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Abstract

We identify counter-examples to the consensus result given in [J. Semonsen et al. Opinion
dynamics in the presence of increasing agreement pressure. IEEE Trans. Cyber., 49(4): 1270-
1278, 2018]. We resolve the counter-examples by replacing Lemma 5 in the given reference with
a novel variation of the Banach Fixed Point theorem which explains both the numerical results
in the reference and the counter-example(s) in this note, and provides a sufficient condition for
consensus in systems with increasing peer-pressure. This work is relevant for other papers that
have used the proof technique from Semonsen et al. and establishes the veracity of their claims
assuming the new sufficient condition.

1 Introduction

In this technical note we correct and clarify a consensus result given in [1]. This correction is
relevant not only to the general literature but in particular to [2], which uses the same proof
technique as [1] and [3–9], which cite [1]. We show this proof method is incomplete due to the use
of a lemma drawn from outside the consensus literature. We provide a complete result and use this
to prove a corrected version of Theorem 2 in [1].

In [1], the authors study a consensus problem (see e.g., [10–48]) under an increasing peer-
pressure function, which seems to drive system consensus. Note that recent work on consensus is
extensive and the cited work provides only a small sample of this large body of work.

[1] assumes N agents are arranged on a weighted graph with weighted adjacency matrix A ∈
RN×N , where self-weights are all 0. Each agent has a time-varying state x(i) ∈ [0, 1] (though any
inputs in R would suffice) and the vector xk ∈ RN is the vector of agent states at time k. Each

agent also has a stubbornness coefficient s(i) (also used in [2]) and a preferred state x+
(i)
, which

defines a fixed vector x+ ∈ RN×N . Define a diagonal matrix S containing the s(i) and a diagonal
matrix D of row-sums of A. The the update function studied in [1] is 1 given by:

x(k) = (S+ ρkD)−1 (︁Sx+ + ρkAx(k−1)

)︁
. (1)

Here ρk is a time-varying peer-pressure value. This time-varying term incrementally increases the
weight a vertex places on its neighbors’ strategies as compared to its own stubbornness. Additional
details are provided in [1]. Let:

fk(x) = (S+ ρkD)−1 (︁Sx+ + ρkAx(k−1)

)︁
. (2)

∗C. Griffin is with the Communications, Information and Navigation Office, Applied Research Laboratory, Uni-
versity Park, PA 16802, E-mail: griffinch@psu.org

1Note we use subscripts for time in this paper, while [1] uses superscripts. The difference is only notational.
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In Lemma 3 of [1] it is shown that fk(x) is a contraction with a fixed point:

x∗
k = (S+ ρkL)

−1 Sx+, (3)

where: L = D−A is the Laplacian. It is noted in Theorem 1 of [1] that:

lim
k→∞

x∗
k =

∑︁N
i=1 six

+
i∑︁N

i=1 si
1. (4)

That is the fixed points of the individual contractions converge to the stubbornness weighted mean
of the agents’ preferred states. The authors state Lemma 5, taken directly from [49,50]:

Lemma 1.1 (Theorem 1 of [49] & Theorem 2 of [50]). Let {fn} be a sequence of analytic contrac-
tions in a domain D with fn(D) ⊆ E ⊆ D0 ⊆ D for all n. Then Fn = fn ◦ fn−1 ◦ · · · ◦ f1 converges
uniformly in D0 and locally uniformly in D to a constant function F (z) = c ∈ E. Furthermore,
the fixed points of fn converge to the constant c.

[1] then uses this to argue (in Theorem 2) that when:

Gk(x) = (fk ◦ · · · ◦ f1)(x),

if ρk → ∞, then:
lim
k→∞

Gk(x0) = x∗.

That is the iteration of the fk with increasing ρk (i.e., increasing peer-pressure) leads to a consensus
point.

In the next section, we show this is not a complete statement and that the system may fail to
converge for certain choices of increasing ρk. The failure in this case is due to the use of Lemma 1.1
(Lemma 5 of [1]), which appears not to be valid in this case because the containment requirement
in the lemma does not ensure that the iterated contractions shrink to a fixed point. We then prove
a variation of the Banach fixed-point theorem, which explains our example’s failure to converge
and provides a correct sufficient condition for convergence, thus completing Theorem 2 of [1].

2 Counter-Example to Consensus

Consider the simple graph K2 with the following inputs:

A =

[︃
0 1
1 0

]︃
S = D = I2.

