*® In addition, two algorithms are given to estimate the confidence bands at a given significance level o for
both the quantile functional parameter Q(u) and the density parameter f(u).

4.3 Outline tuning parameters in statistical analysis and software details

The density function of each individual was estimated with a non-parametric Nadaraya-Watson procedure. For
this purpose, we used a Gaussian kernel and rule of thumb as a smoothing parameter. As some computations
involving the 2-Wasserstein metric only require a quantile function as input, these were estimated using the
empirical quantile function of the observations.

Concerning prediction, the two regression models previously described were used in glucodensity validation: (i)
the non-parametric kernel functional regression model with the 2-Wasserstein distance having the glucodensity as
predictor®® and (ii) a global 2-Wasserstein regression model where the glucodensity is the response.*’ In addition,
with standard vector-valued time in range metrics, k-nearest neighbor algorithms were employed with k=10
neighbors. These time in range metrics we first transformed using the isometric log-ratio (ilr) transformation for
compositional data prior to fitting the model.*’ In order to avoid problems associated with zero values in any of
these predefined ranges, a fixed positive constant was added to each range, which were then normalized to add to 1.

All analyses were carried out using R software. Functional data analysis was performed using the fda.usc
package,” which is freely available at https://cran.r-project.org/, and our own implementations of the ANOVA
test of Dubey and Miiller®" or Fréchet regression in Petersen and Miiller*® using the 2-Wasserstein distance. The
glucodensities and their quantile representation were estimated using the R basis functions.

5 Clinical validation of the glucodensity

To validate the glucodensity representation, we use the database from the AEGIS study.?”* The database contains
the continuous glucose monitoring data between two and sixdays of 581 patients from a general population’s
random sample. To develop the validation task, we use two different regression models: (i) a non-parametric
regression model where the unique predictor is glucodensity and (ii) a linear regression model where the response
is a glucodensity. The first model was used to predict glycated hemoglobin (Alc),>* homeostatic model assessment
(HOMA-IR),> and the following measures of glycemic variability?*>*3%: continuous overall net glycemic action
(CONGA), mean amplitude of glycemic excursions (MAGE) and mean of daily differences (MODD), through
glucodensity representation. In contrast, the second was used to predict the glucodensity with the five variables
above. Figure 1 gives a visualization of the sample of glucodensities used in these models. Biological significance

in variables under consideration is described in Table 4.

Table 4. Clinical importance of biomarkers used in the statistical analysis.

Biomarker Clinical significance

Alc Gold standard marker in diabetes diagnosis and control
HOMA-IR Measurements to quantify insulin resistance and f-cell function
CONGA

MODD Summary indices of glucose variability

MAGE
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5.1 Prediction of biomarkers using the glucodensity

The aim of the first set of regression analyses is to demonstrate that the glucodensity is sufficiently rich in its
information content to recover the biomarkers mentioned above with high precision. To quantify this precision,
we estimated the R” after fitting a non-parametric model for each biomarker as the outcome variable, using the
glucodensity as the sole predictor (i.e. independent variable). The R? estimates for Alc, HOMA-IR, MAGE,
MODD, CONGA were 0.79, 0.79, 0.92, 0.86, and 0.92, respectively. To supplement the results, Figure 2 shows the
predicted values against the observed values, where the outstanding predictive capacity of the glucodensity can be
seen independently of high or low response values.

5.2 Prediction of the glucodensity using biomarkers

In the second regression analysis with the glucodensity as the outcome variable, we aim to show that the previous
measurements commonly used in the clinical practice cannot capture the glucodensity with high accuracy. This
fact is not completely surprising because, as noted by some authors,” the information provided by a CGM is more
precise than that contained in summary measures. To accomplish this, we computed a suitable version of R* for
this task after fitting a regression model where the response is a glucodensity, and the previous variables are the
predictors. In this case, the R” estimate was 0.74. As predicted, compared to the previous section’s results, we
could not accurately capture the complex nature of glucodensities, even while using the combined predictive
power of several commonly used summary measures. Moreover, in some cases, the prediction differences can
be significant (see Figure 3).
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Figure 2. Real values vs. estimated values when glucodensity is predictor.
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Figure 3. Residuals in quantile space when predicting glucodensities.