Let the initial condition and preferred agent states be given by x+ = ⟨0.1, 0.5⟩. Assume we define
the exponentially increasing peer-pressure function:

ρk = 2
√
k,

which provides some numerical stability (i.e., does not blow up too quickly) but also shows ex-
ponential growth. Simulation of Eq. (1) shows the system does not converge to the expected
x∗ = ⟨0.3, 0.3⟩ as given by Eq. (4), but instead oscillates about this point indefinitely. This is
shown in Fig. 1. However, if we replace the peer-pressure function with:

ρk = k,
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(b) Long Run Oscillation

Figure 1: Initially fast convergence around the mean point x∗ = ⟨3, 3⟩ slows and becomes oscillation,
showing neutral stability, rather than asymptotic stability.
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(b) Long Run Convergence

Figure 2: Asymptotic convergence to the point x∗ = ⟨3, 3⟩ is illustrated. As noted in [1] this
convergence is linear.
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then we see the system converges as expected from Theorem 1 of [1]. This is shown in Fig. 2. It
is clear from this example that the issue with Theorem 1 is not the statement of the theorem, but
its lack of qualification on the growth of ρk. This stems directly from Lemma 5 of [1] (or Theorem
1 of [49] & Theorem 2 of [50]), which also does not qualify the analytic contraction to be used.
However, it is clear that this pathology is an example of an even easier example.

Consider the family of functions f : R → R.

fk(x) =

(︃
1− 1

10n

)︃
x. (5)

Each fk(x) has a fixed point x∗k = 0, thus the fixed points x∗k converge to x∗ = 0 (tautologically).
Moreover, each function contracts any interval containing x = 0 into itself. However, computing:

Gk(x) = (fk ◦ fk−1 ◦ · · · ◦ f1)(x) =

(︄
k∏︂

i=1

(︃
1− 1

10n

)︃)︄
x,

we see that:

lim
k→∞

Gk(x) = x · lim
k→∞

k∏︂
n=1

(︃
1− 1

10n

)︃
= x · ϕ

(︁
1
10

)︁
.

Here ϕ(·) is Euler’s function derived from the q-Pochhammer symbol. We note that:

ϕ
(︁

1
10

)︁
≈ 0.89001.

Therefore, for x ̸= 0, G∞(x) ≈ 0.89001x, rather than 0 as would be expected from the statement
of Lemma 5 of [1]. By contrast, if we consider the family of functions:

fk(x) =
k − 1

k
x, (6)

then:

Gk(x) =

(︄
k∏︂

n=1

n− 1

n

)︄
x,

and

lim
k→∞

Gk(x) = x · lim
k→∞

(︄
k∏︂

n=1

n− 1

n

)︄
= 0,

as expected. We note this counter-example can be extended to the complex plane (the domain
used in Lemma 1.1). These examples suggest that any future use of Lemma 1.1 should be done
with care since these examples can be extended to analytic contractions in the complex plane that
appear to satisfy the inclusion requirement given in the Lemma 1.1 as taken from [49,50].

This behavior is not limited to trivial examples. In [1] the authors present convergence on a
Barabási-Albert graph [51]. We illustrate the non-convergence for ρk that grow too quickly using
a Barabási-Albert graph with 100 vertices (see Fig. 3). When ρk = 1.01k, the system converges to

consensus as predicted in [1]. However, when ρk = 10
√
k, the peer-pressure increases too quickly

and the resulting dynamics do not converge but oscillate just as in the case of Fig. 1, but in a more
complex setting.

In the next section, we construct a variation of the Banach fixed point theorem that handles
the conditions set forth in [1] and predicts the non-convergence of the counter-example(s) using the
intuition provided by the simpler cases.
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(a) Barabási-Albert Graph

(b) Convergence in the Barabási-Albert
Graph

(c) Non-Convergence in the Barabási-
Albert Graph

Figure 3: (a) A Barabási-Albert graph with 100 vertices used to illustrate both convergence and
non-convergence. (b) An illustration of agent state convergence when ρk = 1.01k. (c) An illustration

of agent state non-convergence when ρk = 10
√
k; i.e., the peer-pressure increases too quickly.
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3 A Convergence Theorem

Theorem 3.1. Let {fi}∞i=1 be a family of mappings on a Banach space X with norm ∥·∥ so that
each mapping fi has a unique fixed point x∗

i satisfying the property:

∥fi(x)− x∗
i ∥ ≤ αi ∥x− x∗

i ∥ ∀x ∈ X,

where 0 ≤ αi < 1 for all i. Furthermore, suppose that:

lim
i→∞

x∗
i = x∗ ∈ X.

Then, if x0 ∈ X and

lim
N→∞

N∏︂
i=1

αi = 0,

then:
lim
k→∞

(fk ◦ fk−1 ◦ · · · ◦ f1)(x0) = x∗

Proof. Define:
Gk = fk ◦ fk−1 ◦ · · · ◦ f1.