5.3 Comparison of time in range metrics with glucodensities

To illustrate the higher clinical sensitivity of glucodensities compared to time in range metrics, we compared each
representation’s ability to predict Alc, HOMA-IR, and glycemic variability metrics MODD, MAGE, and
CONGA, using the data from the AEGIS study. The predictive capacity of the glucodensity representation
was illustrated above, and this section gives the corresponding results for time in range metrics, where these
were calculated according to two sets of cut-offs. In the first, the normoglycemic individuals’ deciles from the
AEGIS study were used, while those proposed by the ADA were used in the second. Tables 2 and 3 show the exact
cut-off values for both cases. Since the time in range metrics constitute a sample of compositional data,* the
isometric log-ratio (ilr) transformation was employed in combination with a k-nearest neighbor algorithm as a
regression model for predicting the scalar variables.

5.4 Prediction of Alc, HOMA-IR, and glycemic variability measures using time in
range metrics

Figure 4 compares the real and estimated values of the previous five variables under the two time in range metrics
under consideration with. Table 5 provides the estimates of R for each variable and metric.

The predictive capacity is significantly worse than that attained by the glucodensity methodology. The supe-
riority of the glucodensity is particularly noteworthy in the case of the HOMA-IR variable, where the association
is relatively weak for time in range metrics. Even for the other variables where the values of R* are moderate, the
larger residuals seen in patients with diabetes with more severe alterations of glucose metabolism indicate that
time in range metrics are particularly poorly suited for such patients. Interestingly, we do not observe substantial
or consistent differences between the two time in range metrics used, as deciles perform better than ADA criteria
for two of the variables, while the ordering was reversed in other instances.

6 Hypothesis testing and clustering analysis with glucodensities

6.1 Analysis of variance with glucodensities

As a special case of regression, suppose we have a sample f1, . .. f,, of glucodensities defined on (4, dy) belonging
to k different groups Gy, Ga, - - -, G that partition {1,...,n} and are of size n; (j = 1,---, k), so that Z;‘Zl n = n.
If the goal is to simply test whether the Wasserstein means are equal for each group, Petersen et al.*® developed
testing procedures based on model (8) for this purpose. An advantage of this model is its flexibility, which allows
for multiple factor layouts as well as tests for interactions. However, the theoretical properties of these tests
require a type of equal variance assumption that may be restrictive for some data sets.

More generally, one may wish to test the null hypothesis that the population distributions of the k groups share
common Wasserstein means and variances, against the alternative that at least one of the groups has a different
population distribution compared to the others in terms of either its Wasserstein mean or variance. In this
scenario, Dubey and Miiller’' investigated a test statistic based on the group proportions Jin=mnn"", the



Matabuena et al. 1455

Alc, % HOMA-IR, mass units
o o 9 o
g = °| g
g o ol :
- &~ °
2 - 1}
T o ©
£« ° £
i - 4 o
e
© \ \ \
3 4 5 6 7 8 9 10 50 60
Real values
MAGE, mg/dL
o
o
172} T o 9 [}
o o _| o 5 o o)
> & 2 Bo)
g g °
o |
g © 8
© ©
£ 24 £
® ®
w s i
T T T
150 1 2 3 4 5
Real values Real values
CONGA, mg/dL
[e)
o et} &
S o © [eXe]
@ @ Oo 500
2w 8 ‘% 256 oog@é?o °
> - 7 ooo o
g O, OO
T <2 |
E ~ o]
®
w n
° T T T T T
0.5 1.0 1.5 2.0 25

Real values

Figure 4. Real values vs. estimated values when time in range metric is the predictor. Blue, time in range metric with cut-offs
calculated with normoglycemics from the AEGIS database. Red, time in range metric using of cut-offs suggested by ADA.

Table 5. R? estimated with time in range metrics under consideration and glucodensity.

Alc HOMA-IR CONGA MAGE MODD
Normoglycemic cut-off 0.63 0.22 0.68 0.65 0.65
ADA cut-off 0.6l 0.08 0.73 0.69 0.60
Glucodensity 0.79 0.79 0.92 0.92 0.86

J
, . 7 2 (4 -
pooled Wasserstein mean fi, = drgmmgeAZ Zlec sz (fi,g) and variance V, =n Zi=1 ieG,dWl (fis )
and finally the quantities

groupwise sample Wasserstein means ji; = arg mmge AZ d%,m (fi, g) and variances 17]- = n-*l;ie G dzwl (fi, i;), the

= S i) {15 )

1 i€G;j

as estimates of the variance of ¥;. Then, with

k
> > A’ 71/, > >
by = p*Z/@;n B Ry =Y SNV - V),
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the proposed test statistic is

nR, nkF>

+
k k
~ 2 2"
E . 1}1”6/ E . 1}1”61

Dubey and Miiller’' demonstrated that the corresponding test is distribution-free, in that the limiting distri-
bution of T, does not depend on the underlying distribution under some assumptions. In practice, it was also
demonstrated that it could be useful to calibrate the test under the null hypothesis via a simple empirical bootstrap
over the preceding statistics. For more details, we refer the reader to the supplementary material of the original
reference.

(11)

T, =

6.2 Energy distance methods with glucodensities

The energy distance is a statistical distance between two distribution functions proposed in 1984 by Gabor J.
Székely.”® This distance is inspired by the concept of gravitational energy between two bodies and has experienced
a rise in appeal for modern statistical applications due to its applicability to data of a complex nature such as
functions, graphs, or objects that live in negative type space.’’

Consider independent random variables Y, Y ~ Fand Z, Z' ~ G that are defined on a (semi)metric space (Q, p)
of negative type, where p : V' x V' — R is the semi-metric. Although the notation in this section is quite general, in
particular, we have in mind the case (Q,p) = (4,dy-) corresponding to glucodensities. The energy distance
associated with p between the distribution F and G is

6/,(F, G) = 2E(p(Y7 Z)) - E(p(Y7 Y/)) - E(p(Z> Z/))

Given random samples Yi,..., Y, NFand Z T 7ZmiEG, the sample energy distance is

n m m m

¢,(F,G) —Z—ZZp Yi, Z)) 2ZZp Y;, Y)) 222;)2,72

i=1 j=

The asymptotic distribution of the above statistic for a null hypothesis (Hy : F = G) as well as for the alter-
native (H, : F # G) is dependent on the chosen semi-metric p. Besides, its expression is difficult to calculate and to
implement in practice. Hence, when using the energy distance based methods, the distribution under the null
hypothesis is usually calibrated with a permutation method. Alternatives to calibrate the distribution under the
null hypothesis include the wild or a weighted bootstrap, as described in literature.’®> The energy distance can
also be extended to handle samples from more than two populations. Given k independent samples
Yi,.. Y],,/ F;, j=1,...,k, the energy distance statistic is

5 iy
ep(Fio Fi) > 2’}1[2&/ gjj — gul,

1<j< <k

noony

g}l—nnlzzp Jis Yll’

i=1 i'=

where n =ny + - + ny.
We now explain how this statistic can be adapted to perform clustering. Consider random pairs (Y}, [;), i =

1,...,n, where Y; is observed and takes values in (Q, p), while I; € {1,...,k} is an unobserved label of cluster
membershlp The task is to recover the true clusters C; = {i: I;=j}, j=1,...,k. Let C,...,Cy be a generic
partition of {1, ...,n}, and denote the size of each cluster by |C; | Then a clusterlng may be chosen by optimizing

the statistic
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nny. . . - -
Sp(Cryeo Ck) = Z é—n[2gjl_gjj_gll]a (12)
1<j< i<k
= Y p(v Y (13)
J - . Iy 1
Glici (i)€CxC;

over all possible clusters C;. At first view, this seems computationally intractable due to the appearance of
distances between the elements of each cluster. However, defining

k
Gl .
Wiy =3, (14)
=

it can be proven that S, 4+ W, is constant. This implies that maximizing S, is equivalent to minimizing W,.