By assumption:⃦⃦
(fk+1 ◦Gk)(x0)− x∗

k+1

⃦⃦
≤ αk+1

⃦⃦
Gk(x0)− x∗

k+1

⃦⃦
= αk+1

⃦⃦
(fk ◦Gk−1)(x0)− x∗

k+1

⃦⃦
.

Applying the triangle inequality to the last term we have:⃦⃦
(fk+1 ◦Gk)(x0)− x∗

k+1

⃦⃦
≤ αk+1

(︁
∥(fk ◦Gk−1)(x0)− x∗

k∥+
⃦⃦
x∗
k+1 − x∗

k

⃦⃦)︁
.

This is illustrated in Fig. 4.

Figure 4: An illustration of some triangle inequalities used in the proof.

Applying similar logic, we see that:⃦⃦
(fk+1 ◦Gk)(x0)− x∗

k+1

⃦⃦
≤ αk+1αk ∥Gk−1(x0)− x∗

k∥+ αk+1

⃦⃦
x∗
k+1 − x∗

k

⃦⃦
.

Repeating this argument, we see:⃦⃦
(fk+1 ◦Gk)(x0)− x∗

k+1

⃦⃦
≤ αk+1αkαk−1

⃦⃦
Gk−2(x0)− x∗

k−1

⃦⃦
+

αk+1αk

⃦⃦
x∗
k − x∗

k−1

⃦⃦
+ αk+1

⃦⃦
x∗
k+1 − x∗

k

⃦⃦
.
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We can continue in this way until we see that:

⃦⃦
(fk+1 ◦Gk)(x0)− x∗

k+1

⃦⃦
≤

(︄
k+1∏︂
i=1

αi

)︄
∥f1(x0)− x∗

1∥+
k∑︂

j=1

⎛⎝ k+1∏︂
i=j+1

αi

⎞⎠⃦⃦x∗
j+1 − x∗

j

⃦⃦
. (7)

We assume that the fixed points x∗
i converge and therefore for any ϵ > 0 there is an N > 0 so that:⃦⃦

x∗
N+1 − x∗

N

⃦⃦
< ϵ. (8)

Before proceeding, recall:

lim
N→∞

N∏︂
i=1

αi = 0, (9)

and
lim

N→∞

⃦⃦
x∗
N+1 − x∗

N

⃦⃦
= 0. (10)

Suppose we are given an ϵ > 0, choose N so that:

1. (︄
k+1∏︂
i=1

αi

)︄
∥f1(x0)− x∗

1∥ <
ϵ

2(N + 1)
,

which is possible because of Eq. (9).

2. For each j: ⎛⎝ N+1∏︂
i=j+1

αi

⎞⎠⃦⃦x∗
j+1 − x∗

j

⃦⃦
<

ϵ

2(N + 1)
.

This is possible because of the combination of Eqs. (9) and (10).

3. Finally assume: ⃦⃦
x∗
N+1 − x∗⃦⃦ <

ϵ

2
.

This is possible from the convergence of the fixed points.

Then from Eq. (7) we have: ⃦⃦
Gn+1(x0)− x∗

n+1

⃦⃦
<

ϵ

2
.

By one more application of the triangle inequality, we have:

∥Gn+1(x0)− x∗∥ ≤
⃦⃦
x∗
N+1 − x∗⃦⃦+ ⃦⃦Gn+1(x0)− x∗

n+1

⃦⃦
< ϵ.

This completes the proof.

This theorem explains, as special cases, the families of functions defined in Eq. (5) and Eq. (6).
In the next section, we use it to resolve the counter-examples discussed in Section 2.
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4 Resolution of the Counter Examples

Returning to the example in Section 2, let x+ = ⟨a, b⟩, thus generalizing the initial condition. In
this case, Eq. (1) can be written as:

fk(x) =

[︄
(ρ+1)(a+ρx2)

ρ2+2ρ+1
(ρ+1)(b+ρx1)

ρ2+2ρ+1

]︄
. (11)

For each fk(x) the explicit fixed point is given by:

x∗
k =

[︃
x∗1
x∗2

]︃
=

[︄
a+ρ(a+b)

2ρ+1
b+ρ(a+b)

2ρ+1

]︄
. (12)

Since ⟨s1, s2⟩ = ⟨1, 1⟩, we see that:

lim
k→∞

x∗
k = x∗ =

[︃
a+b
2

a+b
2

]︃
,

as expected.
Because this example is particularly simple, we can compute (see Appendix A):

∥F (x)− x∗
k∥

2 =

(︃
ρk

1 + ρk

)︃2

∥x− x∗
k∥

2 , (13)

for any x. In Theorem 3.1, we now have:

αk =
ρk

1 + ρk
.