In Franca et al..®* the authors show the equivalence between the previous optimization problem with the
clustering procedure kernel k-means. The latter relationship allows the solving of kernel k-group clustering pro-
cedure through the popular heuristics algorithms as Hartigan and Lloyd allow finding the optimal solution with
the k-means algorithm.

6.3 Example of hypothesis testing and clustering analysis with glucodensity
methodology

Below, we illustrate the methodology of glucodensities in hypothesis testing and cluster analysis with the 2-
Wasserstein distance. We use the ANOVA test® and the k-groups algorithm.®

6.4 Hypothesis testing

An interesting question to address in an epidemiological study is whether there are differences between men and
women in the glycemic profile. The ANOVA test is an important instrument to establish whether there are
statistically significant differences in mean and variance with glucodensities, where there are two or more patient
groups. After applying this method with AEGIS data, the test yields a p-value equal to 0.10. Therefore, there is no
statistically significant difference between men and women at the significance level of 5 percent.

Figure 5 shows the glucodensity samples for each gender using their quantile representations. The pointwise
means of these quantile functions constitute the quantile function of the sample Wasserstein mean glucodensities.
These, together with pointwise standard deviation curves, are also shown in Figure 5. On average, the groups are
quite similar. However, certain discrepancies are observed between both groups in terms of their variance,
although not large enough for the test to show statistically significant differences.

6.5 Clustering analysis

Cluster analysis is an essential tool for identifying subgroups of patients with similar characteristics. As an
example, with the diabetes patients’ data from the AEGIS study, we perform a cluster analysis using three
clusters. To establish when a patient has diabetes, we use the doctor’s previous diagnostic criteria, or if individuals
currently have their glucose values measured with Alc and FPG in the ADA ranges to be classified in that
category.

Figure 6 contains the results of applying the cluster analysis in diabetes patients. The algorithm has identified
three differentiated groups of patients. The first group is patients with normal glucose values, probably because
they are on medication, and the diagnosis of diabetes was made in the past. The second group is patients with
severely altered glucose values, and as can be seen in the glucodensities, their glucose is continuously fluctuating.
Finally, the last group is patients with slightly altered diabetes metabolism. The two-dimensional graphical rep-
resentation of the density function of Alc and FPG helps to validate these findings.
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Figure 5 (Left two panels) Glucodensities for men and women of the AEGIS study, plotted as quantile functions; (Third panel) 2-
Wasserstein mean quantile functions for each group (Fourth Panel). Cross-sectional standard deviation curves for quantile functions in

each group.

7 Discussion

The primary contribution of this article is to propose a new representation of CGM data called glucodensity. We
have validated this representation from a clinical point of view, proving that it is more accurate than time in range
metrics.

7.1 Diabetes etiology and biological components to capture in a mathematical
representation

Diabetes encompasses a heterogeneous group of impaired glucose metabolism, such as the frequent presence of
hyperglycemias or hypoglycemias.> Anomalous glucose fluctuations are another essential trait of dysglycemic
regulation.”®" The use of glycemic control measures that go beyond the average glucose values such as Alc and
also capture (i) the impact of time spent at each glucose concentration on the glucose deregulation process, (ii) the
oscillations of glucose associated with cellular damage.®' is crucial in the management of patients with diabetes as
in the assessment of glucose metabolism with a high degree of precision.

7.2 Clinical validation of glucodensity

Our proposal accurately captures the components of diabetes mentioned above. Using clinical data, we evaluated
the clinical sensitivity against established biomarkers in diabetes. We found a high association between Alc,
HOMA-IR, CONGA, MODD, MAGE, and glucodensity. In the case of the HOMA-IR variable, the predictive
ability does not seem excellent, although, to the best of our knowledge, no known marker shows a predictive
ability against that variable. However, our model can provide consistent values in moderate and large HOMA-IR
values. While the fit for the variable Alc was not perfect, we must consider that the time scale for the Alc and the
glucodensities were quite different. Alc is a measure that reflects the average glucose over 2-3 months while
monitoring patients for less than one week to compute the glucodensity. Our R? of 0.79 is better than the average
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Figure 6. Clustering analysis of diabetes patients in AEGIS study.

glucose recorded by the monitoring period (R*> = 0.61), which indicates that an individual’s glucose distributional
values may give extra information to the long-term glucose averages.

In the prediction of glucodensity from Alc, HOMA-IR, and glycemic variability measures, the estimated R
shows a moderate relationship between those variables. However, we are introducing the essential variables of the
glucose deregulation process. A possible explanation of this is that the use of the summary measures commonly
used in diabetes can hardly capture an individual’s glycemic profile.

Glucose metabolism is very complex and highly dependent on the patient’s conditions. For example, the
cellular mechanism between patients with diabetes type I and type II are significantly different. Diabetes type
II is characterized primarily by insulin resistance, while diabetes type I is caused by the selective autoimmune
destruction of pancreatic f-cells and consequent non-insulin production.®® In this context, the introduction of the
concept of glucodensity provides greater clinical accuracy to the possible decisions derived from such represen-
tation compared to traditional methods because we utilize the entire distribution of glucose concentrations of an
individual over time.

7.3 Time in range metrics vs. glucodensity

While time in range metrics may also achieve the previous aim, they do so to a clearly lesser extent than the
glucodensity. Our proposal can capture the differences between individuals in each glucose concentration. In
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contrast, time in range only measures glucose differences along intervals, with a subsequent loss of information.
Also, time in range metrics are substantially limited since the target zones must be defined previously, and these
may also depend on the study population or the aim of the analysis.

Empirical results demonstrate the advantages of our proposal apart from the theoretical framework. The
ability of glucodensity to predict Alc, HOMA-IR, and the CONGA, MAGE, and MODD variability measures
is surprisingly high, much higher than that achieved with the range metric despite using two different target zones:
the deciles of normoglycemic patients glucose values and the target zones prescribed by the ADA.

The estimated R between glucodensities and Alc is similar to that reported by other authors between Alc and
average glucose values.®> However, in this study, patients are monitored only for two to six days and not for
weeks. Two possible factors must be considered in the analysis of the results. First, there are people with and
without diabetes, and, second, the glucodensity captures Alc better because it represents the entire distribution of
glucose concentration values, while glycation rates are known to increase with glucose concentrations.®* In par-
ticular, the estimated R* between Alc and the mean glucose in our database is only 0.61.

7.4 Statistical considerations

From a statistical standpoint, glucodensities are a special constrained type of functional data known as distribu-
tional data; therefore, we cannot use the usual statistical techniques directly. To alleviate this limitation, this paper
proposes a framework for the analysis of these distributional data based on distances with existing techniques for
hypothesis testing, cluster analysis, and regression models. However, it is important to point out that alternative
approaches are available, including functional transformations®>® that embed the densities in an unconstrained
Hilbert Space, after which standard functional analysis techniques can be applied. Nevertheless, these particular
transformations cannot be applied directly in our setting due to differences in the supports of the glucodensities.
Moreover, these functional transformations have the significant disadvantage that methodology for standard
inferential tasks, such as building a theoretically justified confidence band, is lacking. However, utilizing the
regression model based on the 2-Wasserstein geometry, asymptotic results and resampling techniques can be
used in an intuitive way to build confidence bands.*® Additionally, the application of these transformations
can be difficult to interpret. For example, the functional mean in the transformed space lacks a clear meaning,
so that the results of an functional ANOVA test, say, may not yield a completely incisive analysis. Finally,
distributional data analysis is an exciting research area where new methodological contributions to address dif-
ferent real problems are needed. Examples of such problems include a mixed models or causal inference methods.