When ρk = 2
√
k, then:

∞∏︂
k=1

αk ≈ 0.0310128 > 0,

which implies (as expected) that the system may not converge to the fixed point (see Fig. 1). On
the other hand, when ρk = k,

∞∏︂
k=1

αk = 0,

ensuring that the system will converge to the weighted average of x+.
We can likewise resolve the counter-example using the Barabási-Albert graph. It is difficult

to compute an exact contraction factor in this case. However, given an initial value x+ and a
peer-pressure function ρk, it is possible to approximate an upper-bound on the contraction at each
step by solving the optimization problem:⎧⎪⎨⎪⎩max

x

∥fk(x)− x∗
k∥∞⃦⃦

x− x∗
k

⃦⃦
∞

s.t. 0 ≤ x ≤ 1,

where fk(x) is defined in Eq. (2) and x∗
k is defined in Eq. (3). Here we use the ∞-norm because

the matrix norm used to show fk is a contraction in Lemma 3 of [1] is the infinity norm. For the
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(a) Converging Contraction Factor (b) Converging Contraction Factor

Figure 5: (a) Illustration of the computed contraction factor and its non-linear fit in the case of
convergence in the Barabási-Albert graph. (b) Illustration of the computed contraction factor and
its non-linear fit in the case of non-convergence in the Barabási-Albert graph. Notice it increases
toward 1 much faster than the converging case.

counter-example using the 100 vertex Barabási-Albert graph, we plot the bounds on the contraction
factor in Fig. 5. In the case when ρk = 1.01k, the contraction factor grows according to:

αk ∼ k

0.493345 + k
.

Using this analysis we can see the product of the fit for αk approaches zero explaining why this
case seems to converges to effective consensus (i.e., consensus to a numerical tolerance). On the

other hand, when ρk = 10
√
k, we see that:

αk ∼ 1− 10−0.355178x−0.969752.

In this case, the product of the fit for αk converges to ∼ 0.917, explaining why the process does not
converge to consensus. This numerical approximation can be used as a rule of thumb to determine
whether a system is likely to converge (numerically).

Before concluding, it is worth noting that if we used ρk = 1.01k with the graph K2 (the graph
from the first counter-example), we would see that:

∞∏︂
k=1

αk =
∞∏︂
k=1

1.01k

1 + 1.01k
≈ 1.79× 10−36,

implying that the dynamics may not truly converge to perfect consensus. However numerically we
may not be able to distinguish this as illustrated with the Barabási-Albert graph. Thus it may
be sufficient to ensure the product of the contraction factors is small enough to achieve effective
numerical consensus in a real-world system.

4.1 Correction to Theorem 2 of [1]

Using this information, we can correct Theorem 2 of [1] to read:

Theorem 4.1 (Clarification of Theorem 2 of [1]). Let

fk(x) =
(︂
S+ ρ(k)D

)︂−1 (︂
Sx+ + ρ(k)Ax

)︂
.
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Define:
xk = fk(xk−1),

with x0 given (and assumed to be x+). If ρk → ∞ and

∥fi(x)− x∗
i ∥ ≤ αi ∥x− x∗

i ∥ ∀x ∈ X,

so that the resulting contraction constants αk of fk satisfy:

∞∏︂
k=1

αk = 0,

then

lim
k→∞

xk =

∑︁
i sixki∑︁
i si

.

As a final remark, we note that this result could be anticipated from the convergence rate
analysis in [1], which shows that Eq. (1) is an instance of gradient descent. Convergence guarantees
for such an algorithm require satisfaction of the Wolfe Conditions and several pathological examples
exist in which the step length (governed by ρk) is improperly defined leading to oscillation in
gradient descent (see [52]). Thus, one might view Theorem 4.1 as a specialized sufficient condition
on step length in this gradient descent.

5 Conclusions

In this technical note, we corrected and clarified Theorem 2 of [1]. This correction is important
because the proof method has been used by other authors [2]. The correction is based on replacing
a lemma (Lemma 5) used in [1] with a new variation on the Banach Fixed Point theorem. The
modified theorem(s) now ensure results in [1] and [2] can be used for development of consensus
systems or for their further study.
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A Computation of the Norms

Computing directly we have:

∥fk(x)− x∗
k∥

2 =

(︃
a+ ρx2
ρ+ 1

− a+ ρ(a+ b)

2ρ+ 1

)︃2

+

(︃
b+ ρx1
ρ+ 1

− b+ ρ(a+ b)

2ρ+ 1

)︃2

.

We also have:

∥x− x∗
k∥

2 =

(︃
x1 −

ρ(a+ b) + a

2ρ+ 1

)︃2

+

(︃
x2 −

ρ(a+ b) + b

2ρ+ 1

)︃2

.

Dividing these expressions into each other and simplifying2 yields Eq. (13).

2Using Mathematica™.
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