7.5 Limitations

A potential limitation of our representation is that it ignores the order of events. Instead, it analyzes only the
distribution of glucose values. Nevertheless, following different animal models in diabetes, the event sequence may
not be a critical component in diabetes modeling. The main factor of microvascular and macrovascular compli-
cations is chronic hyperglycemia,’® ¢’ and this is captured with high accuracy by our models. Moreover, an
essential aspect of managing diabetes patients is hypoglycemia control, and our proposal also captures this.
Finally, the third component of dysglycemia,’” glucose variability, can be accurately predicted by our represen-
tations, at least through metrics CONGA, MAGE, and MODD.

From another point of view, for other authors as Zaccardi and Khunti,? it is expected that different glucose
fluctuations on different time scales may provide extra information on glucose homeostasis. Two extensions of
our models could potentially take into account this variability. The first one is to utilize functional multilevel
models®® applied to transformed glucodensities, using the distributional transformations discussed above. A
second approach would be to build similar densities of glucose speed and acceleration values, both marginally and
as multivariate functions in the statistical models.

The sample size used may also be a limitation from a statistical point of view. Nevertheless, in the field of
diabetes, the AEGIS study is one the world’s largest databases and, unlike other studies, is composed of randomly
selected individuals from a general population.”® Finally, for study validation, perhaps the most reliable way of
validating the new representation is in terms of the patients’ long-term prognosis. However, to the best of our
knowledge, no study with a reasonable sample size has this information from CGM technology’s intensive use.
Moreover, the clinical validation was based on performance with variables associated with the biological and
molecular mechanisms of diabetes development, diabetes status, and future diabetes patients’ prognosis, as we can
see in the literature.
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7.6 Potential applications

Adopting the concept of glucodensity in clinical practice and biomedical research could be very promising in the
following ways.

e To have a simple and more accurate representation of the glycemic profile of an individual. This representation
is especially useful in managing diabetic patients and assessing the effects of an intervention.

e To establish if there are statistically significant differences between patients subjected to different interventions,
for example, in a clinical trial.

e To identify different subtypes of patients based on their glycemic condition and other variables. Cluster anal-
ysis of glucodensities can create new patient subtypes based on the risk of diabetes or other complications.
Furthermore, it allows us to better describe the disease’s etiology by creating groups of subjects whose glucose
profiles and other clinical characteristics are similar.

e To establish the prognosis or risk of a patient or analyze the relationship of an individual’s glycemic profile
with different clinical variables in epidemiological studies.

e To predict changes in the glycemic profile based on the individuals’ characteristics and the intervention
performed. For example: how does the glucodensity vary according to the diet?

e To recommend the most advantageous treatments for a patient. Following the previous idea, a causal inference
model could be fitted where the response is glucodensity, for example, to establish which diet is the most
beneficial for the individual to achieve suitable glucose levels.

7.7 Future work

We introduce glucodensity methodology with CGM data. However, our methodology is also valid for data from
other biosensors such as accelerometers to measure physical activity levels. In this domain, the time in range
metric is one of the most used representations, and perhaps the adoption of our approach can lead to better
results.”"”? The adoption of new methodology with other biosensors may be an essential research issue to be
addressed in the future.

From a statistical point of view, and with biosensor data in different domains, it would be exciting to do an
extensive comparison to establish differences in performance between distributional transformations,*>*> perhaps
with less complex functional models than some we have considered. In general, the statistical models employed in
this paper are non-parametric, and a considerable sample size is necessary, a requirement that is always not
satisfied in many studies. In such cases, with a proper transformation, it may be possible to utilize simpler models,
for example functional linear regression, for some analytic tasks.

In the diabetes field, two different directions of future work are essential. First, from a more clinical point of
view, it will be necessary to evaluate the predictive capacity of the glucodensity in the long-term prognosis of
patients. In addition, it would be interesting to assess, in more extended monitoring periods, the reproducibility
between days and weeks with the representation constructed. One way to accomplish this is to compute the
intraclass correlation coefficient (ICC) using, for example, the methodology proposed recently in Xu et al.”?
and based on distances between functions. Second, we need to explore the possibility of incorporating more
information about glucose fluctuations with multidimensional glucodensities or multilevel models, although this
increases model complexity and hence demands higher volumes of data.
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